解一元一次不等式 2课堂练习

合集下载

9.2 一元一次不等式 第2课时 新人教版七年级数学下册教学课件

9.2 一元一次不等式 第2课时 新人教版七年级数学下册教学课件

探究新知
素养考点 2 一元一次不等式解答货币问题 例2 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本 2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几支笔?
解:设她还可能买n支笔,根据题意得 3n+2.2×2≤21,
解得 n≤ . 因为在这个问题中n只能取正整数,所以小颖还可能买1支、2支、 3支、4支或5支笔.
例1 去年广州空气质量良好(二级以上)的天数与全年 天数(365天)之比达到60%,如果到明年(365天)这样 的比值要超过70%,那么明年空气质量良好的天数要比 去年至少增加多少?
分析:题目蕴含的不等关系为 明年这样的比值要超70% ,
转 化 为 不 等 式,即 明年空气明质年量天良数好的天数>70%
连接中考
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分, 小华得分要超过120分,他至少要答对的题的个数为( C )
A.13
B.14
C.15 D.16
课堂检测
基础巩固题
1.某商品原价500元,出售时标价为900元,要保持利润不低
于26%,则最低可打 ( B)
A. 六折 B. 七折
C. 八折
答:明年要比去年空气质量良好的天数至少增加 37天,
才能使这一年空气质量良好的天数超过全年天数的70% .
巩固练习
在一次知识竞赛中,有10道抢答题,答对一题得10分,答错一 题扣5分,不答得0分,小玲有一道题没有答,成绩仍然不低于 60分,她至少答对几道题?
解:设小玲答对的题数是x,则答错的题数是9-x, 根据题意,得10x-5(9-x)≥60, 解这个不等式,得x≥7. 答:她至少答对7道题.
D. 九折
2. 某次知识竞赛共20道题,每一题答对得10分,答错或不答

七年级数学 第三章 一元一次方程 3.3 解一元一次方程(二)去括号与去分母(1)

七年级数学 第三章 一元一次方程 3.3 解一元一次方程(二)去括号与去分母(1)

12/8/2021
第二十页,共二十三页。
课后思考
(sīkǎo)
3x-2[3(x-1)-2(x+2)]=3(18-x)
12/8/2021
第二十一页,共二十三页。
课后思考
(sīkǎo)
某水利工地派 48 人去挖土和运土,如果每 人每天平均挖土5方或运土3方,那么(nà me) 应怎样安排人员,正好能使挖出的土及时 运走?
千米/时,求船在静水中的速度。顺流行驶(xíngshǐ)的路程=逆流行驶(xíngshǐ)的路程。顺 流行驶(xíngshǐ)的路程=逆流行驶(xíngshǐ)的路程。例 一艘船从甲码头到乙码头顺流行驶 (xíngshǐ),用了2小时。例:解方程:。课后思考
Image
12/8/2021
第二十三页,共二十三页。
第十四页,共二十三页。
关闭
答à答案n)(案dá
课堂练习
1
2
3
4
5
4.当 x=
时,式子 2(x-1)-3 的值等于-9.
关闭
由题意得 2(x-1)-3=-9,去括号,得 2x-2-3=-9,移项,得 2x=-9+2+3, 合并同类项,得 2x=-4,方程两边同除以 2,得 x=-2.
12/8/2021
第十七页,共二十三页。
课堂小结
去括号 法 (kuòhào) 则: ①括号(kuòhào)前为+,去括号后,括号
内各项不变号; ②括号前为-,去括号后,括号内 各项要变号;
③括号前有系数,要先用乘法分配 律,再去括号,注意不要漏乘。
12/8/2021
第十八页,共二十三页。
1.括号外的因数是正数 ,去括号后各项的符号与原括号内相应

数学七上《第3章 一元一次方程》word教案(高效课堂)2022年人教版数学精品(2)

数学七上《第3章 一元一次方程》word教案(高效课堂)2022年人教版数学精品(2)

通渭县七年级数学下册导学案通渭县七年级数学下册导学案通渭县七年级数学下册导学案组长查阅教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到D CA BD CABDCA B∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习(1)如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.CE DC A B P3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+(2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

一元一次不等式求解练习题

一元一次不等式求解练习题

一元一次不等式求解练习题题目::1. 求解不等式:3x + 4 > 102. 解方程:2x - 5 ≤ 73. 解不等式:3 - x < 94. 解方程组:x + 2 ≤ -1, x - 3 > 4解答::1. 第一题:求解不等式 3x + 4 > 10。

首先,我们需要将不等式中的x系数与常数项分开。

将常数项移到不等式的右侧:3x > 10 - 4化简得到:3x > 6然后,将不等式两边同时除以系数3:x > 2所以,不等式3x + 4 > 10的解集为x > 2。

2. 第二题:解方程 2x - 5 ≤ 7。

首先,我们需要将方程中的x系数与常数项分开。

将常数项移到方程的右侧:2x ≤ 7 + 5化简得到:2x ≤ 12然后,将方程两边同时除以系数2:x ≤ 6所以,方程2x - 5 ≤ 7的解集为x ≤ 6。

3. 第三题:解不等式 3 - x < 9。

首先,我们需要将不等式中的x系数与常数项分开。

将常数项移到不等式的右侧:-x < 9 - 3化简得到:-x < 6注意到不等号方向与x系数的符号相反,所以需要将不等式两边的符号取反:x > -6所以,不等式3 - x < 9的解集为x > -6。

4. 第四题:解方程组x + 2 ≤ -1, x - 3 > 4。

首先,我们分别求解两个方程。

第一个方程x + 2 ≤ -1:首先将常数项移到方程的右侧:x ≤ -3所以,第一个方程的解集为x ≤ -3。

第二个方程 x - 3 > 4:首先将常数项移到方程的右侧:x > 7所以,第二个方程的解集为x > 7。

由于要求解方程组,所以我们需要找到两个方程解集的交集:x ≤ -3 且 x > 7由于这两个不等式条件是互斥的,所以方程组x + 2 ≤ -1, x - 3 > 4 没有解集。

以上就是题目中的四道一元一次不等式求解练习题的解答。

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习

第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;①函数y ax d =+ 不经过第一象限;①不等式ax b cx d ++> 的解集是3x < ;①()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .12.同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如图所示,则满足12y y ≥的x 取值范围是( )A .2x -≤B .2x ≥-C .2x <-D .2x >-3.如图,一次函数y kx b =+的图象经过A 、B 两点,则不等式0kx b +<的解集是( )A.1x>B.01x<<C.1x<D.0x<4.若一次函数y kx b=+(k b、为常数,且0k≠)的图象经过点()01A-,,()11B,,则不等式1kx b+>的解为()A.0x<B.0x>C.1x<D.1x>5.一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x0<B.x0>C.x2<D.x2>.6.如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4B.x≤4C.x≥1D.x≤17.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;①a>0;①当x<3时,y1<y2;①当y1>0且y2>0时,﹣a<x<4.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣1评卷人得分 二、填空题 9.如图,已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),则关于x 的不等式ax+b≤kx <1的解集为______.10.如图,直线()0y kx b k =+>交x 轴于点()30A -,,交直线y x =于点B ,则根据图象可知,()0x kx b +<不等式的解为_______.11.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.12.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.13.如图,一次函数y=﹣x ﹣2与y=2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为_____.14.函数2y x =和4y ax =+的图象相交于点(),2A m ,则不等式24x ax -≤的解为__________.15.如图,一次函数y kx b =+的图象与x 轴的交点坐标为()2,0-,则下列说法:y ①随x 的增大而减小;0b <②;③关于x 的方程0kx b +=的解为2x =-;④当1x =-时,0.y <其中正确的是______.(请你将正确序号填在横线上)16.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.评卷人得分三、解答题 17.如图:已知直线y kx b =+经过点()5,0A ,()1,4B .(1)求直线AB的解析式;(2)若直线24y x=-与直线AB相交于点C,求点C的坐标;(3)根据图象,直接写出关于x的不等式240x kx b->+>的解集.18.如图,直线1l:1y x=+与直线2l:y mx n=+相交于点()1,P b.(1)求关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)已知直线2l经过第一、二、四象限,则当x______时,1x mx n+>+.19.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A (1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;20.如图,直线1:1l y x=+与直线22 :3l y x a=-+相交于点(1,)p b;(1)求出a,b的值;(2)根据图象直接写出不等式2013x x a<+<-+的解集;(3)求出ABP∆的面积.参考答案:1.A【解析】【分析】仔细观察图象:①a 的正负看函数y 1=ax +b 图象从左向右成何趋势,b 的正负看函数y 1=ax +b 图象与y 轴交点即可;①c 的正负看函数y 2=cx +d 从左向右成何趋势,d 的正负看函数y 2=cx +d 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】由图象可得:a <0,b >0,c >0,d <0,①ab <0,故①正确;函数y =ax +d 的图象经过第二,三,四象限,即不经过第一象限,故①正确,由图象可得当x <3时,一次函数y 1=ax +b 图象在y 2=cx +d 的图象上方,①ax +b >cx +d 的解集是x <3,故①正确;①一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,①3a +b =3c +d①3a−3c =d−b ,①a−c =13(d−b ),故①正确, 故选:A .【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.2.A【解析】【详解】试题分析:当2x ≤-时,直线11y k x b =+都在直线22y k x =的上方,即12y y ≥.故选A . 考点:一次函数与一元一次不等式.3.A【解析】由图象可知:B (1,0),且当x >1时,y <0,即可得到不等式kx+b <0的解集是x >1,即可得出选项.【详解】解:①一次函数y=kx+b 的图象经过A 、B 两点,由图象可知:B (1,0),根据图象当x >1时,y <0,即:不等式kx+b <0的解集是x >1.故选A .【点睛】本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.4.D【解析】【分析】可直接画出图像,利用数形结合直接读出不等式的解 【详解】如下图图象,易得1kx b +>时,1x >故选D【点睛】本题考查一次函数与不等式的关系,本题关键在于利用画出图像,利用数形结合进行解题 5.A【解析】根据题意在函数图像中寻找3y >时函数图像所在的位置,发现此时函数图像对应的x 范围是小于零,从而得出答案【详解】解:①由函数图象可知,当x <0时函数图象在3的上方,①当y >3时,x <0.故选A .【点睛】本题考查的是一次函数的图象,能利用数形结合求出x 的取值范围是解答此题的关键. 6.D【解析】【详解】根据函数图像可得:当1x ≤时,21y y ≥,即3ax b x +≥+.故选D考点:一次函数与不等式7.B【解析】【分析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;①a 看y 2=x +a 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】①①y 1=kx +b 的图象从左向右呈下降趋势,①k <0正确;①①y 2=x +a ,与y 轴的交点在负半轴上,①a <0,故①错误;①当x <3时,y 1>y 2,故①错误;①y 2=x +a 与x 轴交点的横坐标为x =﹣a ,当y 1>0且y 2>0时,﹣a <x <4正确;故正确的判断是①①,正确的个数是2个.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象与性质,利用数形结合是解题的关键.8.D【解析】【详解】解:①函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-,得: 1m =-,①点A (-1,2),①当1x <-时,12y x =-的图象在23y ax =+的图象上方,①关于 x 的不等式﹣2x >ax +3 的解集是1x <-.故选:D.9.﹣4≤x <2【解析】【分析】先利用待定系数法求出y =kx 的表达式,然后求出y =1时对应的x 值,再根据函数图象得出结论即可.【详解】解:①已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),①﹣4k =﹣2,解得:k =12,①解析式为y =12x ,当y =1时,x =2,①由函数图象可知,当x≥﹣4时一次函数y =ax+b 在一次函数y =kx 图象的下方, ①关于x 的不等式ax+b≤kx <1的解集是﹣4≤x <2.故答案为:﹣4≤x <2.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.10.-3<x <0【解析】【分析】先把()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩然后利用函数图像分别解两个不等式组即可. 【详解】解:由题意得:不等式()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩得00x kx b >⎧⎨+<⎩无解,00x kx b <⎧⎨+>⎩的解集 -3<x <0 故答案为:-3<x <0【点睛】本题考查了一次函数与一元一次不等式组的解,正确将一元二次不等式转化为一元一次不等式组是解题的关键.11.1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.12.1x ≤【解析】【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2),①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.13.﹣2<x <2【解析】【分析】先将点P (n ,﹣4)代入y=﹣x ﹣2,求出n 的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x 轴下方的部分对应的自变量的取值范围即可. 【详解】①一次函数y=﹣x ﹣2的图象过点P (n ,﹣4),①﹣4=﹣n ﹣2,解得n=2,①P (2,﹣4),又①y=﹣x ﹣2与x 轴的交点是(﹣2,0),①关于x 的不等式组2220x m x x +--⎧⎨--⎩<<的解集为22x -<<. 故答案为22x -<<.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出 n 的值,是解答本题的关键.14.1x ≤【解析】【分析】函数2y x =和4y ax =+的图象相交于点(),2A m ,求出m 的值,然后解不等式即可.【详解】解:①函数y=2x 的图象经过点A (m ,2),①2m=2,解得:m=1,①点A (1,2),当x≤1时,2x≤ax+4,即不等式2x-4≤ax 的解集为x≤1.故答案为x≤1.【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.③【解析】【分析】根据一次函数的性质,一次函数与一元一次方程的关系对个小题分析判断即可得解.【详解】由图可知:①y 随x 的增大而增大,错误;①b >0,错误;①关于x 的方程kx +b =0的解为x =﹣2,正确;①当x =﹣1时,y >0,错误.故答案为①.【点睛】本题考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.16.3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,①0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.17.(1)5y x =-+;(2)点C 的坐标为()32,;(3)35x <<【解析】【分析】 (1)将A 、B 坐标代入解析式中计算解答即可;(2)将两直线方程联立求方程组的解即可;(3)根据图像找出y>0,且直线24y x =-高于直线y kx b =+部分的x 值即可.【详解】解:(1)因为直线y kx b =+经过点()5,0A ,()1,4B所以将其代入解析式中有504x b x b +=⎧⎨+=⎩,解得15k b =-⎧⎨=⎩, 所以直线AB 的解析式为5y x =-+;(2)因为直线24y x =-与直线AB 相交于点C所以有524y x y x =-+⎧⎨=-⎩,解得32x y =⎧⎨=⎩ 所以点C 的坐标为()32,; (3)根据图像可知两直线交点C 的右侧直线24y x =-高于直线y kx b =+且大于0,此时x的取值范围是大于3并且小于5,所以不等式240x kx b ->+>的解集是35x <<.【点睛】本题考查的是一次函数综合问题,能够充分调动所学知识是解题的关键.18.(1)1x =,2y = (2)1x >【解析】【分析】(1)方程组的解即为两条直线的交点P 的坐标,将x =1,代入直线l 1求出P 点坐标即可;(2)不等式x +1>mx +n 的解集即直线l 1在直线l 2的上方时x 的取值范围.【详解】解:(1)由题意可得,关于x ,y 的方程组的解即为两条直线的交点P 的坐标, 当x =1时,代入直线l 1,求得y =2,即P (1,2)即方程组的解为12x y =⎧⎨=⎩; (2)由题意可知,x +1>mx +n 时,直线l 1在直线l 2的上方,由函数图象可得,此时x >1,故答案为x >1.【点睛】本题主要考查一次函数与二元一次方程组及一元一次不等式的关系,熟悉一次函数的图象并熟练应用数形结合的思想是解答本题的关键19.(1)a =﹣3,k =1;(2)x <1;(3)当x >2时,y <2.【解析】【分析】(1)把A (1,a )代入y =﹣x +4求得a 的值,再把将A (1,3)代入y =kx +k +1即可求得k 的值;(2)观察函数图象即可解答;(3)当x =2时,y =2,观察图象,x >2时,图象在x =2的右侧,在y =2的下面,即可解答.【详解】(1)把A (1,a )代入y =﹣x +4得a =﹣1+4=3,将A(1,3)代入y=kx+k+1得k+k+1=3,解得k=1;(2)根据图象可得:不等式﹣x+4>kx+k+1的解集为x<1;(3)当x=2时,y=﹣x+4=﹣2+4=2,所以当x>2时,y<2.【点睛】本题考查的是一次函数与不等式的解集,掌握利用函数图象求不等式解集的方法是关键.20.(1) a=83,b=2;(2)-1<x<1;(3)5.【解析】【分析】(1)把P点坐标代入y=x+1可得b的值,继而代入23y x a=-+可求a的值;(2)根据两函数图象的交点坐标及y=x+1与x轴的交点可得答案;(3)首先求出点A、B的坐标,由此计算AB的长,再由点P的坐标,即可计算出ABP∆的面积.【详解】解:(1)①直线l1:y=x+1过点P(1,b),①b=1+1=2;把点P(1,2)代入23y x a=-+中得a=8 3(2)①y=x+1与x轴交于点(-1,0),①在x=-1的左边x=1的右边的图象满足不等式2013x x a<+<-+,①不等式2013x x a<+<-+的解集是-1<x<1(3)在2833y x=-+中,当y=0时,x=4①点B的坐标是(4,0)又A(-1,0),①AB=4+1=5,①点P(1,2),①ABP∆的面积为:12×5×2=5.【点睛】此题主要考查了一次函数与二元一次方程组,关键是掌握待定系数法求一次函数解析式,掌握凡是函数图象经过的点必能满足解析式即可.。

七年级数学第三章一元一次方程3.3解一元一次方程二去括号与去分母第1课时去括号导学案

七年级数学第三章一元一次方程3.3解一元一次方程二去括号与去分母第1课时去括号导学案

3。

3 解一元一次方程(二)——去括号与去分母第1课时去括号一、新课导入1。

课题导入:前面我们已经学习了运用移项、合并同类项的方法解一元一次方程.对于像2(x-3)+3(x-1)=5这样的方程,又该怎么办呢?今天我们来学习含有括号的一元一次方程的解法(板书课题).2.三维目标:(1)知识与技能①通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简捷明了,省时省力。

②掌握去括号解方程的方法.(2)过程与方法培养学生分析问题、解决问题的能力。

(3)情感态度通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.3.学习重、难点:重点:用去括号的方法解一元一次方程。

难点:确定实际问题中的相等关系,设未知数列出一元一次方程。

二、分层学习1.自学指导:(1)自学内容:教材第93页的内容。

(2)自学时间:8分钟.(3)自学方法:认真阅读课本内容,体会课本中是如何设未知数、找相等关系列方程的,解方程有哪些步骤。

体会每步变形中的化归思想.(4)自学参考提纲:①回顾在“整式加减”中学过的去括号的法则,注意符号和系数的变化.②从课本框图中可知用去括号法解一元一次方程有哪些步骤?与上节学过的用移项法解一元一次方程相比较有何异同?先去括号,再移项,合并同类项,系数化为1;多了一个去括号的步骤,其他一致.③本题还有其他列方程的方法吗?你能解出你所列的方程吗?解:设去年上半年月平均用电x kW·h,则下半年共用电(150000—6x) kW·h.可列方程为x=15000066x+2000.④按框图中的具体步骤解下列方程。

a.2x—(x+10)=5x+2(x—1)b。

3x-7(x-1)=3-2(x+3)解:a.x=—43b。

x=52.自学:学生可结合自学指导进行自学。

3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况和存在的问题.②差异指导:根据学情有针对性地给予点拨和指导.(2)生助生:小组内同学间交流研讨,互助解疑难。

2020最新名校课堂单元测试(二)一元一次不等式与一元一次不等式组

2020最新名校课堂单元测试(二)一元一次不等式与一元一次不等式组

单元测试(二)一元一次不等式与一元一次不等式组一、选择题(每小题3分, 共30分)1.甲种蔬菜保鲜适宜的温度是 , 乙种蔬菜保鲜适宜的温度是 , 将这两种蔬菜放在一起同时保鲜, 适宜的温度是( )A.2C ~3C ︒︒B.2C ~8C ︒︒C.3C ~6C ︒︒D.6C ~8C ︒︒2.不等式213x ->的解集为( )A.2x >B.1x >C.2x >-D.2x <3.不等式组12342x x +>⎧⎨-⎩,的解集表示在数轴上正确的是( ) A. B. C.D. 4.已知 , 若对任意实数a, 以下结论: 甲: ;乙: ;丙: ;丁: , 其中一定正确的是( ) A.甲 B.乙 C.丙 D.丁5.如图, 分别表示苹果、梨、桃子的质量, 同类水果质量相等, 则下列关系正确的是( )A.a c b >>B.b a c >>C.a b c >>D.c a b >>6.如图是一次函数 的图象, 当 时, x 的取值范围是( )A.3x< B.3x> C.1x< D.1x>7.不等式组395xx⎧⎨<⎩,的整数解共有()A.1个B.2个C.3个D.4个8.如果点在第二象限, 那么关于x的不等式的解集是()A.1x>- B.1x<- C.1x> D.1x<9.某商品进价10元, 标价15元, 为了促销, 现决定打折销售, 但每件利润不少于2元, 则最多打几折销售()A.6折B.7折C.8折D.9折10.如图, 射线OA是第三象限的角平分线, 若点在第三象限内且在射线OA的下方, 则k的取值范围是()A.12k< B.132k<< C.1423k<< D.433k<<二、填空题(每小题4分, 共20分)11.已知, 则x的取值范围是_________.12.要使关于x的方程的解满足, 则m的取值范围是__________.13.若关于x的一元一次不等式组无解, 则的取值范围是________.14.对一个实数x按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x的取值范围是__________.15.有3人携带会议材料乘坐电梯, 这三人的体重共, 每捆材料重, 电梯最大负荷为, 则该电梯在此3人乘坐的情况下最多还能搭载_____捆材料.三、解答题(共50分)16.(8分)解不等式: .17.(12分)放学时, 小刚问小东今天数学作业是哪几题, 小东回答说: “不等式组的整数解就是今天数学作业的题号”, 聪明的你知道今天的数学作业是哪几题吗?18.(14分)某校实行学案式教学, 需印制若干份数学学案, 印刷厂有甲、乙两种收费方式, 除按印数收取印刷费外, 甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空: 甲种收费的函数关系式是____________;乙种收费的函数关系式是__________;活页卷(2)该校某年级每次需印制(含100和450)份学案, 选择哪种印刷方式较合算?19.(16分)某公交公司有型两种客车, 它们的载客量和租金如下表:红星中学根据实际情况, 计划租用型客车共5辆, 送七年级师生到基地参加社会实践活动, 设租用A型客车x辆, 根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元, 求x的最大值;(3)在(2)的条件下, 若七年级师生共有195人, 写出所有可能的租车方案, 并确定最省钱的租车方案.参考答案1.C2.A3.C4.D5.C6.A7.B8.B9.C 10.D11.12x12.7744m-<<13.1a14.49x>15.4216.解:17.解: 不等式组的解集为数学作业是第1题和第2题.18.解: (1)(2)当时, 选择乙种印刷方式较合算;当时, 甲、乙两种印刷方式一样合算;当时, 选择甲种印刷方式较合算.19.解: (1)(2)x的最大值为4.(3)有2种方案: ①租A型客车3辆, B型客车2辆, 租车费用为1760元;②租A型客车4辆, B型客车1辆, 租车费用为1880元.故最省钱的方案是租A型客车3辆, B型客车2辆.。

一元二次不等式的解法第二课时

一元二次不等式的解法第二课时

对于一元二次不等式,判别式的 正负也决定了不等式的解集情况。
区间表示法
解一元二次不等式时,通常使 用区间表示法来表示解集。
区间表示法使用圆括号或方括 号来表示开区间或闭区间,例 如 $(a, b)$ 表示 $a < x < b$ 的所有实数 $x$ 的集合。
当不等式包含等号时,使用方 括号表示闭区间;当不等式不 包含等号时,使用圆括号表示 开区间。
面积问题
通过一元二次不等式求解 图形面积的最大值或最小 值,例如矩形、三角形、 梯形等。
长度问题
利用一元二次不等式解决 与长度相关的几何问题, 如线段长度、周长等。
角度问题
在几何图形中,通过一元 二次不等式求解角度的范 围或最值,如锐角、直角、 钝角等。
经济问题中的应用举例
成本问题
通过一元二次不等式分析生产成 本与销售价格之间的关系,确定
判断不等式的解集
根据 $a$ 的符号和 $k$ 的值,判断不等式的解集。若 $a > 0$,则解集为 $x > h$ 或 $x < h$;若 $a < 0$,则解 集为 $h < x < h + sqrt{-frac{k}{a}}$ 或 $h - sqrt{frac{k}{a}} < x < h$。
当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
判别式与根的关系
判别式 $Delta = b^2 - 4ac$, 用于判断一元二次方程 $ax^2 +
bx + c = 0$ 的根的情况。
当 $Delta > 0$ 时,方程有两个 不相等的实根;当 $Delta = 0$ 时,方程有两个相等的实根;当 $Delta < 0$ 时,方程无实根。

人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第2课时课堂练习

人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第2课时课堂练习

《解一元一次方程(二)——去括号与去分母》第2课时课堂练习基础训练1.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?2.将一箱苹果分给一群小朋友,若每个小朋友分5个苹果,则还剩12个苹果;若每个小朋友分8个苹果,则最后一个小朋友只分到2个苹果.求这群小朋友的人数.3.东坡中学组织七年级师生春游.如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数;(2)已知租用45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问租用哪种客车更合算?4.有这样一道题:假如井不知深,先将绳三折入井,绳长四尺;后将绳四折入井,亦长一尺.问井深及绳长各若干?请你解答这个问题.5.一艘轮船航行在A、B两个码头之间,已知该船在静水中每小时航行12 km,轮船顺水航行需用6 h,逆水航行需用10 h,求水流速度和A、B两码头之间的距离.6.一艘船从甲码头到乙码头顺流行驶用4小时,从乙码头到甲码头逆流行驶用4小时40分钟,已知水流速度为3千米/小时,则船在静水中的平均速度是多少?7.一架战斗机的贮油量最多够它在空中飞行4.6 h,飞机出航时顺风飞行,在无风时的速度是575 km/h,风速为25 km/h,这架飞机最远能飞出多少千米就应返回?提升训练8. A,B两地间的路程为360 km,甲车从A地出发开往B地,每小时行驶72 km;甲车出发25 min后,乙车从B地出发开往A地,每小时行驶48 km,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100 km时,甲车从出发开始共行驶了多少小时?9.甲、乙两人在一环形公路上骑自行车,环形公路长为42 km,甲、乙两人的速度分别为21 km/h、14 km/h.(1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇?10.甲、乙两列火车的长分别为144米和180米,甲车比乙车每秒多行4米.(1)两列车相向而行,从相遇到完全错开需9秒,问甲、乙两列车的速度各是多少?(2)若同向而行,甲车的车头从乙车的车尾追到甲车完全超过乙车,需要多少秒?11.“健康出行,绿色环保”,星期天小李骑自行车从家出发到郊区去游玩,他先在某景区待了2 h,再绕道到某农家特色小吃处品尝风味小吃用去了30分钟,然后愉快地返程.已知去时的速度为6 km/h,返回时的速度为10 km/h,往返共用了4 h,返回时因绕道多走了1 km,求去时的路程.12.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C 地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A、C两地间的距离为10 km.如果乙船由A地经B地再到达C地共用了4 h,问:乙船从B地到达C地时,甲船距离B地有多远?13.某同学在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40 km,小轿车的速度为45 km/h,运货汽车的速度为35 km/h,?”(涂黑部分表示被墨水覆盖的若干文字,请将这道作业题补充完整,并列方程解答)参考答案基础训练1.解:设原有x条船.由题意,得9(x-1)=6(x+1),解得x=5.答:原有5条船.2.解:设这群小朋友有x个人.由题意得:5x+12=8(x-1)+2.解得:x=6.答:这群小朋友有6个人.3.解:(1)设租用45座客车x辆.由题意,得45x=60(x-1)-15.解得x=5.所以45x=225.答:参加春游人数为225人.(2)由(1)可知x=5,则x-1=4.因为5×250>4×300,所以租用60座客车更合算.4.解:设井深x尺.根据题意,得3(x+4)=4(x+1).解得x=8.所以3(x+4)=3×(8+4)=36.答:井深8尺,绳长36尺.5.解:设水流速度为x km/h,由题意,得6(12+x)=10(12-x),解得x=3.所以6×(12+3)=90(km).答:水流速度为3 km/h,A、B两码头之间的距离为90 km.6.解:设船在静水中的平均速度是x千米/小时,根据题意,得4(x+3)=(x-3),解得x=39. 答:船在静水中的平均速度是39千米/小时.7.解:(方法一)设这架飞机最远能飞出x km就应返回.依题意,有+=4.6.解得x=1320.答:这架飞机最远能飞出1 320 km就应返回.(方法二)设飞机顺风飞行的时间为t h.依题意,有(575+25)t=(575-25)(4.6-t).解得t=2.2.则(575+25)t=600×2.2=1 320.答:这架飞机最远能飞出1 320 km就应返回.提升训练8.解:设甲车共行驶了x h,则乙车行驶h.依题意,有72x+48=360+100.解得x=4.答:甲车共行驶了4 h.点拨:根据题意画出示意图如图,再利用相遇问题的等量关系建立方程.(第8题)9.解:(1)设经过x h后,两人首次相遇.依题意,得21x+14x=42.解得x=1.2.答:经过1.2 h后,两人首次相遇.(2)设出发后经y h两人第二次相遇.依题意,得21y-14y=42×2.解得y=12.答:出发后经12 h两人第二次相遇.10.解:(1)设乙车的速度为x米/秒,则甲车的速度为(x+4)米/秒.依题意得,得9x+9(x+4)=180+144.解得x=16,则x+4=20.答:甲、乙两列车的速度分别为20米/秒、16米/秒.(2)设需要y秒,则有20y-16y=180+144.解得y=81.答:需要81秒.11.解:设去时的路程为x km,依据题意,得+2++=4,解得x=5.25,答:去时的路程为5.25 km.12.解:设乙船由B地航行到C地用了x h,那么甲、乙两船由A地到B地都用了(4-x)h. (1)若C地在A、B两地之间,则乙船由A地航行到B地的距离是(7.5+2.5)(4-x)km,乙船由B地返回到C地的距离是(7.5-2.5)x km.根据乙船从A地航行到B地的距离-乙船从B地返回到C地的距离=A、C两地间的距离,得(7.5+2.5)(4-x)-(7.5-2.5)x=10.整理,得10(4-x)-5x=10.去括号,得40-10x-5x=10.移项、合并同类项,得-15x=-30.系数化为1,得x=2.所以甲船距离B 地有(7.5+2.5)×2=20(km)远.(2)若C地不在A、B两地之间,则乙船由A地航行到B地的距离是(7.5+2.5)(4-x)km,乙船由B地返回到C地的距离是(7.5-2.5)x km,根据乙船从B地返回到C地的距离-乙船由A地航行到B地的距离=A、C两地间的距离,得(7.5-2.5)x-(7.5+2.5)(4-x)=10.整理,得5x-10(4-x)=10.去括号,得5x-40+10x=10.移项、合并同类项,得15x=50.系数化为1,得x=.所以甲船距离B 地有×(7.5+2.5)=(km)远.答:乙船从B地到达C地时,甲船距离B地有20 km或km远.13.解:(方法一)补充部分:若两车分别从甲、乙两地同时开出,相向而行,经几小时两车相遇? 设经x h两车相遇,根据题意,得45x+35x=40.解得x=.答:经h两车相遇.(方法二)补充部分:如果两车同时从甲地出发,同向而行,当小轿车到达乙地时,运货汽车距乙地还有多远?设运货汽车距乙地还有x km远,则该车行驶了(40-x) km,此时运货汽车与小轿车所用时间相等,依题意,得=.解得x=.答:运货汽车距乙地还有km远.。

人教版《一元一次不等式》初中数学-教学课件2

人教版《一元一次不等式》初中数学-教学课件2
A.2<a<3 B.3<a≤4 C.2<a≤3 D.2≤a<3
4.(2019·聊城)若不等式组x+3 1<x2-1, 无解,则 m 的取值范围为 x<4m
(A)
A.m≤2 B.m<2 C.m≥2 D.m>2
四、一元一次不等式组的解法
【1.例解1】下【解列例下不列等4不式】等,式并解:把解下集列在数不轴上等表式示出组来::
<12 的解,求 a 的取值范围. 分析:先求出两个不等式的解集,再由题意得出关于 a 的不等式,解
之即可. 解:解不等式1-62x <12 得 x>-1.解不等式43 x+4<2x-23 a 得 x>a
+6,依题意得 a+6≥-1,∴a≥-7
【对应训练】
3.若不等式 x-1<a 的正整数解是 1,2,3,则 a 的取值范围是( C )
第圆二心十 角四的【章关系例,圆直:5径理】所解(对圆2圆及01周有9角关·的概锦特念点,州,掌切握)某线弧与、市过弦政切、点圆部的心半角门径的为之关间系了的,关探保系索护,点正与生多圆边、态形直环与线圆与境的圆关、,系圆。与计圆划之间购的位买置A关,系,B探两索圆周角与 2第5二推十种论七1型三章个相号角似都的:相是环等在的前保三面角设研形究备是图等形.边的三已全角等知形和一购些全买等一变换套基础A上型的设拓广备与发和展三。全套章共B分型三小设节备内容共。第需一2小3节0“万图元形的相似”主
章重点是解一元二次方程的思路及具体方法。本章的难点是解一元二次方程。
3的.千想万象不能要(力2以,)为根探“究据高性考实需以验能要动力手市立能意力政”,,部理就解门是运要用采去实钻购际难问A题题型、的偏能和题力、,B怪分型题析。设和这解备里决的问共能题力5的0是探套指究:创,思新维预能能力算力,,处资对理现金、实运不生用活信超的息观过的察能3分力0析,0力新0,材创料造、性 新牛情角景 尖万、能元新钻问出,题来应的问变能最理力解。多能力可,购其重买点是A概型念观设点备形成多和规少律套的认?识过程,它往往蕴藏在最简单、最基础的题目活事实之中。不是钻

七年级数学《解一元一次方程(二)》教案 (公开课获奖)3

七年级数学《解一元一次方程(二)》教案 (公开课获奖)3

解一元一次方程一、温故互查 (二人小组完成) 1. 解以下方程:〔1〕5(3x+1)-20=(3x-2)-2〔2x+3〕;(2)18x+3(x-1)=18-2(2x-1)2.在上节课的例2中,如果假设甲码头到乙码头的距离为x 千米,所列的方程是35.232+=-x x 么?你是怎样解的?有更好的方法吗?二、设问导读阅读教材P97-98完成以下问题:33712132=+++x x x x 中,各分母分别是: , , ,它们的最小公倍数是 。

53210232213+--=-+x x x 中,各分母分别是: , , ,它们的最小公倍数是 。

3.如何去掉以上方程的分母?依据是什么?需要注意什么问题? 4.一元一次方程解法的一般步骤是: 〔1〕 ,依据: ; 〔2〕 ,依据: ;〔3〕 ,依据: ; 〔4〕 ,依据: ; 〔5〕 ,依据: ;5.以下去分母的过程中有几处错误,怎样做可以防止这些错误?3123213--=-+x x x三、自我检测 1.解以下方程: 〔1〕31253+=-x x 〔2〕122312=--+x x四、稳固训练 1.解方程33523=-x , 可以把方程两边都乘以35,得到方程是〔 〕 A.7〔3x-2〕=15 B .5(3x-2)=21 C.7(3x-2)=5 D.3(3x-2)=35 2. 解方程4431212-=+--xx , 去分母后得到的方程是〔 〕 A.2〔2x-1〕-1+3x=-4 B .2(2x-1)-1+3x=-1 C.2(2x-1)-1-3x=-16 D.2(2x-1)-(1+3x)=-43.解以下方程: 〔1〕232)73(72x x -=+; 〔2〕353235xx --- 〔3〕161242=--+y y ; 〔4〕31819615xx x --+=+五、拓展训练课外活动中一些学生分组参加活动,原来每组8人,后来又增加4人,需要重新编组,每组12人,这样比原来减少2组。

人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第3课时课堂练习

人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第3课时课堂练习

《解一元一次方程(二)——去括号与去分母》第3课时课堂练习基础训练1.将方程x+24=2x+36的两边同乘 可得到3(x+2)=2(2x+3),这种变形叫 ,其依据是 . 2.解方程3y -14-1=2y+76时,为了去分母应将方程两边同时乘以( )A.10B.12C.24D.6 3. 在解方程1-2x 3=3x+17-3时,去分母正确的是( )A.7(1-2x)=3(3x+1)-3B.1-2x=(3x+1)-3C.1-2x=(3x+1)-63D.7(1-2x)=3(3x+1)-63 4.方程2x -13-x -14=1,去分母得到了8x-4-3x+3=1,这个变形( )A.分母的最小公倍数找错了B.漏乘了不含分母的项C.分子中的多项式没有添括号,符号不对D.正确5.下面的方程变形中,正确的是( ) A.2x+6=-3变形为2x=-3+6 B.x+33-x+12=1变形为2x+6-3x+3=6C.25x-23x=13变形为6x-10x=5D.35x=2(x-1)+1变形为3x=10(x-1)+16.方程x -13+x+26=4-x 2的解是( )A.x=1B.x=2C.x=4D.x=67.解方程56(65x -1)=2.下面几种解法中,较简便的是( ) A.先两边同乘6 B.先两边同乘5 C.先去括号再移项 D.括号内先通分 8.在解方程1-10x -16=2x+13的过程中,①去分母,得6-10x-1=2(2x+1);②去括号,得6-10x+1=4x+2;③移项,得-10x-4x=2-6-1;④合并同类项,得-14x=-5;⑤系数化为1,得x=145.其中开始出现错误的步骤是 .(填序号) 9.下面是解方程0.3x+0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x+52=2x -13,去分母,得3(3x+5)=2(2x-1).( ) 去括号,得9x+15=4x-2.( ) ( ),得9x-4x=-15-2.( ) ( ),得5x=-17. ( ),得x=-175.( ) 10.解方程:x+23-2x -35=-2.11. 解方程:2x -53-3x -174=-1-5x 2.12.解方程:0.5x -10.2-0.1x+20.3=-1.提升训练13.将方程x0.3-2x -30.7=5变形为103x-207x=50-307,甲、乙、丙、丁四名同学都认为是错误的,对于错误的原因,四名同学给出了各自的解释,其中正确的是( ) A.甲:移项时没有改变符号B.乙:不应该将分子、分母同时扩大为原来的10倍C.丙:去括号时,括号外面是负号,括号里面的项未变号D.丁:5不应该变为5014. 解方程0.1x 0.2-0.01x -0.010.06=x-13.15.解下列方程:(1)18{16[14(x -1)+5]+7}+8=9;(2)1-6x 15-1-x 6=-2x -15+2x+118.16.解方程:4(2x -1)3+1=3(2x -1)4.17.已知方程14+5(3x -12 015)=12,求3+203x-12 015的值. 18.若方程1-2y 6+2y+14=1-y+13与关于y 的方程y+6y -a 3=a6-3y 的解相同,则a= .19.已知m,n 是定值,关于y 的方程2ky+m 3-y -nk 6=2,无论k 取何值,方程的解总是y=1,求m,n 的值.20.(模拟·广益)某同学在对方程2x-13=x+a3-2去分母时,方程右边的-2没有乘3,其他步骤都正确,这时方程的解为x=2,试求a的值,并求出原方程的解.参考答案基础训练1.12;去分母;等式的性质22.B3.D4.B5.C6.B7.C8.①9.等式的性质2;去括号法则;移项;等式的性质1;合并同类项;系数化为1;等式的性质2.10.错解:去分母,得5(x+2)-3(2x-3)=-2.去括号,得5x+10-6x+9=-2.移项、合并同类项,得-x=-21.系数化为1,得x=21.诊断:去分母时,方程两边应都乘各分母的最小公倍数,不能漏乘不含分母的项.本题的错解正是忽视了这一点.正解:去分母,得5(x+2)-3(2x-3)=-30.去括号,得5x+10-6x+9=-30.移项、合并同类项,得-x=-49.系数化为1,得x=49.11.错解:去分母,得8x-5-9x-17=-6-5x.移项、合并同类项,得4x=16.系数化为1,得x=4. 诊断:分数线除了代替“÷”外,还具有括号的作用,本题的错解正是忽视了这一点.正解:去分母,得4(2x-5)-3(3x-17)=-6(1-5x).去括号,得8x-20-9x+51=-6+30x.移项、合并同类项,得-31x=-37.系数化为1,得x=3731.12.错解:原方程可转化为5x -102-x+203=-10.去分母,得3(5x-10)-2(x+20)=-60.去括号,得15x-30-2x-40=-60.移项、合并同类项,得13x=10.系数化为1,得x=1013. 诊断:利用分数的基本性质将分母化为整数时,只是将0.5x -10.2和0.1x+20.3的分子、分母同时乘10,分数的大小不变.而错解中给-1也乘了10. 正解:原方程可转化为5x -102-x+203=-1.去分母,得3(5x-10)-2(x+20)=-6.去括号,得15x-30-2x-40=-6.移项、合并同类项,得13x=64.系数化为1,得x=6413. 提升训练 13.D14.解:根据分数的基本性质,得 x 2-x -16=x-13.去分母,得3x-(x-1)=6x-2.去括号,得3x-x+1=6x-2.移项,得3x-x-6x=-2-1.合并同类项,得-4x=-3.系数化为-1,得x=34. 15.解:(1)移项、合并同类项,得1816[14(x -1)+5]+7=1.两边同时乘8,得16[14(x -1)+5]+7=8. 移项、合并同类项,得16[14(x -1)+5]=1.两边同时乘6,得14(x-1)+5=6.移项、合并同类项,得14(x-1)=1.两边同时乘4,得x-1=4.移项,得x=5. (2)移项,得1-6x 15+2x -15=1-x 6+2x+118.通分,得(1-6x )+3(2x -1)15=3(1-x )+(2x+1)18,即-215=4-x18.去分母,得-12=20-5x.移项,得5x=20+12.合并同类项,得5x=32. 系数化为1,得x=6.4.点拨:观察两个方程,都比较特殊,方程(1)有多重括号,可逐层去括号,但计算量较大,因此我们可以采用连续去分母、移项、合并同类项的变形方法;方程(2)采用去分母的方法很麻烦,我们通过观察分母的特点,将分母有倍数关系的结合在一起进行通分合并,则简便得多. 16.解:去分母,得16(2x-1)+12=9(2x-1), 移项,得16(2x-1)-9(2x-1)=-12, 合并同类项,得7(2x-1)=-12. 两边同除以7,得2x-1=-127. 移项,合并同类项,得2x=-57. 系数化为1,得x=-514.17.解:由14+5(3x -12 015)=12得3x-12 015=120.所以3+20(3x -12 015)=3+20×120=4. 18.619.解:将y=1代入方程,得2k+m 3-1-nk 6=2,去分母,得2(2k+m)-(1-nk)=12,整理得:(4+n)k+2m-1=12.因为m,n 为定值,上式对任意k 都成立,所以4+n=0,2m-1=12,解得n=-4,m=132. 20.解:由题意可知x=2是方程2x-1=x+a-2的解,把x=2代入,得2×2-1=2+a-2,所以a=3,把a=3代入原方程,得2x-13=x+33-2,去分母得2x-1=x+3-6,移项、合并同类项得x=-2.。

人教版七年级上数学:3.3解一元一次方程2(1)学案

人教版七年级上数学:3.3解一元一次方程2(1)学案

数学:3.3 《解一元一次方程(二)(1)》学案(人教版七年级上) ----去分母【学习目标】:1、会根据实际问题中数量关系列方程解决问题,熟练掌握一元一次方程的解法;2、培养学生数学建模能力,分析问题、解决问题的能力;3、培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。

【重点难点】:寻找实际问题中的等量关系,建立数学模型。

解决问题的能力。

【导学指导】一、知识链接1.解方程:51131+=--x x ;2.一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是 ,乙每天的工作效率是 ,两人合作3天完成的工作量是 ,此时剩余的工作量是 。

3.一项工作甲独做a 天完成,乙独做b 天完成,那么甲每天的工作效率是 ,乙每天的工作效率是 ,两人合作3天完成的工作量是 ,此时剩余的工作量是 。

二、自主学习问题1:某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?分析:1. 知识准备关系:(1)工作量= ×(2)工作时间= (3)工作效率=(3)注意:通常设完成全部工作的总工作量为2. 设甲、乙合作还需要 小时才能完成全部工作3. 相等关系:列方程 : (课后再解)(师生共同完成)例5 :整理一批图书,由一个人做要40小时完成。

现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?分析:(1)人均效率(一个人做1小时完成的工作量)为。

(2)有x人先做4小时,完成的工作量为。

再增加2人和前一部分人一起做8小时,完成的工作量为。

(3)这项工作分两段完成,两段完成的工作量之和为。

(4) 师生共同完成解题过程。

解:归纳:1.工程问题常见相等关系:2.注意一件工作完成了,总的工作量是“1”;只是完成部分,工作量要由具体情况得出。

【课堂练习】:1.一个道路工程,甲队单独施工9天完成,乙队单独做24天完成。

9-2一元一次不等式第2课时(课件)-2022-2023学年七年级数学下册同步精品课堂(人教版)

9-2一元一次不等式第2课时(课件)-2022-2023学年七年级数学下册同步精品课堂(人教版)
解:设小明家每月用水x立方米. ∵5×1.8=9<15, ∴小明家每月用水超过5立方米, 则超出(x-5)立方米,按每立方米2元收费, 列出不等式为:5×1.8+(x-5)×2≥15, 解不等式得:x≥8.
答:小明家每月用水量至少是8立方米.
课堂检测
2.小明用的练习本可以到甲、乙两家商店购买,已知两商店
课后作业
解:设购买x台电脑,到甲商场比较合算,则 6000+6000(1-25%)(x-1)<6000(1-20%)x 去括号,得:6000+4500x-4500<4800x 移项且合并同类项,得:-300x<-1500 不等式两边同除以-300,得:x>5 ∵x为整数,∴x≥6
答:至少要购买6台电脑时,选择甲商场更合算.
例3 甲、乙两商场以同样的价格出售同样的商品,并且又 各自推出不同的优惠方案:在甲商场累计购买100元后,超出 100元的部分按90%收费;在乙商场累计购买超过50元后,超过 50元的部分按95%收费.顾客到哪家商场购物花费少?
分析:在甲商场购物超过100元后享受优惠,在乙商场购 物超过50元后享受优惠.因此,我们需要分三种情况讨论: (1)累计购物不超过50元; (2)累计购物超过50元而不超过100元; (3)累计购物超过100元.
设这次购买《西游记》m本,则购买《水浒传》 (50+40+m-60-30)= m本,《三国演义》(50+40+m)= (90+m)本, 《红楼梦》(50+40+m)= (90+m)本,
依题意得:60m +60m +50 (90+m)+70 (90+m)≤32000, 解得:m 88 1 . ∵m为整数,3 ∴m可以取的最大值为88. 答:这次最多购买《西游记》88本.

北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件

北师大版八年级下册数学《不等式的解集》一元一次不等式和一元一次不等式组说课研讨教学复习课件
解:设至多可买X支笔,则有:
3×4 + 2X ≤ 30
表示不等式的解集 你能用什么办法把不等式 x>5的解集和 不等式x-5≤-1的解集表示在数轴上?
x>5
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x≤4
将不等式的解集表示在数轴上时,要注意:
1)指示线的方向,“>”向右,“<”向左. 2)有“=”用实心点,没有“=”用空心圈.
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 2 在数轴上表示不等式的解集
思考:如何在数轴上表示出不等式x>2的解集呢? 先在数轴上标出表示2的点A; 则点A右边所有的点表示的数都大于2,而点A左边 所有的点表示的数都小于2;
因此可以像图那样表示不等式的解集x>2.
A -1 0 1 2 3 4 5 6
课堂检测
能力提升题
2、根据不等式的基本性质确定不等式2-x<1的解集,并把解集表
示在数轴上. 解:根据不等式的基本性质1,不等式的两边同时减去2得-x<-1; 根据不等式的基本性质3,不等式的两边同时除以-1得x>1. 这个不等式的解集在数轴上表示为:
课堂检测
拓广探索题
1、不等式2x-3≥-1的解集在数轴上表示为( A )
-3 -2 -1 0 1 2 3 4 5 6 7 8
根据不等式的基本性质求不等式的解集,
并把解集表示在数轴上.
(1)x-2≥ -4
(2)2x ≤ 8
解:两边同时加2得:
解:两边同时除以2得:
x ≥ -2
x ≤4
-3 -2 -1 0 1 2
(3)-2x-2 > -10

第4课时一元一次不等式的解法2

第4课时一元一次不等式的解法2

《5.2 一元一次不等式的解法2》学案【学习目的】进一步学习解一元一次不等式,并能熟练用数轴表示出不等式的解集.【学习重点】:用数轴表示出不等式的解集.【学习难点】:用数轴表示不等式的解集时定边界点、定方向的技巧。

【学习方法】:自主探究、合作交流、归纳总结、练习【学习过程】:一、 知识回顾:解下列不等式:⑴12-6x ≥2(1-2x ); ⑵-13x+2≥0二、看一看,学一学不等式的解集表示方法有两种:①用不等式表示;②用数轴表示。

下面是不等式的解集的③x <-1; ③x ≤-1; ※用数轴表示不等式时,边界点...有空心点和实心点之分: 是空心点; 是实心点。

方向线: 向左; 向右。

三、合作探究、讨论交流并归纳:1、从《看一看,学一学》中,你认为用数轴表示不等式的解集一般可分为哪几步?※用数轴表示不等式的解集步骤:①画数轴;②定边界点(包含..这个边界点时画 点,不包含这个边界点时 点。

);③定方向:相对于边界点而言, 向左, 向右。

四、练靶场:1、解不等式12-6x ≥2(1-2x),并把它的解集在数轴上表示出来。

2、当x 取什么值时,代数式-13x+2的值大于或等于0?先把它的解集在数轴上表示出来,然后求它的正整数解。

0 -3 -2 -1 1 0 -3 2 3 -2 -1※ 做完上面两个小题,你认为用数轴表示不等式的解集需注意些什么?心得,发现: 。

五、巩固练习:P 141练习1、2题。

六、知识梳理:※ 1、用数轴表示不等式的解集步骤:①画数轴;②定边界点(包含..这个边界点时画实心点,不包含这个边界点时空心点。

);③定方向:相对于边界点而言,小于向左,大于向右。

七、课堂检测:1、根据下面两图中数轴所表示的不等式的解集,写出相应的含有x 的不等式。

① ; ② 。

2、解下列不等式,并把它们的解集在数轴上表示出来:①5x+1≤7x+5; ②1-2x >6x+5;③x -32 <4x -12; ④4(1+x )3 -1≤4+x 23、当x 取什么值时,代数式3-x 2的值小于3?并求满足条件的负整数解。

七年级数学 第8章 一元一次不等式 8.2 解一元一次不等式 2 不等式的简单变形3数学

七年级数学 第8章 一元一次不等式 8.2 解一元一次不等式 2 不等式的简单变形3数学

(2) -2x < 6.
解:(1)不等式的两边都乘以2,不等号的方向不变,所
以 1 x×2 > -3×2, 2
得x >-6.
(2)不等式的两边都除以-2(即都乘以 1 ),不等号
2
的方向改变,所以-2x× ( 1 ) > 6×( 1 ) ,
2
2
得x >-3.
12/13/2021
总结
知3-讲
利用不等式的性质 1 可简化为“移项”;利用 不等式的性质 2 或性质 3 就是把未知数的系数化为 1,要注意乘(或除以)同一个负数时,不等号要改 变方向.
A.m+2>n+2
B.2m>2n
C.
m 2
n 2
D.m2<n2
12/13/2021
知识点 3 不等式性质 3
知3-导
将不等式7 >4的两边都乘以同一个数,比较所得 结果的大小,用“>”、“<”或“=”号填空:
7×3____4×3;7×2____4×2; 7×1____4×1;7×0____4×0; 7×(-1)____4×(-1);7×(-2)____4×(-2);
[归纳总结] 运用不等式的基本性质2,3,将不等式ax>b或ax<b的未知数的系数化 成1.
易错提示:当未知数的系数是负数时,不等号要改变方向,这常常被忽略而导致 出错.
12/13/2021
3.指出下列推导过程中错误的步骤及原因. 已知:m>n. 两边都乘以2,得2m>2n.① 两边都减去2m,得0>2n-2m,即0>2(n-m).② 两边都除以n-m,得0>2.③ 解:第③步错了.因为m>n,则n-m<0,不等式的 两边同时除以一个负数,不等号的方向要改变

尚志市第四中学七年级数学下册第九章不等式与不等式组9.2一元一次不等式课时2一元一次不等式的应用教学

尚志市第四中学七年级数学下册第九章不等式与不等式组9.2一元一次不等式课时2一元一次不等式的应用教学
解: 设小明应搬动x本记事本 , 那么
x≤4.5. 解得 x≤5.25. 由于记事本的数目必须是整 数 , 所以x 的最大值为5. 答 : 小明最多只应搬动5本记事本.
新课讲解
例3 小明家每月水费都不少于15元 , 自来水公司的收费标准如下 : 假设每户每 月用水不超过5立方米 , 那么每立方米收费1.8元 ; 假设每户每月用水超过5立方 米 , 那么超出部分每立方米收费2元 , 小明家每月用水量至少是多少 ?
拓展与延伸
(2)如果每辆轿车的日租金为200元 , 每辆面包车的日租金为110元 , 假设 新购买的这10辆车每日都可租出 , 要使这10辆车的日租金收入不低于1500 元 , 那么应选择以上哪种购买方案 ?
解 : 方案一的日租金为3×200+7×110=1370 ; 方案二的日租金为 : 4×200+6×110=1460 ; 方案三的日租金为 : 5×200+5×110=1550.
钟元〔不足1 min部分按1 min计〕.小琴一天在家里给同学打了一次市
内 , 所用 费没超过元.她最多打了几分钟的 ?
解:设小琴打了x分钟的 , 那么有
0.22+ (x-
解得
x ≤ 5161
由于 计时按照分钟计时 , x应是整数 , 所以x的最
大值为5.
答 : 小琴最多打了5min的 .
拓展与延伸
分析 : 此题涉及的数量关系是 : 总得分≥85. 解 : 设小明答対了 x 道题 , 那么他答错和不答
的共有 (25-x)道题.根据题意 , 得 4x-1×(25-x)≥85. 解这个不等式 , 得 x ≥ 22.
所以 , 小明至少答対了22道题.
当堂小练
3.某市打市内 的收费标准是 : 每次3 min以内〔含3 min〕元 , 以后每分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂综合练习
1、 解下列不等式,并把①③⑤⑦的解集在数轴上表示出来: ① -3x+12≤0 ② -5
3x
<-3 ③ 8x -1≥6x+5
④ 3x -5<1+5x ⑤ 3(2x+5)>2(4x+3) ⑥ 1+3x >5-2
2-x
⑦ 2
3-x > 56+x ⑧ 25+x -1<223+x
2、 x 取什么值时,代数式3a+2的值
① 大于1? ② 小于1? ③是负数?
3、 ①求不等式2x+1<8的正整数的解;②求不等式3(x+1)≥5x -9的正整数的解
例1、问题:在“科学与艺术”知识竞赛的预赛中共有20道题对于每一道题答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛,南沙中学初一年级25名学生通过了预选赛,他们分别可能答对了多少道题?
实践与探索
1、 试解决这个问题(不限定方法),你是用什么方法解决的?有没有其他方法?与
你的同伴讨论和交流一下。

2、 如果你是利用不等式的知识解决这个问题的,在得到不等式的解集以后,如何给
出原问题的答案?应该如何表述?
例2.已知不等式 43 x + 4 < 2x - 23 a (x 为未知数)的解都是1 - 2x 6 < 1
2 的解,求
a 的取值范围。

练习(10+15×6) 解答下列各题 :
1、某小组学生在校门口拍一张合影,已知冲一张底片需要0.6元,洗一张照片需要0.4元,每人都得到一张照片,每人平均分摊的钱不超过0.5元,那么参加合影的学生至少有几人?
2、一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小华被评为优秀(85分或85分以上),小华至少答对了几道题?
3、小静准备用21元钱买笔和笔记本,已知每支笔3元,每本笔记本2.2元,小静已经买了2个笔记本,最多还可以买几支笔?
4.某次爆破时,为了确保安全,人点燃导火线后要在炸药爆炸前转移到200m 以外的安全区域,导火线燃烧速度是1cm/s ,人离开的速度是5m/s ,并且至少要留出60s 人到达安全区域后的防护时间,那么导火线至少要多少长?
5.学校图书馆搬迁,有15万册图书,原准备每天在一个班级的劳动课上,安排一个小组同学帮助搬迁图书,两天共搬了1.8万册,如果要求在一周内搬完,设每个小组搬运图书数相同,那么在以后5天内,每天至少安排几个小组搬书?
6、某城市平均每天生产垃圾700t ,由甲乙两个垃圾场处理,已知甲厂每小时可处理垃圾55t ,需要费用550元,乙厂每小时可处理垃圾45t ,需费用495元。

(1)甲、乙两厂同时处理该城市的垃圾,每天需几小时才能完成工作? (2)如果规定该城市每天用于处理垃圾的费用不超过7370元,甲厂每天处理垃圾至少需要多少小时?
延伸与提高 1、若方程组⎩
⎨⎧+=+-=+1231
432k y x k y x 的解x 、y 满足x >y ,求k 的范围。

2、已知()024522
=--+-m b a a ;则(1)当b <0时,求m 的范围;(2)当b >0时,求m
的范围。

3、若a >0,b <0,b a +>0,试将-a ,a ,-b ,b 用“<”连接起来。

4、校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买有一定的优惠,甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%。

(1)分别写出两家商场的收费与所买电脑台数之间的关系。

(2)什么情况下到甲商场购买更优惠? (3)什么情况下到乙商场购买更优惠? (4)什么情况下两家商场的收费相同?。

相关文档
最新文档