吉林省重点高中高三数学寒假作业1 Word版 含答案

合集下载

[VIP专享]高三数学寒假作业(完整答案)

[VIP专享]高三数学寒假作业(完整答案)
6.已知数列{an}中 a1=1,a2=2,当整数 n>1 时,Sn+1+Sn-1=2(Sn+S1)都成立,则 S15 等于( )
答案 A
于是,该数列是周期为 6 的数列,a2 013=a3=a1=3.
a2
解析 由已知得 an+1=an-1,an+3=an+1= an ×an+1=an,故 an+6=an+3=an,
答案 C
D.729
C.243
B.81
A.27
则 a6=( )
4.已知等比数列{an}的前 n 项和为 Sn,若 S2n=4(a1+a3+a5+…+a2n-1),a1a2a3=27,
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM

吉林省重点高中高一数学寒假作业1 Word版 含答案

吉林省重点高中高一数学寒假作业1 Word版 含答案

高一数学寒假作业(综合)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共21小题,共120分,考试时间90分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求。

)1.棱长为2的正方体1111ABCD A BC D -的内切球...的表面积为( ) A.43π B .16π C .4π D .323π2.已知集合{}{}0,1,1,0,3A B a ==-+,且A B ⊆,则a =( )A. 1B. 0C. 2-D. 3-3.已知α、β是不重合的平面,a 、b 、c 是不重合的直线,给出下列命题: ①a a ααββ⊥⎫⇒⊥⎬⊂⎭;②//a b a c c b ⊥⎫⇒⎬⊥⎭;③//a b b a αα⎫⇒⊥⎬⊥⎭。

其中正确命题的个数是( )A .3B .2C .1D .04.已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩,若f(a)+f(2)=0,则实数a 的值等于 A .7- B .5- C .-1 D .-35.定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,2()21218f x x x =-+-,若函数()log (1)a y f x x =-+至少有三个零点,则a 的取值范围是( )A .)22,0( B .)33,0( C .)55,0( D.) 6.右图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于( )A .16+12πB .24πC .16+4πD .12π正视图侧视图7.已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则( )A.()01,B.(]02,C.()1,2D.(]12,8.已知集合A={x|x+2>0},集合B={-3,-2,0,2},那么(R A)∩B=A .B .{-3,-2}C .{-3}D .{-2,0,2}9.设函数()f x 为偶函数,且当0x ≥时,()14x f x ⎛⎫= ⎪⎝⎭,又函数()sin g x x x π=,则函数()()()h x f x g x =-在1,22⎡⎤-⎢⎥⎣⎦上的零点的个数为( )个。

高三数学寒假作业一(含答案)

高三数学寒假作业一(含答案)

高三数学寒假作业一一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程)1.已知集合}21{,=A ,{}321,,-=B ,则集合B A = ▲ . 2.若复数iiz +=12(i 是虚数单位),则z 的实部为 ▲ . 3.根据如图所示的伪代码,则输出I 的值为 ▲ .4.某校高一、高二、高三年级的学生人数分别为2:3:3,为调查该 校学生每天用于课外阅读的时间,现按照分层抽样的方法抽取若干人,若抽取的高一年级人数为45人,则抽取的样本容量为 ▲ . 5.函数24)1ln(x x y -++=的定义域为 ▲ .6.甲、乙两人依次从标有数字321,,的三张卡片中各抽取一张(不放回),则两人均未抽到标有数字3的卡片的概率为 ▲ .7.在平面直角坐标系xOy 中,若双曲线12222=-b y a x )00(>>b a ,的离心率为23,则该双曲线的渐近线方程为 ▲ . 8.已知函数()sin(2)3f x x π=+,若函数)20)((πϕϕ<<-=x f y 是偶函数,则=ϕ ▲ .9.已知数列{}n a 是公差为正数的等差数列,其前n 和为n S ,首项为1,若2262a a a ,,成等比数列,则10S = ▲ .10.某种圆柱形的饮料罐的容积为128π个单位,当它的底面半径和高的比值为 ▲ 时,可使得所用材料最省.11.在平面直角坐标系xOy 中,已知直线03:=-+m y x l ,点)0,3(A ,若满足7222=-PA PO 的点P 到直线l 的距离恒小于8,则实数m 的取值范围是 ▲ .12.如图,在ABC ∆中,23==AC AB ,,=2,E 为AC 的中点,AD 与BE 交于点F ,G 为EF 的中点,则=⋅ ▲ . 13.已知0,0a b >>,且31126a b a b++≤+, 则3aba b+的最大值为 ▲ .(第3题图)14.已知偶函数)(x f 满足)4()4(x f x f -=+,且当]4,0(∈x 时xe xx f )()(=,关于x 的不等式0)()(2>+x af x f 在区间]400400[,-上有且仅有400个整数解,则实数a 的取值范围是 ▲ . 二、解答题(本大题共6小题,共计90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分14分) 已知c b a ,,分别为ABC ∆三个内角A ,B ,C 的对边,且3tan 4A =. (1)若65a =,2b =,求边c 的长;(2)若()sin A B -=,求tan B 的值.16.(本小题满分14分)如图,在斜三棱柱111C B A ABC -中,已知ABC ∆为正三角形,D ,E 分别是AC ,1CC 的中点,平面⊥C C AA 11平面ABC ,11AC E A ⊥.(1)求证://DE 平面11C AB ;(2)求证:⊥E A 1平面BDE .如图,已知椭圆)0(12222>>=+b a b y a x 的焦点到相应准线的距离为3,离心率为21,过右焦点F 作两条互相垂直的弦CD AB ,,设CD AB ,的中点分别为N M ,.(1)求椭圆的标准方程;(2)若弦CD AB ,的斜率均存在,且OMF ∆和∆最大时,直线AB 的方程.如图,某湿地公园的鸟瞰图是一个直角梯形,其中:CD AB //,BC AB ⊥,075=∠DAB ,AD 长1千米,AB 长2千米.公园内有一个形状是扇形的天然湖泊DAE ,扇形DAE 以AD 长为半径,弧DE 为湖岸,其余部分为滩地,D B ,点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段BQ -线段QP -弧PD ,其中Q 在线段BC 上(异于线段端点),QP 与弧DE 相切于P 点(异于弧端点).根据市场行情,BQ ,QP段的建造费用是每千米10万元,湖岸段PD 的建造费用是每千米3)12(20+万元(步行道的宽度不计),设PAE ∠为θ弧度,观光步行道的建造费用为w 万元. (1)求步行道的建造费用w 关于θ的函数关系式,并求其定义域; (2)当θ为何值时,步行道的建造费用最低?已知函数x x x x f 23)(23+-=,R t tx x g ∈=,)(,xe x x=)(ϕ.(1)求函数)()(x x f y ϕ⋅=的单调增区间;(2)令)()()(x g x f x h -=,且函数)(x h 有三个彼此不相等的零点n m ,,0,其中n m <.①若n m 21=,求函数)(x h 在m x =处的切线方程; ②若对][n m x ,∈∀,t x h -≤16)(恒成立,求实数t 的取值范围.已知等差数列}{n a 的前n 项和为n S ,且满足203422=+=S S a ,,数列}{n b 是首项为2,公比为q )1(≠q 的等比数列. (1)求数列}{n a 的通项公式;(2)设正整数r t k ,,成等差数列,且r t k <<,若k r r t t k b a b a b a +=+=+,求实数q的最大值;(3)若数列}{n c 满足⎩⎨⎧=-==,,,,k n b k n a c k k n 212*∈N k ,其前n 项和为n T ,当3=q 时,是否存在正整数m ,使得122-m mT T 恰好是数列}{n c 中的项?若存在,求出m 的值;若不存在,说明理由.高三数学寒假作业一参考答案一、填空题1. {}3,2,1,1-2. 13. 104. 1205. ]2,1(-6. 137. x y 25±= 8. 512π 9. 145 10. 21 11. )3,9(- 12. 34-13. 19 14. 3122(3,]e e ----二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 解:(1)在ABC ∆中,由3tan 4A =可知(0,)2A π∈ 由22sin 3cos 4sin cos 1A A A A ⎧=⎪⎨⎪+=⎩解得3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩·……………………3分 由余弦定理,2222cos a b c bc A =+-得2226422255c c ⎛⎫=+-⋅⋅⋅ ⎪⎝⎭,即216640525c c -+=……………………6分 解得85c =……………………7分 (2)由(0,)2A π∈且(0,)B π∈,得(,)2A B ππ-∈- 又()sin 0A B -=>,则(0,)2A B π-∈,则()cos 0A B -> 所以()cos 10A B -==……………………10分 所以()sin()1tan cos()3A B A B A B --==- ……………………11分所以()31tan tan()143tan tan 311tan tan()3143A AB B A A B A A B ---=--===⎡⎤⎣⎦+⋅-+⋅………………14分 注:(2)中无角的范围扣1分。

高三数学寒假作业:(一)(Word版含答案)

高三数学寒假作业:(一)(Word版含答案)

高三数学寒假作业(一)一、选择题,每小题只有一项是正确的。

1.满足条件{1,2}{1,2,3}M =的所有集合M 的个数是 A.1B. 2C. 3D. 42.下列说法正确的是 ( ) A. 命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” B. “1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件 C. “p q ∧为真命题”是“q p ∨为真命题”的必要不充分条件 D. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题3.设函数()|sin(2)|3f x x π=+,则下列关于函数()f x 的说法中正确的是( ) A. ()f x 是偶函数B. ()f x 最小正周期为πC. ()f x 图象关于点(,0)6π-对称 D. ()f x 在区间7[,]312ππ上是增函数 4.实数5lg 24lg 81log 22723log 322++∙- 的值为( )5.函数()sin ,[,],22f x x x x =∈-12()()f x f x >若,则下列不等式一定成立的是( ) A .021>+x x B .2221x x > C .21x x > D .2221x x <6.已知等比数列{}n a 的首项,11=a 公比2=q ,则=+++1122212log log log a a a ( )A. 55B. 35C. 50D. 467.在等差数列{}n a 中,12012a =-,其前n 项和为12102012,2,n S a a S -=若则的值等于 A.2010-B.2011-C.2012-D.2013-8.在△ ABC 中,角 A 、B 、C 的对边分别为 a 、b 、c ,如果 cos(2)2sin sin 0B C A B ++<,那么三边长a 、b 、c 之间满足的关系是( )A .22ab c >B .222a b c +<C .22bc a >D .222b c a +<9.若点(4,2)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为( )A .2100x y +-=B .20x y -=C .280x y +-=D .260x y --=二、填空题10.已知复数(2)x yi -+ (,x y R ∈),则yx的最大值是 . 11.一根绳子长为6米,绳上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于2米的概率为 .12.曲线32y x x =-在点(1,-1)处的切线方程是______________. 13.已知函数11()||||f x x x x x=+--,关于x 的方程2()()0f x a f x b ++=(,a b R ∈)恰有6个不同实数解,则a 的取值范围是 .三、计算题14.(本小题满分14分)设对于任意的实数,x y ,函数()f x ,()g x 满足1(1)()3f x f x +=,且(0)3f = ()()2g x y g x y +=+,(5)13g =,*n N ∈(Ⅰ)求数列{()}f n 和{()}g n 的通项公式; (Ⅱ)设[()]2n n c g f n =,求数列{}n c 的前n 项和n S (Ⅲ)已知123lim03n n n -→∞+=,设()3n F n S n =-,是否存在整数m 和M 。

吉林省重点高中高三数学寒假作业10 Word版 含答案

吉林省重点高中高三数学寒假作业10 Word版 含答案

高三数学寒假作业(综合)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

)1. 若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥-≥5231y x x y x ,则y x z +=2的最大值为( )A .1B .2C .3D .42.如下框图,当126,9,x x ==8.5p =时,3x 等于( )A. 7B. 8C.10D.113.下列结论错误的是( )A .命题“若p ,则q ”与命题“若,q ⌝则p ⌝”互为逆否命题;B .命题:[0,1],1x p x e ∀∈≥,命题2:,10,q x R x x ∃∈++<则p q ∨为真;C .“若22,am bm <则a b <”的逆命题为真命题;D .若q p ∨为假命题,则p 、q 均为假命题.4. 满足X⊆}1{}5,4,3,2,1{的集合X 有 ( ) A . 15个B .16个C .18个D .31个5.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( )A.{}a |0a 6≤≤B.{}|2,a a ≤≥或a 4C.{}|0,6a a ≤≥或aD.{}|24a a ≤≤6.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .1y x =-B .2lg(4)y x =-C . ||e x y =D .cos y x =7.已知{n a }是首项为1的等比数列,n S 是{n a }的前n 项和,且369S S =。

则数列n 1a ⎧⎫⎨⎬⎩⎭的前5项和为( ) A.158或5 B.3116或5 C.3116 D.1588.已知⎪⎩⎪⎨⎧≤+->=)1(,2)24()1(,)(x x a x a x f x 是实数集上的单调递增函数,则实数a 的取值范围是( )A .),1(+∞ B.)8,4[ C.)8,4( D.)8,1(9. 已知函数)(x f y =定义域为),(ππ-,且函数)1(+=x f y 的图象关于直线1-=x 对称,当),0(π∈x 时,x x f x f ln sin )2()(ππ-'-=,(其中)(x f '是)(x f 的导函数),若0.3(3),(log 3)a f b f π==,31(log )9c f =,则c b a ,,的大小关系是( )A .c b a >>B .c a b >>C .a b c >>D .b a c >>10.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥11.若当x R ∈时,函数()x f x a =始终满足0()1f x <≤,则函数1log a y x =的图象大致为( )12.已知()y f x =为R 上的可导函数,当0x ≠时,()()'0f x f x x+>,则关于的函数()()1g x f x x=+的零点个数为( ) A.1B.2C.0D.0或 2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有五种颜色可选,则不同的染色方法有 种.14.下列四个命题:(1)函数()f x 在0x >时是增函数,0x <时也是增函数,所以()f x 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3)223y x x =--的递增区间为[)1,+∞;(4)1y x =+和y =表示相同函数.(5)若函数q px x x x f ++=||)(,当0,0>=q p 时,方程0)(=x f 有且只有一个实数根其中正确的命题是 .15.设二次函数()()24f x ax x c x R =-+∈的值域为[)0,+∞,则1919c a +++的最大值为 .16.某公司生产A .B .C 三种型号的轿车,产量分别是600辆,1200辆和1800辆,为检验产品质量.现从这三种型号的轿车中,用分层抽样的方法抽取n 辆作为样本进行检验,若B 型号轿车抽取了2辆,,则样本容量n=_________.三、解答题:17.(本小题满分12分)在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,11,AB AA =D 为1AA 的中点,BD 与1AB 交于点O ,CO ⊥侧面11ABB A .(I)证明:1BC AB ⊥;(Ⅱ)若OC OA =,求直线1C D 与平面ABC 所成角的正弦值.18. (本题满分12分)经过点()0,1F 且与直线1y =-相切的动圆的圆心轨迹为M .点A 、D 在轨迹M 上,且关于y 轴对称,过线段AD (两端点除外)上的任意一点作直线l ,使直线l 与轨迹M 在点D 处的切线平行,设直线l 与轨迹M 交于点B 、C .(1)求轨迹M 的方程;(2)证明:BAD CAD ∠=∠;(3)若点D 到直线AB ,且△ABC 的面积为20,求直线BC 的方程。

【高中数学】高三数学寒假作业参考答案

【高中数学】高三数学寒假作业参考答案

【高中数学】高三数学寒假作业参考答案高三数学寒假作业参考答案”,供大家参考!高三数学寒假作业参考答案答复1.【解析】因为,所以,2.【解析】。

3.【分析】根据问题的含义,f(-1)·f(1)<0,&4高二; (-a+2a+1)(a+2a+1)<0∴-1.4.【解析】函数周期为8,于是.5.【分析】原始方程移位后,构造函数f(x)=8-x-lgx。

因为f(7)>0和f(8)<0,k=76.【解析】设质点的平均速度为,则===-3δt-6。

7.【解析】(1)f(x+1)+f(x-1)以x+1,x-1为自变量,于是有∴1≤x≤3.因此,F(x+1)+F(x-1)的域是[1,3]8.【解析】由函数图像知:函数在区间上单调递减,函数在区间上单调递增,由知,于是二次函数的对称轴是,在区间内单调递减,所以。

9.【解析】10.【解析】11.【解析】由题中,若函数知,,又因为当时,于是只能取0,6,1,10这四个数字,代入求的;当时,求的也符合题意,于是.12.【分析】将被替换为并简化为构造一元二次方程,关于:方程有解,则,解得13.【解析】1或214.【解析】①③④15.【分析】16【分析】(1)函数f(x)是有意义的,需要解为-1∴定义域为{x-1(2)函数f(x)是一个奇数函数∵f(-x)=--log2=-+log2=-f(x),函数f(x)是一个奇数函数17.【解析】(1)由条件知恒成立和∵ 当x=2时,建立常数∴…………4分(2) ∧∧... 6分又恒成立,即恒成立(...)... 10分解出:,∴…………12分18.【分析】(1)将污染源a对C点的污染程度设为,污染源B对C点的污染程度设为,其中为比例系数,取4分从而点c处受污染程度.…………………………………………6分(2)因为,所以,。

8分,令,得,……………………………12分此时,已验证解决方案符合问题的含义所以,污染源b的污染强度的值为8.……………………………14分19.【分析】(1)方程,即变形,显然,已是该方程的根,从而欲原方程只有一解,即要求方程,只有一个解等于1,或者没有解,结合图形得.……………………4分(2)不平等代表恒常性,即(*)代表恒常性,①当时,(*)显然成立,此时;② 在那个时候,(*)可以转化为,因为在那个时候,,所以,故此时.通过合成① 和②, 得出实数的取值范围为8点(3)因为=…10分① 当时,从图表中可以看出,它在,且,经比较,此时在上的最大值为.② 当时,根据图表可以看出,它在,在,上递增,且,,经过比较,我们知道,最大值是③当时,结合图形可知在,上递减,增加,和,,经比较,知此时在上的最大值为.④ 当时,根据图表可以看出,它在,在,上递增,且,,经过比较,我们知道,最大值是当时,结合图形可知在上递减,在上递增,因此,上的最大值为综上所述,当时,在上的最大值为;此时,on的最大值为;当时,在上的最大值为0.………………………………………16分 20.【分析】(1)当时,。

高三数学寒假作业答案.doc

高三数学寒假作业答案.doc

高三数学寒假作业答案高一数学寒假作业1参考答案:一、1~5CABCB6~10CBBCC11~12BB二、13,14(1);(2){1,2,3}N;(3){1};(4)0;15-116或;;或.三、17.{0.-1,1};18.;19.(1)a2-4b=0(2)a=-4,b=320..高一数学寒假作业2参考答案:一.1~5CDBBD6~10CCCCA11~12BB二.13.(1,+∞)14.131516,三.17.略18、用定义证明即可。

f(x)的值为:,最小值为:19.解:⑴设任取且即在上为增函数.⑵20.解:在上为偶函数,在上单调递减在上为增函数又,由得解集为.高一数学寒假作业3参考答案一、选择题:1.B2.C3.C4.A5.C6.A7.A8.D9.A10.B11.B12.C二、填空题:13.14.1215.;16.4-a,三、解答题:17.略18.略19.解:(1)开口向下;对称轴为;顶点坐标为;(2)函数的值为1;无最小值;(3)函数在上是增加的,在上是减少的。

20.Ⅰ、Ⅱ、高一数学寒假作业4参考答案一、1~8CBCDAACC9-12BBCD二、13、[—,1]14、15、16、x>2或0三、17、(1)如图所示:(2)单调区间为,.(3)由图象可知:当时,函数取到最小值18.(1)函数的定义域为(—1,1)(2)当a>1时,x(0,1)当019.解:若a>1,则在区间[1,7]上的值为,最小值为,依题意,有,解得a=16;若0,值为,依题意,有,解得a=。

综上,得a=16或a=。

20、解:(1)在是单调增函数,(2)令,,原式变为:,,,当时,此时,,当时,此时,。

高一数学寒假作业5参考答案一、1~8CDBDADBB9~12BBCD13.19/614.15.16.17.解:要使原函数有意义,须使:解:要使原函数有意义,须使:即得所以,原函数的定义域是:所以,原函数的定义域是:(-1,7)(7,).(,1)(1,).18.(1)(-1,1)(2)(0,1)19.略20.解:令,因为0≤x≤2,所以,则y==( )因为二次函数的对称轴为t=3,所以函数y=在区间[1,3]上是减函数,在区间[3,4]上是增函数.∴当,即x=log3时当,即x=0时高一数学寒假作业6答案:一、选择题:1.D2.C3.D4.C5.A6.C7.D8.A9.C10.A11.D1.B二、填空题13.(-2,8),(4,1)14.[-1,1]15.(0,2/3)∪(1,+∞)16.[0.5,1)17.略18.略19.解:在上为偶函数,在上单调递减在上为增函数又,由得解集为.20.(1)或(2)当时,,从而可能是:.分别求解,得;高一数学寒假作业7参考答案一、选择题:1.B2.B3.D4.D5.B6.A7.B8.A9.D10.B11.D12.D二、填空题13.1415.16三、解答题:17.略18解:(1)(2)19.–2tanα20T=2×8=16=,=,A=设曲线与x轴交点中离原点较近的一个点的横坐标是,则2-=6-2即=-2∴=–=,y=sin( )当=2kл+,即x=16k+2时,y=当=2kл+,即x=16k+10时,y最小=–由图可知:增区间为[16k-6,16k+2],减区间为[16k+2,16k+10](k∈Z)。

高中数学吉林省吉林市重点高中2021-2022学年高三下学期寒假验收考试 数学(理)试题

高中数学吉林省吉林市重点高中2021-2022学年高三下学期寒假验收考试 数学(理)试题

第Ⅰ卷(共 60分)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合()(){}230A x x x =--≥,(){}ln 4B x y x ==-,则( )A .{}34x x ≤<B .{}23x x ≤<C .{2x x ≤或34}x ≤<D .{}4x x < 2.已知,m n ∈R ,且3i1i 1im n +=-+,其中i 是虚数单位,则i m n +等于( ) A .5 B 5 C 2 D .13. 已知命题p :*x N ∃∈,lg 0x <,q :x R ∀∈,cos 1≤x ,则下列命题是真命题的是( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨4.已知O 为坐标原点,点()3,1A -,若点(),M x y 为平面区域2,1,2,x y x y +≥⎧⎪≤⎨⎪≤⎩上的动点,则⋅OA OM 的取值范围为( )A .[]1,2-B .[]2,1--C .[]1,2D .[]22-,5.在平面直角坐标系xOy 中,若角α的顶点在坐标原点,始边在x 轴的正半轴上,且终边经过点()1,2P -,则()sin 1sin 2sin cos αααα+=+( )A .65-B .25-C .25D .656.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为6,且输出S 的值为125,则判断框内应该是( )2021-2022学年度高三寒假验收考试数学试题(理科)A .4k >?B .5k <?C .6k ≤?D .7k ≥?7.甲乙两位游客慕名来到北京旅游,准备分别从故宫、颐和园、圆明园和长城4个著名旅游景点中随机选择其中一个景点游玩,记事件A :甲和乙至少一人选择故宫,事件B :甲和乙选择的景点不同,则条件概率()P B A =( ) A .716B .78 C .37D .678.设P 为直线3x -4y +11=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( ). A .B .3C .D .29. 如图,在正四面体ABCD 中,E 是棱AC 的中点,F 在棱BD 上,且4BD FD =,则异面直线EF 与AB 所成的角的余弦值为( )A 3B 2C .12D .1310.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为)30(sin )3313(πωπ<≤⋅⎥⎦⎤⎢⎣⎡-=x x x y (其中记[]x 为不超过x 的最大整数),且过点,36P π⎛⎫⎪⎝⎭,若葫芦曲线上一点M 到y 轴的距离为176π,则点M 到x 轴的距离为( )A .12 B 3C .13D 311.已知双曲线22221x y a b -=(0a >,0b >)的左、右焦点分别为1F ,2F ,点A 的坐标为,02a ⎛⎫- ⎪⎝⎭,点P 是双曲线在第二象限的部分上一点,且1212∠=∠F PF F PA ,点Q 是线段2PF 的中点,且1F ,Q 关于直线PA 对称,则双曲线的离心率为( )A .3B .2C .32D 212.已知函数()3,1eln 34,1xx f x x x x x ⎧>⎪=⎨⎪-+≤⎩,若函数()21y f x ⎡⎤⎣⎦=+与()()42y a f x =-的图象恰有5个不同公共点,则实数a 的取值范围是( ) A .949,824⎡⎫⎪⎢⎣⎭ B .491,24⎛⎫ ⎪⎝⎭ C .91,8⎛⎤⎥⎝⎦D .9,8⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题5分,共20分.13.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若sin 3sin A C =,30B =︒,ABC 的面积为3,则ABC 的周长是______.14.已知两个单位向量a →,b →满足1a b →→-=,当a b λ→→-取最小值时,λ=______. 15.已知函数满足()()22f x f x +-=,若()()()()()2220192018202140401,f f f a b a b R -+-++=++∈.则的最大值为___________.16.已知数列{}n a 满足:101a <<,()1e 3e n n a a n a +=-,则下列说法正确的是___________.①数列{}n a 为递减数列 ②存在*N n ∈,便得0n a < ③存在*N n ∈,便得2n a >④存在*N n ∈,便得43n a >三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答。

高三数学寒假作业(1)及答案

高三数学寒假作业(1)及答案

一、选择题:本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{|22}A x x =-<<,2{|20}B x x x =-≤,则A B = ( )A .(0,2)B .(0,2]C .[0,2)D .[0,2]2.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员中位数分别是( ) A .19、13 B .13、19 C .20、18 D .18、203.已知向量)1,(),21,8(x x ==,其中1>x ,若)2(+∥,则x 的值为 ( ) A .0 B .2C .4D .84.已知函数2log (0)()2(0)xx x f x x >⎧=⎨≤⎩,若1()2f a =,则实数a = ( ) A .1-BC .1-D .1或5.直线20ax y a -+=与圆229x y +=的位置关系是( ) A .相离B .相交C .相切D .不确定6.在区间[0,1]上任取两个数a 、b ,则方程220x ax b ++=有实根的概率为 ( ) A .18B .14C .12D .347.已知a ∈R ,则“2a >”是“22a a >”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件甲 乙 7 9 8 0 7 8 5 5 7 9 1 1 1 3 3 4 6 2 2 0 2 3 1 0148.曲线y=2x-x 3在横坐标为-1的点处的切线为l ,则点P(3,2)到直线l 的距离为 ( ) A .227B .229 C .2211D .101099.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是A .130B .170C .210D .26010.设由正数组成的等比数列,公比q =2,且3030212=a a a ……·,则30963a a a a ……··等于A .102B .202C .162 二、填空题:本大题共7个小题,把答案填在题中横线上.11.已知复数i a a a a )6()32(22-++-+表示纯虚数,则实数a 的值等于 12.函数x x y 21-+=的值域是13.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则y x z 42+=的最小值为 . 14.已知αββαtan ,41tan ,31)tan(则==+的值为 。

高三数学寒假作业标准答案

高三数学寒假作业标准答案

高三数学寒假作业标准答案一、填空题(1)—8。

解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角。

= (2) (3) 。

解析:或(舍),易得 = ;另可用配凑法。

(4) 。

解析:假设对恒成立,那么,所以, .由,( ),可知,即,所以,代入,得,由,得 (5)6解析:由题意知为函数周期的正整数倍,所以,故的最小值等于6.(6) (7) (8)2解析: (9) (10) 。

解析:由得,即,∴ ,∵ ,故 (11) 。

解析:由图可知:,由图知: (12) 。

解析:设三角形的三边长分别为,最大角为,由余弦定理得,那么,所以三边长为6,10,14.△ABC的面积为 . (13) (14) 。

解析:由正弦定理得 ,又 , ,其中,是第一象限角。

由于,且是第一象限角,因此有最大值。

15.解:(1)因为 ,所以………………6分(2)因为为等边三角形,所以 ,所以……………………10分同理, ,故点的坐标为……………14分16.解:(1)∵ = .-------------2分∵ ∴ ,∴函数的最大值和最小值分别为1,—1.---------------4分(2)令得 ,∵ ∴ 或∴ -----------------------6分由,且得∴ ----------------------8分∴ ------------------------------------10分∴ .---------------------------------13分17. 解:(1)由正弦定理得因为所以 (2)由(I)知于是取最大值2.综上所述,的最大值为2,此时 18.解:(1)由正弦定理得所以 = ,即 ,即有 ,即 ,所以 =2.(2)由得,∵ ,∴ ∴ ,又得 19.解: (1) …………2分…………5分因为,所以…………6分(2) 由(Ⅰ)知:时, 由正弦函数图象可知,当时取得最大值所以, …………8分由余弦定理,∴ ∴ ………10分从而…………12分20. 解:(1)由条件,得,. ………………………………………2分∵ ,∴ .………………………………………………4分∴ 曲线段FBC的解析式为 .当x=0时, .又CD= ,∴ .…7分(2)由(1),可知 .又易知当“矩形草坪”的面积最大时,点P在弧DE上,故……8分设,,“矩形草坪”的面积为= .…………………13分∵ ,故取得最大值.……………15分。

吉林省重点高中高三数学寒假作业7 Word版 含答案

吉林省重点高中高三数学寒假作业7 Word版 含答案

高三数学寒假作业(综合)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

)1. 已知集合}0)3(|{<-=x x x P ,}2|||{<=x x Q ,则=Q P ( )A .)0,2(-B .)2,0(C .)3,2(D .)3,2(-2.已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为 ( )(A )12 (B )(C )13 (D3.如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是( )4.抛物线24(0)y ax a =<的焦点坐标是 ( )(A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a )5. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是 ( )(A )(315,315-)(B )(315,0) (C )(0,315-) (D )(1,315--) 6.已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使 (B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使 (D) tan 1p x R x ⌝∀∉≠:,使 7.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )(A )(1,3) (B )(]1,3 (C )()3,+∞ (D )[)3,+∞8.函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞9.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i=1,2,…,8),其回归直线方程是a x y +=31 :,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a 的值是( ) A.161 B. 81 C. 41 D. 2110. 设曲线220x y -=与抛物线24y x =-的准线围成的三角形区域(包含边界)为D ,),(y x P 为D 内的一个动点,则目标函数52+-=y x z 的最大值为( )A .4B .5C .8D .1211.已知βα,是两个不同的平面,m ,n 是两条不同的直线,给出下列命题:①若βαβα⊥⊂⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ⊂⊂; ③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交;④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂其中正确的命题是 ( )A .①②B .②③C .③④D .①④12.设3212a=log 2b=log 3c=log 5,,,则( )A .c ﹤b ﹤aB .a ﹤c ﹤b C. c ﹤a ﹤b .D .b ﹤c ﹤a第Ⅱ卷(非选择题,共90分) 二、填空题(本大题共4个小题,每小题5分,共20分)13.已知实数x 、y 满足不等式组5260x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则34z x y =+的最大值是________。

吉林省高三寒假作业 数学1含答案

吉林省高三寒假作业 数学1含答案

高三数学寒假作业(概率)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

)1.用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体 “第一次被抽到的概率”“第二次被抽到的概率”“在整个抽样过程中被抽到”的概率分别是()A.111,,666B.111,,656C.111,,663D.111,,6332.方程x2+x+n=0(n∈(0,1))有实根的概率为().3.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样③简单随机抽样4.如图(图4)是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.84,4.84 B.84,1.6C.85,4 D.85,1.65.在2012年中央电视台举办的“我要上春晚”大赛上,七位评委为某选手打出的分数的茎叶统计图如右图,数据的平均数和中位数分别为( )A .84,84B .84,86C .85,86D .85,876.有以下四个命题:①从1002个学生中选取一个容量为20的样本,用系统抽样的方法进行抽取时先随机剔除2人,再将余下的1000名学生分成20段进行抽取,则在整个抽样过程中,余下的1000名学生中每个学生被抽到的概率为1500; ②线性回归直线方程ˆˆˆy bx a =+必过点(,x y );③某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16, 14,12,则该组数据的众数为17,中位数为15;④某初中有270名学生,其中一年级108人,二、三年级各81人,用分层抽样的方法从中抽取10人参加某项调查时,将学生按一、二、三年级依次统一编号为1,2,…270.则分层抽样不可能抽得如下结果:30,57,84,111,138,165,192,219,246,270. 以上命题正确的是( )A .①②③B .②③C .②③④D .①②③④7.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ). A .103B .107C .53D .528.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是( )A.一样大 B.蓝白区域大C.红黄区域大 D.由指针转动圈数决定9.在棱长为2的正方体1111ABCD A B C D-中,点O为底面ABCD的中心,在正方体1111ABCD A B C D-内随机取一点P,则点P到点O的距离大于1的概率为()A.12πB.112π-C.6πD.16π-10.已知直线y=x+b,b∈[-2,3],则直线在y轴上的截距大于1的概率为()A.15B.25C.35D.4511.已知椭圆的面积公式为S abπ=(其中a为椭圆的长半轴长,b为椭圆的短半轴长),在如图(图5)所示矩形框内随机选取400个点,估计这400个点中属于阴影部分的点约有()A.100个B. 200个C. 300个D. 400个12.已知直线y=x+b,b∈[-2,3],则直线在y轴上的截距大于1的概率为().第Ⅱ卷(非选择题,共90分)y-112-2 xO二、填空题(本大题共4个小题,每小题5分,共20分)13.袋中共有6个除了颜色外完全相同的球,其中有1个红球, 2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于_____________.14.A ,B ,C ,D 四人并排站成一排,如果B 必须站在A 的右边,(A ,B 可以不相邻),那么不同的排法有 种.15.如图,靶子由三个半径分别为R 、2R 、3R 的同心圆组成,如果你向靶子随机地掷一个飞镖,命中小圆M 1区域,圆环M 2区域、M 3区域的概率分别为P 1,P 2,P 3,则P 1∶P 2∶P 3=____ __.16.某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1000名学生在该次自主招生水平测试中不低于70分的学生数是 .三、解答题:17. (本题满分10分)有5根木棍,它们的长度分别为1,3,5,7,9(单位:cm ),从中任取3根首尾相接,它们能构成一个三角形的概率是多少?O405060708090 100 0.0050.010 0.015 0.020 0.025 0.030 0.035 频率 组距18. (本题满分12分)已知 2123,,,,n x i i x x x x s y ax b =+的平均数为x 其方差为,(i=1,2,3,… n ),2123,,,,n y y y y y y s 的平均数为其方差为。

吉林省重点高中高三数学寒假作业3 Word版 含答案

吉林省重点高中高三数学寒假作业3 Word版 含答案

高三数学寒假作业(立体几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

)1.一个正方体和一个圆柱等高,并且侧面积相等,则正方体与圆柱的体积比是( )A .4:πB .π:4C .1:1D .4:2π2.若α//l ,a α⊂,则l 与a 的位置关系一定是( )A 、平行B 、相交C 、异面D 、 l 与α没有公共点3.,一个内角为60︒的菱形,俯视图为正方形,那么这个几何体的表面积为A.8 D.44.右图是由哪个平面图形旋转得到的( )5.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是( )(A )若,,//m n m n αβ⊥⊥,则//αβ(B )若//,//,//,m n αβαβ则//m n(C )若,//,//m n αβαβ⊥,则m n ⊥(D )若//,//,//,m n m n αβ则//αβ6.某三棱锥的三视图如图所示,该三棱锥的表面积是A .28+B .30+C .56+D .60+7.如图①,利用斜二侧画法得到水平放置的△ABC 的直观图△A'B'C',其中A'B'//y' 轴,B' C'//x ’轴.若A'B'=B'C'=3,设△ABC 的面积为S ,△A'B'C 的面积为S',记S=kS',执行如图②的框图,则输出T 的值(A) 12(B)10(C) 9(D) 68.空间几何体的三视图如图所示,则该几何体的表面积是( )A .624+ B.64+ C.224+ D.24+9.若平面βα,满足l P P l ∉∈=⊥,,,αβαβα ,则下列命题中的假命题...为( ) A .过点P 垂直于平面α的直线平行于平面βB .过点P 垂直于平面β的直线在平面α内C .在平面α内过点P 垂直于l 的直线垂直于平面βD .过点P 垂直于l 的直线在平面α内10.60︒的菱形,俯视图为正方形,那么这个几何体的表面积为A. 8 D.411.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .313cm 3 C .343cm D .383cm12.正方体1111ABCD A B C D 的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( )C.12 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.一几何体的三视图如右图所示,则该几何体的体积为 .14.一个正三棱柱的三视图如右图所示,求这个正三棱柱的表面积__________15.一个正三棱柱的三视图如图所示,则该棱柱的全面积为16.在下列命题中,所有正确命题的序号是 .①三点确定一个平面;②两个不同的平面分别经过两条平行直线,则这两个平面互相平行;③过高的中点且平行于底面的平面截一棱锥,把棱锥分成上下两部分的体积之比为1:7;④平行圆锥轴的截面是一个等腰三角形.三、解答题:17. (本题满分12分)如图,在三棱锥P ABC -中,2PA PB AB ===,3BC =,90=∠ABC °,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点.(1)求证:DE ∥平面PBC ;(2)求证:AB PE ⊥;(3)求二面角A PB E --的大小.18. (本题满分10分)如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥(Ⅰ)证明:平面1ABC ⊥平面11A BC ; (Ⅱ)设D 是11AC 上的点,且1//A B 平面1B CD ,求11:A D DC 的值.19.(本小题满分12分)如图①,四边形ABCD 为等腰梯形,1,3AE DC AB AE DC ⊥==,F 为EC 的中点,现将△DAE 沿AE 翻折到△PAE 的位置,如图②,且平面PAE ⊥平面ABCE. (I 求证:AF ⊥平面PBE;(Ⅱ)求三棱锥A-PBC 与E-BPF 的体积之比.20.(本小题满分12分)如图①,四边形ABCD 为等腰梯形,1,3AE DC AB AE DC ⊥==,F为EC的中点,现将△DAE沿AE翻折到△PAE的位置,如图②,且平面PAE⊥平面ABCE. (I求证:平面PAF⊥平面PBE;(Ⅱ)求直线PF与平面PBC所成角的正弦值.21.(本题12分)如图,三棱柱ABC—A1B1C1中, 侧棱与底面垂直,AB=BC=2AA1,∠ABC=90°,M是BC 中点.(Ⅰ)求证:A1B∥平面AMC1;(Ⅱ)求直线CC1与平面AMC1所成角的正弦值;(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由.P-中,底面为直角梯形,22. (本题满分12分)如图,在四棱锥ABCDAD BC BAD︒∠=,PA垂直于底面ABCD,N //,902===,2=MPA,BCABADPC,的中点.分别为PBPB⊥;(1)求证:DM(2)求点B到平面PAC的距离.试卷答案1.A2.B略3.D4.A5.C略6.B7.A略8.A9.D略10.D11.C。

高三数学寒假作业本答案

高三数学寒假作业本答案

2021届高三数学寒假作业本答案查字典数学网整理了2021届高三数学寒假作业本答案,希望为你我都带来好运,祝大家新年快乐,万事如意!一、选择题,每小题只有一项是正确的。

1.已知集合,则( RA)B = ( )A. B. C. D.2.R上的奇函数满足,当时,,则A. B. C. D.3.如果对于正数有,那么 ( )A.1B.10C.D.4.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列,则q=()A. 1或﹣B. 1C. ﹣D. ﹣25.已知2弧度的圆心角所对的弦长为2,那么,这个圆心角所对的弧长是 ()A.2B.sin 2C.2sin 1D.2sin 16.将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. y=sin(2x﹣ )B. y=sin(2x﹣ )C. y=sin( x﹣ )D. y=sin( x﹣ )7.如图,菱形的边长为, , 为的中点,若为菱形内任意一点(含边界),则的最大值为A. B. C. D.98.设是正数,且,则A. B.C. D.9.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的最大值为( )A. B. C. D.二、填空题10.若某程序框图如图所示,则该程序运行后输出的值是.11.已知,为平面,m,n为直线,下列命题:①若m∥n,n∥,则m∥ ②若m,m,则∥③若=n,m∥,m∥,则m∥n; ④若,m,n,则mn.其中是真命题的有▲ .(填写所有正确命题的序号)12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=2A,cosA= ,b=5,则△ABC的面积为.13.(5分)(2021陕西)设f(x)= 若f(f(1))=1,则a= .三、计算题14.(本题满分14分)本大题共有2小题,第1小题7分,第2小题7分。

高一数学必修3寒假作业全册练习及答案汇编

高一数学必修3寒假作业全册练习及答案汇编

高中数学必修3寒假必做作业目录1、1、1 算法的概念练习一1、1、2 程序框图练习一1、1、2 程序框图练习二1、2、1 输入语句、输出语句和赋值语句练习二1、2、1输入语句、输出语句和赋值语句练习一1、2、2 条件语句练习一1、2、2 条件语句练习二1、2、3 循环语句练习一1、2、3 循环语句练习一7671、3 算法案例练习一1、3 算法案例练习二第一章算法初步练习一第一章算法初步练习二2、1、1随机抽样练习一2、1、1随机抽样练习二2、1、2系统抽样练习一2、1、2系统抽样练习二2、1、3分层抽样练习一2、1、3分层抽样练习二2、3、1变量之间的相关关系练习二2、3、2两个变量的线性相关练习一2、3、2两个变量的线性相关练习二2.2.1用样本的频率分布估计总体分布练习一2.2.1用样本的频率分布估计总体分布练习二2.3.1变量之间的相关关系练习一第二章统计练习一第二章统计练习二3、1、3概率的基本性质练习一3、1、3概率的基本性质练习二3、2、2用样本的数字特征估计总体的数字特征练习一3、2、2用样本的数字特征估计总体的数字特征练习二3.1.1随机事件的概率练习一3.1.1随机事件的概率练习二3.1.2概率的意义练习一3.1.2概率的意义练习二3.2.1古典概型练习一3.2.1古典概型练习二3.2.2随机数的产生练习一3.2.2随机数的产生练习二3.3.1几何概型练习一3.3.1几何概型练习二3.3.2均匀随机数的产生练习一3.3.2均匀随机数的产生练习二第三章概率练习一第三章概率练习二1、1、1 算法的概念练习一一、选择题1、看下面的四段话,其中不是解决问题的算法的是( ) A 、从济南到北京旅游,先坐火车,再坐飞机抵达B 、解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C 、方程x 2-1=0有两个实根D 、求1+2+3+4+5的值,先计算1+2=3,再由于3+3=6,6+4=10,10+5=15,最终结果为152、下面的问题中必须用条件结构才能实现的个数是( ) (1)已知三角形三边长,求三角形的面积; (2)求方程ax+b=0(a,b 为常数)的根; (3)求三个实数a,b,c 中的最大者; (4)求1+2+3+…+100的值。

吉林省高一数学寒假作业1

吉林省高一数学寒假作业1

高一数学寒假作业(综合)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共21小题,共120分,考试时间90分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求。

)1.棱长为2的正方体1111ABCD A BC D -的内切球...的表面积为( ) A.43πB .16πC .4πD .323π2.已知集合{}{}0,1,1,0,3A B a ==-+,且A B ⊆,则a =( ) A. 1 B. 0 C. 2- D. 3-3.已知α、β是不重合的平面,a 、b 、c 是不重合的直线,给出下列命题:①a a ααββ⊥⎫⇒⊥⎬⊂⎭;②//a b a c c b ⊥⎫⇒⎬⊥⎭;③//a b b a αα⎫⇒⊥⎬⊥⎭。

其中正确命题的个数是( ) A .3 B .2C .1D .04.已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩,若f(a)+f(2)=0,则实数a 的值等于A .7-B .5-C .-1D .-35.定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,2()21218f x x x =-+-,若函数()log (1)a y f x x =-+至少有三个零点,则a 的取值范围是( )A .)22,0(B .)33,0(C .)55,0( D.)6.右图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于( ) A .16+12π B .24π C .16+4πD .12π正视图侧视图7.已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则( )A.()01,B.(]02,C.()1,2D.(]12,8.已知集合A={x|x+2>0},集合B={-3,-2,0,2},那么(R A)∩B= A .B .{-3,-2}C .{-3}D .{-2,0,2}9.设函数()f x 为偶函数,且当0x ≥时,()14xf x ⎛⎫= ⎪⎝⎭,又函数()sin g x x x π=,则函数()()()h x f x g x =-在1,22⎡⎤-⎢⎥⎣⎦上的零点的个数为( )个。

吉林省高二数学寒假作业1

吉林省高二数学寒假作业1

高二数学寒假作业(立体几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

)1.已知某一几何体的主视图与左视图如图所示,则在下列图形中,可以是该几何体的俯视图的图形为 ( )A.①②③⑤B.②③④⑤C.①②④⑤D.①②③④2.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为( )3.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为()A. B. C. D.4.一个水平放置的四边形的斜二测直观图是一个底角为450,,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( ) A .22+ B .21+ C .)22(21+ D .)21(21+5.—空间几何体的三视图如图所示,则此空间几何体的直观图为( )6.已知一个三棱柱,其底面是正三角形,且侧棱与底面垂直,一个体积为43π的球体与棱柱的所有面均相切,那么这个三棱柱的表面积是( ) A .36 B .312 C . 318 D . 3247. 若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是A 、 l ∥αB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点8.关于异面直线的定义,下列说法中正确的是( )A. 平面内的一条直线和这平面外的一条直线B. 分别在不同平面内的两条直线C. 不在同一个平面内的两条直线D. 不同在任何一个平面内的两条直线.9.下面几何体是由( )旋转得到的。

10.已知四棱锥ABCD P -的三视图如下,则四棱锥ABCD P -的全面积为( ) A .52+ B .53+ C .5D .411.已知A(4,1,3),B(2,3,1),C(3,7,-5),点P(x,-1,3)在平面ABC 内,则x 的值为( ) A. –4 B. 1 C. 10 D. 1112.若点A (42+λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为:( )A .1,-4,9B .2,-5,-8C .-3,-5,8D .2,5,8第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.某几何体的三视图如图所示,则该几何体的体积是_________.14.设m 、n,是两条不同的直线,βα、是两个不同的平面,给出下列四个命题,①若,m n m α⊥⊥,α⊄n ,则α//n ; ②若,,,m n m n αβαβα⊥=⊥⊥则;③若αβαβ//,,m m 则⊥⊥;④若βαβα⊥⊥⊥⊥则,,,n m n m .其中正确命题的序号 ________(把所有正确命题的序号都写上)15.一个几何体的三视图如右图所示,则其体积为 .16.二面角α-l -β为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =a ,BD =2a ,则CD 的长为____________.三、解答题:17.(本小题满分10分)已知四棱锥P ABCD -的底面是直角梯形,1//,,12AB CD AD AB AD AB CD ⊥===,PD ABCD ⊥面,PD =E 是PC 的中点,(1)证明://BE PAD 面; (2)求二面角E BD C --的大小.18.(本题满分12分)一个棱柱的直观图和三视图(主视图和俯视图是正方形,左视图是等腰直角三角形)如图所示,其中M 、N 分别是AB 、AC 的中点,G 是DF 上的一动点. (Ⅰ)求证:;AC GN ⊥(Ⅱ)当FG=GD 时,证明AG //平面FMC.19.(本小题满分12分)如图,在正方体''''ABCD A B C D -中,,E F 分别为,'AB AA 的中点.求证:CE ,DF',DA 三条直线交于一点. aaa俯视图左视图主视图GEFNMDCBA20.(本小题满分12分)已知四棱锥P ABCD -的底面是直角梯形,1//,,12AB CD AD AB AD AB CD ⊥===,PD ABCD ⊥面,PD =E 是PC 的中点(1)证明://BE PAD 面; (2)求二面角E BD C --的大小.21. (本题满分12分)如图,已知⊥PA ⊙O 所在的平面,AB 是⊙O 的直径,2=AB ,C 是⊙O 上一点,且BC AC =,PC 与⊙O 所在的平面成︒45角,E 是PC 中点.F 为PB 中点.(1)求证: ABC EF 面//; (2)求证:PAC EF 面⊥; (3)求三棱锥B-PAC 的体积.22.(本题满分12分)如图,在底面为直角梯形的四棱锥P- ABCD中, AD∥BC,∠ABC =90°, PA ⊥平面ABCD, PA=3,AD=2,AB=,BC=6.(1)求证:BD⊥平面PAC;(2)求二面角P-BD-A的大小.试卷答案1.D2.C3.A4.A5.A6.C7.D8.D9.B 10.B 11.D 12.B 13.14.15.4 16. 17.证明:取PD 的中点为,F 连接,EF,21,//CD EF CD EF =------------2分又,,//CD 21AB //AB EF AB EF CD AB =∴=,且 BE //,ABEF AF ∴∴是平行四边形,---------4分BE PAD AF PAD BE //PAD.⊄⊂∴又面,面,面----------------------6分(2)建系:以DA ,DB ,DP 分别为x 轴、y 轴、z 轴,),2,0,0(),0,2,0(),0,1,1(P C B则E -------------------7分(1,1,0),(DB BE ==-分 (,,)n x y z =设平面EDB 的法向量为00x y x z +=⎧⎪⎨-+=⎪⎩(,)(1,n x x x ∴=-=- ---------------------- -------10分令 x=1,则(1,n ∴=-又因为ABCD (0,0,1),m =平面的法向量为,22=二面角C BD E --为.450 ------------------12分18.解 (Ⅰ)由三视图可知面ABCD , CDFE 是边长为的正方形。

2023年高三数学寒假作业01(Word含答案解析)

2023年高三数学寒假作业01(Word含答案解析)

2023年高三寒假作业一(时间:45分钟分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项填在答题卡的相应位置)1.已知集合Q={x|x2-2x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数为()A.8B.9C.15D.162.已知复数z=i2020+m i2021(i为虚数单位),m∈R,若|z|=√2,则m=()A.1B.-1C.±1D.03.已知a=20.1,b=log0.20.3,c=ln 0.9,则()A.a>b>cB.b>a>cC.a>c>bD.c>b>a4.已知{a n}是等差数列,且a2+1是a1和a4的等差中项,则{a n}的公差为()A.1B.2C.-2D.-15.某产品生产厂家的市场部在对4家商场进行调研时,获得该产品的售价x(单位:元)和销售量y(单位:百个)之间的四组数据如下表:售价x 4 a5.5 6销售量y12 11 10 9用最小二乘法求得销售量y与售价x之间的线性回归方程为y=-1.4x+17.5,则表中实数a的值为()A.4B.4.5C.4.6D.4.7(b2+c2),则△ABC的三个6.在△ABC中,内角A,B,C的对边分别为a,b,c,已知△ABC的面积S=14内角的大小为()A.A=B=C=60°B.A=90°,B=C=45°C.A=120°,B=C=30°D.A=90°,B=30°,C=60°7.函数f(x)=x的部分图像大致是()cosx-1A B C D图X2-18.秤漏是南北朝时期发明的一种特殊类型的漏刻,它通过漏水的重量和体积来计算时间,即“漏水一斤,秤重一斤,时经一刻”(一斤水对应一“古刻”,相当于14.4分钟),计时的精度还可以随着秤的精度的提高而提高.如图X2-2所示的程序框图为该秤漏的一个计时过程,若输出的t 的值为43.2,则判断框中可填入 ( )图X2-2A .i ≤7?B .i ≥7?C .i ≥9?D .i ≤9?9.已知抛物线y=14x 2上的动点P 到直线l :y=-3的距离为d ,A 点坐标为(2,0),则|PA|+d 的最小值为 ( ) A .4B .2+√5C .2√5D .3+√510.如图X2-3,网格纸上小正方形的边长为1,粗线是某几何体的三视图,则该几何体的各个面中最大面积为 ( )图X2-3A .6B .√22C .3√2D .√1311.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”为:设x ∈R,用[x ]表示不超过x 的最大整数,则y=[x ]称为高斯函数,也称取整函数.如:[-2.1]=-3,[3.1]=3.已知f (x )=3x -21+3x+1,则函数y=[f (x )]的值域为 ( )A .{0,-3}B .{0,-1}C .{0,-1,-2}D .{1,0,-1,-2}12.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点,双曲线C 的右支上一点Q 满足|OQ|=|OF 1|(O 为坐标原点),直线F 1Q 与该双曲线的左支交于P 点,且P 恰好为线段F 1Q 上靠近F 1的三等分点,则双曲线C 的渐近线方程为( )A .y=±12xB .y=±2xC .y=±√2xD .y=±√22x二、填空题(本大题共4小题,每小题5分,共20分) 13.函数f (x )=2cos x+sin x 的最大值为 .14.已知向量a=(1,2),b=(-3,4),c=(λ,-1).若(a-c )⊥(a-b ),则λ= .15.如图X2-4,在矩形ABCD 中,AB=√3BC ,分别以点A ,B 为圆心,以BC 的长度为半径在该矩形内作四分之一圆.若在矩形ABCD 中随机取一点M ,则点M 与A ,B 间的距离均小于BC 的长度的概率为 .图X2-4 图X2-516.如图X2-5,在棱长为2的正方体中,点M ,N 分别在棱AB ,BC 上,且AM=BN=1,P 在棱AA 1上,平面α为过M ,N ,P 三点的平面,则下列说法正确的是 .(填序号)①存在无数个点P ,使平面α截正方体所得的截面为五边形; ②当A 1P=1时,平面α截正方体所得截面的面积为3√3; ③只有一个点P ,使平面α截正方体所得的截面为四边形; ④当平面α与CC 1相交于点H 时,PM ,HN ,BB 1三条直线交于一点.答案1.A [解析] 由不等式x 2-2x ≤0,解得0≤x ≤2,即Q={x|0≤x ≤2,x ∈N}={0,1,2},由P ⊆Q 可得满足条件的集合P 的个数为23=8.故选A .2.C [解析] 由z=(i 2)1010+m i (i 2)1010=1+m i,得|z|=√m 2+1=√2,则m=±1,故选C .3.A [解析] ∵a=20.1>20=1,0=log 0.21<b=log 0.20.3<log 0.20.2=1,c=ln 0.9<ln 1=0,∴a>b>c ,故选A .4.B [解析] 设等差数列{a n }的公差为d.由已知条件,得a 1+a 4=2(a 2+1),即a 1+(a 1+3d )=2(a 1+d+1),解得d=2.故选B .5.B [解析] 由表中数据可知,x =14×(4+a+5.5+6)=a+15.54,y =14×(12+11+10+9)=10.5.∵回归直线y =-1.4x+17.5恒过样本点的中心(x ,y ),∴10.5=-1.4×a+15.54+17.5,解得a=4.5. 故选B .6.B [解析] 因为b 2+c 2≥2bc ,所以S=14(b 2+c 2)≥12bc (当且仅当b=c 时取等号).又△ABC 的面积S=12bc sin A ,所以12bc sin A ≥12bc ,即sin A ≥1,所以sin A=1,因为A 为三角形内角,所以A=90°.又b=c ,所以A=90°,B=C=45°.故选B .7.D [解析] 由cos x ≠1得x ≠2k π,k ∈Z,则x ≠0,排除C;f (-x )=-xcosx -1=-f (x ),则函数f (x )是奇函数,其图像关于原点对称,排除B;当0<x<π2时,cos x-1<0,则f (x )<0,排除A .故选D .8.B [解析] 初始值L=0,t=0,i=1,进入循环,L=1,t=14.4,i=3;L=2,t=28.8,i=5;L=3,t=43.2,i=7.若要输出t=43.2,则需满足判断条件,从而跳出循环,对照各选项可知,可填入i ≥7?. 故选B . 9.B [解析] 由题可得抛物线的焦点为F (0,1),准线方程为y=-1,过点P 作准线的垂线,垂足为E ,连接PF ,可得动点P 到直线l :y=-3的距离d=|PE|+2=|PF|+2,又|PF|+|PA|≥|FA|=√5,所以|PA|+d=|PA|+|PF|+2≥√5+2,即|PA|+d 的最小值为2+√5.故选B . 10.B [解析] 该几何体的直观图为三棱锥A-BCD ,如图所示.故S △ACD =12×3×√22+22=3√2,S △BCD =12×2×3=3,S △ABC =12×2×√22+32=√13,S △ABD =12×2√2×√(√13)2-(√2)2=√22,故选B .11.C [解析] f (x )=3x -21+3x+1=3x +13-733x+1+1=13-73(3x+1+1),显然3x+1+1>1,则73(3x+1+1)∈0,73,所以f (x )的值域是-2,13.当-2<f (x )<-1时,[f (x )]=-2,当-1≤f (x )<0时,[f (x )]=-1,当0≤f (x )<13时,[f (x )]=0,所以所求值域为{-2,-1,0}.故选C .12.B [解析] 连接QF 2,PF 2,依题意可得|OQ|=|OF 1|=|OF 2|=c ,所以∠OF 1Q=∠OQF 1,∠OF 2Q=∠OQF 2,因为∠OF 1Q+∠OQF 1+∠OF 2Q+∠OQF 2=π,所以2(∠OQF 1+∠OQF 2)=π,所以∠OQF 1+∠OQF 2=π2,即∠F 1QF 2=π2,所以QF 1⊥QF 2.设|PF 1|=t ,则|PQ|=2t ,|QF 1|=3t ,由|QF 1|-|QF 2|=2a 得|QF 2|=3t-2a ,由|PF 2|-|PF 1|=2a 得|PF 2|=t+2a ,在Rt △PQF 2中,由|PQ|2+|QF 2|2=|PF 2|2得4t 2+(3t-2a )2=(t+2a )2,可得t=43a ,在Rt △F 1QF 2中,由|QF 1|2+|QF 2|2=|F 1F 2|2得9t 2+(3t-2a )2=4c 2,将t=43a 代入,得16a 2+4a 2=4c 2,即c 2=5a 2,又c 2=a 2+b 2,所以a 2+b 2=5a 2,即b 2=4a 2,所以ba =2,所以双曲线C 的渐近线方程为y=±2x. 13.√5 [解析] 因为f (x )=2cos x+sin x=√5sin(x+φ)(其中tan φ=2),所以f (x )max =√5.14.-12 [解析] 由题知a-c=(1-λ,3),a-b=(4,-2),∴(a-c )·(a-b )=(1-λ)×4+3×(-2)=-4λ-2=0,解得λ=-12. 15.√3π18-14 [解析] 当点M 与A ,B 间的距离均小于BC 的长度时,点M 在如图所示的阴影区域内部(不含边界).设两圆弧的交点为E ,过E 作EF ⊥AB ,连接AE.假设BC=2,则AB=√3BC=2√3,在Rt △AEF 中,∵AF=√3,AE=2,EF=1,∴∠EAF=π6,∴S 阴影=2×12×π6×22-12×√3×1=2π3-√3,∴所求概率P=2π3-√32×2√3=√3π18-14.16.①②④[解析] 由题设可得M,N分别为棱AB,BC的中点.当0<AP<2时,如图(1),直线MN3分别交DA,DC的延长线于T,S,连接TP并延长交DD1于G,连接GS交CC1于H,则平面α截正方体所得的截面为五边形,故①正确;当A1P=1时,如图(2),此时平面α截正方体所得的截面为正六边形,其边长为√2,故截面的面积×(√2)2=3√3,故②正确;为6×√34当点P与A重合或点P与A1重合时,如图(3),平面α截正方体所得的截面均为四边形,故③错误;如图(4),在平面α内,设PM∩HN=S,则S∈PM,而PM⊂平面A1B1BA,故S∈平面A1B1BA,同理S ∈平面C1B1BC,又平面A1B1BA∩平面C1B1BC=BB1,所以S∈BB1,即PM,HN,BB1三条直线交于一点,故④正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学寒假作业(概率)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

)1.用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体 “第一次被抽到的概率”“第二次被抽到的概率”“在整个抽样过程中被抽到”的概率分别是()A.111,,666B.111,,656C.111,,663D.111,,6332.方程x2+x+n=0(n∈(0,1))有实根的概率为( ).3.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样③简单随机抽样4.如图(图4)是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.84,4.84 B.84,1.6C.85,4 D.85,1.65.在2012年中央电视台举办的“我要上春晚”大赛上,七位评委为某选手打出的分数的茎叶统计图如右图,数据的平均数和中位数分别为( )A .84,84B .84,86C .85,86D .85,876.有以下四个命题:①从1002个学生中选取一个容量为20的样本,用系统抽样的方法进行抽取时先随机剔除2人,再将余下的1000名学生分成20段进行抽取,则在整个抽样过程中,余下的1000名学生中每个学生被抽到的概率为1500; ②线性回归直线方程ˆˆˆy bx a =+必过点(,x y );③某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16, 14,12,则该组数据的众数为17,中位数为15;④某初中有270名学生,其中一年级108人,二、三年级各81人,用分层抽样的方法从中抽取10人参加某项调查时,将学生按一、二、三年级依次统一编号为1,2,…270.则分层抽样不可能抽得如下结果:30,57,84,111,138,165,192,219,246,270. 以上命题正确的是( )A .①②③B .②③C .②③④D .①②③④7.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103 B .107 C .53 D .528.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是( )A .一样大B .蓝白区域大C .红黄区域大D .由指针转动圈数决定9.在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A .12π B .112π- C .6π D .16π-10.已知直线y =x +b ,b ∈[-2,3],则直线在y 轴上的截距大于1的概率为( ) A.15 B.25 C.35 D.4511.已知椭圆的面积公式为S ab π=(其中a 为椭圆的长半轴长,b 为椭圆的短半轴长), 在如图(图5)所示矩形框内随机选取400个点,估计这400个点中属于阴影部分的 点约有( )A.100个B. 200个C. 300个D. 400个12.已知直线y =x +b ,b ∈[-2,3],则直线在y 轴上的截距大于1的概率为( ).第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.袋中共有6个除了颜色外完全相同的球,其中有1个红球, 2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于_____________.14.A ,B ,C ,D 四人并排站成一排,如果B 必须站在A 的右边,(A ,B 可以不相邻),那么不同的排法有 种.15.如图,靶子由三个半径分别为R 、2R 、3R 的同心圆组成,如果你向靶子随机地掷一个飞镖,命中小圆M 1区域,圆环M 2区域、M 3区域的概率分别为P 1,P 2,P 3,则P 1∶P 2∶P 3=____ __.16.某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1000名学生在该次自主招生水平测试中不低于70分的学生数是 .三、解答题:17. (本题满分10分)有5根木棍,它们的长度分别为1,3,5,7,9(单位:cm ),从中任取3根首尾相接,它们能构成一个三角形的概率是多少?18. (本题满分12分)已知 2123,,,,n x i i x x x x s y ax b =+ 的平均数为x 其方差为,(i=1,2,0.0.0.0.0.0.0.3,… n),2123,,,,n y y y y y y s 的平均数为其方差为。

求证:()()22212y x y ax bs a s =+=⨯19. (本题满分12分)一个盒子中装有5张相同的卡片,每张卡片上写有一个数字,数字分别是1,2,3,4,5,现从盒子中随机抽取卡片。

(1)若从盒子中有放回的抽取3次卡片,每次抽取一张,求恰有两次取到卡片的数字为偶数的概率;(2)从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当抽到记有奇数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X 的概率分布列和数学期望。

20.(本小题满分12分)某幼儿园在“六·一儿童节”开展了一次亲子活动,此次活动由宝宝和父母之一(后面以家长代称)共同完成,幼儿园提供了两种游戏方案:方案一 宝宝和家长同时各抛掷一枚质地均匀的正方体骰子(六个面的点数分别是1,2,3,4,5,6),宝宝所得点数记为x ,家长所得点数记为y ;方案二 宝宝和家长同时按下自己手中一个计算器的按钮(此计算器只能产生区间[1,6]的随机实数),宝宝的计算器产生的随机实数记为m ,家长的计算器产生的随机实数记为n . (Ⅰ) 在方案一中,若12x y +=,则奖励宝宝一朵小红花,求抛掷一次后宝宝得到一朵小红花的概率;(Ⅱ)在方案二中,若2m n >,则奖励宝宝一本兴趣读物,求按下一次按钮后宝宝得到一本兴趣读物的概率.21. (本题满分12分)某学校要用鲜花布置花圃中A ,B ,C ,D ,E 五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花。

现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择。

(1)当A 、D 区域同时用红色鲜花时,求布置花圃的不同方法的种数;(2)求恰有两个区域用红色鲜花的概率;ξ为花圃中用红色鲜花布置的区域的个数,求随机变量ξ的分布列及其数学期望(3)记Eξ。

22.(本题满分12分)现有4个同学去看电影,他们坐在了同一排,且一排有6个座位.问:(Ⅰ)所有可能的坐法有多少种?(Ⅱ)此4人中甲,乙两人相邻的坐法有多少种?(Ⅲ)所有空位不相邻的坐法有多少种?(结果均用数字作答)试卷答案1.C2.C3.A4.D5.B6.C7.D8.B9.B10.B11.C12.B 13.14.12 15.16.600 17.共有(1,3,5)、(1,3,7)、(1,3,9)、(1,5,7)、(1,5,9)、(1,7,9)、 (3,5,7)、(3,5,9)、(3,7,9)、(5,7,9)10种搭配方法,符合条件的有(3,5,7)、(3,5,9)、(3,7,9)、(5,7,9)4种, 故所求概率为52104p ==略18.证明:(1) 由已知有:()12,1,2,3,,n i i x x x x y ax b i n n+++==+= ()()()()121211n n y y y y ax b ax b ax b n n =+++=++++++⎡⎤⎣⎦ 121n x x x a nb ax b n n +++=⨯+⨯=+ax b =+故 y 成立…… …… …… …… …… …… 6分(2) ()()()222122n x x x x x x xs n -+-++-=()()()222122n y y y y y y y s n -+-++-=()()()()22212()()n ax b ax b ax b ax b ax b ax b n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦= ()()()222212n a x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦ 22x a s =⨯ 即 22y x s a s =⨯ 成立…… …… …… …… …… 14分19.解:(1)依题意:每次取到偶数的概率为25, 设A 表示事件“有放回的抽取3次卡片,每次抽取一张,恰有两次取到卡片的数字为偶数” 则2232236()()(1)55125P A C =-=; ················· 5分 (2)依题意:1,2,3X =, 则3(1)5P X ==,323(2)5410P X ⨯===⨯, 231(3)P X ⨯===,所以X 的分布列为: 所以,()122410102E X =⨯+⨯+⨯= 10分 略20.。

相关文档
最新文档