高一数学必修4_三角函数综合复习

合集下载

高中数学必修4三角函数专题复习学生用资料

高中数学必修4三角函数专题复习学生用资料

专题复习 三角函数 一三角函数的概念一、知识要点:1、角:角可以看成平面内一条射线绕着端点从一个位置旋转另一个位置所成的图形。

按逆时针方向旋转所形的角叫做_____;按顺时针方向旋转所形成的角叫做_____。

2、象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合.角的终边落在第几象限,就说这个角是第几象限角。

象限角的集合为:第一象限角:{}36036090,k k k Z αα︒︒︒⋅<<⋅+∈第二象限角:{}36090360180,k k k Z αα︒︒︒︒⋅+<<⋅+∈ 第三象限角:{}360180360270,k k k Z αα︒︒︒︒⋅+<<⋅+∈ 第四象限角:{}360270360360,k k k Z αα︒︒︒︒⋅+<<⋅+∈3、终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合{}Z k k ∈+⨯=,360|αββ 4、轴线角(即终边落在坐标轴上的角)(1)终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ (2)终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ (3)终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ 5、角的度量(1)角度制 (2)弧度制(3)角度制与弧度制的转换:180π=,1801()()57.3rad π︒︒=≈。

6、弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形7、三角函数值的符号规律:sin α一、二象限为正,三、四象限为负,cos α一、四象限为正,二、三象限为负,tan α一、三象限为正,二、四象限为负8、单位圆中三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.9、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则r y =αsin rx=αcos x y =αtan10、特殊角的三角函数值(要熟记)二、典例讲解☞☞☞【例题1】角α的终边为射线2y x =-(0)x ≤,求2sin α+cos α的值。

高中数学必修4三角函数常考题型:正弦函数、余弦函数的性质(一)

高中数学必修4三角函数常考题型:正弦函数、余弦函数的性质(一)

正弦函数、余弦函数的性质(一)【知识梳理】1.函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.2.正弦、余弦函数的周期性正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )都是周期函数,2k π(k ∈Z ,且k ≠0)都是它们的周期.最小正周期为2π.3.正弦、余弦函数的奇偶性 正弦函数是奇函数,余弦函数是偶函数.【常考题型】题型一、函数的周期【例1】 求下列三角函数的周期:(1)y =3sin x ,x ∈R ;(2)y =cos 2x ,x ∈R ;(3)y =sin ⎝⎛⎭⎫13x -π4,x ∈R ;(4)y =|cos x |,x ∈R .[解] (1)因为3sin(x +2π)=3sin x ,由周期函数的定义知,y =3sin x 的周期为2π.(2)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(3)因为sin ⎣⎡⎦⎤13(x +6π)-π4=sin ⎝⎛⎭⎫13x +2π-π4 =sin ⎝⎛⎭⎫13x -π4,由周期函数的定义知,y =sin ⎝⎛⎭⎫13x -π4的周期为6π.(4)y =|cos x |的图像如图(实线部分)所示,由图像可知,y =|cos x |的周期为π.【类题通法】求函数最小正周期的常用方法求三角函数的周期,一般有两种方法:(1)公式法,即将函数化为y =A sin(ωx +φ)+B 或y=A cos(ωx +φ)+B 的形式,再利用T =2π|ω|求得;(2)图像法,利用变换的方法或作出函数的图像,通过观察得到最小正周期.【对点训练】求下列函数的最小正周期:(1)y =3sin ⎝⎛⎭⎫πx 2+3;(2)y =cos|x |.解:(1)由T =2ππ2=4,可得函数的最小正周期为4. (2)由于函数y =cos x 为偶函数,所以y =cos|x |=cos x ,从而函数y =cos|x |与y =cos x 的图像一样,因此最小正周期相同,为2π.题型二、三角函数的奇偶性【例2】 (1)函数f (x )=2sin 2x 的奇偶性为( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数(2)判断函数f (x )=sin ⎝⎛⎭⎫34x +3π2的奇偶性.(1)[解析] ∵f (x )的定义域是R .且f (-x )=2sin 2(-x )=-2sin 2x =-f (x ),∴函数为奇函数.[答案] A(2)[解] ∵f (x )=sin ⎝⎛⎭⎫34x +3π2=-cos 34x , ∴f (-x )=-cos ⎝⎛⎭⎫-34x =-cos 34x , ∴函数f (x )=sin ⎝⎛⎭⎫34x +3π2为偶函数.【类题通法】与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(Aω≠0)为奇函数,则φ=k π(k ∈Z );(2)要使y =A sin(ωx +φ)(Aω≠0)为偶函数,则φ=k π+π2(k ∈Z ); (3)要使y =A cos(ωx +φ)(Aω≠0)为奇函数,则φ=k π+π2(k ∈Z ); (4)要使y =A cos(ωx +φ)(Aω≠0)为偶函数,则φ=k π(k ∈Z ).【对点训练】若函数y =sin(x +φ)(0≤φ≤π)是R 上的偶函数,则φ等于( )A .0B.π4C.π2 D .π解析:选C 法一:由于y =sin ⎝⎛⎭⎫x +π2=cos x ,而y =cos x 是R 上的偶函数,所以φ=π2. 法二:因为y =sin x 的图像的对称轴为x =π2+k π,k ∈Z ,所以函数y =sin(x +φ)的图像的对称轴应满足x +φ=π2+k π.又y =sin(x +φ)是偶函数,所以x =0是函数图像的一条对称轴,所以φ=π2+k π,k ∈Z ,当k =0时,φ=π2. 题型三、三角函数的奇偶性与周期性的应用【例3】 若函数f (x )是以π2为周期的偶函数,且f ⎝⎛⎭⎫π3=1,求f ⎝⎛⎭⎫-17π6的值. [解] ∵f (x )的周期为π2,且为偶函数, ∴f ⎝⎛⎭⎫-17π6=f ⎝⎛⎭⎫-3π+π6=f ⎝⎛⎭⎫-6×π2+π6 =f ⎝⎛⎭⎫π6.而f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π2-π3=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=1,∴f ⎝⎛⎭⎫-17π6=1. 【类题通法】解决三角函数的奇偶性与周期性综合问题的方法利用函数的周期性,可以把x +nT (n ∈Z )的函数值转化为x 的函数值.利用奇偶性,可以找到-x 与x 的函数值的关系,从而可解决求值问题.【对点训练】若f (x )是奇函数,且f (x +1)=-f (x ),当x ∈(-1,0)时,f (x )=2x +1,求f ⎝⎛⎭⎫92的值.解:∵f (x +1)=-f (x ),∴f (x +2)=-f (x +1).∴f (x +2)=f (x ),即T =2.∴f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫92-4=f ⎝⎛⎭⎫12.又∵f (x )为奇函数,且x ∈(-1,0)时,f (x )=2x +1,∴f ⎝⎛⎭⎫12=-f ⎝⎛⎭⎫-12 =-⎣⎡⎦⎤2×⎝⎛⎭⎫-12+1=0,故f ⎝⎛⎭⎫92=0. 【练习反馈】1.函数f (x )=sin(-x )的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析:选A 由于x ∈R ,且f (-x )=sin x =-sin(-x )=-f (x ),所以f (x )为奇函数.2.函数f (x )=2sin ⎝⎛⎭⎫π2-x 是( )A .最小正周期为2π的奇函数B .最小正周期为2π的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数解析:选B 由于f (x )=2sin ⎝⎛⎭⎫π2-x =2cos x ,其最小正周期为2π,且为偶函数.3.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.解析:x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数. 答案:奇4.函数y =cos (1-x )π2的最小正周期是________. 解析:∵y =cos ⎝⎛⎭⎫-π2x +π2,∴T =2ππ2=2π×2π=4. 答案:45.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,求f ⎝⎛⎭⎫-5π3的值. 解:∵当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,且最小正周期为π, ∴f ⎝⎛⎭⎫-5π3=f ⎝⎛⎭⎫π3-2π=f ⎝⎛⎭⎫π3=-f ⎝⎛⎭⎫-π3= -sin ⎝⎛⎭⎫-π3=sin π3=32.。

高考数学必修4总复习《三角函数:三角函数的图像与性质》

高考数学必修4总复习《三角函数:三角函数的图像与性质》

∴y=sin2x+52π为偶函数.
答案:B
4. (教材改编题)函数 f(x)=tanx+π4的单调递增区间为(
)
A. kπ-2π,kπ+π2(k∈Z)
B. (kπ,(k+1)π)(k∈Z)
C. kπ-34π,kπ+4π(k∈Z)
D. kπ-π4,kπ+34π(k∈Z)
(2)求满足 f(x)=0 的 x 的取值;
(3)求函数 f(x)的单调递减区间.
解 (1) 2sin2x-3π>0⇒
sin2x-π3>0⇒2kπ<2x-π3<2kπ+π,
k

Z



π 6
<x<kπ

2 3
π

k

Z.








kπ+π6,kπ+23π,k∈Z.
(2)∵f(x)=0,∴sin 2x-3π =
第五节 三角函数的图像与性质
1. 理解正弦函数、余弦函数、正切函数的图像和性质,会用 “五点法”画正弦函数、余弦函数的简图. 2. 了解周期函数与最小正周期的意义.
1. 周期函数
(1)周期函数的定义
对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值
时,都有 f(x+T)=f(x,) 那么函数f(x)就叫做周期函数. 非零常数T 叫做这个函数
2 2
⇒2x-
π 3
=2kπ+
π 4
或2kπ+
3 4
π,k∈Z⇒x=kπ+
7 24
π或x=kπ+
13 24
π,k∈Z,故x的取值是
x|x=kπ+274π或x=kπ+1234π,k∈Z. (3)令2kπ+π2≤2x-π3<2kπ+π,k∈Z⇒2kπ+56π≤2x<2kπ+43π,

高中数学必修4第一章_三角函数知识复习

高中数学必修4第一章_三角函数知识复习

1第一章 三角函数知识点1、角的定义:⎧⎪⎪⎨⎪⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。

第一象限角的集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角的集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角的集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角的集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭终边在x 轴上的角的集合为{},k k ααπ=∈Z 终边在y 轴上的角的集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上的角的集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。

5、长度等于半径长的弧所对的圆心角叫做1弧度。

6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=。

7、弧度制与角度制的换算公式:180********.3180πππ⎛⎫===≈ ⎪⎝⎭,,8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==。

9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin yrα=,cos x r α=,()tan 0y x x α=≠。

10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正。

高中数学必修四三角函数知识点总结,附真题讲解!

高中数学必修四三角函数知识点总结,附真题讲解!

高中数学必修四三角函数知识点总结,附真题讲解!
2、象限角角a的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,
则称a为第几象限角.3、
的象限已知a是第几象限角,确定所在象限的
方法:先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则a原来是第几象限对应的标
号即为终边所落在的区域.4、弧度制⑴ 1弧度的定义:长度等于半径长的弧所对的圆心角叫做1弧度.⑵ 弧长公式 半径为r的圆的圆心角a所对弧的长为l,则角a的弧度数的绝对值是
.⑶弧度制与角度制的换算公式:,,
.⑷若扇形的圆心角为a(a位弧度制),半径为
r,弧长为l,周长为C,面积为S,则,,

【答案】。

(完整)高中必修四三角函数知识点总结,推荐文档

(完整)高中必修四三角函数知识点总结,推荐文档

o
x
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)
高三数学总复习—三角函数
y
++
o -
-x
、、 、、、
y
-+
o -
+
x
、、 、、、
y
-+
o +
-
x
、、 、、、
6、三角函数线 正弦线:MP; 余弦线:OM;
正切线: AT.
7. 三角函数的定义域:
三角函数 f (x) sinx f (x) cosx f (x) tanx
cot( x) cot x cot(2 x) cot x
公式组二 sin(2k x) sin x cos(2k x) cos x tan(2k x) tan x cot(2k x) cot x
公式组六 sin( x) sin x cos( x) cos x tan( x) tan x cot( x) cot x
定义域
x | x R x | x R
x
|
x
R且x
k
1
,
k
Z
2
x | x R且x k , k Z
x
|
x
R且x
k
1
,
k
Z
2
x | x R且x k , k Z
8、同角三角函数的基本关系式: sin tan cos
cos sin
cot
tan cot 1 csc sin 1
sin( ) sin cos cos sin sin( ) sin cos cos sin
tan 2 2 tan 1 tan 2
sin

人教版数学必修四三角函数复习讲义

人教版数学必修四三角函数复习讲义

第一讲 任意角与三角函数诱导公式1. 知识要点角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为终边。

象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

终边相同的角的表示:α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z 。

注意:相等的角的终边一定相同,终边相同的角不一定相等.α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.α与2α的终边关系:任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==, ()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0r y y α=≠。

三角函数值只与角的大小有关,而与终边上点P 的位置无关。

三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )”同角三角函数的基本关系式:1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αααααα==注意:1.角α的任意性。

高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

三角函数的诱导公式(一) 【知识梳理】1.诱导公式二(1)角π+α与角α的终边关于原点对称.如图所示.(2)公式:sin(π+α)=-sin_α.cos(π+α)=-cos_α.tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32. 【类题通法】利用诱导公式解决给角求值问题的步骤【对点训练】求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=22×32-32×12-1=6-3-44. 题型二、化简求值问题【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). (1)[解析]cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1. [答案] 1(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1. 【类题通法】利用诱导公式一~四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切.【对点训练】化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ). 解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ. 题型三、给角(或式)求值问题【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( ) A .1B .-1 C.13 D .-13(2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值. (1)[解析] ∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z ,∴sin(α+2β)=sin [(α+β)+β]=sin(π+β)=-sin β=-13. [答案] D(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角. ∴α-55°是第三象限角.sin(α-55°)=-1-cos 2(α-55°)=-223. ∵α+125°=180°+(α-55°),∴sin(α+125°)=sin [180°+(α-55°)]=-sin(α-55°)=223. 【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】已知sin(π+α)=-13,求cos(5π+α)的值.解:由诱导公式得,sin(π+α)=-sin α,所以sin α=13,所以α是第一象限或第二象限角.当α是第一象限角时,cos α= 1-sin 2α=223,此时,cos(5π+α)=cos(π+α)=-cos α=-223.当α是第二象限角时,cos α=-1-sin 2α=-223,此时,cos(5π+α)=cos(π+α)=-cos α=223.【练习反馈】1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255 B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55.2.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( ) A .-35 B.35C .±35 D.45解析:选B sin α=-45,又α是第四象限角,∴cos(α-2π)=cos α=1-sin 2α=35.3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=________.解析:∵tan(5π+α)=tan α=m ,∴原式=-sin α-cos α-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1m -1. 答案:m +1m -14.cos (-585°)sin 495°+sin (-570°)的值是________. 解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-25.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫α+5π6的值. 解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6= -cos ⎝⎛⎭⎫π6-α=-33.。

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

高一必修4数学三角恒等变换知识点总结

高一必修4数学三角恒等变换知识点总结

高一必修4数学三角恒等变换知识点总结
高一必修4数学三角恒等变换知识点
三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量不含根式等.
1.求值中主要有三类求值问题:
(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看
是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,
要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角
的三角函数而得解.
(2)“给值求值”:给出某些角的三角函数式的值,求另外一些
角的三角函数值,解题关键在于“变角”,使其角相同或具有某种
关系.
(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单
调区间求得角.
2.三角恒等变换的常用方法、技巧和原则:
(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.
(2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),
α=(α+β)-β,α=(α-β)+β,α+β2=α-β2+β-α2,α2是
α4的二倍角等.
(3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.
(4)消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.。

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)

第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。

高一下册数学必修四第一章 三角函数.知识点及同步练习

高一下册数学必修四第一章 三角函数.知识点及同步练习

巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B

高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

三角函数的诱导公式(一)【学问梳理】1.诱导公式二(1)角π+α与角α的终边关于原点对称. 如图所示. (2)公式:sin(π+α)=-sin_α.cos(π+α)=-cos_α.tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x 轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y 轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.【类题通法】利用诱导公式解决给角求值问题的步骤【对点训练】求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=22×32-32×12-1=6-3-44. 题型二、化简求值问题【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). (1)[解析]cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1. [答案] 1(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1. 【类题通法】利用诱导公式一~四化简应留意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有变更,但肯定要留意函数的符号有没有变更;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采纳切化弦,有时也将弦化切.【对点训练】化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ). 解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ. 题型三、给角(或式)求值问题【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( ) A .1 B .-1C.13 D .-13 (2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值. (1)[解析] ∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z ,∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13. [答案] D(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角. ∴α-55°是第三象限角.sin(α-55°)=-1-cos 2(α-55°)=-223. ∵α+125°=180°+(α-55°),∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=223. 【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要细致视察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】已知sin(π+α)=-13,求cos(5π+α)的值. 解:由诱导公式得,sin(π+α)=-sin α,所以sin α=13,所以α是第一象限或其次象限角. 当α是第一象限角时,cos α= 1-sin 2α=223, 此时,cos(5π+α)=cos(π+α)=-cos α=-223. 当α是其次象限角时,cos α=-1-sin 2α=-223, 此时,cos(5π+α)=cos(π+α)=-cos α=223. 【练习反馈】1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 2.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( ) A .-35B.35 C .±35 D.45解析:选B sin α=-45,又α是第四象限角, ∴cos(α-2π)=cos α=1-sin 2α=35. 3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=________. 解析:∵tan(5π+α)=tan α=m ,∴原式=-sin α-cos α-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1m -1. 答案:m +1m -14.cos (-585°)sin 495°+sin (-570°)的值是________. 解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-25.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫α+5π6的值. 解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6= -cos ⎝⎛⎭⎫π6-α=-33.。

(word完整版)必修四三角函数和三角恒等变换知识点及题型分类总结,文档.docx

(word完整版)必修四三角函数和三角恒等变换知识点及题型分类总结,文档.docx

三角函数知识点总结1、任意角:正角:;负角:;零角:;2、角的顶点与重合,角的始边与重合,终边落在第几象限,则称为第几象限角.第一象限角的集合为第二象限角的集合为第三象限角的集合为第四象限角的集合为终边在 x 轴上的角的集合为终边在 y 轴上的角的集合为终边在坐标轴上的角的集合为3、与角终边相同的角的集合为4、已知是第几象限角,确定n* 所在象限的方法:先把各象限均分n 等份,n再从 x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域.5、n叫做 1弧度.6、半径为r的圆的圆心角所对弧的长为 l,则角的弧度数的绝对值是.7、弧度制与角度制的换算公式:8、若扇形的圆心角为为弧度制,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则l=.S=9、设是一个任意大小的角,的终边上任意一点的坐标是 x, y ,它与原点的距离是 r r x2y20 ,则sin y, cosx, tan y x0 .r r x10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:.12、同角三角函数的基本关系:(1);(2);(3)13、三角函数的诱导公式:1 sin 2k sin,cos 2k cos,tan 2k tan k.2 sin sin,cos cos,tan tan.4 sin sin,cos cos,tan tan.5 sin cos,cos sin.226 sin cos,cos sin.22口诀:奇变偶不变,符号看象限.重要公式⑴ cos cos cos sin sin;⑵ cos cos cos sin sin;⑶ sin sin cos cos sin;⑷ sin sin cos cos sin;⑸ tantan tan(tan tan tan1tan tan);1 tan tan⑹ tantan tan(tan tan tan1tan tan).1 tan tan二倍角的正弦、余弦和正切公式:⑴sin22sin cos.(2)cos2 cos2sin22cos2 1 1 2sin2( cos2cos21, sin 2 1 cos 2).⑶ tan22tan.221tan2公式的变形:tan tan tan() ? 1 tan tan,辅助角公式sin cos22 sin,其中 tan.14、函数y sin x 的图象平移变换变成函数y sin x的图象.15. 函数 y sin x0,0 的性质:① 振幅:;②周期:2;③频率: f1;④相位: x;⑤初相:.216 .图像正弦函数、余弦函数和正切函数的图象与性质:三角函数题型分类总结一.求值1、 sin330 ==sin 585 o=tan690 °2、( 1) (07 全国Ⅰ )是第四象限角, cos12,则 sin13( 2)( 09 北京文)若 sin4, tan 0 ,则 cos.512( 3)( 09 全国卷Ⅱ文)已知 △ABC 中, cot A.,则 cosA15(4)是第三象限角, sin()cos =cos(5) =,则223、 (1) (07 陕西 ) 已知 sin5, 则 sin 4cos 4 =.5(2) ( 04 全国文)设(0,3 ,则 2 cos() = .) ,若 sin254( 3)( 06 福建)已知( , ),sin 3, 则 tan() =2544( 07 重庆) 下列各式中,值为3的是 ( )2( A ) 2sin15 cos15 ( B ) cos 2 15 sin 2 15 ( C ) 2 sin 2 15 1( D ) sin 2 15 cos 2 155. (1)(07 福建 ) sin15 o cos75o cos15o sin105 o =(2)( 06 陕西) cos43o cos77 osin 43o cos167o =。

高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/1-tanA^2注:SinA^2 是sinA的平方 sin2A三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=A^2+B^2^1/2sinα+t,其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2tant=B/AAsinα+Bcosα=A^2+B^2^1/2cosα-t,tant=A/B降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa三角和sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα两角和差cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ和差化积sinθ+sinφ = 2 sin[θ+φ/2] cos[θ-φ/2]sinθ-sinφ = 2 cos[θ+φ/2] sin[θ-φ/2]cosθ+cosφ = 2 cos[θ+φ/2] cos[θ-φ/2]cosθ-cosφ = -2 sin[θ+φ/2] sin[θ-φ/2] tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 积化和差sinαsinβ = [cosα-β-cosα+β] /2cosαcosβ = [cosα+β+cosα-β]/2sinαcosβ = [sinα+β+sinα-β]/2cosαsinβ = [sinα+β-sinα-β]/2诱导公式sin-α = -sinαcos-α = cosαtan —a=-tanαsinπ/2-α = cosαcosπ/2-α = sinαsinπ/2+α = cosαcosπ/2+α = -sinαsinπ-α = sinαcosπ-α = -cosαsinπ+α = -sinαcosπ+α = -cosαtanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

新课标人教A版数学必修4全部课件:三角函数复习课

新课标人教A版数学必修4全部课件:三角函数复习课
2
2
2 tan 1 tan
注:正弦与余弦的倍角公式的逆用实质上就是降幂的过程。特别
cos
2

1 cos 2 2
sin
2
1 cos 2 2
三、三角函数的图象和性质
1、正弦、余弦函数的图象与性质 y=sinx
y
y=cosx
y
1

2
图 象
定义域 值 域 性 周期性 奇偶性 质 单调性

sin cos
sin cos 1

sin cos sin cos
2 2


tan tan 1
2

2 2 1
2

2 5
应用:关于 sin 与 cos 的齐次式
例3:已知 解: sin(
sin(

4
)
3 5
, cos(

y sin( x )
y A sin( x )
1
第二种变换:
横坐标不变
横坐标伸长(0 1 )或缩短( 1 )到原来的 倍 y sin x y sin x 纵坐标不变 图象向左( 0 ) 或
向右( 0 ) 平移
| |

个单位
[k
3 8
, k

8
]( k Z )
2

4 )
⑶ 当2x ⑷y


4
2 k

2
,即 x k


8
( k Z )时 , y 最大值 2
y 2 sin( 2 x

高一数学必修4三角函数知识点大总结

高一数学必修4三角函数知识点大总结

高一数学必修4三角函数知识点大总结
2013-04-17 17:41 来源:互联网
∙[
∙标签:
∙高一数学
∙三角函数
∙]
三角函数知识是高一数学必修四种的知识板块,这块知识和图像结合,其实也是一种代数变换。

想要学好高一必修4中三角函数知识,还需要大家对此有个深刻的总结,分析出基础知识并牢固掌握,在这个基础上促进答题速度,下面是为大家总结的高一数学必修四三角函数知识点。

高一数学必修4平面向量知识总结
下面是小编为大家总结的高一数学必修4平面向量的知识点总结,希望可以帮助高一的学生巩固高一的基础知识,高一数学必修4知识点同样需要总结,做好最基本的工作才会有好成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一三角函数复习方略【知识网络】学法:1.注重化归思想的运用.如将任意角的三角函数值的问题化归为锐角的三角函数的问题,将不同名的三角函数问题化成同名的三角函数的问题,将不同角的三角函数问题化成同角的三角函数问题等2.注意数形结合思想的运用.如讨论函数性质等问题时,要结合函数图象思考,便易找出解题思路和问题答案.第1课三角函数的概念考试注意:理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.掌握终边相同角的表示方法.掌握任意角的正弦、余弦、正切的意义.了解余切、正割、余割的定义.掌握三角函数的符号法则.知识典例:1.角α的终边在第一、三象限的角平分线上,角α的集合可写成.2.已知角α的余弦线是单位长度的有向线段,那么角α的终边( )A.在x轴上B.在y轴上C.在直线y=x上D.在直线y=-x上.3.已知角α的终边过点p(-5,12),则cosα} ,tanα= .4.tan(-3)cot5cos8的符号为.5.若cosθtanθ>0,则θ是( ) A.第一象限角B.第二象限角C.第一、二象限角D.第二、三象限角【讲练平台】例1 已知角的终边上一点P (- 3 ,m ),且sin θ=24m ,求cos θ与tan θ的值.分析 已知角的终边上点的坐标,求角的三角函数值,应联想到运用三角函数的定义解题,由P 的坐标可知,需求出m 的值,从而应寻求m 的方程.解 由题意知r= 3+m 2 ,则sin θ= m r = m3+m 2. 又∵sin θ=24m , ∴ m3+m 2= 24 m . ∴m=0,m=±5 . 当m=0时,cos θ= -1 , tan θ=0 ; 当m= 5 时,cos θ= -6 4, tan θ= - 15 3; 当m= - 5 时,cos θ= -6 4,tan θ=153. 点评 已知一个角的终边上一点的坐标,求其三角函数值,往往运用定义法(三角函数的定义)解决.例2 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},求集合E ∩F .分析 对于三角不等式,可运用三角函数线解之.解 E={θ|π4 <θ<5π4}, F ={θ| π2<θ<π,或3π2<θ<2π},∴E ∩F={θ|π2<θ<π}.例3 设θ是第二象限角,且满足|sin θ2|= -sin θ2 ,θ2是哪个象限的角?解 ∵θ是第二象限角, ∴2k π+π2<θ<2k π+3π2,k ∈Z . ∴k π+π4<θ2<k π+ 3π4,k ∈Z . ∴θ2是第一象限或第三象限角. ① 又∵|sin θ2|= -sin θ2 , ∴sin θ2<0. ∴ θ2是第三、第四象限的角. ②由①、②知,θ2是第三象限角. 点评 已知θ所在的象限,求θ2或2θ等所在的象限,要运用终边相同的角的表示法来表示,否则易出错. 【知能集成】注意运用终边相同的角的表示方法表示有关象限角等;已知角的终边上一点的坐标,求三角函数值往往运用定义法;注意运用三角函数线解决有关三角不等式. 【训练反馈】1. 已知α是钝角,那么α2 是 ( )A .第一象限角B .第二象限角C .第一与第二象限角D .不小于直角的正角2. 角α的终边过点P (-4k ,3k )(k <0},则cos α的值是 ( )A .3 5 B . 45 C .- 35 D .- 453.已知点P(sin α-cos α,tan α)在第一象限,则在[0,2π]内,α的取值范围是 ( )A .( π2, 3π4)∪(π, 5π4)B .( π4, π2)∪(π, 5π4)C .(π2 , 3π4 )∪(5π4,3π2) D .( π4, π2 )∪(3π4,π) 4.若sinx= - 35,cosx =45 ,则角2x 的终边位置在 ( )A .第一象限B .第二象限C .第三象限D .第四象限5.若4π<α<6π,且α与- 2π3终边相同,则α= .6. 角α终边在第三象限,则角2α终边在 象限.7.已知|tanx |=-tanx ,则角x 的集合为 . 8.如果θ是第三象限角,则cos(sin θ)²sin(sin θ)的符号为什么?9.已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,求该扇形面积.第2课 同角三角函数的关系及诱导公式【考点指津】掌握同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α,tan αcot α=1, 掌握正弦、余弦的诱导公式.能运用化归思想(即将含有较多三角函数名称问题化成含有较少三角函数名称问题)解题 . 【知识在线】1.sin 2150°+sin 2135°+2sin210°+cos 2225°的值是 ( ) A . 14 B . 34 C . 114 D . 942.已知sin(π+α)=-35,则 ( )A .cos α= 45B .tan α= 34C .cos α= -45D .sin(π-α)= 353.已tan α=3,4sin α-2cos α5cos α+3sin α的值为 .4.化简1+2sin(π-2)cos(π+2) = .5.已知θ是第三象限角,且sin 4θ+cos 4θ= 59,那么sin2θ等于 ( )3333【讲练平台】例1 化简 sin(2π-α)tan(π+α)cot(-α-π)cos(π-α)tan(3π-α).分析 式中含有较多角和较多三角函数名称,若能减少它们的个数,则式子可望简化.解 原式= (-sin α)tan α[-cot(α+π) ] (-cos α)tan(π-α) = (-sin α)tan α(-cot α)(-cos α)(-tan α)= sin α²cos αsin αcos α=1 .点评 将不同角化同角,不同名的三角函数化成同名的三角函数是三角变换中常用的方法.例2 若sin θcos θ= 18 ,θ∈(π4 ,π2),求cos θ-sin θ的值.分析 已知式为sin θ、cos θ的二次式,欲求式为sin θ、cos θ的一次式,为了运用条件,须将cos θ-sin θ进行平方.解 (cos θ-sin θ)2=cos 2θ+sin 2θ-2sin θcos θ=1- 14 = 34.∵θ∈(π4 ,π2),∴ cos θ<sin θ.∴cos θ-sin θ= -32. 变式1 条件同例, 求cos θ+sin θ的值. 变式2 已知cos θ-sin θ= -32, 求sin θcos θ,sin θ+cos θ的值. 点评 sin θcos θ,cos θ+sin θ,cos θ-sin θ三者关系紧密,由其中之一,可求其余之二.例3 已知tan θ=3.求cos 2θ+sin θcos θ的值.分析 因为cos 2θ+sin θcos θ是关于sin θ、cos θ的二次齐次式,所以可转化成tan θ的式子.解 原式=cos 2θ+sin θcos θ= cos 2θ+sin θcos θ cos 2θ+sin 2θ = 1+tan θ 1+tan 2θ = 25 . 点评 1.关于cos θ、sin θ的齐次式可转化成tan θ的式子.2.注意1的作用:1=sin 2θ+cos 2θ等.【知能集成】1.在三角式的化简,求值等三角恒等变换中,要注意将不同名的三角函数化成同名的三角函数.2.注意1的作用:如1=sin 2θ+cos 2θ.3.要注意观察式子特征,关于sin θ、cos θ的齐次式可转化成关于tan θ的式子. 4.运用诱导公式,可将任意角的问题转化成锐角的问题 . 【训练反馈】1.sin600°的值是 ( )22222. sin(π4+α)sin (π4-α)的化简结果为 ( )A .cos2αB .12cos2αC .sin2αD . 12sin2α3.已知sinx+cosx=15,x ∈[0,π],则tanx 的值是 ( )A .-34B .- 43C .±43D .-34或-434.已知tan α=-13,则12sin αcos α+cos 2α = .5.1-2sin10°cos10° cos10°-1-cos 2170°的值为 .6.证明1+2sin αcos α cos 2α-sin 2α =1+ tan α1-tan α.7.已知2sin θ+cos θ sin θ-3cos θ=-5,求3cos2θ+4sin2θ的值.8.已知锐角α、β、γ满足sin α+sin γ=sin β,cos α-cos γ=cos β,求α-β的值.第3课 两角和与两角差的三角函数(一)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式,能运用化归思想(将不同角化成同角等)解题. 【知识在线】1.cos105°的值为 ( ) A .6 + 2 4 B . 6 - 2 4 C . 2 - 6 4 D . - 6 - 242.对于任何α、β∈(0,π2),sin(α+β)与sin α+sin β的大小关系是 ( ) A .sin(α+β)>sin α+sin β B .sin(α+β)<sin α+sin β C .sin(α+β)=sin α+sin β D .要以α、β的具体值而定 3.已知π<θ<3π2,sin2θ=a ,则sin θ+cos θ等于 ( )A . a+1B .- a+1C . a 2+1D .±a 2+1 4.已知tan α=13,tan β=13,则cot(α+2β)= .5.已知tanx=12,则cos2x= .【讲练平台】例1 已知sin α-sin β=- 13 ,cos α-cos β=12,求cos(α-β)的值 .分析 由于cos(α-β)=cos αcos β+sin αsin β的右边是关于sin α、cos α、sin β、cosβ的二次式,而已知条件是关于sin α、sin β、cos α、cos β的一次式,所以将已知式两边平方.解 ∵sin α-sin β=-13, ① cos α-cos β= 12, ②①2 +②2 ,得2-2cos(α-β)= 1336. ∴cos(α-β)=7259. 点评 审题中要善于寻找已知和欲求的差异,设法消除差异.例2 求 2cos10°-sin20°cos20° 的值 .分析 式中含有两个角,故需先化简.注意到10°=30°-20°,由于30°的三角函数值已知,则可将两个角化成一个角.解 ∵10°=30°-20°,∴原式=2cos(30°-20°)-sin20°cos20°=2(cos30°cos20°+sin30°sin20°)-sin20° cos20°= 3 cos30°cos20°= 3 .点评 化异角为同角,是三角变换中常用的方法.例3 已知:sin(α+β)=-2sin β.求证:tan α=3tan(α+β).分析 已知式中含有角2α+β和β,而欲求式中含有角α和α+β,所以要设法将已知式中的角转化成欲求式中的角.解 ∵2α+β=(α+β)+α,β=(α+β)-α,∴sin [(α+β)+α]=-2sin [(α+β)-α].∴sin(α+β)cos α+cos(α+β)sin α=-2sin(α+β)cos α+2cos(α+β)sin α. 若cos(α+β)≠0 ,cos α≠0,则3tan(α+β)=tan α.点评 审题中要仔细分析角与角之间的关系,善于运用整体思想解题,此题中将α+β看成一个整体 【知能集成】审题中,要善于观察已知式和欲求式的差异,注意角之间的关系;整体思想是三角变换中常用的思想. 【训练反馈】1.已知0<α<π2<β<π,sin α=35,cos(α+β)=-45,则sin β等于 ( )A .0B .0或2425C . 2425D .0或-24252.sin7°+cos15°sin8°cos7°-sin15°sin8°的值等于 ( )A .2+ 3B .2+ 32 C .2-3 D . 2- 3 23. △ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C 的大小为 ( )A .π6 B . 5π6 C . π6或5π6 D . π3或2π34.若α是锐角,且sin(α-π6)= 13,则cos α的值是 . 5.cos π7cos 2π7cos 3π7= .6.已知tan θ=12,tan φ=13,且θ、φ都是锐角.求证:θ+φ=45°.7.已知cos(α-β)=-45,cos(α+β)= 45,且(α-β)∈(π2,π),α+β∈(3π2,2π),求cos2α、cos2β的值.8. 已知sin(α+β)= 12,且sin(π+α-β)= 13,求tan αtan β.第4课 两角和与两角差的三角函数(二)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;能灵活运用和角、差角、倍角公式解题. 【知识在线】 求下列各式的值1.cos200°cos80°+cos110°cos10°= . 2.12(cos15°+ 3 sin15°)= . 3.化简1+2cos 2θ-cos2θ= .4.cos(20°+x)cos(25°-x)-cos(70°-x)sin(25°-x)= . 5.11-tan θ- 11+tan θ= . 【讲练平台】例1 求下列各式的值(1)tan10°+tan50°+ 3 tan10°tan50°;(2) ( 3 tan12°-3)csc12° 4cos 212°-2.(1)解 原式=tan(10°+50°)(1-tan10°tan50°)+ 3 tan10°tan50°= 3 . (2)分析 式中含有多个函数名称,故需减少函数名称的个数,进行切割化弦.解 原式= ( 3 ·sin12°cos12°-3)1sin12°2 cos24° =︒︒-︒24cos 212sin 312cos 3=︒︒-︒=︒︒︒︒-︒48sin 21)12cos 2312sin 21(3224cos 12cos 12sin 212cos 312sin 3 =.3448sin )6012sin(34-=︒︒-︒点评 (1)要注意公式的变形运用和逆向运用,注意公式tanA+tanB=tan(A+B)(1-tanAtanB ),asinx+bsinx=22b a +sin(x+φ)的运用;(2)在三角变换中,切割化弦是常用的变换方法.例2 求证1+sin4θ-cos4θ2 tan θ = 1+sin4θ+cos4θ1-tan 2θ.分析 三角恒等式的证明可从一边开始,证得它等于另一边;也可以分别从两边开始,证得都等于同一个式子;还可以先证得另一等式,从而推出需要证明的等式.由欲证的等式可知,可先证等式1+sin4θ-cos4θ 1+sin4θ+cos4θ =2tan θ1-tan 2θ ,此式的右边等于tan2θ,而此式的左边出现了“1-cos4θ”和“1+cos4θ”,分别运用升幂公式可出现角2θ,sin4θ用倍角公式可出现角2θ,从而等式可望得证.证略点评 注意倍角公式cos2α=2cos 2α-1,cos2α=1-2sin 2α的变形公式:①升幂公式1+cos2α=2cos 2α,1-cos2α=2sin 2α,②降幂公式sin 2α= 1-cos2α2 ,cos 2α= 1+cos2α2的运用;三角恒等式证明的方法:从一边推得另一边;左右归一,先证其等价等于等式;分析法等.例3 已知cos(π4+x)= 35,17π12<x < 7π4,求sin2x +sin2xtanx 1-tanx的值.解 原式= sin2x (1+tanx ) 1-tanx =sin2x ³tan π4+tanx 1-tan π4tanx=sin2xtan (π4+x )= -cos [2(x+π4)]tan(x+π4)= -[2cos 2(x+ )-1]tan (π4+x )∵17π12<x < 7π4, ∴ 5π3<x+π4<2π. ∴sin(π4+x) = -45 ,∴tan (π4+x )=- 43.∴原式 = -2875.点评 (1)注意两角和公式的逆用;(2)注意特殊角与其三角函数值的关系,如1=tan π4等;(3)注意化同角,将所求式中的角x 转化成已知条件中的角x+π4. 【知能集成】在三角变换中,要注意三角公式的逆用和变形运用,特别要注意如下公式: tanA+tanB=tan(A+B)[1-tanAtanB ];asinx+bcosx=22b a sin(x+φ)及升幂、降幂公式的运用. 【训练反馈】1.cos75°+cos15°的值等于 ( ) A . 6 2 B - 6 2 C . - 2 2 D . 2 2 2.a=2 2(sin17°+cos17°),b=2cos 213°-1,c= 2 2,则 ( ) A .c <a <b B . b <c <a C . a <b <c D . b <a <c 3.化简1+sin2θ-cos2θ1+sin2θ+cos2θ= .4.化简sin(2α+β)-2sin αcos(α+β)= .5.在△ABC 中,已知A 、B 、C 成等差数列,则tan A 2+tan C 2+ 3 tan A 2tan C2的值为 .6.化简sin 2A+sin 2B+2sinAsinBcos(A+B).7 化简sin50°(1+ 3 tan10°).8 已知sin(α+β)=1,求证:sin(2α+β)+sin(2α+3β)=0.第5课 三角函数的图象与性质(一)【考点指津】了解正弦函数、余弦函数、正切函数的图象和性质,能运用数形结合的思想解决问题,能讨论较复杂的三角函数的性质. 【知识在线】1.若 3 +2cosx <0,则x 的范围是 . 2.下列各区间,使函数y=sin(x+π)的单调递增的区间是 ( )A .[π2,π]B . [0,π4]C . [-π,0]D . [π4,π2]3.下列函数中,周期为π2的偶函数是 ( )A .y=sin4xB . y=cos 22x -sin 22xC . y=tan2xD . y=cos2x 4.判断下列函数的奇偶性(1)y=xsinx+x 2cos2x 是 函数;(2)y=|sin2x |-xcotx 是 函数; (3)y=sin(7π2+3x)是 函数.5.函数f(x)=cos(3x+φ)是奇函数,则φ的值为 . 【讲练平台】 例1 (1)函数y=xx sin 21)tan 1lg(--的定义域为(2)若α、β为锐角,sin α<cos β,则α、β满足 (C )A .α>βB .α<βC .α+β<π2D . α+β>π2分析 (1)函数的定义域为⎩⎨⎧>>0.2sinx -10,tanx -1 (*) 的解集,由于y=tanx 的最小正周期为π,y=sinx 的最小正周期为2π, 所以原函数的周期为2π,应结合三角函数y=tanx和y=sinx 的图象先求出(-π2, 3π2)上满足(*)的x 的范围,再据周期性易得所求定义域为{x |2k π-π2<x <2k π+π6 ,或2k π+ 5π6< x <2k π+5π4 ,k ∈Z} .分析(2)sin α、cos β不同名,故将不同名函数转化成同名函数, cos β转化成sin(π2-β),运用y=sinx 在[0,π2]的单调性,便知答案为C . 点评 (1)讨论周期函数的问题,可先讨论一个周期内的情况,然后将其推广;(2)解三角不等式,要注意三角函数图象的运用;(3)注意运用三角函数的单调性比较三角函数值的大小.例2 判断下列函数的奇偶性:(1)y=x x x cos 1cos sin +-; (2)y=.cos sin 1cos sin 1xx xx +--+ 分析 讨论函数的奇偶性,需首先考虑函数的定义域是否关于原点对称,然后考f(-x)是否等于f(x)或-f(x) .解 (1)定义域关于原点对称,分子上为奇函数的差,又因为1+cosx=2cos 2 x2,所以分母为偶函数,所以原函数是奇函数.(2)定义域不关于原点对称(如x=-π2,但x ≠π2),故不是奇函数,也不是偶函数.点评 将函数式化简变形,有利于判断函数的奇偶性.例3 求下列函数的最小正周期:(1)y=sin(2x -π6)sin(2x+ π3) ;(2)y= .)32cos(2cos )32sin(2sin ππ++++x x x x 分析 对形如y=Asin(ωx+φ)、y=Acos(ωx+φ)和y=Atan(ωx+φ)的函数,易求出其周期,所以需将原函数式进行化简.解 (1)y=sin(2x -π6)sin(2x+ π2-π6)= 12sin(4x -π3), 所以最小正周期为2π4 = π2 . (2)y=23)2(sin 21)2(cos 2cos 23)2(cos 21)2(sin 2sin ⨯-⨯+⨯+⨯+x x x x x x =x x x x 2sin 232cos 232cos 232sin 23-+ =).62tan(2tan 331332tan 2tan 312tan 3π+=-+=-+x x x x x ∴是小正周期为π2. 点评 求复杂函数的周期,往往需先化简,其化简的目标是转化成y=Asin(ωx+φ)+k 或y=Acos(ωx+φ) +k 或y=Atan(ωx+φ) +k 的形式(其中A 、ω、φ、k 为常数,ω≠0).例4 已知函数f(x)=5sinxcosx -53cos 2x+235 (x ∈R) . (1)求f(x)的单调增区间;(2)求f(x)图象的对称轴、对称中心.分析 函数表达式较复杂,需先化简.解 f(x)= 52sin2x -53³1+cos2x 2+235 =5sin(2x -π3). (1)由2k π-π2≤2x -π3≤2k π+π2,得[k π-π12 ,k π+5π12](k ∈Z )为f(x)的单调增区间.(2)令2x - π3=k π+π2,得x= k 2π+5π12 (k ∈Z ),则x= k 2π+5π12(k ∈Z )为函数y=f(x)图象的对称轴所在直线的方程,令2x -π3 =k π,得x=k 2π+π6(k ∈Z ),∴ y=f(x)图象的对称中心为点(k 2π+π6,0)(k ∈Z ). 点评 研究三角函数的性质,往往需先化简,以化成一个三角函数为目标;讨论y=Asin(ωx+φ)(ω>0)的单调区间,应将ωx+φ看成一个整体,设为t ,从而归结为讨论y=Asint 的单调性.【知能集成】讨论较复杂的三角函数的性质,往往需要将原函数式进行化简,其目标为转化成同一个角的同名三角函数问题.讨论三角函数的单调性,解三角不等式,要注意数形结合思想的运用.注意函数性质在解题中的运用:若一个函数为周期函数,则讨论其有关问题,可先研究在一个周期内的情形,然后再进行推广;若要比较两个角的三角函数值的大小,可考虑运用三角函数的单调性加以解决.【训练反馈】1.函数y=lg(2cosx -1)的定义域为 ( )A .{x |-π3<x <π3}B .{x |-π6<x <π6} C .{x |2k π-π3<x <2k π+π3,k ∈Z} D .{x |2k π-π6<x <2k π+π6,k ∈Z} 2.如果α、β∈(π2,π),且tan α<cot β,那么必有 ( ) A .α<β B . β<α C . α+β<3π2 D . α+β>3π23.若f(x)sinx 是周期为π的奇函数,则f(x)可以是 ( )A .sinxB . cosxC . sin2xD . cos2x4.下列命题中正确的是 ( )A .若α、β是第一象限角,且α>β,且sin α>sin βB .函数y=sinxcotx 的单调递增区间是(2k π-π2,2k π+π2),k ∈Z C .函数y=1-cos2x sin2x的最小正周期是2π D .函数y=sinxcos2φ-cosxsin2φ的图象关于y 轴对称,则φ=k π2+π4,k ∈Z 5.函数y=sin x 2+cos x 2在(-2π,2π)内的递增区间是 . 6.y=sin 6x+cos 6x 的周期为 .7.比较下列函数值的大小:(1)sin2,sin3,sin4;(2)cos 2θ,sin 2θ,tan 2θ(π4<θ<π2).8.设f(x)=sin(k 5x+π3) (k ≠0) . (1)写出f(x)的最大值M ,最小值m ,以及最小正周期T ;(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个M 与m .第6课 三角函数的图象与性质(二)【考点指津】了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的图象,理解参数A 、ω、φ的物理意义.掌握将函数图象进行对称变换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.【知识在线】1.将y=cosx 的图象作关于x 轴的对称变换,再将所得的图象向下平移1个单位,所得图象对应的函数是 ( )A .y=cosx+1B .y=cosx -1C .y=-cosx+1D .y=-cosx -12.函数f(x)=sin3x 图象的对称中心的坐标一定是 ( )A . (12k π,0), k ∈ZB .(13k π,0), k ∈Z C .(14k π,0), k ∈Z D .(k π,0),k ∈Z 3.函数y=cos(2x+π2)的图象的一个对称轴方程为 ( )A .x=--π2B .x=- π4C .x= π8D .x=π 4.为了得到函数y=4sin(3x+π4),x ∈R 的图象,只需把函数y=3sin(x+π4)的图象上所有点( ) A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的13倍,纵坐标不变 C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的13倍,横坐标不变. 5.要得到y=sin(2x - π3)的图象,只需将y=sin2x 的图象 ( )A .向左平移π3个单位B . 向右平移π3个单位 C .向左平移π6个单位 D . 向右平移π6个单位 【讲练平台】例1 函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式.分析 求函数的解析式,即求A 、ω、φ的值.A 与最大、最小值有关,易知A=2,ω与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T 2=3π.得 T=6π,所以ω=13.所以y=2sin(x 3+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3 +π6). 解略点评 y=Asin(ωx+φ)中的A 可由图象的最高点、最低点的纵坐标的确定,ω由周期的大小确定,φ的确定一般采用待定系数法,即找图像上特殊点坐标代入方程求解,也可由φ的几何意义(图象的左右平移的情况)等确定(请看下例).例2 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)型函数表示其解析式;(2)求这个函数关于直线x=2π对称的函数解析式. 解:(1)T= 13π3- π3 =4π.∴ω=2πT = 12 .又A=3,由图象可知 所给曲线是由y=3sin x 2沿x 轴向右平移 π3而得到的. ∴解析式为 y=3sin 12 (x -π3). (2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12 x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6). 点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用.例3 已知函数y=12cos 2x+ 3 2sinxcosx+1 (x ∈R). (1)当y 取得最大值时,求自变量x 的集合;(2)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?解 (1)y= 12²1+cos2x 2 + 3 2²12 sin2x +1= 12sin(2x+π6)+ 54. 当2x+π6 =2k π+π2 ,即x=k π+π6,k ∈Z 时,y max = 74. (2)由y=sinx 图象左移π6个单位,再将图象上各点横坐标缩短到原来的12(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12(横坐标不变),最后把图象向上平移 54个单位即可.思考 还有其他变换途径吗?若有,请叙述.点评 (1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化.【知能集成】已知三角函数y=Asin(ωx+φ)的图象,欲求其解析式,必须搞清A 、ω、φ和图象的哪些因素有关;y=sin ωx 和y=sin(ωx+φ)两图象间平移变换的方向和平移的单位数量极易搞错,解题时要倍加小心.【训练反馈】1.函数y= 12sin(2x+θ)的图象关于y 轴对称的充要条件是 ( ) A .θ=2k π+π2 B .θ=k π+π2C .θ=2k π+πD .θ=k π+π(k ∈Z) 2.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( )A .y=sin(-2x+π3 )B .y=sin(-2x -π3) C .y=sin(-2x+ 2π3 ) D . y=sin(-2x -2π3)3.右图是周期为2π的三角函数y=f(x)的图象,那么f(x)可以写成 ( )A .sin(1+x)B . sin(-1-x)C .sin(x -1)D . sin(1-x)4.y=tan(12x -π3)在一个周期内的图象是 ( )5.已知函数y=2cosx(0≤x ≤2π)的图象与直线y=2围成一个封闭的平面图形,则该封闭图形面积是 .6.将y=sin(3x - π6)的图象向(左、右) 平移 个单位可得y=sin(3x+π3)的图像. 7.已知函数y=Asin(ωx+φ),在同一个周期内,当x=π9时取得最大值12,当x=4π9时取得最小值- 12,若A >0,ω>0,|φ|<π2,求该函数的解析表达式.8.已知函数y= 3 sinx+cosx ,x ∈R .(1)当y 取得最大值时,求自变量x 的取值集合;(2)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?-B A C D9.如图:某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b .(1)求这段时间的最大温差; (2)写出这段曲线的函数解析式.第7课 三角函数的最值【考点指津】掌握基本三角函数y=sinx 和y=cosx 的最值,及取得最值的条件;掌握给定区间上三角函数的最值的求法;能运用三角恒等变形,将较复杂的三角函数的最值问题转化成一个角的一个三角函数的最值问题.【知识在线】1.已知(1)cos 2x=1.5 ;(2)sinx -cosx=2.5 ;(3)tanx+1tanx =2 ;(4)sin 3x =- π4.上述四个等式成立的是 ( )A .(1)(2)B .(2)(4)C .(3)(4)D .(1)(3)2.当x ∈R 时,函数y=2sin(2x+π12)的最大值为 ,最小值为 ,当x ∈〔-5π24, π24〕时函数y 的最大值为 ,最小值为 . 3.函数y=sinx - 3 cosx 的最大值为 ,最小值为 .4.函数y=cos 2x+sinx+1的值域为 .【讲练平台】例1 求函数f(x)=sin 2x+2sinxcosx+3cos 2x 的最大值,并求出此时x 的值. 分析 由于f (x )的表达式较复杂,需进行化简.解 y=sin 2x+cos 2x+sin2x+1+cos2x=sin2x+cos2x+2= 2 sin(2x+π4)+2 当2x+π4=2k π+π2, 即x=k π+π8 (k ∈Z)时,y max = 2 +2 .点评 要熟练掌握y=asinx+bcosx 类型的三角函数最值的求法,asinx+bcosx=a 2+b 2 sin (x+φ).例2 若θ∈[-π12, π12],求函数y=cos(π4+θ)+sin2θ的最小值. 分析 在函数表达式中,含有两个角和两个三角函数名称,若能化成含有一个角和一个三角函数名称的式子,则问题可得到简化.解 y=cos(π4+θ)-cos [2(θ+π4)]=cos(π4+θ)-[2cos 2(θ+π4)-1] =-2cos 2(θ+π4)+cos(π4+θ)+1 =-2[cos 2(θ+π4)-12cos(θ+π4)]+1 =-2[cos(θ+π4)-14]2+98. ∵θ∈[-π12, π12], ∴θ+π4∈[π6,π3]. ∴12≤cos(θ+π4)≤ 3 2, ∴y 最小值 = 3 -12 . 点评 (1)三角函数表达式转化成一个角的一个三角函数的形式(即f(sinx)或g(cosx)),是常见的转化目标;(2)形如y=f(sinx)或y=g(cosx)的最值,常运用sinx ,cosx 的有界性,通过换元转化成y=at 2+bt+c 在某区间上的最值问题;(3)对于y= Asin(ωx+φ)或y=Acos(ωx+φ)的最值的求法,应先求出t=ωx+φ的值域,然后再由y=Asint 和y=Acost 的单调性求出最值.例3 试求函数y=sinx+cosx+2sinxcosx+2的最大值和最小值.分析 由于sinx+cosx 与sinxcosx 可以相互表示,所以令sinx+cosx=t ,则原三角函数的最值问题转化成y=at 2+bt+c 在某区间上的最值问题.解 令t=sinx+cosx ,则y=t+t 2+1=(t+12)2+34,且t ∈[- 2 , 2 ], ∴y min =34 ,y max =3+ 2 .点评 注意sinx+cosx 与sinxcosx 的关系,运用换元法将原三角函数的最值问题转化成y=at 2+bt+c 在某个区间上的最值问题.【知能集成】较复杂的三角函数的最值问题,往往通过需要恒等变形,转化成形如y=f(sinx)或y=g(cosx)型或y= Asin(ωx+φ)+k 型的三角函数的最值问题,运用三角函数的有界性、单调性求三角函数的最值.用换元法解题,特别要注意sinx+tcosx 与sinxcosx 的关系,令sinx+cosx=t ,则sinxcosx=t 2-12. 【训练反馈】1.函数y =12+sinx+cosx 的最大值是 ( ) A . 2 2 -1 B . 2 2 +1 C . 1- 2 2 D . -1- 2 22.若2α+β=π,则y=cos β-6sin α的最大值和最小值分别为 ( )A .7,5B . 7,-112 C . 5,-112D . 7,-5 3.当0≤x ≤π2时,函数f(x)= sinx+1 cosx+1的 ( )A .最大值为2,最小值为12B .最大值为2,最小值为0C .最大值为2,最小值不存在D .最大值不存在,最小值为04.已知关于x 的方程cos 2x -sinx+a=0,若0<x <π2时方程有解,则a 的取值范围是( ) A .[-1,1] B .(-1,1) C .[-1,0] D .(-∞,-54) 5.要使sin α- 3 cos α= 4m -6 4-m有意义,则m 的取值范围是 . 6.若f(x)=2sin ωx(0<ω<1),在区间[0,π3]上的最大值为 2 ,则ω= . 三、解答题7.y=sinxcosx+sinx+cosx ,求x ∈[0, π3]时函数y 的最大值.8.已知函数f(x)=-sin 2x -asinx+b+1的最大值为0,最小值为-4,若实数a >0,求a ,b的值.9.已知函数f(x)=2cos 2x+ 3 sin2x+a ,若x ∈[0,π2],且|f(x)|<2,求a 的取值范围.第8课 解斜三角形【考点指津】掌握正弦定理、余弦定理,能根据条件,灵活选用正弦定理、余弦定理解斜三角形.能根据确定三角形的条件,三角形中边、角间的大小关系,确定解的个数.能运用解斜三角形的有关知识,解决简单的实际问题.【知识在线】1.△ABC 中,若sinAsinB <cosAcosB ,则△ABC 的形状为 .2.在△ABC 中,已知c=10,A=45°,C=30°,则b= .3.在△ABC 中,已知a= 2 ,b=2,∠B=45°,则∠A 等于 ( )A .30°B .60°C .60°或120°D .30°或150°4.若三角形三边之比为3∶5∶7,则这个三角形的最大内角为 ( )A .60°B . 90°C . 120°D . 150°5.货轮在海上以40千米/小时的速度由B 到C 航行,航向的方位角∠NBC=140°,A 处有灯塔,其方位角∠NBA=110°,在C 处观测灯塔A 的方位角∠N ′CA=35°,由B 到C需航行半小时,则C 到灯塔A 的距离是 ( )A .10 6 kmB .10 2 kmC .10( 6 - 2 ) kmD .10( 6 + 2 )km【讲练平台】 例1 在△ABC 中,已知a=3,c=3 3 ,∠A=30°,求∠C 及分析 已知两边及一边的对角,求另一边的对角,用正弦定理.注意已知两边和一边的对角所对应的三角形是不确定的,所以要讨论.解 ∵∠A=30°,a <c ,c ²sinA=3 3 2<a , ∴此题有两解. sinC=csinA a = 33³12 3 = 3 2, ∴∠C=60°,或∠C=120°. ∴当∠C=60°时,∠B=90°,b=a 2+b 2 =6.当∠C=120°时,∠B=30°,b=a=3.点评 已知两边和一边的对角的三角形是不确定的,解答时要注意讨论. 例2 在△ABC 中,已知acosA=bcosB ,判断△ABC 的形状.分析 欲判断△ABC 的形状,需将已知式变形.式中既含有边也含有角,直接变形难以进行,若将三角函数换成边,则可进行代数变形,或将边换成三角函数,则可进行三角变换.解 方法一:由余弦定理,得 a ²(b 2+c 2—a 22bc )=b ²(a 2+c 2—b 22ac ),∴a 2c 2-a 4-b 2c 2+b 4=0 .∴(a 2-b 2)(c 2-a 2-b 2)=0 .∴a 2-b 2=0,或c 2-a 2-b 2=0.∴a=b ,或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.方法二:由acosA=bcosB ,得 2RsinAcosA=2RsinBcosB .∴sin2A=sin2B . ∴2A=2B ,或2A=π-2B . ∴A=B ,或A+B=π2. ∴△ABC 为等腰三角形或直角三角形.点评 若已知式中既含有边又含有角,往往运用余弦定理或正弦定理,将角换成边或将边换成角,然后进行代数或三角恒等变换.例3 已知圆内接四边形ABCD 的边长分别为AB=2,BC=6,CD=DA=4,求四边形ABCD 的面积.分析 四边形ABCD 的面积等于△ABD 和△BCD 的 面积之和,由三角形面积公式及∠A+∠C=π可知,只需求出∠A 即可.所以,只需寻找∠A 的方程.解 连结BD ,则有四边形ABCD 的面积 S=S △ABD +S △CDB =12AB ²AD ²sinA+12BC ²CD ²sinC . ∵A+C=180°, ∴sinA=sinC .故S=12(2³4+6³4)sinA=16sinA . 在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ²ADcosA=20-16cosA .在△CDB 中,由余弦定理,得BD 2=CB 2+CD 2-2CB ²CD ²cosC=52-48cosC .∴20-16cosA=52-48cosC .∵cosC=-cosA , ∴64cosA=-32,cosA=- 12. ² AB CD O又∵0°<A <180°,∴A=120°. 故S=16sin120°=8 3 .点评 注意两个三角形的公用边在解题中的运用.例4 墙壁上一幅图画,上端距观察者水平视线b 下端距水平视线a 米,问观察者距墙壁多少米时,才能使观察者上、下视角最大. 分析 如图,使观察者上下视角最大,即使∠APB最大,所以需寻找∠APB 的目标函数.由于已知有关边长,所以考虑运用三角函数解之.解 设观察者距墙壁x 米的P 处观察,PC ⊥AB ,AC=b ,BC=a(0<a <b),则∠APB=θ为视角. y=tan θ=tan(∠APC -∠BPC)= tan ∠APC —tan ∠BPC 1+ tan ∠APC ²tan ∠BPC =xa xb x a x b ⋅+-1 =b —a x+ab x ≤b —a 2ab , 当且仅当x= ab x , 即x=ab 时,y 最大.由θ∈(0,π2)且y=tan θ在(0,π2)上为增函数,故当且仅当x=ab 时视角最大. 点评 注意运用直角三角形中三角函数的定义解决解三角形的有关问题.【知能集成】运用正弦定理或余弦定理,有时将有关式子转化成仅含有边的或仅含有角的式子,然后进行代数或三角恒等变形,问题往往可以得解.在解决较复杂的几何问题时,要注意两个三角形公用边的运用.【训练反馈】1.△ABC 中,tanA+tanB+ 3 = 3 tanAtanB ,sinAcosA= 3 4,则该三角形是 ( ) A .等边三角形 B .钝角三角形C .直角三角形D .等边三角形或直角三角形2.在△ABC 中,已知(b+c )∶(c+a)∶(a+b)=4∶5∶6,则此三角形的最大内角为 ( )A .120°B .150°C .60°D .90°3.若A 、B 是锐角△ABC 的两个内角,则点P (cosB -sinA ,sinB -cosA )在 ( )A .第一象限B .第二象限C .第三象限D .第四象限4.在△ABC 中,若sinA ∶sinB ∶sinC=5∶12∶13,则cosA= .5.在△ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C 的大小为 .6.已知a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积,若a=4,b=5,s=5 3 ,求c 的长度.7.在△ABC 中,sin 2A -sin 2B+sin 2C=sinAsinC ,试求角B 的大小.8.半圆O 的直径为2,A 为直径延长线上一点,且OA=2,B 为半圆上任意一点,以AB 为边向外作等边△ABC ,问点在什么位置时,四边形OACB 大面积.【单元检测】单元练习(三角函数)(总分100分,测试时间100分钟)一、选择题:本大题共12小时,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α满足sin2α<0,cos α-sin α<0,则α在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.若f(x)sinx 是周期为π的偶函数,则f(x)可以是 ( ) A .sin2x B . cosx C . sinx D . cox2x3.若sinx=m -3m+5,cosx=4-2 m m+5,且x ∈[π2,π],则m 的取值范围为 ( )A .3<m <9B . m=8C . m=0D . m=0或m=8 4.函数f(x)=log 13(sin2x+cos2x)的单调递减区间是 ( )A .(k π-π4,k π+π8)(k ∈Z)B .(k π-π8,k π+π8)(k ∈Z)C .(k π+π8,k π+3π8)(k ∈Z)D .(k π+π8,k π+ 5π8)(k ∈Z)5.在△ABC 中,若2cosBsinA=sinC ,则△ABC 的形状一定是 ( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形 6.△ABC 中,∠A=60°,b=1,其面积为 3 ,则a+b+csinA+sinB+sinC 等于 ( )A .3 3B .239 3C .26 3 3D .3927.已知函数y= 2 cos(ωx+φ)(0<φ<π2)在一个周期内的函数图象如图,则 ( )A .T=6π5,φ= π4B .T=3π2,φ=π4C .T=3π,φ=- π4D .T=3π,φ= π48.将函数y=f(x)sinx 的图象向右平移π4个单位后,再作关于x 轴的对称变换,得到函数y=1-2sin 2x 的图象,则f(x)可以是( ) A .cosx B .2cosx C .sinx D .2sinx9.函数f(x)=Msin(ωx+φ)(ω>0)在区间[a ,b ]上是增函数,且f(a)=-M ,f(b)=M ,则函数g(x)=Mcos(ωx+φ)在区间[a ,b ]上 ( ) A .是增函数 B .是减函数C .可以取得最大值MD .可以取得最小值-M10.在△ABC 中,∠C >90°,则tanA ²tanB 与1的关系适合 ( )A .tanA ²tanB >1 B .anA ²tanB <1C .tanA ²tanB=1D .不确定 11.设θ是第二象限角,则必有 ( A )A .cot θ2<tan θ2B .tan θ2<cot θ2C .sin θ2>cos θ2D .sin θ2<cos θ212.若sin α>tan α>cot α(-π2<α<π2},则α∈ ( )A .(-π2,- π4 )B .(-π4,0)C .(0,π4)D .(π4,π2)二、填空题:本大题共4小题,每小题3分,共12分,把答案填在题中横线上.13.sin390°+cos120°+sin225°的值是 . 14.sin39°-sin21°cos39°-cos21°= .15.已知sin θ+cos θ= 15,θ∈(0,π),cot θ的值是 .16.关于函数f(x)=4sin(2x+π3)(x ∈R),有下列命题:(1)y=f(x)的表达式可改写为y=4²cos(2x -π6);(2)y=f(x)是以2π为最小正周期的周期函数; (3)y=f(x)的图象关于点(-π6,0)对称; (4)y=f(x)的图象关于直线x=-π6对称. 其中正确的命题序号是 (注:把你认为正确的命题序号都填上).三、解答题:本大题共6小题,共52分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题8分)已知角α的顶点与直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点P (-1,2),求sin(2α+2π3)的值.18.(本小题8分)已知sin 22α+sin2αcos α-cos2α=1,α∈(0,π2),求sin α、tan α的值.19.(本小题9分)设f(x)=sin 2x -asin 2x2,求f(x)的最大值m .20.(本小题9分)已知α、β∈(0,π4),且3sin β=sin(2α+β),4tan α2 =1-tan 2α2,求α+β的值.。

相关文档
最新文档