《地球物理测井》-整理解析
《地球物理测井》-整理概要解读
•中国石油大学测井资料整理易考点整理•储集层的基本参数(孔、渗、饱、有效厚度)、相关参数的定义 孔隙度φ:岩石内孔隙体积占岩石总体积的百分比(%)(1)总孔隙度:总孔隙体积/岩石总体积(φt)(2)有效孔隙度:有效孔隙体积/岩石总体积(φe)(3)次生孔隙度:次生孔隙体积/岩石总体积(φ2)。
渗透率k:描述岩石允许流体通过能力的参数,单位:μm2 (或达西D ),常用10-3 μm2 (毫达西mD)(1)绝对渗透率:只有一种流体时测得。
测井上一般指绝对渗透率;(2)有效渗透率(相渗透率):存在多种流体时对其中一种所测,一般用ko、kg、kw表示;(3)相对渗透率:有效/绝对,用kro、krg、krw表示。
饱和度S:储层中某相流体体积占孔隙体积的百分比(%)。
含水饱和度Sw,含油气饱和度Sh(So、Sg)(1)原状地层:Sh=1-Sw (Sh=So+Sg)(2)冲洗带:Shr=1-Sxo (残余油气Shr、含水Sxo)(3)可动油气:Shm=Sxo-Sw ,Shm=Sh-Shr(4)束缚水Swirr:Sw=Swm+Swirr有效厚度he:(1)岩层厚度:岩层上、下界面间的距离。
界面常以岩性、孔隙度、渗透率等参数的变化为显示特征;(2)有效厚度:目前经济技术条件下能产出工业价值油气的储层实际厚度。
常由确认的油气层总厚度扣除无生产价值的夹层厚度后得到。
孔隙度、饱和度和有效厚度等还可用来计算地质储量;孔隙度、渗透率合称储层物性;孔隙度与饱和度的乘积表示某相流体占岩石体积的百分比,如φSw表示岩石中水的相对体积。
•储集层分类(主要两大类)、特点(岩性、物性、电性等)1. 储集层:(储层、渗透层)具有储存油气水的空间,同时这些空间又互相连通(流体可在其中运移)的岩层。
两大特点:孔隙性、渗透性。
2. 储集层分类及特点碎屑岩储集层:(40%储量,也称孔隙性储集层)(1)岩石类型:砂岩为主,砾岩、粉砂岩、泥质砂岩等;(2)围岩:一般为泥岩,性质稳定,常做为参考值;(3)特点:粒间孔隙为主,孔隙度较大(10~30%),分布均匀,各种物性和泥浆侵入等基本为各向同性;测井评价效果较好、技术较成熟。
地球物理测井考试内容整理
地球物理测井考试内容整理名词解释:(15分)1.地球物理测井:是以物理学、数学、地质学为理论基础,采⽤先进的电⼦技术、传感器技术、计算机技术和数据处理技术,借助专门设计的探测设备,沿钻井剖⾯观测岩层物理性质,了解井下的地质情况,从⽽发现油⽓、煤、⾦属与⾮⾦属、放射性、地热、地下⽔等资源的⼀类⽅法技术。
2.增阻侵⼊:3.减阻侵⼊:4.岩⽯体积物理模型(可能会考推导公式):根据测井⽅法的探测特性和组成岩⽯的各种物质在物理性质上的差异,把岩⽯体积分成⼏部分,然后分别研究每⼀部分对岩⽯宏观物理量的贡献,并把岩⽯的宏观物理量看成是各部分贡献的总和5.泥岩基线:在沙泥岩钻井中,如果邻近泥岩段的⾃然电位测井曲线幅度变化不⼤,可近似连接成⼀条直线,就称此直线为泥岩基线6.视电阻率:在⾮均匀介质中,电极系所测量的电阻率是岩层电阻率、井内泥浆、渗透层的侵⼊,上下围岩的电阻率等的综合反映,这个电阻率称为视电阻率7.周波跳跃:通常,声速测井仪的两个接收换能器是被同⼀脉冲⾸波触发的。
但是,在含⽓疏松地层情况下,地层⼤量吸收声波能量,声波发⽣较⼤的衰减,这时常常是声波信号只能触发路径较短的第⼀接收器的线路。
⽽当⾸波到达第⼆接收器时,由于经过更长的路径的衰减不能使接收器线路触发,第⼆接收器的线路只能被续⾄波所触发。
因⽽,在声波时差曲线上出现幅度急剧变化的现象,这种现象就叫周波跳跃。
8.同位素:原⼦序数Z相同⽽质量数A不同的原⼦核所组成的元素称做同位素。
填空题:(20分)1.测井⽅法的分类:按照物理响应特征分为:●电法:⾃然电位SP、⼈⼯电位、电化学、视电阻率Ra、侧向RLL、LL3、LL7、LL8、微侧向、微球形聚焦、感应ILD、标准测井、介电常数测井●声波:声波时差、声幅、全波列、井下声波电视等●磁、核物理:⾃然伽马GR、密度DEN、中⼦CNL、中⼦寿命等●⼒学测井:岩⽯强度测井●热⼒学测井:井温测井●其它:井径、井斜、地层倾⾓DIP、地层压⼒测试FMT、随钻测井MWD2.影响测井的结果的环境因素:泥浆和泥饼对测井的影响;钻孔的直径和截⾯形状;侵⼊带的⼤⼩,对不同测井⽅法的影响不尽相同;井下温度与压⼒3.储集层应具备的哪三个条件:⼀是具有储存油⽓的孔隙空间,如孔隙、孔洞和裂缝等;⼆是沟通孔隙空间的通道,使油⽓在⼀定压差下能够流动;三是封闭条件,阻⽌⾃然条件下油⽓的逸散。
地球物理测井整理版
地球物理测井整理版
地球物理测井,运用物理学的原理和方法,使用专门的仪器设备,沿钻井(钻孔)剖面测量岩石的物性参数,包括电阻率,声波速度,岩石密度,射线俘获及发射能力等参数。
根据这些参数,了解井下地质学信息及资源赋存状态。
工程人员根据对这些信息的研究,发现并评价资源(包括石油、天然气、煤、金属、非金属、地热、地下水等资源)的储量和赋存状态。
在此基础上,制定各种资源的合理有效的开发方案。
也就是说,地球物理测井是包括油气藏、煤、水资源、金属及非金属等各种资源勘探开发极其重要的技术手段。
甚至在城市的市政规划中地基勘测、高速铁路建设及地铁建设中也发挥着重要的作用。
岩石和矿物有不同的物理特性,如导电特性、声波特性、放射性等。
这些特性统称为岩石和矿物的物理性质。
在地球物理勘探中相应地建立了许多种测井方法,如电法测井、声波测井、放射性测井和气测井等。
应用范围
确定井剖面的岩石性质,评价油(气)、水层,发现煤、金属、放射性等矿藏,并确定其埋藏深度及有效厚度;测量计算储量所需要的各种地质参数,如岩性成分、孔隙度、饱和度、渗透率煤田储量计算参数等;确定地层倾角、岩层走向和方位,以及钻孔倾角和方位角,
研究沉积环境等;检查井下技术情况,如检查固井质量和套管破裂情况等;发现和研究地下水源(淡地层水)。
地球物理测井3(自然电位测井)
3 自然电位测井(SP)
3 自然电位测井(SP)
斯仑贝谢1928年发 现了这样的现象:在未 通电的情况下,井中电 极(M)与位于地面的电 极(N)之间存在着电位 差,而且该电位差随着 地层的不同而变化。另 外,电位差的变化规律 性很强。
3 自然电位测井(SP)
后来、道尔、威利、费多尼、斯卡拉和 安德森等人对这一现象进行了研究,同时, 自然电位测井(SP)也就诞生了。
3.1.2 电化学作用与电化学电位
• 油井中的电化学作用主要包括两种: 一种是扩散作用,另一种是扩散吸附 作用。
3.1.2.1 扩散作用与扩散电位
3.1.2.1 扩散作用与扩散电位
• 当具有不同矿化度的两种流体相接 触时,离子将从浓度高的地方向浓 度低的地方移动,这种现象我们称 为扩散作用。
3.1.2.1 扩散作用与扩散电位
• 第二种为相对刻度 的曲线读值,首先 确定基线然后读取 相对值 。
1.2 自然电位测井曲线
关于相对刻度 的说明: • “-”为电位降低的 方向; • “+”为电位升高 的方向; • |—| 间距是电位的 变化量的大小的刻 度。
1.2.1 自然电位测井曲线的特点
• 在泥岩层处自然电位曲线的 测井值比较稳定。
K值的变化,
⑵ 温度对电阻率的 影响明显。
1.3.1 自然电位测井的影响因素
U SP I rm
U SP
rm
ES ri rt
rsh
rm
K lg C w
U SP
rm
ri
C mf rt
பைடு நூலகம்rsh
rm
• 地层厚度的影响 r=R×L/S S=h×井眼的周长
地球物理测井自己的总结
周波跳跃:对于疏松砂岩气层或压裂发育地层,由于地层声吸收大,声衰变严重,声波时差增大,在声波时差曲线上出现“忽大忽小”的幅度急剧变化的现象称为~。
泥浆侵入在钻井过程中, 通常保持泥浆柱压力稍微大于地层压力,在压力差作用下,泥浆滤液向渗透层侵入,泥浆滤液替换地层孔隙所含的液体而形成侵入带,同时泥浆中的颗粒附在井壁上形成泥饼,这种现象叫~.标准测井:是一种最简单的综合测井,是各油田或油区为了粗略划分岩性和油气、水层,并进行井间地层对比,对每口井从井口到井底都必须测量的一套综合测井方法。
因它常用于地层对比,故又称对比测井。
3.影响自然电位测井的因素有哪些?1.Cw/Cmf影响(地层水矿化度/泥浆滤液矿化度)当Cw>Cmf:(Rmf>Rw,E<0)负异常(淡水泥浆).当Cw<Cmf:(Rmf<Rw,E>0)正异常(咸水泥浆)当Cw=Cmf:(Rmf=Rw, E=0)无异常,自然电位测井失效2 .岩性影响砂泥岩剖面泥岩(纯泥岩)——基线纯砂岩——SSP(h>4d)当储层Vsh 增大,自然电位幅度△USP(变小)<SSP 靠近泥岩基线3..温度影响温度对离子运动,离子扩散速率有影响不同深度地层温度不同4.地层水、泥浆滤液中含盐性质影响(溶液中离子类型不同,迁移速率不同,直接影响Kd、Kda)5.地层电阻率影响(当地层电阻率较大时,其影响不容忽视。
识别油水层)6.厚度影响当h>4d时,SP=SSP; 当h<4d时,SP<SSP 7.井径变化影响扩径:△USP减小缩径:△USP增大8、自然伽马射线与物质的作用形式有哪些?并简要叙述其物理过程:自然伽马测井是用伽马射线探测器测量岩石总的自然伽马射线强度,以研究井剖面地层性质的测井方法。
由于伽马射线能量不同,与物质的作用不同1)光电效应:当伽马射线能量较小时(能量大约在0.01MeV~0.1MeV),它与原子中的电子碰撞,将全部能量传给一个电子,使电子脱离原子而运动,而伽马光子本身被完全吸收。
地球物理测井[曲线解释]
地球物理测井第一节:概述地球物理测井的分类:分为电法测井和非电法测井两种。
1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。
2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP)第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。
梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
底部梯度电极系在高阻层测井曲线的形状特点如下:(1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。
(2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。
(3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。
视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。
2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。
但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。
3、地层对比和定性判断油水层:对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。
二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。
微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。
《地球物理测井》-测井资料整理
标准测井:在全地区的各口井中用相同的深度及横向比例,对全井段进行几种测井方法的测井,这种组合测井叫标准测井.泊松比:物体自由方向的线应变与受力方向的线应变之比的负值串槽:固井后,由隔膜相隔的两个或多个渗透性地层流体通过一界面或二界面相通的现象.窜槽:油井投入生产后,由于固井质量或固井后由于射孔及其它工程施工,使水泥环破裂,造成层间串通,即形成窜槽.侧向测井:在电极系上增设焦距电极迫使供电电极发出的电流径向流入地层,从而减小井的分流和围岩的影响提高纵向分辨力的方法.储集层岩性:指组成地层的矿物属性和泥质含量的大小电阻率:描述介质导电能力强弱的物理量.电导率:电阻率的倒数,西门子/米.地层密度:单位体积地层质量.地层压力: 地层孔隙流体压力.地层水:地层孔隙内的水.电子对效应:当入射伽马光子的能量大于1.022MeV时,它与物质作用会使伽马光子转化为电子对,其本身被吸收.电极系:有供电电极(A,B)和测量电极(M,N)按一定规律组成的测量系统.电位电极系:成对电极之间的距离大于不成对电极间距离.电极系的探测深度:以供电电极为中心,以某一半径做一球面,如果球面内包括的介质对测量结果的贡献为50%时,此半径定义为该电极系的探测深度.二界面: 水泥环与地层间的界面.放射性核素:能够自发产生核衰变的核素.放射性活度:一定量的放射性核素,在单位时间内发生衰变的核数.单位为居里.放射性比度:放射性活度与其质量之比.光电效应:γ射线与物质原子中的电子相碰撞,并将其能量传给电子,使电子脱离原子而运动,γ光子本身则被吸收,释放出的电子叫光电子,这种效应称为光电效应.感应测井:通过交变电流反应电导率.感应测井曲线:感应测井得到的一条随深度的变化的介质电导率曲线.含油饱和度:地层含油体积/地层孔隙体积./含油气体积占孔隙体积的百分数.核素:原子核中具有一定数量的质子和中子并在同一能态上的同类原子,同一核素的质子和中子数相等.滑行波:当声波以临界角入射时,折射角为90度,折射波在介质二内以速度V2沿界面传播.以地层的速度沿井壁滑行的折射波.核衰变:放射性核素的原子核自发的释放一种带电粒子蜕变成另外某种原子核同时释放射线的过程.绝对渗透率:岩石中只有一种流体时的渗透率,通常用岩石对空气的渗透率值来表示.孔隙度:地层孔隙体积/地层体积./岩石内孔隙总体积占岩石总体积的百分数.矿化度::溶液含盐的浓度.康普顿效应:中等能量的伽马射线穿过物质时,伽马射线与原子的外层电子发生作用,部分能量传给电子,使电子从某一方向射出,此电子为康普顿电子,损失了部分能量的射线向另一方向散射出去叫散射伽马射线,这种效应称为康普顿效应.快中子弹性散射:中子撞击一个原子核,撞击后中子和靶核组成的系统快的总动能不变,中子能量降低,靶核仍处于基态,此作用为弹性散射.扩散长度:从热中子产生到被俘获热中子移动的直线距离.离子扩散:两种不同浓度的盐溶液接触时,在渗透压的作用下,高浓度溶液中的离子穿过渗透性隔膜迁移到低浓度溶液中的现象.零源距: 超热中子探测器的计数率,不随地层减速能力的变化而变化泥质含量:地层泥质体积/地层体积.泥浆侵入:泥浆滤液取代地层原始流体的现象称为~.含有泥浆的区域称为侵入带.泥浆高侵抛面:侵入带电阻率大于原始地层电阻率,常见淡水泥浆钻井的水层.泥浆低侵抛面:侵入带电阻率小于原始地层电阻率,常见淡水泥浆钻井的油气或盐水泥浆钻井的水层及油气层.泥浆:钻井时在井内流动的一种介质.泥浆滤液:在一定压差下进入到井壁地层孔隙内的泥浆.泥质:地层中细粉砂和湿粘土的混合物叫泥质.热中子寿命:热中子自产生到被俘获所经过的平均时间.热中子俘获:热中子形成后,有高密度区向低密度区扩散,在扩散过程中,被靶核俘获,形成复核,处于激发态的复核以伽马射线的形式放出多余的能量,靶核回到基态.释放的伽马射线叫俘获伽马射线.声波时差:声波传播单位距离所需时间.水泥胶结指数:目的井段声幅衰减率/完全胶结井段声幅衰减率.渗透率:一定粘度的流体通过地层的畅通性的度量.水泥面:套管外固体水泥与泥浆之间的界面.视石灰岩孔隙度:纯石灰岩骨架计算出的孔隙度.声波测井:以介质声学特性为基础,一种研究钻井地质剖面,评价固井质量等问题测井方法.套管波:沿井轴方向在套管内传播的声波,其时差大约为57微妙/英尺.梯度电极系:成对电极之间的距离小于不成对电极间距离.相对渗透率:有效渗透率和绝对渗透率的比值.探测深度:以供电电极为中心,以某一半径作一球面,如果球面内包括的介质对测量结果的贡献为50%时,此半径定义为该电极系的探测深度.一界面: 套管与水泥环间的界面.异常高压地层:地层压力大于正常地层压力.有效渗透率:为非单相流体渗滤过岩石时,对其中一种流体所测定饿渗透率.岩石骨架:组成岩石的造岩矿物称为岩石骨架.源距:快中子源与超热中子探测器之间的距离.有效孔隙度:流体能够在其中自由流动的孔隙体积与岩石体积之比.周波跳跃: 由于地层声衰减大,在时差曲线上出现“忽大忽小”的现象.自然电位测井:沿井轴测量自然电位变化的测井方法.自由套管:套管外为流体介质自然伽马能谱测井:根据铀、钍、钾放射性核素在衰变时放出的射线能谱不同,测定其含量.正源距:大于零源距的源距中子源:以某种方式,给原子核以能量,引起核反应,把中子从原子核中释放出来的装置.填空1.岩石中的主要放射性核素(钍th铀u钾k)2.地层对快中子的减速能力主要取决于:氢h(地层对快中子的弹性散射截面)3.地层对热中子的俘获能力主要取决于氯cl(地层对热中子的俘获截面)4.储层基本参数:岩层厚度h,孔隙度含油气饱和度sh,渗透率k5.地层倾角测井蝌蚪图的四种基本模式:绿色模式,红色模式,蓝色模式,黄色模式6.地层GR,SP幅度与地层泥质含量关系SP:泥质含量越多,异常幅度越小GR:泥质含量越多,数值越高,异常幅度越大7.放射性核素在核衰变过程中产生的伽马射线去照射地面会产生光电效应,康普顿效应和电子对效应,岩性密度测井利用了伽马射线与地层介质发生的光电效应和康普顿效应8.地层孔隙压力大于其正常压力时,称地层为异常压力地层,其声波速度小于正常值9.地层中存在天然气时,可导致声波时差变大或发生周波跳跃,密度孔隙度值变大,中子孔隙度值变小10.地质上按成因和岩性通常把储集层划分为碎屑岩储集层,碳酸盐岩储集层两大主要类型,描述储集层的基本参数主要有孔隙度,渗透率和饱和度等11.声波测井时地层中产生滑行波的基本条件是:入射角大于临界角和地层速度大于泥浆速度12.窜槽层位在放射性同位素曲线上的幅度和参考曲线相比明显增大13.对泥岩基线而言,渗透性地层的SP可以向正或负方向偏转,它主要取决于地层水和泥浆滤液的相对矿化度,在Cw>Cmf时SP曲线出现负异常,层内局部水淹在SP曲线上有泥岩基线偏移特征14.深侧向,浅侧向和微侧向所测量的结果分别为原状地层,侵入带,冲洗带的电阻率15.感应测井测量地层的电导率,与地层的电阻率有互为倒数关系16.在石油井中自然电场主要是要扩散电动势和扩散吸附电动势组成,地层水和泥浆滤液含盐浓度的差异,是产生扩散电动势及扩散吸附电动势的基本原因;.比值大于1,在渗透层段出现负异常;比值小于1在渗透层出现正异常.17.泥质在地层中的存在状态:分散泥质,层状泥质,结构泥质18.根据岩石导电方式的不同,把岩石分为:电子导电类型的岩石(导电能力差)和离子导电类型的岩石(导电能力强)19.微梯度电极系的测量结果主要反映泥饼的导电性,微电位电极系的测量结果主要反映冲洗带的导电性20.根据三侧向电极系的结构特点,可以把三侧向分为深三侧向和浅三侧向两类三侧向电极系21.深,浅三侧向电极系的电极距均等于两个屏蔽电极与主电极间的缝隙中点的距离;记录点为主电极中点22.声波测井分为声速测井和声幅测井23.根据中子能量的大小,将中子分为慢中子,中能中子,快中子,其中,慢中子又分为热中子和超热中子,中子与物质作用分为快中子弹性散射,快中子对原子核的活化,快中子的弹性散射,热中子的俘获24.描述靶核俘获中子能力的参数:扩散长度,宏观俘获截面,热中子寿命25.不同核素与快中子作用产生的非弹性散射伽马射线能量不同.不同核素对快中子的减速能力也不同,氢核素减速能力最大.不同核素对热中子的俘获能力不同,镉,硼,氯的热中子俘获能力最强26.根据岩性,储集层分为碎屑岩,碳酸盐岩和特殊岩性储集岩,根据储集空间结构分为孔隙型,裂缝型和洞穴型储集层,27.碎屑岩的孔隙结构主要是孔隙型,各种物性和泥浆侵入基本是各向同性的28.淡水泥浆的砂泥岩剖面常选用微电极;盐水泥浆的砂泥岩剖面,碳酸盐岩剖面,膏盐剖面用:微侧向或微球聚焦;当泥饼比较厚,泥浆侵入时,可选用邻近侧向,低侵剖面,应用感应测井确定电阻率比较好.高侵剖面,应用侧向测井确定地层电阻比较好,碳酸盐岩剖面,一般选用侧向测井.砂泥岩剖面视泥浆侵入特点确定选用感应测井还是侧向测井29.微梯度电极系的探测深度小于微电位电极系的探测深度.30.钙质层在微电极曲线上显示为刺刀状,泥岩地层在微电极曲线上显示为无幅度差.31.岩性相同,岩层厚度及地层水电阻率相等的情况下,油层电阻率比水层电阻率大.32.岩石电阻率的大小与岩性有关.33.在一定条件下,地层水浓度越大,则地层水电阻率越小.34.梯度电极系曲线的特点是有极值不对称.35.储层渗透性变差,则微电极曲线的正幅度差变小.36.理想梯度电极系是成对电极之间的距离趋近于零,理想电位电极系是成对电极之间的距离趋近于无穷大.37.疏松砂岩电阻率比致密砂岩电阻率低.38.沉积岩的导电能力取决于地层水的导电能力.39.石油的电阻率高,所以测出的油层电阻率高.40.完全含水岩石的电阻率与所含地层水电阻率的比值称为岩石的地层因素.41.电阻增大系数主要与含油饱和度有关.42.沉积岩导电是靠空隙中地层水的离子导电.43.自然电位曲线以泥岩为基线,油层水淹后.水淹层在自然电位曲线上基线产生偏移.44.井中巨厚的纯砂岩井段的自然电位近似认为是静自然电位.45.在自然电位曲线上,岩性.厚度相同的地层,水层的自然电位异常幅度值大于油层的自然电位异常幅度值.46.泥质含量增加,自然电位异常幅度值减小;层厚增加,自然电位异常幅度值增大;当地层厚时,可用自然电位曲线上的半幅点分层.47.扩散电动势是浓度高的一方为正电荷,浓度的的一方为负电荷.50.侧向测井电极系加屏蔽电极主要是为了减少泥浆的分流影响.51.在感应测井仪的接收线圈中,由二次交变电磁场产生的感应电动势与地层电导率成正比.52.对于单一高电导率地层,当上下围岩电导率相同时,在地层中心处电导率曲线出现极小值.53.1号沉岩层的电阻率头型是100欧姆米,2号渗透层的电阻率是20欧姆米,两层都不含泥质,且厚度相同.地层水矿化度与泥浆滤液矿化度比值也相同,那么1号层的SP异常幅度小于2号层.54.井眼参数:井径,井斜角,井斜方位.55.基线偏移反映水淹层.56.统一深度处,冲洗带,过渡带,原状地层的岩性,孔隙性相同.但孔隙流体性质不同,声波时差反映原生孔隙度,密度中子反映总孔隙度.57.深三侧向视电阻率曲线主要反映原状地层电阻率,而浅三侧向视电阻率曲线反映侵入带的电阻率.当R mf>R w时,在油层层段,(泥浆低侵)深三侧向读数大于浅三侧向,含油饱和度越高,差异越大.在水层层段(泥浆高侵)深三侧向小于浅三侧向,含水饱和度越高,差异越大. R mf<R w时,无论是油层,还是水层,均为泥浆低侵.但油层视电阻率高于水层,且幅度差比水层的幅度差大.58.线圈系纵向微分几何因子定义为:纵向探测特性,即地层厚度.59.深浅双侧向测井:纵向分层能力相同,横向探测深度不同(在渗透层由于泥浆侵入RLLD,RLLS不同,在非渗透层由于没有泥浆侵入所以RLLD,RLLS相同),RLLD,RLLS关系反映泥浆侵入特点.60.声波通过裂缝时,其幅度都会减小,表现在波形图上就是声波幅度减小.声波幅度衰减程度取决于波的性质,裂缝倾角,裂缝张开度等因素.水平缝对横波幅度影响大;高角度裂缝对纵波幅度影响大61地层波与套管波的区别表现为:套管波到达时间比较稳定;地层波的到达时间随地层速度的变化而变化62.纯砂岩地层的视石灰岩孔隙度大于其孔隙度;含气纯灰岩的视石灰岩孔隙度大于其孔隙度;含水纯白云岩的视石灰岩孔隙度小于其孔隙度63.地层对快中子的弹性散射截面越大,对快中子的减速能力越强,快中子的减速距离越短.64.超热中子密度与介质的减速能力有关,减速距离越短则在源附近的超热中子密度越大;反之,在远处潮热中子密度大65.当地层含有天然气时地层密度减小,密度孔隙度增加而井壁中子孔隙度减小66.地层GR,SP幅度与地层泥质含量关系:SP泥多幅小,GR泥多,极值大,幅度大67.水泥胶结测井:相对幅度越大,固井质量越差68声波时差确定的孔隙度是地层原生孔隙度,密度确定的孔隙度是地层总孔隙度.69.在一定条件下,地层水浓度越大,则地层水电阻率越小70.声波沿井壁岩石传播的条件之一是:声波入射角等于临界角71.沙泥岩剖面上,砂岩显示低的时差值,泥岩显示高的时差值72.声波时差曲线出现“周波跳跃”常对应于气层或裂缝滑移等地段73.气体的存在使实测的密度孔隙度较真孔隙度偏大,中子孔隙度较真孔隙度偏小74.原子序数相同而质量数不同的元素,它们的化学性质相同,但核性质不同,这样的元素称为同位素75.在相同间隔时间里,逐次测量的放射性强度,总存在一个放射性涨落,这是由于核衰变的随机性,但这种统计涨落总在一个平均值附近起伏76.沉积岩导电是靠空隙中地层水的离子导电77.井中巨厚的纯砂岩井段的自然电位近似认为是静自然电位78.根据伽马射线与地层的康普顿效应测定地层密度的方法称为密度测井法,利用光电效应和康普顿效应同时测定地层岩性和密度的测井方法称为岩性密度测井法79.测井用的中子源有两类,一类为连续发射的脉冲中子源,另一类为脉冲式发射的加速中子源80.在自然伽马测井曲线上,泥质含量增加,曲线读数增大81.在充满泥浆的裸眼井中进行声波全波列测井时,接受探头可依次接受到滑行纵波、滑行横波、伪瑞利波、斯通利波等几种波形.82.油基泥浆井中,可使用感应测井方法,而不是使用测向方法;盐水泥浆井中,两种方法中,以测向方法为好.83.在渗透性地层处,当地层水矿化度小于泥浆滤液矿化度(或地层水电阻率大于泥浆绿叶电阻率)时,砂岩在自然电位曲线上出现正异常,当地层水矿化度大于泥浆滤液矿化度(或地层水电阻率小于泥浆滤液电阻率)时砂岩在自然电位曲线上出现负异常.84.在砂泥质剖面中,SP无异常、Ra低、井径缩小的是含油砂岩地层;SP幅度很大、Ra低、井径缩小的是含水砂岩地层;SP无异常、Ra低、井径扩大的是泥岩地层。
地球物理测井重点
第一章 地层评价概论1岩石骨架内的成分有:石英,方解石,白云石等造岩矿物 2岩石包括泥质孔隙在内的孔隙度是: 总孔隙度 3油气层与水层在地质上的根本区别是:油气层krw 较大,而kro ≈0,水层则相反 4 泥浆低侵是指:储集层冲洗带电阻率Rxo 明显低于原状地层电阻率Rt5 含油气泥质岩石冲洗带的物质平衡方程式是:Vma+Vsh+φ(1-Sxo )=16 地层因数F 的大小:(1)是基本与Rw 大小无关的常数;(2)主要取决于岩石有效孔隙度,同时与岩性和孔隙结构有一定关系7 阿尔奇公式m w o a R R F φ//==R o —100% 饱含地层水的岩石电阻率, Ω·m ;R w —地层水电阻率,Ω·m ;Φ—岩石有效孔隙度,小数;a —与岩性有关的岩性系数,一般为0.6~1.53;m —胶结指数,与岩石胶结情况和孔隙结构有关的指数, 常取2左右;F —地层因素,它是100%饱和地层水的岩石电阻率R0与所含地层水电阻率R w 的比值。
n o n w w t t S b S b FR R R R I )1(0-==== R t —岩石真电阻率, Ω·m ;b —与岩性有关的系数,一般接近于1,常取l ;n —饱和度指数,与油、气、水在孔隙中的分布状况有关,其值以1.5~2.2者居多,常取2; S w —岩石含水饱和度,小数;S h —岩石含油气饱和度,小数;I — 电阻增大系数,它是含油气岩石真电阻率R t 与该岩石100%饱含地层水时的电阻率R 0的比值。
重点例题:深度为1280m 处的储集层,从测井图上读得σt =130mS/m, Δt =430μs/m 。
根据地区经验,该井R w =0.30Ω·m,并采用以下关系式:Фs =(0.0022724Δt -0.409)/C P ,C P =1.68-0.0002D (D 为深度),F=0.56/Ф2.27,n=2,b=1,请计算含水饱和度和含气饱和度。
地球物理测井
1.地球物理测井定义:是地球物理学的一个分支, 简称测井。
指在勘探和开采石油、天然气等地下矿藏的过程中,利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性参数(电/声/放射性质),评价储集层的岩性、物性(孔隙性、渗透性)、电性、含油性(四性关系)。
2.资料解释步骤:(1)划分储集层,确定岩性; (2)计算储集层参数: 泥值含量、孔隙度、饱和度有效厚度、渗透率等(3)确定油水层(4)其他应用3.地球物理测井的作用:1、划分地层; 2、准确得到地层深度; 3、计算孔隙度、饱和度、渗透率等地层参数; 4、确定油水层; 5、地层对比; 6、工程应用; 7、油层动态监测.4.储集层:石油和天然气储藏在地下具有连通的孔隙、裂缝或孔洞的岩石中。
这些具有连通的孔隙、既能储存油、气、水,又能让油气水在岩石孔隙中流动的岩层称为储集层。
5.描述储油层最基本的参数主要有孔隙度f、渗透率K、含油饱和度So、泥质含量Vsh。
6.储集层必须具备两个条件☆:孔隙性(孔隙、洞穴、裂缝),渗透性7.储集层的厚度:顶底界面的厚度即为储集层的厚度。
8.有效厚度:总厚度扣除不合标准的夹层(如泥质夹层或致密夹层)剩下的厚度。
9.高侵: 侵入带电阻率Ri大于原状地层电阻率Rt低侵: 侵入带电阻率Ri小于原状地层电阻率Rt一般Rmf>Rw时,发生泥浆高侵;Rmf<Rw时,泥浆低侵。
故:水层(Rmf>Rw)经常发生高侵现象,油层(Rmf<Rw)经常发生低侵现象。
10.泥浆滤液:在一定压差下,进入到井壁地层孔隙内的液体。
11.地层水:地层孔隙内的水。
12,矿化度:溶液的盐浓度,常用百万分之一(ppm)表示。
13.离子扩散:当不同浓度的溶液在一起时存在是浓度达到平衡的自然趋势,即高浓度溶液中的离子要向低浓度溶液一方迁移的过程。
14.自然电位:在井中未通电的情况下(自然电场),放在井中的电极M与位于地面的电极N 之间存在的电位差。
地球物理测井相关知识点
在钻井井眼中,用特殊的测量装置连续记录井眼所穿过地层岩石的各种物理性质和相关信息,并提供这些记录和信息的直观显示。
在一定的物理实验、理论模型、刻度标定或经验统计的基础上,将这些记录转换成地质与工程参数,进而(帮助)解决一些地质与工程问题的一门应用性学科。
两个大的阶段:资料获取(测井)与资料解释(测井解释)。
自然电位测井(SP):岩石电阻率:各种岩石具有不同的导电能力,岩石的导电能力可用电阻率来表示。
电阻率测井通过测量地层电阻率来反映地层的岩性、孔隙度、含油饱和度等地质信息。
不同矿物、不同岩石的电阻率各不相同:金属矿物的电阻率极低,一些主要造岩矿物如石英、云母、方解石等的电阻率很高。
由于岩性及组织结构不同,其导电性质不同:火成岩电阻率高,沉积岩电阻率低。
电阻率法测井:是根据自然界中各种不同岩石和矿物的导电能力不同这一点来区别钻井剖面上岩石性质的一种方法。
实际测井遇到的情况要复杂得多。
如井内有泥浆(Rm)、地层厚度(H)有限、储集层上下有围岩(Rs),泥浆侵入使井眼周围横向方向形成不同的环带(Rmc,Rxo,R过,Rt) ,要考虑这些所有情况进行理论计算是不可能的,但为了将普通电阻率测井用于生产,我们将实际的电极系在实际井眼和地层条件下测量的电位差按照一定公式计算的电阻率称为视电阻率(apparent resisitivity),记为Ra。
泥浆侵入使井眼周围横向(径向)方向形成不同的环带泥浆侵入:钻井过程中,由于泥浆柱的压力大于地层压力,压力差就会使泥浆滤液向地层中渗入,并置换了原渗透层孔隙中的流体。
侵入带内泥浆滤液的分布是不均匀的,靠近井壁的部分,泥浆滤液把孔隙中原有的液体全部赶跑,占据了整个孔隙空间,这部分叫泥浆冲洗带,靠近冲洗带地层孔隙中是泥浆滤液和地层流体的混合物,该部分称过渡带。
而地层中未被泥浆干扰的地层称为原状地层。
(如图1)图1自然伽马测井(GR)及自然伽马能谱测井(NGS),不同于SP测井,它们属于核测井的范畴。
地球物理测井
地球物理测井复习资料名词解释1扩散电位:当两种不同浓度的深液被半透膜隔开,离子在渗透压作用下,高浓度溶液的离子将穿过半透膜向较低浓度的溶液中移动,形成的电位叫扩散电位2扩散吸附电位:泥岩的孔隙喉道极小,地层水都被束缚在泥岩的泥质颗粒表面。
而泥质颗粒对CI-离子有选择性吸附的作用,CI-离子都被束缚在泥质颗粒表面,不能自由移动,在泥岩井壁上只发生Na+离子的扩散,这时形成的电位,泥岩一方为负,井内钻井液一方为正,符号与扩散电位相反,这是由于既有扩散作用又有吸附作用,因此称为扩散吸附电位3自然电位异常幅度:在自然电位曲线上出现异常的地方,该异常相对于泥岩基线的最大偏转值叫自然电位异常幅度4泥岩基线:在自然电位曲线上,厚层泥岩的自然电位值比较稳定,泥岩段自然电位曲线的直线。
5正、负异常:自然电位曲线上偏离泥岩基线,向左偏叫负异常,向右偏叫正异常6电祖率:指某一种物质阻止电流通过的能力,是物质的一种固有属性。
7地层因素(相对电阻):又称为相对电阻,100%含水岩石电阻率与水溶液电阻率比值,F=Ro/Rw=a/Фm8电阻增大率:岩石真电阻率与完全充满相同矿化度地层水时的岩石电阻率的比值。
I=Rt/Ro=b/Sw n9探测范围;指在垂直于井轴方向上所能探测到的介质的横向范围,通常以为是对测量结果的贡献占50%以上的那部分范围10电极距:电位电极距,两相邻最近电极之间的距离。
梯度电极系,成对电极中点到不成对电极之间的距离11标准测井:对一个区域,为了研究地质剖面、构造形态、岩性和岩相变化,选择一到二个电极系作为标准电极系,与自然电位SP,井径等测量方法,组成测井系列,在全区所有井中,用相同的深度比例尺和横向比例尺对全井进行测量,这就是所谓的标准测井或标准电测。
12主电极:三侧向测井井下由三节金属棒组成的三个电极,其中中间一节是供电电极,起主要作用,称主电极13屏蔽电极:三侧向测井主电极两侧的电极,又叫屏蔽电极,作用是把电流聚焦成薄圆片状进入地层。
地球物理测井-总结
二、学生需掌握各种测井方法原理 2 了解影响因素并对曲线进行分析 3了解并掌握各种测井方法应用 4 能根据测井曲线进行基本运算(孔隙度,饱和度,泥质含 量),识别岩性和油水层等;
三、考试内容安排 1电法声波和放射性各占40%30%30%; 2题型: 1)选择题(10~20)% 2)简述题(50~60)% 3)计算题(10~20)% 4)其他10%
地球物理测井总结
主讲人:李维彦
长江大学 地球物理与石油资源学院
主要内容
• 一、地球物理测井主要内容 • 二、学生需要掌握内容 • 三、考试内容安排
诸 论
一、地球物理测井主要内容
1电法类: (20学时) 自然电位测井 侧向测井(三/七/双) 电阻率测井:普通电阻率测井 微电阻率测井(微电极/微电位/…) 感应测井 2声波类:(12学时) 声波速度测井 声波全波列测井 声波幅度测井(CBL/VDL) 3发射性类:(14学时) 自然伽马测井 密度测井 中子测井 中子寿命测井
地球物理测井全书要点总结
1,地球物理测井定义☆:是地球物理学的一个分支, 简称测井(Well logging)。
指在勘探和开采石油、天然气等地下矿藏的过程中,利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性参数(电/声/放射性质),评价储集层的岩性、物性(孔隙性、渗透性)、电性、含油性(四性关系)。
采油前后,测井工作分为两部分☆:1、裸眼井测井(open hole ) 也称勘探井测井,在钻井之后,采油之前。
目的:寻找石油在地层中埋藏深度。
俗称找油层。
2、套管井测井(cased hole)也称生产测井(production log),在采油时进行。
目的:石油开采过程中,地层中的剩余油开采。
2, 采集-测井方法分类(裸眼井)按照物理响应特征分为☆:1、电测井方法:自然电位测井普通电阻率测井、侧向测井感应测井、电磁波测井2、放射性测井:自然伽马测井密度测井、中子测井、中子寿命测井3、声波测井:声波速度测井声波幅度测井、声波全波测井4、其它测井:生产测井地层倾角测井、气测井、特殊测井3,地球物理测井的作用主要有以下几点☆:1、划分地层;2、准确得到地层深度;3、计算孔隙度、饱和度、渗透率等地层参数;4、确定油水层;5、地层对比;6、工程应用;7、油层动态监测.储集层:凡具有一定的连通孔隙,能使液体储存,并在其中渗滤的岩层,称为储集层。
描述储油层最基本的参数主要有孔隙度φ、渗透率K、含油饱和度So、泥质含量Vsh必须具备两个条件☆:孔隙性(孔隙、洞穴、裂缝),渗透性(孔隙连通成渗滤通道).按岩性:碎屑岩储集层(砂岩)、碳酸岩储集层(白云岩、石灰岩)、特殊岩性储集层。
按孔隙空间结构:孔隙型储集层、裂缝型储集层和洞穴型储集层碎屑岩储集层特点:孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。
碳酸岩储集层特点,1,储集空间复杂:a,有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等,b,次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)2,物性变化大:横向纵向都变化大碳酸盐储集层分类:孔隙型裂缝型洞穴型复合型好的储层应该是孔隙型或复合型岩石孔隙度: 单位体积内岩石孔隙空间占岩石总体积的百分数(%),反映岩石孔隙发育程度含水饱和度(Sw):含水孔隙体积占总孔隙体积的百分数含油(气)饱和度:含油(气)孔隙体积占总孔隙体积的百分数当孔隙中只含油和水时:Sw+So=1当孔隙中含油气水三相时: Sw+So+Sg=1束缚水饱和度Swb:不能被油气取代的地层水叫束缚水。
地球科学物理(测井工程)知识点整理。
1 地球物理测井概论 1.1 测井学科特点⏹ 观测学科: 应用物理学方法原理,采用电子仪器, 测量钻井内信息的技术学科。
⏹ 交叉学科: 物理学\电子学\信息学\石油地质\石油工程 1.2 测井技术特点⏹ 信息技术:Logging 的由来 信息采集、处理、解释 ⏹ 高新技术:知识含量高 技术运用新 测井技术的更新换代第一代:半自动测井(20~40年代) 第二代:全自动测井(40~60年代) 第三代:数字测井 (60~70年代) 第四代:数控测井 (70~80年代) 第五代:成像测井 (90年代以来) 1.3 测井应用特点: 石油勘探开发的“眼睛”⏹ 裸眼测井: 发现和评价 油气层的储集性质及生产能力⏹ 生产测井: 监视和分析 油气层的开发动态及生产状况 1.4 测井研究特点测井基础:了解探测对象的物理性质及变化规律 测量方法:探索探测空间物理场特征及测量方法 测井仪器:开发适用于井下条件的电子测量仪器 测量工艺:提高测井仪器设备的应用技巧及效果 资料处理:求取被测量媒质的物理性质参数 测井解释:提取勘探开发直接有用的参数和信息 1.5 测井数据采集 2 电测井方法 第一章 自然电位测井物理基础:钻井过程电化学作用产生自然电场 数据采集:测量钻井剖面地层层面的自然电位资料应用:划分渗透层、估计泥质含量、确定地层水电阻率、判断水淹层 一、自然电场的产生自然电动势:扩散电动势、扩散吸附电动势、过滤电动势 (1)扩散电动势产生原因:泥浆和地层水矿化度不同 产生电化学过程 产生电动势 自然电场产生过程:溶液浓度不同 带电离子扩散 带电离子的迁移率不同两边富集正、负带电离子 (延缓离子迁移速度) 产生电动势(直到正负离子达到动态平衡为止) 对Nacl 溶液(适用于矿化度中等以下的溶液中):CmCwv u v u F T R E dlg3.2+-⋅⋅=溶液矿化度转化为溶液电阻率后(井中):RwR v u vu F T R E mf dlg3.2+-⋅⋅=扩散电动势系数RwR K E mf d d lg⋅=(2)扩散吸附电动势产生原因:泥浆和地层水矿化度不同 产生阳离子交换 产生电动势 自然电场产生过程:溶液浓度不同→带电离子扩散→(泥岩)阳离子交换→孔隙内溶液阳离子增多→浓度小方富集正电荷,浓度大方富集负电荷→产生电动势(扩散吸附) 扩散吸附电动势:CmCwK E da da lg⋅=溶液矿化度转化为溶液电阻率后:RwRmf K E da da lg⋅=扩散吸附电动势系数:Kda ——与阳离子交换能力有关 若储层中泥值的阳离子交换量较高,则会导致低电阻率油层。
地球物理测井13测井资料综合解释共75页文档
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
地球物理测井简答题答案讲解
地球物理测井简答题答案讲解自然伽马测井曲线影响因素(1)积分电路的影响(测速*积分电路时间常数)由于记录仪器中的积分电路具有惰性(充/放电需要时间),输出电压相对于输入要滞后一段时间而仪器又在移动,可能使测井曲线发生畸形,主要为:极大值减小,且不在地层中心而向上移动,视厚度增大,半幅点上移。
一般:地层厚度越小,积分电路的影响越大,曲线畸变越严重。
实际测井中要适当控制测井速度。
(2)放射性涨落的影响由于地层中的放射性核素的衰变是随机的且彼此独立,同时伽马射线被探测到也是偶然独立的,使得每次测量结果不完全相同但结果满足统计规律,这种现象叫放射性涨落或统计起伏现象。
(3)地层厚度的影响:厚度增加极大值变化(4)井眼的影响井眼直径变大相当于伽马射线通过的路程变大,被吸收的几率变大,被探测几率变小,曲线值变小;同时泥浆的种类(含放射性物质或非放射性物质)也对曲线有影响。
一、计算泥质含量1、自然电位测井:Vsh=(SSP-PSP)/SSP=1-α。
α为自然电位减小系数;PSP含粘土地层的静自然电位(假静自然电位);SSP含粘土地层水矿化度相同的纯地层静自然电位。
2、自然伽马测井:(1)相对值法:自然伽马相对值I(GR)=(GR-GRmin)/(GRmax-GRmin);GR、GRmin、GRmax 分别为解释层、纯地层和泥岩的自然伽马测井值。
泥质含量:Vsh=[2(GCOR*I(GR))-1]/[2(GCOR)-1];GCOR为希尔奇指数,新地层3.7;老地层2。
(2)绝对值法:Vsh=(ρb GR-Bo)/(ρsh GRsh-Bo);Bo纯地层背景值,Bo=ρsd GRsd(或ρ纯GR纯);ρb,ρsh,ρsd,ρ纯分别为解释层,泥岩,砂岩,纯地层的自然伽马值。
二.计算孔隙度1、密度测井:ρb=φρf+(1-φ)ρf,φ=(ρma-ρb)/(ρma-ρf);φ孔隙度,ρma岩石骨架密度,ρf探测范围内的空隙流体密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•中国石油大学测井资料整理易考点整理•储集层的基本参数(孔、渗、饱、有效厚度)、相关参数的定义 孔隙度φ:岩石内孔隙体积占岩石总体积的百分比(%)(1)总孔隙度:总孔隙体积/岩石总体积(φt)(2)有效孔隙度:有效孔隙体积/岩石总体积(φe)(3)次生孔隙度:次生孔隙体积/岩石总体积(φ2)。
渗透率k:描述岩石允许流体通过能力的参数,单位:μm2 (或达西D ),常用10-3 μm2 (毫达西mD)(1)绝对渗透率:只有一种流体时测得。
测井上一般指绝对渗透率;(2)有效渗透率(相渗透率):存在多种流体时对其中一种所测,一般用ko、kg、kw表示;(3)相对渗透率:有效/绝对,用kro、krg、krw表示。
饱和度S:储层中某相流体体积占孔隙体积的百分比(%)。
含水饱和度Sw,含油气饱和度Sh(So、Sg)(1)原状地层:Sh=1-Sw (Sh=So+Sg)(2)冲洗带:Shr=1-Sxo (残余油气Shr、含水Sxo)(3)可动油气:Shm=Sxo-Sw ,Shm=Sh-Shr(4)束缚水Swirr:Sw=Swm+Swirr有效厚度he:(1)岩层厚度:岩层上、下界面间的距离。
界面常以岩性、孔隙度、渗透率等参数的变化为显示特征;(2)有效厚度:目前经济技术条件下能产出工业价值油气的储层实际厚度。
常由确认的油气层总厚度扣除无生产价值的夹层厚度后得到。
孔隙度、饱和度和有效厚度等还可用来计算地质储量;孔隙度、渗透率合称储层物性;孔隙度与饱和度的乘积表示某相流体占岩石体积的百分比,如φSw表示岩石中水的相对体积。
•储集层分类(主要两大类)、特点(岩性、物性、电性等)1. 储集层:(储层、渗透层)具有储存油气水的空间,同时这些空间又互相连通(流体可在其中运移)的岩层。
两大特点:孔隙性、渗透性。
2. 储集层分类及特点碎屑岩储集层:(40%储量,也称孔隙性储集层)(1)岩石类型:砂岩为主,砾岩、粉砂岩、泥质砂岩等;(2)围岩:一般为泥岩,性质稳定,常做为参考值;(3)特点:粒间孔隙为主,孔隙度较大(10~30%),分布均匀,各种物性和泥浆侵入等基本为各向同性;测井评价效果较好、技术较成熟。
碳酸盐岩储集层:(50%储量、60%产量,裂缝性储集层)(1)岩石类型:渗透性石灰岩、白云岩及其过渡岩性;(2)围岩:致密的碳酸盐岩;(3)特点:储层空间包括孔隙、裂缝、溶洞等,原生孔隙一般较小且分布均匀,渗透率低;次生孔隙相对较大,形状不规则、分布不均匀,渗透性较高;测井评价难度大、效果较差。
其它类型储集层:包括火山岩储层、泥岩储层、砾岩储层等。
自然电位SP•自然电动势产生的基本原理(电荷聚集方式、结果)、等效电路产生自然电场的主要原因:地层水溶液离子浓度与泥浆滤液的离子浓度不同,产生离子扩散;岩石颗粒表面对离子有吸附作用;泥浆滤液向地层中渗透作用。
1. 扩散电动势——纯岩石中地层水与泥浆之间的直接扩散砂岩孔隙中的地层水与井内泥浆之间,相当于不同浓度的两种NaCl溶液直接接触。
离子将从高浓度的岩层一方朝着井内直接扩散。
由于Cl-的迁移率大于Na+,扩散结果:低浓度的泥浆一方出现过多的Cl-,带负电,高浓度的岩层一方,相对剩余Na+离子,带正电。
从而产生了电位差——地层一方的电位高于泥浆2. 扩散吸附电动势——泥质岩石中地层水与泥浆之间的扩散扩散的另一个渠道是地层水中的离子泥质隔膜或周围的泥岩向低浓度的泥浆(井眼)一方进行扩散。
(上页图)粘土颗粒表面带有较多的负电荷,在盐溶液中吸附阳离子形成吸附层和扩散层。
泥岩中存在很厚的双电层(内负外正),能够移动的地层水在压实过程中排出去了,基本不存在双电层以外的自由水一方的电位。
泥质岩石中,一方面仍存在正常的扩散电动势;另一方面,当粘土将同样性质的两种不同浓度的溶液分开时,在浓度大的一边(Cw),粘土颗粒表面的扩散层中将有更多的阳离子,这些阳离子通过与双电层表面的阳离子交换而向低浓度溶液一方移动,低浓度溶液(Cm)一方的阳离子将不断增多而带正电,另一方(Cw)则带负电,此电动势与扩散电动势极性相反。
这样共同形成扩散吸附电动势。
泥质就象一种只许带正点荷的Na+通过,而不允许Cl-通过的离子选择薄膜一样,有时称为选择吸附作用。
3. 井内总的自然电动势(1)井壁附近电荷分布实际地层水和泥浆滤液中的主要盐类常为NaCl,且地层水的矿化度比泥浆滤液高(淡水泥浆)。
因此,夹于泥岩中的砂岩层被充满泥浆的井孔穿过时,地层水与泥浆之间的扩散结果是:砂岩与泥浆直接接触处产生扩散电动势,井孔一方为负,岩层一方为正;砂岩中地层水通过泥岩向井中扩散,产生扩散吸附电动势,井孔一方为正岩层一方为负。
(2)井内总自然电位(SSP)井内自然电动势形成之后,与周围的导电介质就构成了电流流动的闭合回路。
在岩层中心的上下有两个这样的闭合回路,均由扩散电动势Ed、扩散吸附电动势Eda以及井孔泥浆柱、砂岩和泥岩这几部分的等效电阻rm、rt和rs组成。
公式及图形参考课件•主要影响因素(矿化度、油气、泥质含量,等)1. 影响静自然电位SSP的因素自然电位异常幅度值ΔUsp与总自然电位SSP成正比,而SSP就决定于地层的岩性、泥浆和地层水的性质、泥浆滤液电阻率Rmf 与地层水电阻率Rw 的比值Rmf/Rw 以及地层温度等。
因此这些因素都会直接影响自然电位的异常幅度。
其中岩性和Rmf/Rw影响最大:岩性:泥岩“基线”,砂岩“异常”等;Rmf/Rw(或Cw/Cmf):淡水泥浆时储层显示负异常,盐水泥浆时显示正异常。
2. 地层厚度、井径的影响当地层厚度h>4d时,自然电位异常幅度近似等于静自然电位;当地层厚度h<4d时,自然电位异常幅度小于静自然电位,厚度越小,差别越大。
厚层可以用“半幅点”确定地层界面。
半幅点即幅度之半地层电阻率的影响含油气饱和度比较高的储集层,其电阻率比它完全含水时rsd明显升高,SP略有下降。
一般油气层的SP略小于相邻的水层。
Rt/Rm增大,曲线幅度减小。
围岩电阻率Rs增大,则rsh 增大,使自然电位异常幅度减小。
4. 泥浆侵入带的影响在渗透性地层,泥浆滤液渗入到地层孔隙中,使泥浆滤液与地层水的接触面向地层方向移动了一个距离。
侵入带的存在,相当于井径扩大,因而使自然电位异常幅度值降低。
随着泥浆侵入的增大,自然电位异常幅度减小5. 岩性剖面的影响自然电位是一种以泥岩为背景来显示储集层性质的测井方法,SP大小不只与储集层性质有关,而且与相邻泥岩的性质有关。
因此,这种方法只能用于储集层与泥岩交替出现的岩性剖面,最常见的是砂泥岩剖面。
这种测井方法不能用于巨厚的碳酸盐岩剖面。
因为这类剖面没有或很少有泥岩,裂缝较发育的储集层以致密碳酸盐岩为围岩,许多储层要通过远处的泥岩才能形成自然电流回路,因而在相邻泥岩间形成巨厚的大片SP异常,不能用来划分和研究储集层。
•应用(正、负异常划分储层,划分油水层,求Vsh、Rw等)普通电阻率(电极系)•岩石骨架、泥质等概念(联系泥质的三种存在形式及其对φ的影响),联系到岩石体积物理模型岩石骨架:组成沉积岩石的固体颗粒部分。
更一般地,指岩石中除泥质以外的固体颗粒部分。
泥质:岩石中湿粘土和细粉砂的混合物。
岩石骨架几乎不导电,沉积岩石的导电能力主要取决于地层水电阻率。
地层水性质主要包括含盐成分、矿化度、温度等。
课本实例说明了利用水样分析资料确定地层水电阻率的方法:等效NaCl溶液矿化度、温度--> Rw•阿尔奇公式(公式、参数、含义、用途等)意义:将孔隙度测井与电阻率测井联系起来,用于计算流体饱和度,是测井定量解释油水层的基础。
适用条件:纯岩石(不含泥质)或含泥质很少的岩石。
用法:孔隙度测井+电阻率测井+阿尔奇公式,在水层(电阻率测井得出R0)可求出Rw;在油层可求出其R0并进而确定Sw。
参数的意义:F、I的定义及其主要影响因素,各参数、资料的来源•电极系分类(底梯、顶梯、电位)、参数(深度记录点、电极距、探测范围,等)、曲线特点(梯度特征位置,等)•泥浆侵入(高侵、低侵及其应用)•微电极测井(Rmc、Rxo,应用)侧向、感应测井•侧向测井基本原理、应用(油水层划分、Sw计算)、适用条件分析;各种微聚焦电阻率Rxo测井方法•感应测井原理描述、各种几何因子的物理意义、应用(同侧向)、适用条件分析声波测井•滑行波的概念、产生条件、成为首波的措施•声速(时差)测井原理:单发双收、双发双收补偿原理(联系到密度、中子的补偿)•应用:φ(威利公式、压实校正)、周波跳跃指示气层或裂缝、异常压力地层、合成地震记录的方法步骤声速测井影响因素及资料应用地层厚度的影响厚度大于间距的地层称为厚层,小于间距的称为薄层。
由于声速测井的输出(时差)代表R1R2间地层的平均时差,因此它们的声速测井时差曲线存在一定差异。
“周波跳跃”现象的影响疏松砂岩气层或裂缝发育地层,声衰减严重,声波时差增大,曲线上显示忽大忽小幅度急剧变化的现象。
常用于判断裂缝发育地层和寻找气层测量“盲区”双发双收声系记录的是两个时差的平均值。
在低速地层,上发射时声波实际传播距离与下发射时声波实际传播距离可能完全不重合。
此时,在仪器记录点附近一定厚度的地层对测量结果没有任何贡献,称为“盲区”。
此时所测时差与记录点所在深度处地层速度无关。
声幅测井:CBL、VDL原理(幅度高低的原因)、应用(曲线或图像特征、判断固井质量)声波幅度测井主要通过测量声波幅度,在套管井中检查固井质量;声幅在地层中的变化主要是两种形式:地层吸收而使幅度衰减;不同声阻抗介质交界面处的反、折射使声能在不同介质中重新分配。
基本方法包括水泥胶结测井CBL和声波变密度测井VDL:CBL通过测量套管波幅度,检查第一界面胶结情况;VDL主要通过测量套管波和地层波幅度反映两个界面的胶结情况。
1. 套管井声幅与水泥胶结的关系固井形成两个胶结面,套管-水泥称第一界面,水泥-地层称第二界面;固井后,泥浆与套管、水泥环及地层的声阻抗差别较大,而后三者之间差别相对较小;若套管与水泥胶结良好,则套管波易通过水泥环向地层传播,套管内仪器记录的套管波幅度较低;否则,幅度高;若第一界面胶结好,同时第二界面胶结也好,则套管内仪器记录到的地层波较强。
2. 水泥胶结测井CBL只通过测量套管波幅度反映第一界面胶结情况:CBL幅度越大反映第一界面胶结越差,幅度越小反映胶结质量越好;可通过CBL曲线计算相对幅度或抗压强度等参数来评价第一界面胶结情况; 可以确定水泥返高位置;可以明显看到水泥返高面以上的套管接箍信号。
3. 声波变密度测井VDL记录全波列,主要通过测量套管波幅度反映第一界面,测量地层波反映第二界面;记录方式一般采用调辉或调宽,图示为调辉记录方式。
注:套管波一般为直线条带;地层波为摆动的弯曲条带。