2013年普通高等学校招生全国统一考试(安徽卷)数学文(解析版)

合集下载

2013年高考文科数学全国卷2(含详细答案)

2013年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷2)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )A .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---2.2||1i=+( )A .22B .2C .2D .13.设x ,y 满足约束条件10,10,3,x y x y x -+⎧⎪+-⎨⎪⎩≥≥≤则23z x y =-的最小值是( )A .7-B .6-C .5-D .3-4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,π6B =,π4C =,则ABC △的面积为( )A .232+B .31+C .232-D .31-5.设椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )A .36B .13C .12D .336.已知2sin 23α=,则2πcos ()4α+=( )A .16B .13C .12 D .237.执行如图的程序框图,如果输入的4N =,那么输出的S = ( )A .1111234+++B .1111232432+++⨯⨯⨯ C .111112345++++D .111112324325432++++⨯⨯⨯⨯⨯⨯8.设3log 2a =,5log 2b =,2log 3c =,则( )A .a c b >>B .b a c >>C .c b a >>D .c a b >>9.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )ABCD10.设抛物线C :24y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( )A .1y x =-或1y x =-+B .3(1)3y x =-或3(1)3y x =-- C .3(1)y x =-或3(1)y x =--D .2(1)2y x =-或2(1)2y x =-- 11.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '=12.若存在正数x 使2()1x x a -<成立,则a 的取值范围是( )A .(,)-∞+∞B .(2,)-+∞C .(0,)+∞D .(1,)-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________. 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 15.已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.16.函数cos(2)(ππ)y x ϕϕ=+-≤<的图象向右平移π2个单位后,与函数πsin(2)3y x =+的图象重合,则ϕ=________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的公差不为零,125a =,且1a ,11a ,13a 成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732+n a a a a -++⋅⋅⋅+. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页)数学试卷 第6页(共36页)18.(本小题满分12分)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点. (Ⅰ)证明:1BC ∥平面1A CD ;(Ⅱ)设12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为23.(Ⅰ)求圆心P 的轨迹方程; (Ⅱ)若P 点到直线y x =的距离为22,求圆P 的方程.21.(本小题满分12分)已知函数2()e x f x x -=.(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.3 / 124.【答案】B【解析】ππ()π-+64πA B C ⎛ ⎝=-+=由正弦定理得sin sin a bA B=,6.【答案】A【解析】由半角公式可得,cos45 / 12的投影即正视图为,故选10.【答案】C【解析】由题意可得抛物线焦点当直线l 的斜率大于0时,如图所示,过物线定义可得,AM AF =,设3()0AM AF t t ==>,BN =611.【答案】C【解析】若0x 是()f x 的极小值点,则正确.12.【答案】D【解析】由题意可得,x a >7 / 12【答案】2{},AB AD 为基底,则0AB AD ⋅=,而12AE AB AD =+,-BD AD AB =, ∴22111()(-)--222AE BD AB AD AD AB AB AD ⋅=+⋅=+=15.【答案】24π【解析】如图所示,在正四棱锥∴1322OO =,1AO =在1Rt OO A ∆中,OA =|89 / 12又D 是AB 中点,连结1DF 因为1DF ACD ⊂平面,1ACD 平面, 所以11.BC ACD 平面 (2)因为11ABC A B C -是直三棱柱,所以AA AC CB =,D AB A =,于是1011/ 1212。

2013年高考数学安徽文(word版含答案)

2013年高考数学安徽文(word版含答案)

2013安徽高考文数解析一、选择题1.设i 是虚数单位,若复数10()3a a R i-∈-是纯虚数,则a 的值为( ) (A )3- (B )1- (C )1 (D )32.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R A B =ð( )(A ){}2,1-- (B ){}2- (C ){}1,0,1-(D ){}0,13.如图所示,程序据图(算法流程图)的输出结果为( ) (A )34(B)16 (C)1112(D)25244.“(21)0x x -=”是“0x =”的( )(A)充分不必要条件 (B)必要不充分条件(C)充分必要条件 (D)既不充分也不必要条件5.若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) (A)2 (B)2 (C)3 (D)9(A)1 (B )2 (C )4 (D ) 7.设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a =( ) (A )6- (B )4- (C )2- (D )28.函数()y f x =的图象如图所示,在区间[],a b 上可找到()2n n ≥个不同的数123,,,,n x x x x ,使得1212()()()n nf x f x f x x x x ===,则n 的取值范围是( ) (A){}2,3 (B){}2,3,4 (C){}3,4(D){}3,4,59.设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2b c a +=,3sin 5sin A B =,则角C =( )(A)3π (B)23π (C)34π (D)56π10.已知函数()32f x x ax bx c =+++有两个极值点12,x x ,且()112f x x x =<,则关于x的方程()()()2320f x af x b ++=的不同实根个数是( )(A )3(B )4 (C )5 (D )6 二、填空题11.函数1ln(1)y x=++的定义域为__________.12.若非负变量,x y 满足约束条件1,24,x y x y -≥-⎧⎨+≤⎩则x y +的最大值为________.13.若非零向量,a b 满足32a b a b ==+,则a b 与夹角的余弦值为_______.14.定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时,()(1)f x x x =-, 则当10x -≤≤时,()f x =_________.15.如图,正方体1111ABCD A BC D -棱长为1,P 为BC 的中点, Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是_____.(写出所有正确命题的编号)①当102CQ <<时,S 为四边形; ②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与11C D 的交点R 满足113C R =;④当314CQ <<时,S 为六边形; ⑤当1CQ =时,S 的面积为26. 三、解答题16.(本小题满分12分)设函数()sin sin()3f x x x π=++.(1)求()f x 的最小值,并求使()f x 取得最小值的x 的集合;(2)不画图,说明函数()y f x =的图象可由sin y x =的图象经过怎样的变化得到. 17.为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值. 18.(本小题满分12分)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=.已知2,PB PD PA ===(1)证明:PC BD ⊥;(2)若E 为PA 的中点,求三菱锥P BCE -的体积.Q1A BC19.(本小题满分13分)设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅满足()02f π'=,(1)求数列{}n a 的通项公式;(2)若122n n n a b a ⎛⎫=+ ⎪⎝⎭,求数列{}n b 的前n 项和n S .20.(本小题满分13分)设函数()22(1)f x ax a x =-+,其中0a >,区间(){}0I x f x =>(1)求I 的长度(注:区间(),αβ的长度定义为βα-);(2)给定常数()0,1k ∈,当11k a k -≤≤+时,求I 长度的最小值.21.(本小题满分13分)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .数学(文科)试题参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分50分。

2013年高考语文试题及解析(安徽卷)

2013年高考语文试题及解析(安徽卷)

绝密★启用前2013年普通高等学校招生全国统一考试(安徽卷)语文本试卷分为第I卷(阅读题)和第II卷(表达题)。

全卷满分150分,考试时间150分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中的姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答选择题(第I卷1 ~ 6题,第II卷15 ~ 17题)时,每小题选出答案后,用2B 铅笔把答题卡上所对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答非选择题(第I卷7 ~ 14题,第II卷18 ~ 21题)必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡的规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4.考试结束后,务必将试题卷和答题卡一并上交。

第I卷(阅读题,共66分)一、(9分)阅读下面的文字,完成1 ~ 3题。

①科学所研究的是那些被认为是独立于研究者个人而存在的关系。

这也适用于把人本身作为研究对象的科学。

科学陈述的对象还可以是我们自己创造出来的概念,像在数学中就是那样。

我们不一定要假设这种概念是同外在世界显的任何客体相对应的。

但是,一切科学陈述和科学定律都有一个共用的特征:它们是“真的或者假的”(适当的或者不适当的)。

粗略地说来,我们对它们的反应是“是”或者是“否”。

②科学的思维方式还有另一个特征。

它为建立它的贯彻一致的所用到的概念用是不表达什么感情的。

对于科学家,只有“存在”,而没有什么愿望,没有什么价值,没有善,没有恶;也没什么目标。

只要我们逗留在科学本身的领域里,我们就绝不会碰到想“你不可以说谎”这样的事。

附带地说,这个特点是慢慢发展起来的,而且是现代西方思想所特有的。

2013年高考文科数学安徽卷-答案

2013年高考文科数学安徽卷-答案
22
图2
(3)
CQ

3 4
,画图(3)如下:
C1R

1 3
,③正确;
图3 (4) 3 CQ 1,如图(4)是五边形,④不正确;
4
4/8
图4 (5) 0 CQ 1 ,如下图(5),是四边形,故①正确.
2
图5 【提示】利用平面的基本性质结合特殊四边形的判定与性质求解. 【考点】空间立体图形截面的基本性质.

(2)y sin x 横坐标不变,纵坐标变为原来的 3 倍,得 y 3 sin x ;然后 y 3 sin x 向左平移 π 个单位, 6
得 f (x)
3
sin

x

π 6


【提示】把目标函数通过恒等变换转换为三角函数标准式得到结果,结合三角函数解析式,考查三角函数图
【考点】随机事件与概率. 6.【答案】C 【解析】圆心 (1, 2) ,圆心到直线的距离 d |1+4 5+ 5 | =1,半径 r 5 ,所以弦长为 2 ( 5)2 12 4 ,
5
故选 C.
【提示】把圆的一般方程化为标准方程,求出圆心和半径,然后利用勾股定理求弦长.
【考点】直线与圆的相交方程,点到直线距离公式.
小值必定在
a

1

k

a

1

k
处取得.而
d d
1 1
k k


1k 11k 2
1 k 11k 2

2 k2 k3 2 k 2 k3 <1,故 d(1 k) d(1 k) .
2013 年普通高等学校招生全国统一考试(安徽卷)

2013高考数学(文)真题专业解析(安徽卷)(精)

2013高考数学(文)真题专业解析(安徽卷)(精)

2013年普通高等学校招生全国统一考试数学试卷(文科)(安徽卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)设i 是虚数单位,若复数a -103i-(a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3 答案:D 思路分析:考点解剖:考查纯虚数的概念,及复数的运算,属于简单题.解题思路:本题可以将复数按照商的运算法则展开运算,根据题目条件复数为纯虚数展开计算。

解答过程:解:利用复数运算规律可知,i a i a i a i i a i i i a i a --=+-=+-=-+-=+-+-=--)3()3(10)3(109)3(10)3)(3()3(103102, 所以a =3,故选择D规律总结:复数为纯虚数时,复数的实部为0,虚部不为零是解题的关键. (2)已知A ={x |x +1>0},B ={-2,-1,0,1},则(RA )∩B =( )A .{-2,-1}B .{-2}C .{-2,0,1}D.{0,1}答案:A思路分析:考点解剖:考查集合的交集和补集,属于简单题.解题思路:本题可以利用不等式来解答出对应A集合,再结合集合的运算来解答。

解答过程:解:由A:1->x,}1|{-≤=xxACR ,∵B={-2,-1,0,1}∴}2,1{)(--=BACR,所以答案选A规律总结:集合的交集、并集和补集的运算可以结合数轴,利用数形结合来解答。

(3)如图所示,程序据图(算法流程图)的输出结果为()A.34B.16C.1112D.2524答案:C 思路分析:考点解剖:本题考查算法框图的识别,逻辑思维,属于中等难题.解题思路:本题首先要分析所给的程序框图,结合程序框图中的限制条件n <8来解答. 解答过程: 解:21210,0,2=+===s s n ;434121,21,4=+===s s n ;12116143,43,6=+===s s n1211,8==s n ,输出所以答案选择C.规律总结:循环结构的程序框图,解答此类问题主要是分析题目中给的判断条件,何时应该跳出循环,以及循环变量的变化规律.(4)“(21)0x x -=”是“0x =”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案:B 思路分析:考点解剖:考查充分条件和必要条件的判定,属于简单题.解题思路:对于充分必要条件的判定,需要分析所给的两条件之间的关系,判断两者之间的互推关系。

2013安徽高考文科数学(文字版)

2013安徽高考文科数学(文字版)

2013安徽高考文科数学(文字版)
绝密★启用前
2013年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试用时120分钟。

考生注意事项:
1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘帖的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题时可先用铅笔在答题卡规定的位置绘出,确认后用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4. 考试结束,务必将试题卷和答题卡一并上交。

2013年普通高等学校招生全国统一考试文科数学(无误版)

2013年普通高等学校招生全国统一考试文科数学(无误版)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1} (2)错误!未找到引用源。

=( )(A)-1 - 错误!未找到引用源。

i(B)-1 + 错误!未找到引用源。

i (C)1 + 错误!未找到引用源。

i(D)1 - 错误!未找到引用源。

i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

(4)已知双曲线C:错误!未找到引用源。

= 1(a>0,b>0)的离心率为错误!未找到引用源。

,则C的渐近线方程为()(A)y=±错误!未找到引用源。

x (B)y=±错误!未找到引用源。

x (C)y=±错误!未找到引用源。

x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q (6)设首项为1,公比为错误!未找到引用源。

的等比数列{an}的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年普通高等学校招生全国统一考试高考数学教师精校版含详解安徽文

2013年普通高等学校招生全国统一考试高考数学教师精校版含详解安徽文

2013年安徽文一、选择题(共10小题;共50分)1. 设i是虚数单位,若复数a−103−i(a∈R)是纯虚数,则a的值为( )A. −3B. −1C. 1D. 32. 已知A={x∣ x+1>0},B={−2,−1,0,1},则(∁R A)∩B=( )A. {−2,−1}B. {−2}C. {−1,0,1}D. {0,1}3. 如图所示,程序框图(算法流程图)的输出结果为( ).A. 34B. 16C. 1112D. 25244. “ (2x−1)x=0”是“ x=0”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. 23B. 25C. 35D. 9106. 直线x+2y−5+√5=0被圆x2+y2−2x−4y=0截得的弦长为( )A. 1B. 2C. 4D. 4√67. 设S n为等差数列{a n}的前n项和,S8=4a3,a7=−2,则a9=( )A. −6B. −4C. −2D. 28. 函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,⋯,x n,使得f(x1) x1=f(x2)x2=⋯=f(x n)x n,则n的取值范围为( ).A. {2,3}B. {2,3,4}C. {3,4}D. {3,4,5}9. 设 △ABC 的内角 A ,B ,C 所对边的长分别为 a ,b ,c ,若 b +c =2a ,3sinA =5sinB ,则角C = ( )A. π3B. 2π3C. 3π4D. 5π610. 已知函数 f (x )=x 3+ax 2+bx +c 有两个极值点 x 1,x 2,若 f (x 1)=x 1<x 2,则关于 x 的方程 3(f (x ))2+2af (x )+b =0 的不同实根个数为 ( )A. 3B. 4C. 5D. 6二、填空题(共5小题;共25分)11. 函数 y =ln (1+1x )+√1−x 2 的定义域为 .12. 若非负变量 x ,y 满足约束条件 {x −y ≥−1,x +2y ≤4, 则 x +y 的最大值为 .13. 若非零向量 a ⃗,b ⃗⃗ 满足 ∣a ⃗∣=3∣∣b ⃗⃗∣∣=∣∣a ⃗+2b ⃗⃗∣∣,则 a⃗ 与 b ⃗⃗ 夹角的余弦值为 . 14. 定义在 R 上的函数 f (x ) 满足 f (x +1)=2f (x ).若当 0≤x ≤1 时,f (x )=x (1−x ),则当−1≤x ≤0 时,f (x )= .15. 如图正方体 ABCD −A 1B 1C 1D 1,棱长为 1,P 为 BC 中点,Q 为线段 CC 1 上的动点,过 A 、 P 、Q 的平面截该正方体所得的截面记为 S ,则下列命题正确的是 .(写出所有正确命题的编号)①当 0<CQ <12 时,S 为四边形 ② 当 CQ =12 时,S 为等腰梯形③ 当 CQ =34 时,S 与 C 1D 1 交点 R 满足 C 1R 1=13 ④ 当 34<CQ <1 时,S 为六边形⑤ 当 CQ =1 时,S 的面积为 √62.三、解答题(共6小题;共78分)16. 设函数 f (x )=sinx +sin (x +π3).(1)求 f (x ) 的最小值,并求使 f (x ) 取得最小值的 x 的集合; (2)不画图,说明函数 y =f (x ) 的图象可由 y =sinx 的图象经过怎样的变化得到.17. 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30 名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1,x2,估计x1−x2的值.18. 如图,四棱锥P−ABCD的底面ABCD是边长为2的菱形,∠BAD=60∘.已知PB=PD=2,PA=√6.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P−BCE的体积.19. 设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N∗,函数f(x)=(a n−a n+1+a n+2)x+a n+1⋅cosx−a n+2⋅sinx满足fʹ(π2)=0.(1)求数列{a n}的通项公式;(2)若b n=2(a n+12a n),求数列{b n}的前n项和S n.20. 设函数f(x)=ax−(1+a2)x2,其中a>0,区间I={x∣ f(x)>0},(1)求I的长度(注:区间(α,β)的长度定义为β−α);(2)给定常数k∈(0,1),当1−k≤a≤1+k时,求I长度的最小值.21. 已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为4,且过点P(√2,√3).(1)求椭圆C的方程;(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E.取点A(0,2√2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.答案第一部分1. D2. A3. C4. B5. D=4a3,a3+a6=a3,所以a6=0,所以d=−2,所以6. C 7. A 【解析】S8=4a3,8(a1+a8)2a9=a7+2d=−6.=m,则可将所求转化为求直线y=mx与曲线y=f(x)的交点个数问8. B 【解析】提示:令f(x)x题.由图可知,可能的交点个数为2,3,4.9. B 【解析】由3sinA=5sinB及正弦定理可得3a=5b,又有b+c=2a,用余弦定理可以求出cosC的值.10. A【解析】fʹ(x)=3x2+2ax+b,所以3(f(x))2+2af(x)+b=0即fʹ(f(x))=0.结合题意可知fʹ(x1)=fʹ(x2)=0,所以找f(x)=x1和f(x)=x2的实根个数即可.由图可知,共有三个实根.所以结果为3.第二部分11. (0,1]12. 413. −13【解析】将题中等式两边平方可得a⃗⋅a⃗=9b⃗⃗⋅b⃗⃗=a⃗⋅a⃗+4a⃗⋅b⃗⃗+4b⃗⃗⋅b⃗⃗,而a⃗⋅b⃗⃗=∣a⃗∣∣b⃗⃗∣cos⟨a⃗,b⃗⃗⟩,.可求得cos⟨a⃗,b⃗⃗⟩=−1314. −x(x+1)2【解析】设−1≤x≤0,则有0≤x+1≤1,因此f(x+1)=−x(x+1),结合f(x+1)=2f(x),可知f(x)=−x(x+1).215. ①②③⑤【解析】设截面与 DD 1 相交于 T ,则 AT ∥PQ ,且 AT =2PQ ⇒DT =2CQ .对于 ①,当 0<CQ <12 时,则 0<DT <1,所以截面 S 为四边形,且 S 为梯形,所以为真. 对于 ②,当 CQ =12 时,DT =1,T 与 D 重合,截面 S 为四边形 APQD 1,所以 AP =D 1Q ,截面为等腰梯形,所以为真.对于 ③,当 CQ =34,QC 1=14,DT =32,D 1T =12,利用三角形相似解得,C 1R 1=13,所以为真.对于 ④,当 34<CQ <1 时,32<DT <2,截面 S 与线段 A 1D 1,D 1C 1 相交,所以四边形 S 为五边形,所以为假.对于 ⑤,当 CQ =1 时,Q 与 C 1 重合,截面 S 与线段 A 1D 1 相交于中点 G ,即即为菱形 APC 1G ,对角线长度为 √2 和 √3,S 的面积为 √62,所以为真,综上,选 ①②③⑤. 第三部分 16. (1) 因为f (x )=sinx +sinxcos π3+cosxsinπ3=sinx +12sinx +√32cosx=32sinx +√32cosx =√(32)2+(√32)2sin (x +π6)=√3sin (x +π6),所以当 x +π6=2kπ−π2(k ∈Z ),即 x =2kπ−2π3(k ∈Z ) 时,f (x ) 的最小值为 −√3,此时 x 的取值集合为 {x∣ x =2kπ−2π3,k ∈Z}.(2) 先将 y =sinx 的图象上所有点的纵坐标伸长到原来的 √3 倍(横坐标不变),得 y =√3sinx 的图象;再将 y =√3sinx 的图象上所有的点向左平移 π6 个单位,得 y =f (x ) 的图象. 17. (1) 设甲校高三年级学生总人数为 n ,由题意知,30n =0.05⇒n =300.05=600, 样本中甲校高三年级学生数学成绩不及格人数为 5,据此估计甲校高三年级此次联考数学成绩及格率为 p =2530=56.(2) 设甲、乙两校样本平均成绩分别为 x 1ʹ,x 2ʹ,根据样本茎叶图可知30(x 1ʹ−x 2ʹ)=30x 1ʹ−30x 2ʹ=(7−5)+(55+8−14)+(24−12−65)+(26−24−79)+(22−20)+92=2+49−53−77+2+92=15因此 x 1ʹ−x 2ʹ=0.5,故 x 1−x 2 的估计值为 0.5 分. 18. (1) 连接 AC ,交于 BD 于 O 点,连接 PO .因为底面 ABCD 是菱形,所以 AC ⊥BD ,BO =DO . 由 PB =PD 知,PO ⊥BD .再由 PO ∩AC =O 知,BD ⊥面 APC ,因此 BD ⊥PC . (2) 因为 E 是 PA 的中点,所以V P−BCE =V C−PEB =12V C−PAB =12V B−APC .由 PB =PD =AB =AD =2 知,△ABD ≌△PBD . 因为 ∠BAD =60∘,所以PO =AO =√3,AC =2√3,BO =1.又PA =√6,PO 2+AO 2=PA 2,即 PO ⊥AC ,故S △APC =12PO ⋅AC =3.由(1)知,BO ⊥面APC ,因此V P−BCE =12V B−APC =12⋅13⋅BO ⋅S △APC =12.19. (1) 由题设可得fʹ(x )=a n −a n+1+a n+2−a n+1sinx −a n+2cosx.对任意 n ∈N ∗,fʹ(π2)=a n −a n+1+a n+2−a n+1=0, 即a n+1−a n =a n+2−a n+1,故 {a n } 为等差数列.由 a 1=2,a 2+a 4=8,解得 {a n } 的公差 d =1,所以,a n =2+1⋅(n −1)=n +1.(2) 由b n =2(a n +12a n )=2(n +1+12n+1)=2(n +1)+12n,知S n =b 1+b 2+⋯+b n=2n +2⋅n (n +1)2+12[1−(12)n]1−12=n 2+3n +1−12n .20. (1) 因为方程 ax −(1+a 2)x 2=0(a >0) 有两个实根x 1=0,x 2=a1+a 2,故 f (x )>0 的解集为{x∣ x 1<x <x 2},因此区间 I =(0,a1+a 2),区间 I 的长度为 a1+a 2. (2) 设 d (a )=a 1+a 2,则dʹ(a )=1−a 2(1+a 2)2(a >0). 令 dʹ(a )=0,得 a =1,由于 0<k <1,故 当 1−k ≤a <1 时,dʹ(a )>0,d (a ) 单调递增; 当 1<a ≤1+k 时,dʹ(a )<0,d (a ) 单调递减;所以当 1−k ≤a ≤1+k 时,d (a ) 的最小值必定在 a =1−k 或 a =1+k 处取得,而d (1−k )d (1+k )=1−k1+(1−k )21+k 1+(1+k )2=2−k 2−k 32−k 2+k 3<1,故d (1−k )<d (1+k ).因此当 a =1−k 时,d (a ) 在区间 [1−k,1+k ] 上取得最小值 1−k 2−2k+k 2.21. (1) 因为焦距为 4,所以a 2−b 2=4,又因为椭圆 C 过点 P(√2,√3),所以2a 2+3b 2=1, 故a 2=8,b 2=4,从而椭圆 C 的方程为 x 28+y 24=1.(2) 由题意知,E 点坐标为 (x 0,0),设 D (x D ,0),则AE⃗⃗⃗⃗⃗⃗=(x 0,−2√2),AD ⃗⃗⃗⃗⃗⃗=(x D ,−2√2), 再由 AD ⊥AE 知,AE ⃗⃗⃗⃗⃗⃗⋅AD ⃗⃗⃗⃗⃗⃗=0,即 x D x 0+8=0.由于 xy 0≠0,故 x D =−8x 0.因为点G是点D关于y轴的对称点,所以点G(8x,0).故直线QG的斜率k QG=y0x0−8x0=x0y0x02−8.又因为Q(x0,y0)在椭圆C上,所以x02+2y02=8. ⋯⋯①从而k QG=−x02y0.故直线QG的方程为y=−x02y0(x−8x0). ⋯⋯②将②代入椭圆C方程,得(x02+2y02)x2−16x0x+64−16y02=0. ⋯⋯③再将①代入③,化简得x2−2x0x+x02=0,解得x=x0,则y=y0,即直线QG与椭圆C一定有唯一的公共点.。

2013年高考全国1卷文科数学试题及答案(详细解析版,精校版)

2013年高考全国1卷文科数学试题及答案(详细解析版,精校版)

2013年普通高等学校招生全国统一考试(全国I 卷)文科数学一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =A .{1,4}B .{2,3}C .{9,16}D .{1,2}2.212i 1i +(-)= A .1-1-i 2 B .1-1+i 2 C .11+i 2 D .11-i 23.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是A .12B .13C .14D .164.已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为 A .y=14x ± B .y=13x ± C .y=12x ± D .y=±x 5.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是A .p ∧qB .﹁p ∧qC .p ∧﹁qD .﹁ p ∧﹁q6.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n7.执行下面的程序框图,如果输入的t ∈[-1,3],则输出的S 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=POF 的面积为A .2B .C .D .49.函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为10.已知锐角ΔABC 的内角A,B,C 的对边分别为a,b,c , 23cos 2A +cos2A =0, a =7,c =6,则b =A .10B .9C .8D .511.某几何体的三视图如图所示,则该几何体的体积为A .16+8πB .8+8πC .16+16πD .8+16π12.已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax , 则a 的取值范围是A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b . 若b ·c =0,则t =____.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______. 15.已知H 是球O 的直径AB 上一点,AH :HB =1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式; (2)求数列21211{}n n a a -+的前n 项和.18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.20.(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.21.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求ΔBCF外接圆的半径.23 .(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1[,)22a-时,f(x)≤g(x),求a的取值范围.2013年高考全国1卷文科数学参考答案12.解:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2- 3.解:依题所有基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,满足条件的事件数是2种,所以所求的概率为13. 4.解:依题2254c a =. ∵c 2=a 2+b 2,∴2214b a =,∴12b a =. ∴渐近线方程为12y x =± 5.解:由20=30知,p 为假命题.令h (x )=x 3-1+x 2,∵h (0)=-1<0,h (1)=1>0, ∴h (x )=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.6.解:121(1)/133n n n a a q S a q -==--=3-2a n 7.解:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4]8.解:利用|PF |=P x =x P =∴y P =±∴S △POF =12|OF |·|y P |=9.解:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π(0,)2时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令f ′(x )=0,可得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10.解:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π(0,)2,∴cos A =15. ∵cos A =236491265b b +-=⨯,解得b =5或135b =-(舍).故选D. 11.解:该几何体为一个半圆柱的上面后方放一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16. 所以体积为16+8π. 故选A 12.解:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B,C;当a ≤0时,若x >0,则|f (x )|≥ax 恒成立;若x ≤0,则以y =ax 与y =x 2-2x 相切为界限,联立y =ax 与y =x 2-2消去y 得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.二、填空题:13.2 1 4.3 15.9π216.5- 13.解:依题a ·b =111122⨯⨯=,b ·c = t a ·b +(1-t )b 2 =0,∴12t +1-t =0. ∴t =2. 14.解:作出可行域如图所示.画出初始直线l 0:2x -y =0,l 0平移到l ,当直线l 经过点A (3,3)时z 取最大值,z =2×3-3=3.15.解:如图,π·EH 2=π,∴EH =1,设球O 的半径为R ,则AH =23R , OH =3R . 在RtΔOEH 中,R 2=22()+13R , ∴R 2=98. ∴S 球=4πR 2=9π2. 16. 解:∵f (x )=sin x -2cos x x +φ),其中tan φ=-2,φ是第四象限角.当x +φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ=2k π+π2-φ(k ∈Z ), ∴cos θ=πcos()2ϕ-=sin φ=5-. 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 则11330,5105,a d a d +=⎧⎨+=⎩ …2分 解得a 1=1,d =-1. …4分 故{a n }的通项公式为a n =2-n . …6分(2)由(1)知21211n n a a -+=1111()321222321n n n n =-(-)(-)--, …8分 从而新数列的前n 项和为111111[(11)(1)()][1]23232122112n n T n n n n =--+-++-=--=---- …12分 18.解: (1)设A 药数据的平均数为x B 药观测数据的平均数为y . x =(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3 +2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9 +3.0+3.1+3.2+3.5)/20=2.3,…3分 y =+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)/20=1.6. …6分由以上计算结果可得x >y ,因此可看出A 药的疗效更好.(2)绘制茎叶图如图: … 9分 从茎叶图可以看出,A 药疗效数据有710的叶集中在茎“2.”,“3.”上,而B 药疗效数据有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好.… 12分19. (1)证:取AB 的中点O ,连结OC ,OA 1,A 1B .由于AB =AA 1,∠BAA 1=60°,故ΔAA 1B 为等边三角形,所以OA 1⊥AB . 又CA =CB ,所以OC ⊥AB . …3分因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,所以AB ⊥A 1C . …6分(2)解:依题ΔABC 与ΔAA 1B 都是边长为2的等边三角形,所以OC =OA 1又A 1C,则A 1C 2=OC 2+OA 12,故OA 1⊥OC ,又OA 1⊥AB ,OC ∩AB =O ,所以OA 1⊥平面ABC , …9分OA 1为三棱柱ABC -A 1B 1C 1的高. 又ΔABC 的面积S △ABC故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. …12分20.解:(1)f ′(x )=e x (ax +a +b )-2x -4. 依题f (0)=4,f ′(0)=4. …3分故b =4,a +b =8. 从而a =4,b =4. …6分(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=2(x +2)·(2e x -1).令f ′(x )=0得,x =-ln 2或x =-2. …8 分所以在(-∞,-2)与(-ln2,+∞)上,f ′(x )>0;f (x )单调递增.在(-2,-ln 2) 上,f ′(x )<0. f (x )单调递减. …10 分当x =-2时,函数f (x )取得极大值,极大值为f (-2)=-4e -2+4. …12 分21.解:(1)由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P (x ,y ),半径为R .依题, |PM |=R +1. |PN |=3-R . 所以|PM |+|PN |=4. …3 分由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点的椭圆(左顶点除外),且a =2,c =1,∴b∴C 的方程为22=143x y +(x ≠-2). …6 分 (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. …7 分若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|= …8 分若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,可设l 与x 轴的交点为Q (m ,0),由1||222||1QP R m QM r m-===--即,解得m =-4. 所以Q (-4,0),故可设l :y =k (x +4).由l 与圆M=1,解得k=4±.当k=4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0, 解得x=47-±,所以|AB|x 2-x 1|=187. …10分 当k=4-时,由图形的对称性可知|AB |=187. 综上,|AB|=|AB |=187. …12 分 22.(1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE =∠BCE ,所以BE =CE . 又因为DB ⊥BE ,所以DE 为直径,所以∠DCE =90°,由勾股定理可得DB =DC . …5分(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG. 设DE 的中点为O ,连结BO , 则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故RtΔBCF. …10分 23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 将x=ρcos θ, y=ρsin θ代入整理得C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. …5分(2)C 2的普通方程为x 2+y 2-2y =0. 联立C 1的方程x 2+y 2 -8x -10y +16=0,解得交点为(1,1)与(0,2),其极坐标分别为π)(2,)42π与. …10分 24.解:(1)当a =-2时,不等式f (x )>g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}. …5分(2)当a >-1,且x ∈1[,)22a -时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1[,)22a -都成立.故2a -≥a -2,即a ≤43. 从而a 的取值范围是4(1,]3-. …10分。

2013年全国高考数学文科试卷安徽卷(word版)

2013年全国高考数学文科试卷安徽卷(word版)

绝密★启用前2013年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

考试用时120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘帖的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题时可先用铅笔在答题卡规定的位置绘出,确认后用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4. 考试结束,务必将试题卷和答题卡一并上交。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)设i是虚数单位,若复数a--(a∈R)是纯虚数,则a的值为()(A)-3 (B)-1 (C)1 (D)3(2)已知A={x|x+1>0},B={-2,-1,0,1},则(RA)∩B=()(A){-2,-1}(B ){-2}(C){-2,0,1} (D){0,1}(3)如图所示,程序据图(算法流程图)的输出结果为(A)(B)(C)(D)(4)“(2x-1)x=0”是“x=0”的(A)充分不必要条件(B)必要补充分条件(C)充分必要条件(D)既不充分也不必要条件(5)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这无人被录用的机会均等,则甲或乙被录用的概率为(A)2/3 (B)2/5(C)3/5 (D)9/10(6)直线x+2y-5+=0被圆x2+y2-2x-4y=0截得的弦长为(A)1 (B)2(C)4 (D)(7)设sn为等差数列{an}的前n项和,s1=4a3,a2=-2,则a9=(A)6 (B)4(C)-2 (D)2(8)函数y=f(x)的图像如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…xn,使得f(x1)/x1=f(x2)/x2=…=f(xn)/xn,则n的取值范围为(A) {2,3} (B){2,3,4}(C){3,4} (D){3,4,5}(9)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=(A) π/3(B)2π/3(C)3π/4(D)5π/6(10)已知函数f(s)=x3+ax2+bx+c有两个极致点x1,x2,若f(x1)则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为(A)3 (B)4(C) 5 (D)6第Ⅱ卷(非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。

2013年高考真题—文科数学(安徽卷)精校精析

2013年高考真题—文科数学(安徽卷)精校精析

2013年高考真题精校精析2013·安徽卷(文科数学)1. 设i 是虚数单位,若复数a -103-i (a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .31.D [解析] a -103-i =a -10(3+i )(3-i )(3+i )=a -(3+i)=(a -3)-i ,其为纯虚数得a =3.2. 已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A .{-2,-1}B .{-2}C .{-1,0,1}D .{0,1}2.A [解析] 因为A ={x |x >-1},所以∁R A ={x |x ≤-1},所以(∁R A )∩B ={-2,-1}.图1-13. 如图1-1所示,程序框图(算法流程图)的输出结果为( ) A.34 B.16 C.1112 D.25243.C [解析] 依次运算的结果是s =12,n =4;s =12+14,n =6;s =12+14+16,n =8,此时输出s ,故输出结果是12+14+16=1112.4. “(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.B [解析] (2x -1)x =0⇒x =12或x =0;x =0⇒(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.5., 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9105.D [解析] 五人中选用三人,列举可得基本事件个数是10个,“甲或乙被录用”的对应事件是“甲乙都没有被录用”,即录用的是其余三人,只含有一个基本事件,故所求概率是1-110=910.6. 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A .1 B .2 C .4 D .4 66.C [解析] 圆的标准方程是(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =1,所以直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0所截得的弦长l =2r 2-d 2=4.7. 设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .27.A [解析] 设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.8. 函数y =f (x )的图像如图1-2所示,在区间[a ,b ]上可找到n (n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值范围为( )A .{2,3}B .{2,3,4}C .{3,4}D .{3,4,5}8.B [解析] 问题等价于求直线y =kx 与函数y =f (x )图像的交点个数,从图中可以看出交点个数可以为2,3,4,故n 的取值范围是{2,3,4}.9. 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.π3B.2π3C.3π4D.5π69.B [解析] 根据正弦定理,3sin A =5sin B 可化为3a =5b ,又b +c =2a ,解得b =3a 5,c =7a 5.令a =5t (t >0),则b =3t ,c =7t ,在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =25t 2+9t 2-49t 22×5t ×3t =-12,所以C =2π3. 10., 已知函数f (x )=x 3+ax 2+bx +c 有两个极值点x 1,x 2.若f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数为( )A .3B .4C .5D .610.A [解析] f ′(x )=3x 2+2ax +b ,根据已知,得3x 2+2ax +b =0有两个不同的实根x 1,x 2,且x 1<x 2,根据三次函数的性质可得x 1是函数f (x )的极大值点,方程3(f (x ))2+2af (x )+b =0必然有f (x )=x 1或f (x )=x 2.由于f (x 1)=x 1且x 1<x 2,如图,可知方程f (x )=x 1有两个实根,f (x )=x 2有一个实根,故方程3(f (x ))2+2af (x )+b =0共有3个不同实根.11., 函数y =ln1+1x+1-x 2的定义域为________.11.(0,1] [解析] 实数x 满足1+1x >0且1-x 2≥0.不等式1+1x >0,即x +1x >0,解得x >0或x <-1;不等式1-x 2≥0的解为-1≤x ≤1.故所求函数的定义域是(0,1].12. 若非负变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +2y ≤4,则x +y 的最大值为________.12.4 [解析] 已知不等式组表示的平面区域如图中的阴影部分,设z =x +y ,则z 的几何意义是直线y =-x +z 在y 轴上的截距,结合图形,可知当直线y =-x +z 通过点A (4,0)时z 最大,此时z =4.13. 若非零向量,满足==+,则与夹角的余弦值为________.13.-13 [解析] 设||=1,则||=3,|+|=3,两端平方得+4+4=9,即9+12cos 〈,〉+4=9,解得cos 〈,〉=-13.14., 定义在上的函数f (x )满足f (x +1)=2f (x ),若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.14.-x (x +1)2 [解析] 当-1≤x ≤0时,0≤x +1≤1,由f (x +1)=2f (x )可得f (x )=12f (x +1)=-12x (x +1).图1-315. 如图1-3,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1的交点R 满足C 1R =13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为62. 15.①②③⑤ [解析] 对于①②,如图(1)所示,因为正方体ABCD -A 1B 1C 1D 1的棱长为1,当CQ =12时,PQ =22,这时过A ,P ,Q 三点的截面与DD 1交于D 1,AP =D 1Q =52,且PQ ∥AD 1,截面S 为等腰梯形. 当CQ <12时,过A ,P ,Q 三点的截面与直线DD 1的交点在棱DD 1上,截面S 为四边形,故①②正确.对于③④⑤,如图(2)所示,联结QR 并延长交DD 1的延长线于N 点,联结AN 交A 1D 1于M ,取AD 中点G ,作GH ∥PQ 交DD 1于H 点,可得GH ∥AN ,且GH =12AN .设CQ =t (0≤t ≤1),则DN =2t ,ND 1=2t -1,ND 1C 1Q =D 1R RC 1=2t -11-t, 当t =34时,D 1R C 1R =21,可得C 1R =13,故③正确;当34<t <1时,S 为五边形,故④错误; 当t =1时,Q 与C 1重合,M 为A 1D 1的中点, S 为菱形PC 1MA ,AM =AP =PC 1=C 1M =52,MP =2,AC 1=3,S 的面积等于12×2×3=62,故⑤正确.16. 设函数f (x )=sin x +sin ⎝⎛⎭⎫x +π3.(1)求f (x )的最小值,并求使f (x )取最小值的x 的集合;(2)不画图,说明函数y =f (x )的图像可由y =sin x 的图像经过怎样的变化得到. 16.解:(1)因为f (x )=sin x +12sin x +32cos x =32sin x +32cos x =3sin x +π6,所以当x +π6=2k π-π2(k ∈),即x =2k π-2π3(k ∈)时,f (x )取得最小值- 3.此时x 的取值集合为 (2)先将y =sin x 的图像上所有点的纵坐标伸长到原来的3倍(横坐标不变),得y =3sin x 的图像;再将y =3sin x 的图像上所有的点向左平移π6个单位,得y =f (x )的图像.17., 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.17.解:(1)设甲校高三年级学生总人数为n ,由题意知,30n=0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′,根据样本茎叶图可知, 30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此x 1′-x 2′=0.5,故x 1-x 2的估计值为0.5分.图1-518. 如图1-5,四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°,已知PB =PD =2,P A = 6.(1)证明:PC ⊥BD ;(2)若E 为P A 的中点,求三棱锥P -BCE 的体积. 18.解:(1)证明:联结AC ,交BD 于O 点,联结PO . 因为底面ABCD 是菱形,所以AC ⊥BD ,BO =DO .由PB =PD 知,PO ⊥BD .再由PO ∩AC =O 知,BD ⊥面APC ,又PC ⊂平面APC ,因此BD ⊥PC . (2)因为E 是P A 的中点,所以V P -BCE =V C -PEB =12V C -P AB =12V B -APC . 由PB =PD =AB =AD =2知,△ABD ≌△PBD . 因为∠BAD =60°,所以PO =AO =3,AC =23,BO =1.又P A =6,故PO 2+AO 2=P A 2,即PO ⊥AC . 故S △APC =12PO ·AC =3.由(1)知,BO ⊥面APC ,因此V P -BCE =12V B -APC =13·12·S △APC ·BO =12.19., 设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈*,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n . 19.解:(1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈*,f ′π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1. (2)由b n =2a n +12a n =2⎝⎛⎭⎫n +1+12n +1=2n +12n +2知,S n =b 1+b 2+…+b n =2n +2·n (n +1)2+121-12n1-12=n 2+3n +1-12n .20., 设函数f (x )=ax -(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}. (1)求I 的长度(注:区间(α,β)的长度定义为β-α);(2)给定常数k ∈(0,1),当1-k ≤a ≤1+k 时,求I 长度的最小值. 20.解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2},因此区间I =0,a 1+a 2,区间长度为a1+a 2. (2)设d (a )=a 1+a 2,则d ′(a )=1-a 2(1+a 2)2,令d ′(a )=0,得a =1,由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减;因此当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得. 而d (1-k )d (1+k )= 1-k 1+(1-k )2 1+k 1+(1+k )2=2-k 2-k 32-k 2+k 3<1,故d (1-k )<d (1+k ). 因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k 2.21., 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为4,且过点P (2,3).(1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E ,取点A (0,22),联结AE ,过点A 作AE 的垂线交x 轴于点D ,点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.21.解:(1)因为焦距为4,所以a 2-b 2=4.又因为椭圆C 过点P (2,3),所以2a 2+3b 2=1,故a 2=8,b 2=4,从而椭圆C 的方程为x 28+y 24=1.(2)由题意,E 点坐标为(x 0,0),设D (x D ,0),则AE →=(x 0,-22),AD →=(x D ,-22). 再由AD ⊥AE 知,AE →·AD →=0,即x 0x D +8=0.由于x 0y 0≠0,故x D =-8x 0.因为点G 是点D 关于y 轴的对称点,所以G 8x 0,0,故直线QG 的斜率k QG =y 0x 0-8x 0=x 0y 0x 20-8.又因Q (x 0,y 0)在椭圆C 上,所以x 20+2y 20=8.①从而k QG =-x 02y 0.故直线QG 的方程为将②代入椭圆C 方程,得(x 20+2y 20)x 2-16x 0x +64-16y 20=0.③ 再将①代入③,化简得x 2-2x 0x +x 20=0,解得x =x 0,y =y 0,即直线QG 与椭圆C 一定有唯一的公共点.。

安徽高考真题2013:文科数学卷(完整版)【3】

安徽高考真题2013:文科数学卷(完整版)【3】

安徽高考真题2013:文科数学卷(完整版)【3】第Ⅱ卷 (非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。

二.填空题:本大题共5小题,每小题5分,共25分。

把答案填在答题卡的相应位置。

(11) 函数y=ln(1+1/x)+ 的定义域为_____________。

(12)若非负数变量x、y满足约束条件,则x+y的最大值为__________。

(13)若非零向量a,b满足|a|=3|b|=|a+2b|,则a与b夹角的余弦值为_______。

(14)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时。

f(x)=x(1-x),则当-1≤x≤0时,f(x)=________________。

(15)如图,正方体ABCD-A1B1C1D1的棱长为1,p为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的洁面记为S,则下列命题正确的是 (写出所有正确命题的编号)。

①当0②当CQ=1/2时,S为等腰梯形③当CQ=3/4时,S与C1D1的交点R满足C1R=1/3④当3/4⑤当CQ=1时,S的面积为 /2(16)(本小题满分12分)设函数f(x)=sinx+sin(x+π/3)。

(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;(Ⅱ)不画图,说明函数y=f(x)的图像可由y=sinx的图象经过怎样的变化的到。

(17)(本小题满分12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中为各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲乙7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 58 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 97 5 4 4 2 8 1 1 5 5 82 0 9 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1,x2,估计x1-x2 的值。

2013年高考文科数学全国卷1(含详细答案)

2013年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共33页)数学试卷 第2页(共33页)数学试卷 第3页(共33页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.212i (1i)+=-( )A .11i 2--B .11i 2-+C .11i 2+D .11i 2-3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )A .12B .13C .14D .164.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =± 5.已知命题p :x ∀∈R ,23x x<;命题q :x ∃∈R ,321x x =-,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝ 6.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( )A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-7.执行如图的程序框图,如果输入的[1,3]t ∈-,则输 出的s 属于( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-8.O 为坐标原点,F 为抛物线C :242y x =的焦点,P 为C 上一点,若||42PF =,则POF △的面积为( )A .2B .22C .23D .49.函数()(1cos )sin f x x x =-在[π,π]-上的图象大致为( )10.已知锐角ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,223cos cos20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .5 11.某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+12.已知函数22,0()ln(1),0.x x x f x x x ⎧-+=⎨+⎩≤,>若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b ,若0=b c ,则t =________.14.设x ,y 满足约束条件13,10,x x y ⎧⎨--⎩≤≤≤≤,则2z x y =-的最大值为________.15.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共33页)数学试卷 第5页(共33页) 数学试卷 第6页(共33页)18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.52.61.22.71.52.93.03.12.32.4服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.60.51.80.62.11.12.51.22.70.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?A 药B 药0. 1. 2.3.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16A C =,求三棱柱111ABC A B C -的体积.20.(本小题满分12分)已知函数2()e ()4x f x ax b x x =+--,曲线()y f x =在点(0,(0))f 处的切线方程为44y x =+.(Ⅰ)求a ,b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.21.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin ,x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷3/ 114当0a >时,y ax =与()y f x =恒有公共点,所以排除()5 / 11由2,2,y ax y x x =⎧⎨=-⎩得22()0x a x -+=. ∵22()0a ∆=+=,∴2a =-. ∴,0[]2a ∈-;故选D .第Ⅱ卷0=b c ,a 1112⨯⨯=a b 1(0[)]t t =+-=b c a b b ,即1()t +-a b b 1120t t +-=;∴2t =. 【答案】3【解析】画出可行域如图所示。

2013年普通高等学校招生全国统一考试(安徽卷)

2013年普通高等学校招生全国统一考试(安徽卷)



(21)(本 小题满分 1s分
)
某高校数学系计戈在周六和周 日各举行一次 主题不同的心理测试活动 ,分 别 由李老师 刂 和张老师负责,已 知该系共有 尼 位学生 ,每 次活动均需该系 品 都是固 位学生参加 (尼 和 乃 定的正整数 ).假 设李老师和张老师分别将各 自活动通知的信息独立、 随机地发给该系 尼 .记 该系收到李老师或张老师所发活动通知信息的学生 位学生 ,且 所发信息都能收到 人数为 正

Z
第 (14)题 图


o<cQ(去 时 ,s为 四边形
Γ ,s为 腰形 co=÷ 刍 莳 等梯
÷
CQ=导 时 ,S与 C1D1的 交`点 R满 足 fI阝 =÷ 铽当
\当
(CQ<1时 ,s为 六边形
第 (15)题 圉
@耀荭杨 =1时 ,S的 面积 为镖
证明过程或演算步骤.解 答写 三。解答题 :本 大题共 6小 题 ,共 9s分 .解 答应写出文字说明、 在答题卡上的指定 区域内 (16)(本 小题满分 ⒓ 分
:
1.答 题前 ,务 必在试题卷 、 座位号 ,并 认 真 核对答题 答题卡规定 的地方填写 自己的姓名 、
座位号是否一致 。务 必在答 题 卡背 座位号与本人姓名 、 卡上所粘贴 的条形码 中姓名 、 面规定 的地方填写姓名和座位号后两位 。
2.答 第 I卷 时 ,每 小题选 出答案后 ,用 2B铅 笔把答题卡上对应题 目的答案标号涂黑 。如
(6)已`该 元二次不等式灭 多 )d的 解集为 知一
{:{∶
:IJ◇ 怪
^馁
′ }

|多
(-1或 艿 >去
l,贝

2013年安徽省高考数学试卷(文科)

2013年安徽省高考数学试卷(文科)

高考注意事项1.进入考场时携带的物品。

考生进入考场,只准携带准考证、二代居民身份证以及2B铅笔、0.5毫米黑色墨水签字笔、直尺、圆规、三角板、无封套橡皮、小刀、空白垫纸板、透明笔袋等文具。

严禁携带手机、无线发射和接收设备、电子存储记忆录放设备、手表、涂改液、修正带、助听器、文具盒和其他非考试用品。

考场内不得自行传递文具等物品。

由于标准化考点使用金属探测仪等辅助考务设备,所以提醒考生应考时尽量不要佩戴金属饰品,以免影响入场时间。

2.准确填写、填涂和核对个人信息。

考生在领到答题卡和试卷后,在规定时间内、规定位置处填写姓名、准考证号。

填写错误责任自负;漏填、错填或字迹不清的答题卡为无效卡;故意错填涉嫌违规的,查实后按照有关规定严肃处理。

监考员贴好条形码后,考生必须核对所贴条形码与自己的姓名、准考证号是否一致,如发现不一致,立即报告监考员要求更正。

3.考场面向考生正前方的墙壁上方悬挂时钟,为考生提供时间参考。

考场时钟的时间指示不作为考试时间信号,考试时间一律以考点统一发出的铃声信号为准。

2013年安徽省高考数学试卷(文科)一、选择题:本大题共10小题.每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设i是虚数单位,若复数a﹣(a∈R)是纯虚数,则a的值为()A.﹣3 B.﹣1 C.1 D.32.(5分)已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.{﹣2,﹣1}B.{﹣2}C.{﹣2,0,1}D.{0,1}3.(5分)如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.4.(5分)“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.6.(5分)直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为()A.1 B.2 C.4 D.47.(5分)设S n为等差数列{a n}的前n项和,S8=4a3,a7=﹣2,则a9=()A.﹣6 B.﹣4 C.﹣2 D.28.(5分)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…x n,使得==…=,则n的取值范围为()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}9.(5分)设△ABC的内角A,B,C所对边的长分别a,b,c,若b+c=2a,3sinA=5sinB,则角C=()A.B. C. D.10.(5分)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3 B.4 C.5 D.6二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)函数y=ln(1+)+的定义域为.12.(5分)若非负数变量x、y满足约束条件,则x+y的最大值为.13.(5分)若非零向量,满足||=3||=|+2|,则与夹角的余弦值为.14.(5分)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时.f (x)=x(1﹣x),则当﹣1≤x≤0时,f(x)=.15.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.三、解答题16.(12分)设函数f(x)=sinx+sin(x+).(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;(Ⅱ)不画图,说明函数y=f(x)的图象可由y=sinx的图象经过怎样的变化得到.17.(12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,现从这两个学校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为、,估计﹣的值.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:BD⊥面PAC(Ⅱ)若E为PA的中点,求三菱锥P﹣BCE的体积.19.(13分)设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n﹣a n+1+a n+2)x+a n+1cosx﹣a n+2sinx满足f′()=0(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=2(a n+)求数列{b n}的前n项和S n.20.(13分)设函数f(x)=ax﹣(1+a2)x2,其中a>0,区间I={x|f(x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.21.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).(Ⅰ)求椭圆C的方程;(Ⅱ)设Q(x0,y0)(x0y0≠0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.2013年安徽省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设i是虚数单位,若复数a﹣(a∈R)是纯虚数,则a的值为()A.﹣3 B.﹣1 C.1 D.3【分析】利用复数的运算法则把a﹣(a∈R)可以化为(a﹣3)﹣i,再利用纯虚数的定义即可得到a.【解答】解:∵=(a﹣3)﹣i是纯虚数,∴a﹣3=0,解得a=3.故选:D.【点评】熟练掌握复数的运算法则和纯虚数的定义是解题的关键.2.(5分)已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.{﹣2,﹣1}B.{﹣2}C.{﹣2,0,1}D.{0,1}【分析】先利用一元一次不等式的解法化简集合A,再求其在实数集中的补集,最后求集合B与A的补集的交集即可.【解答】解:∵A={x|x+1>0}={x|x>﹣1},∴C U A={x|x≤﹣1},∴(∁R A)∩B={x|x≤﹣1}∩{﹣2,﹣1,0,1}={﹣2,﹣1}故选:A.【点评】本题主要考查了集合的补集与交集运算,属于集合运算的常规题.3.(5分)如图所示,程序据图(算法流程图)的输出结果为()A.B.C.D.【分析】根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦不满足条件就退出循环,从而到结论.【解答】解:由程序框图知,循环体被执行后S的值依次为:第1次S=0+,第2次S=+,第3次S=++,此时n=8不满足选择条件n<8,退出循环,故输出的结果是S=++=.故选:C.【点评】本题主要考查了循环结构,是当型循环,当满足条件,执行循环,属于基础题.4.(5分)“(2x﹣1)x=0”是“x=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断.【解答】解:若(2x﹣1)x=0 则x=0或x=.即(2x﹣1)x=0推不出x=0.反之,若x=0,则(2x﹣1)x=0,即x=0推出(2x﹣1)x=0所以“(2x﹣1)x=0”是“x=0”的必要不充分条件.故选:B.【点评】判定条件种类,根据定义转化成相关命题的真假来判定.一般的,①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.5.(5分)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.【分析】设“甲或乙被录用”为事件A,则其对立事件表示“甲乙两人都没有被录取”,先求出,再利用P(A)=1﹣P()即可得出.【解答】解:设“甲或乙被录用”为事件A,则其对立事件表示“甲乙两人都没有被录取”,则==.因此P(A)=1﹣P()=1﹣=.故选:D.【点评】熟练掌握互为对立事件的概率之间的关系是解题的关键.6.(5分)直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为()A.1 B.2 C.4 D.4【分析】化圆的方程为标准方程,求出圆的圆心坐标和半径,由点到直线距离公式求出圆心到直线的距离,利用勾股定理求出半弦长,则弦长可求.【解答】解:由x2+y2﹣2x﹣4y=0,得(x﹣1)2+(y﹣2)2=5,所以圆的圆心坐标是C(1,2),半径r=.圆心C到直线x+2y﹣5+=0的距离为d=.所以直线直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长为.故选:C.【点评】本题考查了直线与圆的位置关系,考查了弦心距、圆的半径及半弦长之间的关系,是基础题.7.(5分)设S n为等差数列{a n}的前n项和,S8=4a3,a7=﹣2,则a9=()A.﹣6 B.﹣4 C.﹣2 D.2【分析】利用等差数列有前n项和公式和通项公式,列出方程组,求出首项和公差,由此能求出第9项.【解答】解:∵S n为等差数列{a n}的前n项和,S8=4a3,a7=﹣2,∴,解得a1=10,d=﹣2,∴a9=a1+8d=10﹣16=﹣6.故选:A.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.8.(5分)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…x n,使得==…=,则n的取值范围为()A.{2,3}B.{2,3,4}C.{3,4}D.{3,4,5}【分析】由表示(x,f(x))点与原点连线的斜率,结合函数y=f(x)的图象,数形结合分析可得答案.【解答】解:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选:B.【点评】正确理解斜率的意义、函数交点的意义及数形结合的思想方法是解题的关键.9.(5分)设△ABC的内角A,B,C所对边的长分别a,b,c,若b+c=2a,3sinA=5sinB,则角C=()A.B. C. D.【分析】3sinA=5sinB,由正弦定理可得:3a=5b,可得a=,又b+c=2a,可得c=,不妨取b=3,则a=5,c=7.再利用余弦定理即可得出.【解答】解:∵3sinA=5sinB,由正弦定理可得:3a=5b,∴a=,又b+c=2a,可得c=2a﹣b=,不妨取b=3,则a=5,c=7.∴cosC===﹣,∵C∈(0,π),∴.故选:D.【点评】本题考查了正弦定理余弦定理解三角形,考查了推理能力与计算能力,属于中档题.10.(5分)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3 B.4 C.5 D.6【分析】由函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解的个数.【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取0<x1<x2,f(x1)>0.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f (x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.【点评】本题综合考查了利用导数研究函数的单调性、极值及方程解的个数、平移变换等基础知识,考查了数形结合的思想方法、推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(5分)函数y=ln(1+)+的定义域为(0,1] .【分析】根据偶次根式下大于等于0,对数的真数大于0,建立不等式组解之即可求出所求.【解答】解:由题意得:,即解得:x∈(0,1].故答案为:(0,1].【点评】本题主要考查了对数函数的定义域,以及偶次根式函数的定义域,属于基础题.12.(5分)若非负数变量x、y满足约束条件,则x+y的最大值为4.【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.【解答】解:画出可行域如图阴影部分,其中,可得A(4,0)目标函数z=x+y可以变形为y=﹣x+z,可看做斜率为﹣1的动直线,其纵截距越大z越大,=4+0=4由图数形结合可得当动直线过点A时,z最大故答案为:4【点评】本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题13.(5分)若非零向量,满足||=3||=|+2|,则与夹角的余弦值为﹣.【分析】利用条件化简可得4=﹣4,由此可得||•||=||•||cos<,>,从而求得与夹角的余弦值.【解答】解:由题意可得=9,且=+4+4,化简可得4=﹣4,∴||•||=﹣||•||cos<,>,∴cos<,>=﹣=﹣,故答案为:﹣.【点评】本题主要考查两个向量的数量积的定义,两个向量夹角公式的应用,属于中档题.14.(5分)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时.f (x)=x(1﹣x),则当﹣1≤x≤0时,f(x)=﹣x(x+1).【分析】当﹣1≤x≤0时,0≤x+1≤1,由已知表达式可求得f(x+1),根据f(x+1)=2f(x)即可求得f(x).【解答】解:当﹣1≤x≤0时,0≤x+1≤1,由题意f(x)=f(x+1)=(x+1)[1﹣(x+1)]=﹣x(x+1),故答案为:﹣x(x+1).【点评】本题考查函数解析式的求解,属基础题,正确理解函数定义是解决问题的关键.15.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是①②③⑤(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.【分析】由题意作出满足条件的图形,由线面位置关系找出截面可判断选项的正误.【解答】解:如图当CQ=时,即Q为CC1中点,此时可得PQ∥AD1,AP=QD1==,故可得截面APQD1为等腰梯形,故②正确;由上图当点Q向C移动时,满足0<CQ<,只需在DD1上取点M满足AM∥PQ,即可得截面为四边形APQM,故①正确;③当CQ=时,如图,延长DD1至N,使D1N=,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=,故正确;④由③可知当<CQ<1时,只需点Q上移即可,此时的截面形状仍然上图所示的APQRS,显然为五边形,故错误;⑤当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,可知截面为APC1F为菱形,故其面积为AC1•PF==,故正确.故答案为:①②③⑤.【点评】本题考查命题真假的判断与应用,涉及正方体的截面问题,属中档题.三、解答题16.(12分)设函数f(x)=sinx+sin(x+).(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;(Ⅱ)不画图,说明函数y=f(x)的图象可由y=sinx的图象经过怎样的变化得到.【分析】(Ⅰ)f(x)解析式第二项利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据正弦函数的图象与性质即可求出满足题意x的集合;(Ⅱ)根据变换及平移规律即可得到结果.【解答】解:(Ⅰ)f(x)=sinx+sinx+cosx=sinx+cosx=sin(x+),∴当x+=2kπ﹣(k∈Z),即x=2kπ﹣(x∈Z)时,f(x)取得最小值﹣,此时x的取值集合为{x|x=2kπ﹣(k∈Z)};(Ⅱ)先由y=sinx的图象上的所有点的纵坐标变为原来的倍,横坐标不变,即为y=sinx的图象;再由y=sinx的图象上的所有点向左平移个单位,得到y=f(x)的图象.【点评】此题考查了两角和与差的正弦函数公式,正弦函数的定义域与值域,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.17.(12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,现从这两个学校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为、,估计﹣的值.【分析】(I)先设甲校高三年级总人数为n,利用甲校高三年级每位学生被抽取的概率为0.05得=0.05求出n,又样本中甲校高三年级这次联考数学成绩的不及格人数为5,利用对立事件的概率可估计甲校高三年级这次联考数学成绩的及格率;(II)设样本中甲、乙两校高三年级学生这次联考数学平均成绩分别为a1,a2,利用茎叶图中同一行的数据之差可得30(a1﹣a2)=(7﹣5)+55+(2﹣8)+(5﹣0)+(5﹣6)+…+92=15,从而求出a1﹣a2的值,最后利用样本估计总体的思想得出结论即可.【解答】解:(I)设甲校高三年级总人数为n,则=0.05,∴n=600,又样本中甲校高三年级这次联考数学成绩的不及格人数为5,∴估计甲校高三年级这次联考数学成绩的及格率1﹣=;(II)设样本中甲、乙两校高三年级学生这次联考数学平均成绩分别为a1,a2,由茎叶图可知,30(a1﹣a2)=(7﹣5)+55+(2﹣8)+(5﹣0)+(5﹣6)+…+92=15,∴a1﹣a2==0.5.∴利用样本估计总体,故估计x1﹣x2的值为0.5.【点评】此题考查了学生的识图及计算能力,茎叶图,及格率的定义及平均数的定义.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:BD⊥面PAC(Ⅱ)若E为PA的中点,求三菱锥P﹣BCE的体积.【分析】(Ⅰ)连接BD,AC交于O点,分别证明出PO⊥BD,BD⊥AC,根据线面垂直的判定定理证明出BD⊥平面PAC.(Ⅱ)先证明出△ABD≌△PBD,求得PO,根据勾股定理证明出AC⊥PO,求得△PAC 的面积,最后根据V P=V B﹣PEC=V B﹣PAC求得答案.﹣BCE【解答】(Ⅰ)证明:连接BD,AC交于O点,∵PB=PD,∴PO⊥BD,又ABCD是菱形,∴BD⊥AC,∵PO⊂平面PAC,AC⊂平面PAC,AC∩PO=O,∴BD⊥平面PAC.(Ⅱ)则AC=2,∵△ABD和△PBD的三边长均为2,∴△ABD≌△PBD,∴AO=PO=,∴AO2+PO2=PA2,∴AC⊥PO,S△PAC=•AC•PO=3,V P﹣BCE=V B﹣PEC=V B﹣PAC=••S△PAC•BO=××3×1=.【点评】本题主要考查了线面垂直的判定问题,三棱锥的体积计算.解题过程中注重了对学生基础定理的考查.19.(13分)设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n﹣a n+1+a n+2)x+a n+1cosx﹣a n+2sinx满足f′()=0(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=2(a n+)求数列{b n}的前n项和S n.【分析】(I)利用导数的运算法则先求出f′(x),再利用,即可得到数列{a n}是等差数列,再利用已知及等差数列的通项公式即可得出a n;(II)利用(I)得出b n,利用等差数列和等比数列的前n项和公式即可得出S n.【解答】解:(I)∵f′(x)=a n﹣a n+1+a n+2﹣a n+1sinx﹣a n+2cosx,.=a n+a n+2对任意n∈N*,都成立.∴2a n+1∴数列{a n}是等差数列,设公差为d,∵a1=2,a2+a4=8,∴2+d+2+3d=8,解得d=1.∴a n=a1+(n﹣1)d=2+n﹣1=n+1.(II)由(I)可得,=2(n+1)+,∴S n=2[2+3+…+(n+1)]+==.【点评】数列掌握导数的运算法则、等差数列的通项公式、等差数列和等比数列的前n项和公式是解题的关键.20.(13分)设函数f(x)=ax﹣(1+a2)x2,其中a>0,区间I={x|f(x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.【分析】(Ⅰ)解不等式f(x)>0可得区间I,由区间长度定义可得I的长度;(Ⅱ)由(Ⅰ)构造函数d(a)=,利用导数可判断d(a)的单调性,由单调性可判断d(a)的最小值必定在a=1﹣k或a=1+k处取得,通过作商比较可得答案.【解答】解:(Ⅰ)因为方程ax﹣(1+a2)x2=0(a>0)有两个实根x1=0,>0,故f(x)>0的解集为{x|x1<x<x2},因此区间I=(0,),区间长度为;(Ⅱ)设d(a)=,则d′(a)=,令d′(a)=0,得a=1,由于0<k<1,故当1﹣k≤a<1时,d′(a)>0,d(a)单调递增;当1<a≤1+k时,d′(a)<0,d (a)单调递减,因此当1﹣k≤a≤1+k时,d(a)的最小值必定在a=1﹣k或a=1+k处取得,而=<1,故d(1﹣k)<d(1+k),因此当a=1﹣k时,d(a)在区间[1﹣k,1+k]上取得最小值,即I长度的最小值为.【点评】本题考查二次不等式的求解,以及导数的计算和应用等基础知识和基本技能,考查分类讨论思想和综合运用数学知识解决问题的能力.21.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).(Ⅰ)求椭圆C的方程;(Ⅱ)设Q(x0,y0)(x0y0≠0)为椭圆C上一点,过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.【分析】(I)根据椭圆的焦距为4,得到c==2,再由点P()在椭圆C上得到,两式联解即可得到a2=8且b2=4,从而得到椭圆C的方程;(II)由题意得E(x0,0),设D的坐标为(x D,0),可得向量、的坐标,根据AD ⊥AE得,从而算出x D=﹣,因为点G是点D关于y轴的对称点,得到G (,0).直线QG的斜率为k QG=,结合点Q是椭圆C上的点化简得k QG=﹣,从而得到直线QG的方程为:y=﹣(x﹣),将此方程与椭圆C的方程联解可得△=0,从而得到方程组有唯一解,即点Q是直线QG与椭圆C的唯一公共点,由此即得直线QG与椭圆C一定有唯一的公共点.【解答】解:(I)∵椭圆C:+(a>b>0)的焦距为4,∴c=2,可得=2…①又∵点P()在椭圆C上∴…②联解①②,可得a2=8且b2=4,椭圆C的方程为;(II)由题意,得E点坐标为(x0,0),设D(x D,0),可得=(x0,﹣),=(x D,﹣),∵AD⊥AE,可得∴x0x D+(﹣)•(﹣)=0,即x0x D+8=0,得x D=﹣∵点G是点D关于y轴的对称点,∴点G的坐标为(,0)因此,直线QG的斜率为k QG==又∵点Q(x0,y0)在椭圆C上,可得∴k QG==﹣由此可得直线QG的方程为:y=﹣(x﹣),代入椭圆C方程,化简得()x2﹣16x0x+64﹣16=0将代入上式,得8x2﹣16x0x+8=0,化简得x2﹣2x0x+=0,所以△=,从而可得x=x0,y=y0是方程组的唯一解,即点Q是直线QG与椭圆C的唯一公共点.综上所述,可得直线QG与椭圆C一定有唯一的公共点.【点评】本题给出椭圆的焦距和椭圆上的点P的坐标,求椭圆的方程并由此讨论直线QG与椭圆公共点的个数问题.着重考查了椭圆的标准方程、简单几何性质和直线与圆锥曲线位置关系等知识,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试安徽卷(文)
一、选择题 1.[答案]D
[命题立意]考查复数的概念、复数的运算。

[解题思路]复数()10
333a a i a i i
-=-+=---是纯虚数,所以a=3. 2.[答案]A
[命题立意]考查集合的运算。

[解题思路]因为{}
1A x x =>-,所以{}
1R C A x x =≤-,故(){}2,1R C A B =-- . 3. [答案]C
[命题立意]考查程序框图。

[解题思路]该程序框图运行3次,所以输出的1111124612
S =
++=. [易错警示]运行次数经常出错,当循环次数不多时,可以逐次列举,避免运行次数错误. 4、[答案]B
[命题立意]考查充分条件、必要条件的判断。

[解题思路]因为()1
21002
x x x x -=⇔==或,所以“()210x x -=”是“x=0”的必要不充分条件. 5. [答案]D
[命题立意]考查对立事件的概率。

[解题思路]甲、乙都没有被录用的概率为3
3351
10
C C =,所以甲或乙被录用的概率为
1911010
-
=. 6. [答案]C
[命题立意]考查直线与圆的位置关系。

[解题思路]圆的标准方程为()()2
2
125x y -+-=,圆心(1,2)到直线
250x y +-=
的距离为1d ==,所以直线被圆截得的弦长为
4=.
[易错警示]复数的运算不能与向量运算混淆,这很容易出错. 7. [答案]A
[命题立意]考查等差数列的通项公式、求和公式。

[解题思路]由834S a =得()11187
842,622
a d a d a d ⨯+
=++=-,整理得1650a d a +==,又72a =-,所以公差762d a a =-=-,所以9726a a d =+=-.
[易错警示]注意正确列式,准确运算,计算错误是这类题的常见错误. 8. [答案]B
[命题立意]考查对函数图象的理解和应用。

[解题思路]
()
f x x
的几何意义是曲线上点()(),x f x 与原点连线的斜率,即过原点的直线与曲线的交点个数的可能值.结合图象可知,原点的直线与曲线的交点个数可能是2或3或4,所以n 的取值范围为{}2,3,4
[易错警示]不理解代数式的几何意义,不能对问题进行等价转化是常见错误.
9. [答案]B
[命题立意]考查正弦定理、余弦定理的应用. [解题思路]由3sin 5sin A B =得35b a =
.又2b c a +=,所以7
25
c a b a =-=.由余弦定理可得()2221
cos ,0,22
a b c C C ab π+-==-∈,所以23C π=.
10. [答案]A
[命题立意]考查导数的应用、函数与方程以及数形结合的应用。

[解题思路]由题意可得方程()2
320f x x ax b '=++=的两个根是12,x x ,而()1f x x =有
两个根,()()211f x x x f x =>=有一个根,所以关于x 的方程()()2
320f x af x b ++=⎡⎤⎣⎦的不同的实根个数是3.
[举一反三]方程实根个数的判断经常转化为两个函数图象的交点个数,进而利用数形结合求解。

二、填空题: 11. [答案](]0,1
[命题立意]考查函数定义域.
[解题思路]要使函数有意义,则211+0
10x x ⎧>⎪⎨⎪-≥⎩
,解得01x <≤,所以原函数的定义域是
(]0,1.
[易错警示]分式不等式不能轻易去分母,一般是移项、通分,转化为整式不等式求解. 12. [答案]4
[命题立意]考查线性规划。

[解题思路]画出约束条件对应的平面区域是第一象限的四边形区域,当目标函数
y x z =-+经过边界上点(4,0)时,z=x+y 取得最大值4.
[易错警示]注意变量x,y 非负,所以区域只能在第一象限或者坐标轴的非负半轴上,且目标函数的斜率与边界直线的斜率大小关系不能出错. 13.[答案]1
3
-
[命题立意]考查平面向量的运算。

[解题思路]设21a b +=
,则11,3
a b == ,所以
222442441cos ,193a b a b a b a b +=++⋅=++= ,解得1cos ,3
a b =- .
14. [答案]()
12
x x +-
[命题立意]考查函数概念的理解和应用。

[解题思路]当10x -≤≤时,011x ≤+≤,所以
()()()()()111
1111222
x x f x f x x x +=
+=+-+=-⎡⎤⎣⎦. [举一反三]求函数解析式的关键是将自变量的范围转化到已知解析式的区间上,再利用已
知的解析式求解. 15.[答案]①②③⑤
[命题立意]考查平面的基本性质。

[解题思路]当1
02
CQ <<时,S 与直线1DD 的交点在棱1DD 上,S 为四边形,①正确;当1=2CQ 时,S 与直线1DD 的交点在点1D 处,S 为等腰梯形,②正确;当3
=4
CQ 时,因

11
3
C Q QC =,所以113C R =,③正确;S 不可能是六边形,④错误;当CQ=1时,即Q 与1
C
重合时,取11A D 的中点M ,S 为平行四边形1APC M ,面积为2
S =,⑤正确.故正确的命题序号是①②③⑤. 二、解答题:
16. [答案](I )22,3x x k k Z ππ⎧⎫
=-∈⎨⎬⎩⎭

(II )略. [命题立意]考查三角恒等变换、三角函数的图象与性质与三角函数的图象变换等基础知识与基本技能,考查逻辑推理和运算求解能力。

[解题思路]
[举一反三]三角函数的性质的讨论需要先将三角函数解析式化为标准型,同时三角函数图象变换与函数图象变换是一致的。

17. [答案](I )600,
5
6
.(II )0.5. [命题立意]考查随机抽样与茎叶图等统计学基本知识,考查用样本估计总体的思想以及数据分析处理能力。

[解题思路]
[举一反三]理解茎叶图的作用并且正确应用,是统计的基础知识,同时统计图表中的直方
图也有重要作用. 18. [答案](I )略;(II )
1
2
. [命题立意]考查空间直线与直线、直线与平面的位置关系、三棱锥体积等基础知识和基本技能,考查空间观念、推理论证能力和运算求解能力. [解题思路]
[举一反三]立体几何证明垂直和平行,有两种方法,一是利用空间向量以算代证,二是利用传统的证明方法。

而空间角的计算一般利用空间向量转化为两个向量的夹角求解. 19.[答案](I )1n a n =+.(II )略.
[命题立意]考查函数的求导法则和求导公式,等差、等比数列的性质和计算等基础知识和基本技能,考查逻辑推理能力和运算求解能力。

[解题思路]
[举一反三]函数与导数的综合题是常见题型,这类问题基本都是利用函数作为载体,关键还是数列问题。

20. [答案](I )
2
1a
a +.(II ).
[命题立意]考查二次不等式的求解,以及导数的计算和应用等基础知识和基本技能,考查分类讨论思想和综合应用数学知识解决问题的能力。

[解题思路]
[举一反三]导数是研究函数性质,如单调性、极值、最值等的重要工具,利用导数可以讨论的函数类型更加广泛,可以这样认为,除了几种基本初等函数的性质和图象可以直接应用之外,其余函数性质都是利用导数研究。

要掌握求解步骤.
21. [答案](I )22
184
x y +=;(II )存在. [命题立意]考查椭圆的标准方程与几何性质、直线和椭圆的位置关系等基础知识,考查数形结合思想、逻辑推理能力和运算求解能力。

[解题思路]
[易错警示]这类问题一般运算量较大,一般利用设而不求、韦达定理、弦长公式等简化运算,否则,直接死算,很容易出现计算错误.。

相关文档
最新文档