光电子技术 ppt课件

合集下载

光电子技术PPT1.4

光电子技术PPT1.4
d 2 ( 21 ) n2 B21 ( 21 ) h 21dt
d ( 21) (n2 B21 n1B12 ) ( 21) h 21dt
由爱因斯坦关系得:
d ( 21 ) ( n2 g2 n1 g1
B12 g1 B21g 2
) g 2 B21 ( 21 )h 21dt
形成粒子数反转的结构-----二能级系统
考虑一个二能级E2,E1 系统的粒子数的分布情 况。设有一光束通过此 系统,频率为:
21
E2 E1 h
由于受激吸收和发射的存在,光束的能量要发生变化。 经dt时间后有:(单位体积) 因吸收减少: 因发射增加: 能量总的变化为:
d1 ( 21 ) n1B12 ( 21 ) h 21dt
在给定体积内,组成光辐射的大量光子可按 一定方式分别处于不同的状态(模式)内。
同态光子是相干的,不同态光子是不相干的。
光子简并度越大 → 同态光 子数越多 → 相干光强越强
受激辐射可以产生相干光子,并且可 使光场得到放大。
问题:是否可以减少模式数(光子态)?
想法:使相干的受激辐射 光子集中在某个(某几个) 特定模式内,而不是均匀 分配在所有模式内。
外来光子
E h E2 E1
原子受外来光作用, 完全吸收外来光子, 并跃迁到E2能级。 N2 E2
N1
E1
两能级满足跃迁选择定则
光的受激吸收是同受激辐射相反的过程。 * 必须有外来光子
激光产生的条件
• 受激辐射为同态光子的产生提供了理论基 础。 • 是不是只要有受激辐射发生,就会产生激 光呢个? • 激光的产生还依赖于哪些条件?
光放大的条件:粒子数反转分布
增强光同介质的相互作用

光电子技术基础14_图文_图文

光电子技术基础14_图文_图文

5. 通量阈Pth和噪声等效功率 NEP
从灵敏度R的定义式
可见,如果P=0,应有i=0 实际情况是,当P=0时,光电探测器的输出电流并不为零。 这个电流称为暗电流或噪声电流,记为
它是瞬时噪声电流的有效值。 显然,这时灵敏度R巳失去意义,我们必须定义一个新参量 来描述光电探测器的这种特性。
光功率Ps和Pb分别为信号和背景光功率。 即使Ps和Pb都为零,也会有噪声输出。 噪声的存在,限制了探测微弱信号的能力。 通常认为,如果信号光功率产生的信号光电流is等于噪声 电流in,那么就认为刚刚能探测到光信号存在。
⑶涂膜式 在玻璃基片上直接涂上光敏材料膜后而制成。其结构下图。
四、光敏电阻的 特点
1、优点:
灵敏度高,光电导增益大于1,工作电流大,无极性之分 光谱响应范围宽,尤其对红外有较高的灵敏度 所测光强范围宽,可测强光、弱光
2、不足:
强光下光电转换线性差
光电导弛豫时间长
受温度影响大
光电池
硅光电池结构示意如
2. 光谱灵敏度Rλ
条于件是光下光功不谱率变灵谱的敏密情度度R况λ定R下λ由义,于为光光电电流探将测是器光的波光长谱的选函择数性,,记在为其iλ,它
Rλ是常数时,相应探测器称为无选择性探测器(如光热探测 器),光子探测器则是选择性探测器。
通常给出的是相对光谱灵敏度Sλ定义为
Rλm是指Rλ的最大值,Sλ为无量纲,随λ变化的曲线称为光 谱灵敏度曲线。
依照这一判据,定义探测器的通量阈Pth为
a
例。:即若小于Ri=01.000μ1A微/μ瓦W的,信in=号0.光01功μA率,不则能通被量探阈测P器th=所0得.00知1μ,W所
以,通量阈是探测器所能探测的最小光信号功率。

光电子技术全套课件

光电子技术全套课件

光电子技术精品课程
§3 纵模的概念
光电子技术精品课程
§3 纵模的概念
光电子技术精品课程
§4 光腔的损耗
开腔的损耗及其描述
光子在腔内的平均寿命
无源谐振腔的Q值 无源腔的本征振荡模式带宽
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术 精品课程
电子科学与技术 精密仪器与光电子工程学院
光电子技术 精品课程
激 光 原 理
第二章 光腔理论的一般问题
电子科学与技术 精密仪器与光电子工程学院
§1 腔与模
光腔的构成和分类
模的概念
腔的作用
光电子技术精品课程
§1 腔与模
光电子技术精品课程
§2 共轴球面腔的稳定性条件
传输矩阵
共轴球面腔的稳定性条件
§7 方形镜共焦腔的自再现模
光电子技术精品课程
§8 方形镜共焦腔的行波场
厄米 - 高斯光束
振幅分布和光斑尺寸
模体积
等相位面的分布
远场发散角
光电子技术精品课程
§8 方形镜共焦腔的行波场
光电子技术精品课程

光电子学完整PPT课件

光电子学完整PPT课件
第一章 电磁波与光波(理论基础) 第二章 激光与半导体光源 第三章 光波的传输 第四章 光波的调制 第五章 光波的探测与解调
.
未来是光通信的世界。
第一章 光波与电磁波
➢麦克斯韦方程组的积分形式 ➢高斯定理 斯托克斯定律 ➢麦克斯韦方程组的微分形式 ➢边界条件 ➢电磁波的性质 ➢电磁波谱
.
麦克斯韦方程组及其物理意义
E和H幅度成比例、复角相等
0E0 0H0
E H
电磁波的传播速度
v 1 k 00
C
1
00
3108.m/ s
介质中 真空中
为什么说光波是电磁波?
1) 根据麦氏方程推导, 电磁波在真空中的速度为
c 1 3.107 140 8ms
00
当时通过实验测得的真空中的光速也为 3108 m s
2) 根据麦氏方程: 电磁波在介质中的速度为
玻尔频率条件: h En Em 或 En Em
h
式中h为普郎克常数:
h 6 .6 2 1 3 0 J 4s
.
激光的基本原理、特性和应用 ——玻尔假说
原子能级
原子从高能级向低能 级跃迁时,相当于光 的发射过程;而从低 能级向高能级跃迁时, 相当于光的吸收过程; 两个相反的过程都满 足玻尔条件。
(对于非铁磁质)
v c
根据光学中折射率的定义,则
.
v c
nc vc vn
为什么说光波是电磁波?
如果光波是电磁波,比较上面两式:
v c 和v c
n
n
麦克斯韦 关系式
➢而当时测得的无极分子物质,按上式计算的折射率与测量的折射率 能很好的符合。 ➢当时测得的为有极分子物质,上式中的ε用光波频率时的值,则上式 就成立了。平时ε在低频电场下测量。 ➢所以麦克斯韦判定,光波是电磁波。

光电子技术PPT 1.3

光电子技术PPT 1.3
二、热辐射光源
发光机理:由于内部原子、分子的热运动转 变而来的体辐射器

非常接近于绝对黑体
太阳:直径为1.392 × 109 m的光球。它到地球的年 平均距离是1.496 × 1011 m。 因此从地球上观看太阳时, 太阳的张角只有0.533°。

四、氙灯

氙灯是由充有惰性气体氙的石英泡壳內两个钨电极之间的高温 电弧放电,从而发出强光。高压氙灯的辐射光谱是连续的,与 日光的光谱能量分布相接近(如图2-10),色温为6000K左右, 显色指数90以上,因此有「小太阳」之称。
辐射源发射光的颜色与黑体在 某一温度下辐射光的颜色相同, 则黑体的这一温度称为该辐射 源的色温。

图2-8是常用气体 放电灯的外形图。 表2-2列出了常用 的气体放电灯的种 类、性能以及它们 的主要应用领域。
气体放电灯的基本 结构是相似的.

一、汞灯 泡壳内充汞蒸汽

1.低压汞灯

汞灯在低压放电时主要辐射二条辐射线:253.7nm和 185.0nm。所谓共振辐射线是指从激发态跃迁到基态时 发出的辐射。当汞蒸气压为0.8Pa,玻璃壳温度40℃时, 253.7nm的辐射效率最大,约占输入电功率的60%,而可 见光只占2%。它的光谱分布如图⒜所示。



卤钨灯:
石英泡壳;泡壳内充入微量卤族元素或其化合物 (如溴化硼);形成卤钨循环。 色温3200K以上,辐射光谱为0.25~3.5μm。 发光效率可达30 lm/W(为白炽灯的2~3倍), 用作仪器白光源.

灯泡內充入卤钨循环剂(如氯 化碘、溴化硼等),在一定温 度下可以形成卤钨循环,即蒸 发的钨和玻璃壳附近的卤素合 成卤钨化合物,而该卤钨化合 物扩散到温度较高的灯丝周围 时,又分解成卤素和钨。这样, 钨就重新沉积在灯丝上,而卤 素被扩散到温度较低的泡壁区 域再继续与钨化合。这一过程 称为钨的再生循环。

光电子技术基础[课件]

光电子技术基础[课件]

虽然朗伯定律是一个理想化的概念,但是在实际中 遇到的许多辐射源,在一定的范围内都十分接近于 朗伯余弦定律的辐射规律。
例如,黑体辐射就精确遵守朗伯余弦定律。
•大多数绝缘材料,在相对于表面法线方向的观察角 不超过60°时,都遵守朗伯余核定律。 •导电材料虽然有较大的差异,但在工程计算中,观 察角不超过50 °时,也还能运用朗伯余弦定律,运 用朗伯余弦定律对这类辐射源的辐射量的计算,就 变得十分简单。
如不考虑辐射传输过程中大气的影响,在离开 源距离为l处的辐照度分别为 (9)
(10) 以上两式表明:点源在被照面上产生的辐照度 与其辐射强度成正比,与源到被照面的距离平 方成反比,并与源相对于被照面法线的方向夹 角有关。
3.2 朗伯余弦定律和小面源 的辐射特性
一、朗伯余弦定律 辐射源单位表面积向空间某方向单位立体角发射( 或反射)的辐射功率,和该方向与表面法线夹角的 余弦成正比,即 (15) 这个规律就称为朗伯余弦定律。式中B是一 个与方向无关的常数。凡遵守朗伯余弦定律 的辐射表面称为朗伯面,相应的辐射源称为 朗伯源或漫辐射源。
2.朗伯辐射源的L辐射亮度与M辐出度的关系
(7)
L与M关系的普遍表示式由式(7)给出在一般情况下,如果不 知道L与方向角θ的明显函数关系,就无法由L计算出M。但 是,对于朗伯辐射源而言,L与θ无关,于是式(7)可写为 :
因为球坐标的立体角元
利用这个关系,可使辐射量的计算大为简化
四、例 题 求圆盘和球状小面源的辐射强度和辐射功率。 1.圆盘 设圆盘的辐射亮度为L,面积为A,如图所示 。圆盘在与其法线成θ方向上的辐射强度为 (20) 式中I0=LA,为圆盘在其法线方向上的辐射强度。
这种噪声会使器件的比探测率降低。 探测率D:是最小可探测功率NEP的倒数,表征 的是探测器的灵敏度,D越大灵敏度越高 比探测率D*:归一化的探测率D,可以对不同带宽 和光敏面积的探测器进行比较,可定义为

光电子技术课件ppt2[1]

光电子技术课件ppt2[1]

22
θ1
B
半波带 a 半波带
2
21′′
1 2 1′
2′
半波带 半波带
A λ/2
两个“半波带”上发的光在P处干涉相消
形成暗纹。 • 当a sin 时3,可将缝分成三个“半波带”
2

a
P处近似为明纹中心
A
2024/10/13
λ/2
光电子技术与应用
23
• 当 a sin 2 时,可将缝分成四个“半波
I I1 I2 2 I1I2 cos ,
若 I1 = I2 = I0 ,

I
4I0
cos 2
2
( d sin 2 )
I
4I0
光强曲线
2024/10/13
-4 -2 0 2 4
-2 -1 0 1 2 k
x -2 x -1 0
x1
x2
x
-2 /d - /d 0 /d 2 /d sin
光电子技术与应用
E0 sin 2
2
E0 △Φ
令 a sin
2

Ep
E0
sin

I
E
2 p
,I0 E02
P点的光强
I
I0
sin
2
2024/10/13
光电子技术与应用
27
由 得
I
I0
sin
2

(1) 主极大(中央明纹中心)位置:
0处, 0 sin 1 (2) 极小(暗纹)位置:
f
a
a
——衍射反比定律
2024/10/13
光电子技术与应用
sin I

第三章光电子技术-PPT课件

第三章光电子技术-PPT课件

LD的工作特性(模式特性)
(1)
提高LD性能的方法
(2)
单纵模(SLM)激光器 设计的基本思想
使
几种典型的SLM激光器
大功率光纤激光器
包层泵浦技术
光纤耦合技术
大功率光纤激光器
美 国 IPG Photonics 公 司 、 德 国 Jena 大 学 的 应 用 物 理 所 和 英 国 Southampton 的 ORC 研 制 的 单 根 双包层光纤激光器,连续输出功率 分别达到135W、150W、1000W、 4000W, 20000W
难点
控制能力差
电子技术的发展
半导体电子学的强大生 命力在于它能够实现集 成化
处理功能和运行速度得 到大幅度提高,功耗大 大降低
尺寸大大缩小
芯片的成品率、可靠性 和性价比极大改善
但是利用电子作为信息的载体, 由于路径延迟和电磁串扰效应 的存在,无论从技术局限或是 经济代价以及信息安全的角度 来考虑,电子技术都出现了它 的阶段局限性。
5、半导体光电探测器
5.1 PN光电二极管
5.2 PIN光电二极管
5.3 APD光电二极管
5.4 光电二极管工作特性和参数
原因:W越大,光子入射到该区域的可能性 越大,被吸收产生光电流的概率就越高。
5.5 光电二极管一般性能和应用
谢谢
半导体掺杂材料的选择原则: 如果掺入的杂质原子代替半导 体晶格中的原子后存在多余的价电子,该杂质为施主杂质;如 果掺入的杂质原子代替半导体晶格中的原子后尚缺乏成键所需 要的电子,即存在电子空位,该杂质为受主杂质。
3、激光基本原理
光发射和光吸收
T为热力学温度,k=1.381×10-23J/K为玻尔兹曼常数

光电子技术第一章 绪论 PPT课件

光电子技术第一章 绪论 PPT课件
• 1 2 3 代表材料对外场的响应;
• P代表外场作用下对传播规律的影响; • P ~ E 关系是非线性的。
7
2光电子技术的主要领域及应用
8
光电子技术的主要领域及应用
9
光电子技术的主要领域及应用
主要应用
信息获取
信息传输
信息处理
其它应用
位移、振动 温度、压力 应变、应力 电流、电压 电场、磁场 流量、浓度 可以测量70 多 个物理化学量
17
•激光冷却和捕获原子技术
获得低温是科学家长期以来不断追求的一种技 术,它不但给人类带来实惠,如超导的发现和 应用,而且为研究物质的结构和性质创造了独 特的条件。在低温条件下,分子,原子热运动 的影响可以大大的减弱,原子更容易暴露出它 们的性质。20世纪80年代,借助激光技术获得 了中性气体分子的极低温状态。这种获得低温 的方法就叫激光冷却。
光学 电子学
光电子学
3
光电子技术 是光电子学在信息、能源、材料、航空航天、
生命科学和环境科学等领域的应用
4
光电子学与光电子技术
光电子学
激光与红外物理学 非线性光学
强 光 光
电 光
磁 光
()
弹 声
学效效光
效应应效


半导体光电子学
光 电 转 换 效 应
发 光 效 应
非 线 性 光 学 效 应
6
共同的基本规律
数学描述 波动方程:
电磁波源:
E
o o
2E t 2

o
E t
o
2P t 2
通常(线性)情况下
有外场作用(非线 性)情况下:
P oE
P o 1E 2EE 3EEE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光孤子通信
在光纤的反常色散区,由于色散和非线性效应相互 作用,可产生一种非常引人注目的现象-光学孤子。孤 子是一种特别的波,它可以传输很长的距离而不变形, 特别适用于超长距离、超高速的光纤通信系统。
光电子学的未来
单光子作为信息载体 — 单量子态不可克隆定理 量子信道的引入 — 不确定性原理
光电子学的未来
EFS at the normalizedV= 0.325 for: the background material ( big circle) the photonic crystal ( small circles) Dashed lines outline the Brillouin zones G is the lattice vector.
离子致晶
子束发器
体器光件
器件器



染气 固半 料体 体导
激激 激体 光光 光激 器器 器光

光电子学的未来
光通信新技术
相干光通信 光孤子通信 量子通信
光电子学的未来
光载波 激光器
调制器
光匹配器
单模光纤
解调
基带放 大、滤波
中频放 大、滤波
再生
光电 检测器
本振 激光器
光匹配器
相干光通信系统框图
光电子学的未来
信息光电子技术的新突破
1. 光通信网络
DWDM 传输:损耗 色散/斜率( 偏振模色散) 光学非线性
DWDM 控制:复用/解复用 (MUX/DMUX)
分插/复接(Add/Drop) 交叉互联 (OXC)
高速、宽带控光功能如何实现 ?!
信息光电子技术的新突破
Loss ( dB / km )
Y Axis Title
介观光学物理的新突破
光学系统分区
( 系统线度 a, 特征波长 1 m :判据 X a / )
宏观系统 ( a 1cm, X >> 1)
线度足够大:光子 “点” 几何光学
介观系统
线度不够大:光子 “点” Maxwell
( a 1-100m, X 1) 线度不够小:系统 “点” 电磁场理论
在信息技术领域会引起原理性的变革
• 现代通信、计算机技术的发展引起工业控制系统、 技术、方法与理论的革命性变革
光电子学的未来
信息高速公路特征
• 传输高通量化 • 网络普及化 • 服务综合化 • 系统智能化
光电子学的未来
信息高速公路的关键技术 (I)
1. 网络技术 2. 光纤通信, 同步网技术 3. 异步转移模式 ( ATM ) 技术 4. 卫星通信技术 5. 移动通信技术 (包括全球个人移动通信技术 ) 6. 信息通用接入网技术 7. 高性能并行计算机系统和接口技术
光电子学的未来
信息高速公路的关键技术 (II)
8. 大型数据库和图像库技术 9. 高级软件技术和算法 10. 高速LAN 技术 11. 大画面高清晰度电视 ( HDTV ) 技术 12. 多媒体技术 13. 远程医疗诊断支持系统 14. 远程教育系统
光电子学器件 光电子器件
光电子学的未来
信息技术 - 人类在信息社会生存与发展的重要支柱
• 网络技术革命,将进一步缩小人们的空间和时间距离 • 人机交互技术的革命,将进一步缩小人与计算机之间的距离 • 软件技术的革命,为网络和计算机的应用提供更加灵活和
可靠的技术保证
• 微电子由IC向IS(系统集成)发展导致软、硬件结合技术的革命 • 分子电子学、量子电子学、信息光子学的兴起,
偏振分束器的作用 – 光波
45偏振
格兰棱镜
//
光电子学的未来
45偏振
偏振分束器的作用 – 光子
格兰棱镜

光电子学的未来
偏振分束器的作用 – 光子
45偏振
格兰棱镜
//
光电子学的未来
面向新世纪信息科学与技术的新挑战
“Photonics
光N子anos晶tru体ctu进res”展
( Photonic Crystals)
电子集成 光子集成
光 电 全光型器件



器光 光


件存 控


储制


器器


件件


光探测器件












光源器件









光 光光 隔 频控 离 变制 器 换器

光 光开 双关 稳
器光 件偏


偏 振 器
滤 波 器
光 波 导
热 释 电
热 敏 电
摄光 像电 管晶
光 电 管
雪 崩 型
EDFA
1450 nm Pump
10.00 dBm
20 18 16 14 12
B 1200 18 186 14 11602 48 6 24 2 901400 1420 1440 1460 1480 1500 1520 1540 1560 1580 1600 1620 1640
X axis title 1400 142014401460148015001520 15401560158016001620
损耗限制
1.0 0.8
0.4
25 THz
0.2
WDM
0.1
... Channels
1.2 1.3 1.4 1.5 1.6 1.7
( m)
Er-doped fiber amplifier (EDFA )
Er-
Fiber Raman amplifier (FRA)
WDM 20 km Raman amplifier
本 征 型
光 电 导
非 晶 半
单 Se 晶光 PN 电
光 栅
全 息
分 光 器

光 纤
连 接
器 件

热 电 偶
元镜器 件
棱耦 镜合
放 电 堆
体光光光器 导 结池 管电电电件 体 光
倍二二 光 电 电增极极 电 池 荷管管管 池 耦 合 器 件
照 明 器 件
放 电 管
荧 光 管









等电电液
(a 0.1-1m, X 1) (a 0.1-100nm, X<< 1)
线度 光波长
光子晶体 纳光子学
量子电动力学
微观系统 线度足够小:原子或分子 “点” Einstein
( a 1nm, X << 1)
量子力学
介观光学物理的新突破
Scanning near-field microscopy
Tip:50 nm
o
SiGe film: dislocation(100 A)
介观光学物理的新突破
Negative refraction in PC ( superprism )
(a) Schematic of the structure
(b) without the PC
(c) with the PC.
相关文档
最新文档