chapter2-3镜像法 2015-10-08
物联网专业毕业设计
物联网专业毕业设计篇一:物联网、通信、信息工程专业毕业论文参考题目信息工程专业毕业论文选题题材。
篇二:物联网技术与应用毕业设计(论文)物联网技术与应用毕业设计(论文)题目:姓名:学号:专业:指导教师:XX 年 5 月 6 日物联网的技术与应用目录摘要 (1)第一章物联网简介及发展历程 (2)1.1 什么是物联网 (2)1.2 物联网的发展历程 (3)1.3 物联网的网络架构 (5)第二章物联网关键技术 (6)2.1 RFID技术 (6)2.2 传感器技术 (7)2.3 纳米技术················································· (9)2.4 智能嵌入(Embedded Intelligence)技术 (10)第三章物联网的典型应用 (11)3.1 智能交通 (11)3.2 智能医疗 (13)3.3 智能物流 (15)3.4 智能家居··················································· 16第四章物联网发展存在的问题 (19)4.1网络信息安全 (19)4.2缺乏应用的统一标准 (19)4.3亟待掌握核心技术 (19)4.4商业模式尚未成熟 (19)4.5管理平台的建设 (20)第五章我国物联网发展的前景展望················································· (21)5.1物联网列入国家发展战略政府高度重视 (21)5.2物联网在高校的发展 (21)5.3十大城市“十二五”规划全面布局物联网.....................................................22 参考文献. (23)摘要物联网作为一种新的网络形式,相关理论研究和实践应用正在探1物联网的技术与应用索过程中。
第三章Chapter3-线搜索方法
2
f (x + tp)p,
(4)
Search Directions for Line Search Methods
Consider the Taylor’s theorem, which tells us that for any search direction p and step-length parameter α, we have 1 f (xk + αp) = f (xk ) + αp T fk + p T 2
Search Directions for Line Search Methods
Consider the second-order Taylor series approximation to f (xk + p), which is 1 f (xk + p) ≈ fk + p T fk + p T 2 fk p ≡ mk (p). 2
Lingfeng NIU, FEDS Chapter III 7/77
Search Directions for Line Search Methods
The steepest descent direction − fk is the most obvious choice for search direction for a line search method. The line search method which moves along pk = − fk at every step is called steepest descent method. It can choose the step length αk in a variety of ways.
第9讲 镜像法
P
r
a
d'
R' q' d
R
q
——导体球镜像电荷
第9讲 镜像法
三、导体球面的镜像
1、点电荷位于接地导体球面外
接地导体球边界静电问题 球外的电位函数为
P
r
a
d'
R' q' d
R
q
a q 1 2 2 4π r d 2rd cos d r 2 (a 2 d )2 2r (a 2 d ) cos
镜像法五无限大介质分界平面的镜像1点电荷与无限大电介质分界平面的镜像介质1的镜像电荷镜像法五无限大介质分界平面的镜像1点电荷与无限大电介质分界平面的镜像点电荷对电介质平面分界面的镜像电荷对位于无限大平表面介质分界面附近且平行于分界面的无限长线电荷单位长度带其镜像电荷为镜像法五无限大介质分界平面的镜像2线电流与无限大磁介质分界平面的镜像线电流与磁介质分界平面磁介质1的镜像线电流空间中的磁场由线电流和磁化电流共同产生
点电荷在导体面上的感应电荷电量与镜像电荷电量相等。
第9讲 镜像法
二、平面导体界面的镜像
1、点电荷对无限大接地导体平面的镜像
思考
• 无限大导体平板不接地,有何影响? • 有限大接地导体平板问题,可否用镜像法求解?
q q
h
h
第9讲 镜像法
二、平面导体界面的镜像
2、无限长线电荷对无限大接地导体平面的镜像
q′
非均匀感应电荷产生的电位很难求解,可以
用等效电荷产生的电位替代。
第9讲 镜像法 问题的提出 几个实例:
接地导体球附近点电荷产生的电位
等效电荷
q′
q
用等效电荷代替非 均匀感应电荷
镜像法
Q 1 Q F =− e =− e =− e 2 z 2 z 2 z 4πε0 (2a) 4πε0r 16πε0a
机动 目录 上页 下页 返回 结束
Q
2
2. 真空中有一半径 0的接地导体球,距球心 a > R0 真空中有一半径R 的接地导体球, 处有一点电荷 Q,求空间各点电势。 ,求空间各点电势。 解:(1)分析: )分析: 导体球接地故球的电 因导体球接地故球的电 势为零。 势为零。根据镜象法原 假想电荷应在球内。 则假想电荷应在球内。 因空间只有两个点电荷 两个点电荷, 因空间只有两个点电荷, 应具有轴对称, 场应具有轴对称,故假 想电荷应在线上, 想电荷应在线上,即极 轴上。 轴上。
ϕ2 = ϕ +
Q′′
4πε0R 4πε0R
机动 目录 上页 下页 返回 结束
+
Q0
所受到的 (6)导体球不接地而带自由电荷 Q0 时 Q 所受到的 ) 作用力可以看作 作用力可以看作 Q0 与 Q′及位于球心处的等效电荷 Q′′的作用力之和。 的作用力之和。
2 3 2 2 ′′) ′ Q(Q0 + Q QQ 1 QQ0 Q R0 (2a − R0 ) F= + = [ 2 − 3 2 ] 2 2 2 2 4πε0 a 4πε0 (a − b) 4πε0a a (a − R0 )
ϕ1 = ϕ +
Q′′ 4πε0R
等效电荷一般是一个点电荷组或 一个带电体系, 一个带电体系,而不一定就是一 个点电荷。 个点电荷。
(5)若导体球不接地,且带上自由电荷 Q0 ,导体上总电 若导体球不接地, 此时要保持导体为等势体, 荷为 Q ,此时要保持导体为等势体,Q 也应均匀分布在 0 0 球面上。 球面上。
镜像法
九镜像法用镜像法某些看来棘手的问题很容易地得到解决。
它们是唯一性定理的典型应用之例。
镜像法法的实质是把实际上分片均匀媒质看成是均匀的,并在所研究的场域边界外的适当地点用虚设的较简单的电荷分布来代替实际边界上复杂的电荷分布(即导体表面的感应电荷或介质分界面的极化电荷)。
根据唯一性定理,只要虚设的电荷分布与边界内的实际电荷一起所产生的电场能满足给定的边界条件,这个结果就是正确的。
镜像法最简单的例子是:接地无限大导体平面上方一个点电荷的电场,见图1—28(a)。
显然,只要在导体平面的下方与点电荷q对称的点(—d,0,0)处放置一点电荷(-q),并把无限大导体平板撤去,整个空间充满介电常数为ε的电介质,在平板上半空间内。
故任意点(x,y,z)的电位为(1-77)这里的(—q)相当于(十q)对导体板的“镜像”,故称为镜像法,它代替了分布在导体平板表面上的感应电荷的作用。
用镜像法解题时要注意适用区域。
这里,解(1—77)式适用区域为导体平面上半空间内。
下半空间内实际上不存在电场。
还有几种其它类型的镜像问题。
这里先来研究一个导体球面的镜像问题。
如图1—29所示,在半径为R的接地导体球外,距球心为d处有一点电荷q。
根据问题的对称性,可设镜像电荷(—q`)放在球心O与点电荷q的联线上,且距球心为b。
虽然有(1-78)于是,球外任意点P的电位为(1-79)由此可知,点电荷附近接地导体球的影响,可用位于距球心b处的镜像电荷(—q`)来表示。
也即(—q`)代替金属球面上感应电荷的作用。
镜像法对点电荷在双层介质引起的电场的应用。
如图1—30所示,平面分界面S的左、右半空间分别充满介电常数为与的均匀介质,在左半空间距S为d处有一点电荷q,求空间的电场。
设左半空间电位为,右半空间电位为这里使用这样的镜像系统:即认为左半空间的场由原来电荷q和在像点的像电荷q`所产生(这时介电常数的介质布满整个空间);又认为右半空间的场由位于原来点电荷q处的像电荷q``单独产生(这时介电常数为的介质布满整个空间)。
waters质谱masslynx软件使用说明
Copyright Notice
Micromass UK Limited believes that the information in this publication is accurate. However the information is subject to change without notice and should not be construed as a contractual undertaking by Micromass UK Limited. Despite the care that has been given to the preparation of this publication, Micromass UK Limited accepts no responsibility for any loss or any other matter that may arise from any error or inaccuracy that may inadvertently have been included. Copyright 1993-2002 Micromass Ltd. All Rights Reserved. No part of this publication may be copied without the express written permission of Micromass UK Limited.
Page ii
MassLynx NT Users Guide
Contents
MassLynx NT User’s Guide............................................................................
EQ情商-心理学Psycholog英文版记忆和情绪 精品
▪ Long-Term Memory
▪ the relatively permanent and limitless storehouse of the memory system
Implicit (nondeclarative) Without conscious
recall
Skills-motor and cognitive
Dispositionsclassical and
operant conditioning
effects
Retrieval: Getting Information Out
▪ activation, often unconsciously, of particular associations in memory
Forgetting
▪ Forgetting as encoding failure
▪ Information never enters the long-term memory
▪ Working Memory
▪ focuses more on the processing of briefly stored information
Memory
▪ Short-Term Memory
▪ activated memory that holds a few items briefly
▪ as on a multiple-choice test
Retrieval
▪ Relearning
▪ memory measure that assesses the amount of time saved when learning material a second time
镜像法-高中物理竞赛讲义
与
是相似三角形,即
,于是球外任意一点的电位为
(4.4.3.6)
采用球坐标,取原点为球心 O 点,z 轴与 轴重合,则球外任一点
处
有
(4.4.3.7)
这样可求得电场 的分量为
(4.4.3.8)
r=a 时球面上的感应电荷密度1)
(1)点电荷对不接地、净电荷为零的导体球的镜像。 (2)点电荷对不接地、净电荷不为零的导体球的镜像。 (3)接地球形空腔内电荷的镜像
《镜像法》4,15
平行导线间单位长度电容: (4.4.2.10)
其中
小天线的镜像
与地面的小天线,长度为 l ,离地高度为 h 。 用位于地面下方 h 处的镜像小天线代替地面上的感应电荷,边界条件 维持不变。 与自由空间的天线比较,当天线离平面很近时,若天线与平面平行, 辐射功率为零,若天线与平面垂直,辐射功率增强。若天线与平面倾斜放置,则 辐射功率的变化与倾斜角度有关。具体辐射功率的计算请参看天线辐射(超链), 此处仅给出思路和结论。
点电荷对相交接地平面的镜像
条件:两相交接地平面夹角为 镜像电荷:2n-1 个。
,n=1,2,3…
若两相交接地平面夹角不满足上述条件,则镜像电荷为无
穷多个。
点电荷对介质平面的镜像
图 4.4.5 点电荷对相交接地地面 的镜像
1 区和 2 区为不同介质,求解时要分区域考虑。
求解区 1 的场:在区 2 置镜像电荷 。求解区 2 的场:在区 1 置镜
像
与地面平行的均匀双线传输线, 半径为 a,离地高度为 h,导线间距离为 d,导线一带正电荷+ ,导线二带负电荷-
。
用位于地面下方 h 处的镜像双 导线代替地面上的感应电荷,边界条件维
马赛克方法第二章读后感
马赛克方法第二章读后感英文回答:Chapter 2: Patterns of Mosaic.In Chapter 2 of "The Mosaic Method," Ervin Laszlo explores the fundamental patterns that underlie the human experience and the world around us. These patterns, which are common to both the microcosm and the macrocosm, provide a framework for understanding the interconnectedness and unity of all things.One of the key patterns discussed in the chapter isthat of emergence. Emergence describes the process by which new and more complex structures and phenomena arise out of simpler, more basic ones. This pattern is evident in the evolution of life, the formation of societies, and the development of human consciousness.Another important pattern is that of self-organization.Self-organization refers to the ability of systems to spontaneously organize themselves into coherent and functional structures. This pattern is evident in the formation of physical crystals, the emergence of biological organisms, and the development of human societies.Laszlo further explores the patterns of resonance and entrainment. Resonance refers to the tendency of systems to synchronize their frequencies with each other, while entrainment refers to the process by which one system influences the frequency of another. These patterns play a crucial role in the formation of biological rhythms, the development of language, and the evolution of cultural traditions.Finally, Chapter 2 discusses the pattern of fractals. Fractals are geometric patterns that repeat themselves at different scales, creating a sense of interconnectedness and self-similarity throughout the universe. This pattern is evident in the branching of trees, the structure of galaxies, and the distribution of matter in the cosmos.By understanding these fundamental patterns, we gain a deeper appreciation for the interconnectedness and unity of all things. We recognize that the human experience is not isolated or separate, but rather part of a larger cosmic tapestry. This understanding can lead to a profound senseof awe, wonder, and reverence for the world around us.中文回答:马赛克方法第二章,模式。
镜像法及其利用
镜像法在静电场中,如果在所考虑的区域内没有自由电荷分布时,可用拉普拉斯方程求解场分布;如果在所考虑的区域内有自由电荷分布时,可用泊松方程求解场分布。
如果在所考虑的区域内只有一个或者几个点电荷,区域边界是导体或介质界面时,一般情况下,直接求解这类问题比较困难,通常可采用一种特殊方法—镜象法来求解这类问题。
镜像法是直接建立在唯一性定理基础上的一种求解静电场问题的方法。
适用于解决导体或介质边界前存在点源或线源的一些特殊问题。
镜像法的特点是不直接求解电位函数所满足的泊松或拉普拉斯方程,而是在所求区域外用简单的镜像电荷代替边界面上的感应电荷或极化电荷。
根据唯一性定理,如果引入镜像电荷后,原求解区域所满足的泊松或拉普拉斯方程和边界条件不变,该问题的解就是原问题的解。
下面我们举例说明。
1导体平面的镜像例.1 在无限大的接地导电平面上方处有一个点电荷,如图3.2.1所示,求导电平板h q 上方空间的电位分布。
解 建立直角坐标系。
此电场问题的待求场区为;场区的源是电量为位于0z >q 点的点电荷,边界为面,由于导电面延伸到无限远,其边界条件为面上电(0,0,)P h xy xy 位为零。
导电平板上场区的电位是由点电荷以及导电平面上的感应电荷产生的,但感应电荷是未知的,因此,无法直接利用感应电荷进行计算。
现在考虑另一种情况,空间中有两个点电荷和,分别位于和点q q -(0,0,)P h ,使得面的电位为零,如图3.2.2。
这种情况,对于的空间区域,电(0,0,)P h '-xy 0z >荷分布与边界条件都与前一种情况相同,根据唯一性定理,这两种情况区域的电位0z >是相同的。
也就是说,可以通过后一种情况中的两个点电荷来计算前种问题的待求场。
对比这两种情况,对区域的场来说,后一种情况位于点的点电荷与前一种0z >(0,0,)P h '-情况导电面上的感应电荷是等效的。
由于这个等效的点电荷与待求场区的点电荷相对于边界面是镜像对称的,所以这个等效的点电荷称为镜像电荷,这种通过场区之内的电荷与其在待求场区域之外的镜像电荷来进行计算电场的方法称为镜像法。
平面镜像法
h R
ln
h ) R
l 2 0
ln
R R
式中
R x2 (z h)2 R x2 (z h)2
电场分布
电场与电位分布
点电荷的平面镜像法
⒉ 两相交成直角接地导体平面的点电荷镜像:
z
0,
0
q
O
ˉ
角域内任意点P电位:
0, 0
-q
z R4
0, 0
R3
O
P
R1 q
R2
q
-q
0, 0 0, 0
q (1 1 1 1 ) 4 0 R1 R2 R3 R4
直角导体域内的电场与电位分布
结论
只要角域的角度
z > 0 空间电位方程((0,y,h)点除外):
2 = 0
无限长
l
产生的电场:
E a
l 20
l 单独产生的电位:
1
l 2 0
ln
h R
-l 单独产生的电位:
2
l ln 2 0
• z > 0 空间任意点电位:
zR P
• l
0, 0
h
0, 0 O h
R
x
• ቤተ መጻሕፍቲ ባይዱl
h
R
1 2
l 2 0
(ln
• 难 点: 确定镜像电荷的大小和位置 • 局限性: 对某些特殊的边界及特殊的电荷分布才能
确 定镜像电荷
第 2 章 静电场
2.9 镜像法
2.9.1 平面镜像法
平面镜像法 Infinite Conducting Plane
⒈ 无限大接地导体平面的点电荷镜像:
z
+q +
2015_-_Ngoc_Thanh_Tran_-_Highrateresponseofultrahighperformancefiberreinfor[retrieved_2015-09-23]
High rate response of ultra-high-performance fiber-reinforced concretes under direct tensionNgoc Thanh Tran a ,Tuan Kiet Tran a ,b ,Dong Joo Kim a ,⁎a Department of Civil and Environmental Engineering,Sejong University,98Gunja-Dong,Gwangjin-Gu,Seoul 143-747,Republic of KoreabDepartment of Civil Engineering and Applied Mechanics,Ho Chi Minh City University of Technology and Education,01Vo Van Ngan,Thu Duc District,Ho Chi Minh City,Viet Nama b s t r a c ta r t i c l e i n f o Article history:Received 17June 2014Accepted 17December 2014Available online 7January 2015Keywords:Mechanical properties (C)Tensile properties (C)Fiber reinforcement (E)The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs)at high strain rates (5–24s −1)was investigated.Three types of steel fibers,including twisted,long and short smooth steel fibers,were added by 1.5%volume content in an ultra high performance concrete (UHPC)with a compressive strength of 180MPa.Two different cross sections,25×25and 25×50mm 2,of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs.Although all the three fibers generated strain hardening behavior even at high strain rates,long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate.The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers.The tensile behavior of UHPFRCs at high strain rates was clearly in fluenced by the specimen size,especially in post-cracking strength.©2014Elsevier Ltd.All rights reserved.1.IntroductionSince the September 11attacks in 2001,to protect and to enhance the resistance of building and civil infrastructure under extreme loading conditions such as airplane impacts and blasts,numerous researches have been intensively carried out to prevent catastrophes [1–4].The September 11attacks killed almost 3000people,caused serious damage to the economy of Lower Manhattan and further generated a signi ficant effect on global security system [5,6].There have been various approaches in different levels for preventing those catastrophes.One of the approaches is to strengthen the national security systems [1].The other approach is to develop and apply structural systems with high impact and blast resistance under such extreme loads [2–4].However,the national security system might not eliminate all potential causes for the collapses or damages of building and civil infrastructure generated by manmade and especially by natural disaster.In addition,the structural systems of existing buildings and infrastructure cannot be easily modi fied for improving their impact and blast resistance.Thus,in this study,it is proposed to improve the resistance of infra-structure under natural and manmade extreme events,e.g.,airplane impacts,earthquake,blast,and typhoon,by simply attaching ultra-high-performance fiber-reinforced concrete (UHPFRC)panels with high ductil-ity and energy absorption capacity or by overlaying them with UHPFRCs.Strain hardening UHPFRCs,with high tensile strength (over 10MPa),high ductility (strain capacity over 0.5%)and high energy absorption capacity,could be recently obtained,with small amount of steel fibers (b 2.5%by volume),by combining dense ultra high performance concrete (UHPC)matrix containing very fine particles and tailored interfacial bond strength between fiber and matrix [7,8];and,further enhanced by blending long deformed and short smooth steel fibers [9].In comparison with other cement based construction materials,strain hardening UHPFRCs showed much higher tensile resistance,as shown in Fig.1.The superior direct tensile behavior of UHPFRCs is mostly based on their responses measured at static rate.Owing to the static tensile behavior of UHPFRCs,it has been expected that UHPFRCs would produce higher tensile resistance even at higher strain rates.Although several papers reported about the behavior of UHPFRCs under high strain rates,most of them reported about the flexural behavior of UHPFRCs [10–14].The flexural resistance of UHPFRCs under impact was found to be much higher than that of steel fiber reinforced concrete (SFRC)and normal concrete [10].And,the flexural strength and toughness of UHPFRCs under impact signi ficantly increased as the strain rate (or stress rate)increased.The enhancement of flexural strength at high strain rates was reported to be much correlated to the matrix –fiber interface bond characteristics between fiber and matrix [11].On the other hand,there are a few researches reporting the dynamic tensile strength and fracture energy of UHPFRCs by performing spalling test (indirect tensile test)[15–17].Millon et al.[15]and Noldgen et al.[16]reported that the spalling tensile strength of UHPFRCs was sensitive to the strain rate,whereas their fracture energy was not.Rong and Sun [17]indicated that the spalling tensile strength of UHPFRCs increased as the strain rate increased from 21to 66s −1.Very few studies have investigated the direct tensile stress versus strain responses of UHPFRCs at seismic rates [12,18].Habel andCement and Concrete Research 69(2015)72–87⁎Corresponding author.E-mail address:djkim75@sejong.ac.kr (D.J.Kim)./10.1016/j.cemconres.2014.12.0080008-8846/©2014Elsevier Ltd.All rightsreserved.Contents lists available at ScienceDirectCement and Concrete Researchj o u rn a l h o m e p a g e :h t tp ://e e s.e l s e v i e r.c o m /C E M C O N /d e f a u l t.a s pGauvreau [12]and Wille et al.[18]investigated the direct tensile re-sponse of UHPFRCs at the strain rates ranging from static (0.0001s −1)to seismic (0.1s −1)rate.They reported that as the strain rate increased from static to seismic rate,the post-cracking tensile strength and the en-ergy absorption capacity of UHPFRCs increased while UHPFRCs still maintained strain hardening tensile behavior accompanied with multi-ple micro-cracks at seismic rates.According to the best knowledge of the authors,only Cadoni et al.[19]investigated direct tensile response of notched cylindrical tensile specimens of UHPFRCs at high strain rates (50,100and 200s −1)using modi fied split Hopkinson pressure bar test system (direct tensile test).However,the notched specimen used in their experimental tests might not be appropriate for capturing the stress versus strain response because the stress state around the notch is not uniform and the measured elongation is localized at the notched area.Thus,there is still not enough information about the direct tensile stress versus strain response of UHPFRCs at high strain rates.Speci fically,it is questioned whether the tensile strain hardeningbehavior of UHPFRCs can maintain even at higher strain rates (more than 5s −1)under impact loads.Recently,Tran and Kim [20–22]published several papers regarding the direct tensile behavior of high performance fiber reinforced cemen-titious composites (HPFRCCs),reinforced with deformed high strength steel fibers,at high strain rates (10–40s −1):they applied an innovative strain energy frame impact machine (SEFIM)to perform direct tensile tests,with a small test machine,for HPFRCCs requiring large size speci-men [20].Tran and Kim [21]reported that the HPFRCCs with deformed steel fibers maintained their tensile strain hardening behavior even at higher strain rates and the interfacial bond strength is main source of the rate sensitivity of fiber reinforced cementitious composites.They also found that the strength of matrix had more signi ficant in fluence on the strain rate sensitivity on the tensile strength of HPFRCCs rather than the fiber volume contents [22].The application of high strength steel fibers in higher strength matrix is more effective and economical for enhancing the tensile strength of HPFRCCs at both static and high strain rates rather than simply adding more fibers in lower strength matrix [22,23].In this study,we would investigate the direct tensile stress versus strain response of UHPFRCs which combine very high strength matrix and high strength steel fibers.UHPFRCs are expected to demonstrate very high tensile strength and energy absorption capacity at high strain rates.However,it is questioned whether the combination of high strength matrix and steel fibers can generate superior tensile resistance at high strain rates by maintaining the tensile strain hardening behavior.In addition,which type of steel fiber would be suitable for UHPFRCs at high strain rates?What is the reasonable size of the specimen for tensile testing UHPFRCs to obtain pure material response at high strain rates without any size effects?Those questions motivated us to carry out the experimental research reported in this paper.The aim of this research is to develop the fundamental understand-ing about direct tensile response of UHPFRCs at high strain rates.The speci fic objectives are:(1)to investigate the direct tensile stress versus strain responses of UHPFRCs at high strain rates (5to 24s −1);(2)toFig.1.Tensile response of UHPFRCs in comparison to normal concrete (NC)and fiber reinforced concrete (FRC).Table 1Test series of tensile specimens.Type of fiber and volume contentsStrain rate Cross section (mm 2)Notation Twisted 1.5%(T15)Static rate (S)25×50(A)T15SA 25×25(B)T15SB High rate (I)25×50(A)T15IA 25×25(B)T15IB Long smooth 1.5%(LS15)Static rate (S)25×50(A)LS15SA 25×25(B)LS15SB High rate (I)25×50(A)LS15IA 25×25(B)LS15IB Short smooth 1.5%(SS15)Static rate (S)25×50(A)SS15SA 25×25(B)SS15SB High rate (I)25×50(A)SS15IA 25×25(B)SS15IB73N.T.Tran et al./Cement and Concrete Research 69(2015)72–87find the most effectivefiber for high tensile resistance of UHPFRCs especially at high strain rates;and(3)to discover any effect of cross section area on the measured tensile responses of UHPFRCs at high strain rates.2.Experimental programAn experimental program was designed to investigate the tensile stress versus strain responses of UHPFRCs at high strain rates.Twelve series of the specimen by combining threefiber types with two speci-men sizes were prepared to test at both static and high strain rates,as given in Table1.At least six specimens were tested per series.Fig.2 illustrates the test series and parameters.Three types of high-strength steelfibers including twisted(T),long smooth(LS)and short smooth (SS),were reinforced as1.5%of thefiber volume content.The chosen fiber volume content was expected to achieve strain hardening behavior of UHPFRCs and match with the allowable capacity of impact machine.In addition,two sizes of the specimen cross section, 25×50mm2(A)and25×25mm2(B),were prepared.2.1.Materials and specimen preparationTable2provides the composition and compressive strength of the UHPC.The average diameters of silica fume and silica powder are 0.1μm and10μm,respectively,while the average diameter of silica sand is lower than500μm.Silica fume and silica powder contain more than98%SiO2.The properties of the steelfibers are summarized in Table3.All thefibers have0.2mm diameter although they have different lengths:the length of twisted,long smooth and short smooth fibers are20,19and13mm,respectively.The chosenfiber lengths match with the size of the specimen section to ensure that the length offiber is always smaller than the minimum dimension of the specimen section.While smooth steelfibers have a circle section,deformed twisted steelfibers have a triangular section with three ribs along fiber length.A Hobart-type mixer with a20-L capacity was used to mix material. Silica sand and silica fume werefirst dry mixed for5min.And,silica powder and cement were added and mixed for5min.Then water was added gradually two times with2min interval.The super-plasticizer was gradually added and further mixed until the mortar mix-ture showed the appropriate workability and viscosity for uniformfiber distribution.Finally,the steelfibers were distributed carefully by hand into the UHPC mixture.While thefibers were added separately to mortar mixture,the mixture was kept mixing.After all thefibers were added to mixture,the mixture was further mixed for2min andthenFig.2.Detail of experimental program.Table2Composition of matrix mixture by ratio and compressive strength.Cement (type1)SilicafumeSilicasandSilicapowderSuper-plasticizer Water Compressivestrength,MPa10.25 1.100.300.0670.2180Table3Properties of steelfibers.Fiber type Diameter,mmLength,mmDensity,g/cm3Tensilestrength,MPaElasticmodulus,GPa Twisted(T-)0.2a207.902428b200Long smooth(LS-)0.2197.902580200Short smooth(SS-)0.2137.902788200a Equivalent diameter.b Tensile strength offiber after twisting.74N.T.Tran et al./Cement and Concrete Research69(2015)72–87the mixing process was completed.The UHPC mixture with fibers was cast in mold by using a wide scoop without vibration.All specimens were covered by plastic sheets and cured in a laboratory at room tem-perature for 48h prior to demolding.After demolding,the specimens were cured in hot water at a temperature of 90°C for 3days.All speci-mens were tested in dry condition at the age of 14days.2.2.Test set-up and procedureThe UHPFRC specimens were tested at both static and high strain rates.And then,the tensile behavior of UHPFRCs at high strain rates was analyzed in comparison with static rate.Thus,the testing condition such as specimen size,boundary condition and gauge length shouldbeFig.3.The geometry of static tensile specimens.Fig.4.High strain rate tensile testset-up.Fig.5.The geometry of high strain rate tensile specimens.75N.T.Tran et al./Cement and Concrete Research 69(2015)72–87identical between static and high strain rates to obtain the pure effect of strain rate.For static test,the geometries of tensile specimens are shown in Fig.3.The ends of the tensile specimen were bell-shaped.The cross sec-tion of the specimen A was 25×50mm 2,while that of the specimen B was 25×25mm 2.The gauge length of the specimen was 100mm.The test set-up can be referred to Tran and Kim [22].The static tensile tests were performed using a universal testing machine,and the speed of the machine displacement was maintained at 1mm/min corresponding to strain rate 0.000167s −1.The boundary condition for both ends of the specimen was hinge-to-hinge connection that were suitable for investi-gating tensile behavior of strain hardening fiber cementitious compos-ites [8].The data acquisition frequency was 1Hz.The elongation of the specimen within gauge length range was measured duringtheFig.6.Tensile stress versus strain response of UHPFRCs at static rate.76N.T.Tran et al./Cement and Concrete Research 69(2015)72–87Table 4Test results:tensile parameters of UHPFRCs with twisted fibers.Test seriesSpec.Strain rate Post-cracking strength Strain capacity Peak toughness Number of cracks Types −1MPa DIF %DIF MPa-%DIF ea DIF T15SASP1Static0.00016713.5–0.45– 5.3–21–SP20.00016713.8–0.58–7.0–17–SP30.00016713.7–0.64–7.9–20–SP40.00016712.1–0.43– 4.6–15–SP50.00016713.9–0.54– 6.5–16–SP60.00016712.0–0.64– 6.6–22–Average 0.00016713.2 1.00.55 1.0 6.3 1.0191T15IA SP1High rate8.928.5 2.20.92 1.79.5 1.5110.6SP211.234.0 2.60.87 1.611.2 1.8130.7SP3 5.128.3 2.20.410.7 5.90.9130.7SP4 6.730.6 2.30.420.8 5.30.8110.6SP510.528.1 2.10.67 1.2 5.80.9120.6SP69.229.7 2.30.71 1.38.4 1.3120.6Average 8.629.9 2.30.67 1.27.7 1.2120.6T15SB SP1Static0.00016713.5–0.59– 6.7–19–SP20.00016714.6–0.73–9.0–21–SP30.00016712.2–0.60– 6.1–16–SP40.00016711.4–0.42– 4.0–20–SP50.00016712.7–0.84–9.5–20–SP60.00016711.7–0.43– 4.0–23–Average 0.00016712.7 1.00.60 1.0 6.6 1.0201T15IB SP1High rate8.324.2 1.90.490.8 6.6 1.0120.6SP2 5.224.5 1.90.71 1.2 4.70.7100.5SP313.522.6 1.8 1.00 1.717.1 2.6120.6SP49.422.1 1.70.85 1.47.7 1.280.4SP513.726.5 2.10.95 1.612.7 1.9120.6SP611.219.7 1.60.72 1.29.4 1.4120.6Average10.223.31.80.791.39.71.5110.6Table 5Test results:tensile parameters of UHPFRCs with long smooth fibers.Test seriesSpec.Strain rate Post-cracking strength Strain capacity Peak toughness Number of cracks Types −1MPa DIF %DIF MPa-%DIF ea DIF LS15SASP1Static0.00016713.1–0.49– 5.5–12–SP20.00016712.8–0.47– 5.5–11–SP30.00016711.2–0.61– 6.3–10–SP40.00016711.3–0.28– 2.8–10–SP50.00016712.4–0.21– 2.2–18–SP60.00016712.0–0.35– 3.7–14–Average 0.00016712.1 1.00.40 1.0 4.3 1.0121LS15IA SP1High rate13.437.4 3.1 1.09 2.77.4 1.790.7SP29.931.9 2.60.82 2.19.7 2.250.4SP37.033.4 2.80.91 2.39.4 2.280.6SP48.040.3 3.30.96 2.420.5 4.780.6SP57.731.5 2.60.93 2.38.2 1.9100.8SP613.034.3 2.8 1.30 3.216.5 3.890.7Average 9.834.8 2.9 1.00 2.511.9 2.880.6LS15SB SP1Static0.00016713.1–0.33– 3.7–14–SP20.00016712.3–0.70–7.9–13–SP30.00016711.2–0.76–7.7–18–SP40.00016712.4–0.42– 4.7–14–SP50.00016712.2–0.43– 4.6–12–SP60.00016712.0–0.73–7.8–14–Average 0.00016712.2 1.00.56 1.0 6.0 1.0141LS15IB SP1High rate12.320.6 1.70.91 1.611.6 1.970.5SP216.519.3 1.6 1.16 2.116.5 2.790.6SP37.718.3 1.5 1.69 3.024.2 4.090.6SP49.430.3 2.5 1.37 2.425.5 4.2100.7SP59.122.0 1.80.93 1.611.2 1.970.5SP619.124.9 2.00.79 1.410.8 1.860.4Average12.322.61.81.142.016.62.880.677N.T.Tran et al./Cement and Concrete Research 69(2015)72–87test using two linear variable differential transformers(LVDTs)attached to specimen,while the tensile load was obtained from the load cell located to the bottom of the cross head.For high strain rate test,the test set-up is shown in Fig.4.The geometries of tensile specimens are provided in Fig.5.Unlike the specimen for static test,the specimen for high strain rate test had onlyTable6Test results:tensile parameters of UHPFRCs with short smoothfibers.Test series Spec.Strain rate Post-crackingstrength Strain capacity Peak toughness Number ofcracksType s−1MPa DIF%DIF MPa-%DIF ea DIFSS15SA SP1Static0.00016710.3–0.25– 2.4–5–SP20.00016711.1–0.23– 2.3–2–SP30.00016710.1–0.33– 3.0–2–SP40.00016710.9–0.22– 2.0–3–SP50.00016711.6–0.20– 2.0–4–SP60.00016711.6–0.16– 1.5–5–Average0.00016710.9 1.00.23 1.0 2.2 1.031SS15IA SP1High rate8.026.3 2.4 1.08 4.616.67.66 1.8 SP215.030.8 2.8 1.27 5.517.88.17 2.0SP310.727.3 2.50.88 3.8 4.8 2.26 1.6SP4 6.926.8 2.50.81 3.410.5 4.84 1.2SP513.424.9 2.3 1.53 6.512.9 5.95 1.3SP68.726.6 2.40.68 2.99.1 4.16 1.8Average10.527.1 2.5 1.04 4.512.0 5.56 1.6SS15SB SP1Static0.00016710.1–0.26– 2.1–4–SP20.00016710.3–0.29– 2.5–6–SP30.0001679.8–0.21– 1.8–4–SP40.00016711.2–0.63– 6.6–5–SP50.00016711.1–0.56– 5.8–3–SP60.00016710.2–0.41– 3.8–5–Average0.00016710.5 1.00.39 1.0 3.8 1.051SS15IB SP1High rate17.520.0 1.9 1.15 2.913.0 3.540.9 SP219.023.1 2.2 1.10 2.812.0 3.26 1.3SP316.414.0 1.30.81 2.17.4 2.05 1.2SP423.717.2 1.6 1.09 2.816.1 4.36 1.2SP510.427.8 2.70.96 2.413.1 3.56 1.3SP612.113.3 1.3 1.49 3.813.3 3.540.9Average16.519.2 1.8 1.10 2.812.5 3.351.1Fig.7.Multiple cracking behavior within the gauge length of UHPFRCs at static rate. 78N.T.Tran et al./Cement and Concrete Research69(2015)72–87one bell shaped end,the other was cut to link to a connector.Two types of cross section were also 25×50mm 2and 25×25mm 2,the gauge length was also 100mm.The high strain rate tensile tests were per-formed using a prototype of SEFIM built by Tran and Kim [20]and the velocity of the machine loading was dependent upon the capacity of coupler.In this study,only one type of coupler was used to test specimen at high strain rates and to generate strain rates from 5to 24s −1.The boundary condition for one end was hinge and another was connected to a transmitter bar through a connector.The hinge to hinge boundary condition was maintained even at high strain rates the same as at static rate in order to obtain pure strain rate effects on the tensile response of UHPFRCs.A high speed cam-era system was used to measure the elongation of the specimen within the gauge length range during the test,while the tensile load was obtained from two strain gauges attached to a transmitter bar as illustrated in Fig.4.Fig.8.Tensile stress versus strain response of UHPFRCs at high strain rates.79N.T.Tran et al./Cement and Concrete Research 69(2015)72–873.Test resultsThe tensile resistance of UHPFRCs at static and high strain rates was evaluated using the following tensile parameters:post-cracking strength,strain capacity,peak toughness and the number of cracks. The post-cracking strength(σpc)is the peak stress of the tensile stress and strain curve,the strain capacity(εpc)is the strain at the peak stress, the peak toughness(T p)is the area under the tensile stress and strain curve up to the peak stress,and the number of cracks is observed and counted within gauge length range.Moreover,the dynamic increase factor,DIF,which is the ratio between dynamic and static response, was used to estimate the strain rate effects on tensile resistance of UHPFRCs.3.1.Static test resultsFig.6shows the average tensile stress versus strain curves of six series UHPFRCs at static rate.Each series included six test results.The re-sults of tensile parameters are summarized in Tables4,5and6.The re-sults showed that all the series exhibited strain hardening tensile behavior at static rate and their post-cracking tensile strength was more than10MPa.Moreover,they produced multiplefine cracks as shown in Fig.7.However,the tensile behavior of UHPFRCs was different according to the type offiber and size of the specimen.The UHPFRCs with Tfibers,among thefibers investigated,showed the highest tensile resistance.Specifically,UHPFRCs with1.5%Tfiber showed strain hard-ening behavior with high tensile strength more than12MPa and strain capacity more than0.5%.On the other hand,the smaller specimens (B)produced higher tensile resistance than the larger specimens(A). The effects offiber type and specimen size will be discussed later.3.2.High strain rate test resultsFig.8shows the tensile stress versus displacement curves of six series UHPFRCs at high strain rates(5–24s−1).The different strain rates even in the same test series might have originated from the following:1)the slightly different notch section areas of coupler due to the errors in the production process and2)the inhomogeneous characteristics of material in nature.The different strain rates also con-tributed to the scattering of impact test results.On the other hand,the unsteady curves in Fig.8might have originated from the multiplefine crack formation during the high rate tests.The tensile parameters of UHPFRCs at both static and high strain rates are provided in Tables4, 5,and6according to the types of steelfiber,respectively.The cracking behavior of UHPFRCs was provided in Fig.9.All the specimens still maintained strain hardening behavior accompanied by multiple cracking at the strain rates from5to24s−1.Their post-cracking tensile strength was more than20MPa.The tensile behavior of UHPFRCs at high strain rates was also dependent onfiber type and specimen size. However,unlike static test results,the UHPFRCs with LSfibers showed the highest tensile resistance at high strain rates,while the smaller specimens(B)produced lower tensile strength than the larger speci-mens(A).The influences offiber type and specimen size on the high rate tensile response of UHPFRCs will be evaluated later in detail.3.3.Strain rate sensitivitiesFig.10shows the strain rate effects on the tensile parameters of UHPFRCs.The investigated strain rates were between5and24s−1. The rate sensitivity was found to be different according tofiber type and specimen size.The DIF of post-cracking strength was between1.2 and3.3,while the DIF of strain capacity ranges from0.7and6.6.In ad-dition,the DIF of peak toughness was between0.7and7.6.And,the DIF of number of cracks was between0.6and1.6.In general,the tensile response of UHPFRCs was sensitive to the applied strain rates and the tensile resistance of UHPFRCs at high strain rates was significantly higher than at static rate.However,the number of multiple cracks of UHPFRCs at high strain rates was mostly lower than at static rate. While the enhancement of tensile resistance of strain hardeningfiber reinforced cement composites at high strain rates has been explained by many authors[21,24]and the increased interfacial bond strength at high strain rates might be a reasonable source,themultiple-crackingFig.9.Multiple cracking behavior within the gauge length of UHPFRCs at high strain rates.80N.T.Tran et al./Cement and Concrete Research69(2015)72–87behavior of strain hardening fiber reinforced cement composites at high strain rates has not attracted much attention and it might depend on matrix strength and fiber type.Kim et al.[23]showed that the rate sen-sitivity of number of cracks was different with different types of fiber (hooked or twisted steel fibers)and matrix (from 28to 84MPa)strengths when they tested HPFRCCs at seismic rates (0.0001to 0.1s −1).Tran and Kim [21]found that HPFRCCs with deformed steel fibers tested at high strain rates (10to 40s −1)produced higher number of cracks than those at static rate.On the contrary,Mechtcherine et al.[25,26]concluded that the number of cracks of strain-hardening cement-based composites (SHCC)with PVA fibers decreased as the strain rate increased from static rate to 50s −1and even to strain rates between 140and 180s −1.4.Discussion4.1.Effect of fiber type on the rate sensitive of UHPFRCsThe effects of fiber type on the tensile parameters of UHPFRCs at both static and high strain rates were provided in Fig.11a and b,respec-tively.At static rate,the UHPFRCs with T fibers showed the highest σpc ,εpc ,T p and the number of cracks as shown in Fig.11a,whereas,at high strain rates,the UHPFRCs with LS fibers generated the highest values in most tensile parameters except the number of cracks,as shown in Fig.11b.At static rate,it is clearly noticed that the types of fiber generated dif-ferent tensile resistance of UHPFRCs,as shown in Fig.11a.The UHPFRCs with T fibers showed relatively the highest tensile resistance whereas the UHPFRCs with SS fibers produced the lowest tensile resistance among the test series.In detail,the σpc of UHPFRCs (size A),T15SA,LS15SA,and SS15SA,were 13.2,12.1and 10.9MPa,respectively.The εpc of T15SA,LS15SA,and SS15SA were 0.55,0.40and 0.23%,respective-ly.The T p of T15SA,LS15SA,and SS15SA were 6.3,4.3and 2.2MPa-%,re-spectively.And,the numbers of cracks of T15SA,LS15SA,and SS15SA were 19,12and 3,respectively.The different tensile resistance of UHPFRCs at static rate accord-ing to the types of fiber attributes to their different interfacial bond strengths which are functions of fiber geometry including the as-pect ratio and section shape of fibers.Although all three fibers have the same diameter of 0.2mm but the aspect ratios are differ-ent as 100,95and 65for T,LS and SS fibers,respectively.T fibers produced much higher interfacial bond strength than other steel fi-bers including hooked and smooth steel fiber [27].Consequently,the UHPFRCs with T fibers showed higher tensile resistance at stat-ic rate and this result is consistent with previous tensile test results with Wille et al.[7]and Park et al.[9].Thus,T fibers might be suit-able to develop strain hardening UHPFRCs with high tensile strength,high ductility and low fiber volume content at static rate.And,UHPFRCs with T fibers were also expected to exhibit the highest tensile resistance at high strain rates.At high strain rates,the effects of fiber type on the tensile parameters of UHPFRCs are also evaluated as shown in Fig.11b:UHPFRCs with LS fi-bers produced the highest σpc ,εpc ,and T p at high strain rates unlike at static rate.The ranking in the post-cracking strength of UHPFRCs was LS N T N SS fibers,whereas that in strain capacity and peak toughness was LS ≈SS N T fibers,respectively.Only the ranking in numberofFig.10.Strain rate effect on tensile parameters of UHPFRCs.81N.T.Tran et al./Cement and Concrete Research 69(2015)72–87。
镜像
一、华硕系统恢复盘详细操作步骤如下:步骤一:计算机开机出现asus logo时,请按esc键。
步骤二:当出现选择开机清单画面时,请将recovery cd放入光驱内,并选择由光盘开机,然后按下[enter] 键。
亦可以设置BIOS用光盘启动电脑。
步骤三:计算机重新启动后,屏幕将出现如下图的asus preload画面,请按next 键继续。
步骤四:接着屏幕将出现三个选项,选择您希望的复原方式后,按next 键继续。
三个选项说明如下:1. recover windows to first partition only:假如您的硬盘已用磁盘分割程序规划为两个分割区以上,并有重要数据文件备份在其它分割区,建议您选择此项目,此项目会将windows 复原到硬盘第一个分割区。
2. recover windows to entire hd:本项目将会复原整颗硬盘成为单一分割区,包含中文版的windows vista,执行此项目将会覆盖您硬盘内所有数据。
3. recover windows to entire hd with 2 partition:本项目将会复原整颗硬盘成为出厂的设定状态。
硬盘分割为两个分割区,第一个分割区容量为硬盘容量的60%,中文版的windows vista将复原到这个分割区中,第二个分割区容量为硬盘容量的40%,此分割区将不包含任何数据,可提供您日后数据备份使用。
步骤五:若您确定要开始复原系统,请按下finish 键,接着屏幕会显示复原进度的百分比。
步骤六:按下OK键,重新开机后请依照画面指示,进行windows 基本设定即可。
也可以用硬盘的隐藏分区进行恢复,请在计算机开机出现asus logo 时,按下f9键,接下来的操作方式与recovery cd 操作步骤的步骤三至步骤六完全相同。
二、怎样制作电脑系统安装镜像呢制作纯净版的主导思想:尽量兼容各种机子、尽量不要减肥、尽可能干净。
(一)、安装前的准备准备一张完整的WINXP、2003系统安装盘(二)、安装操作系统(以下均以XP为例)1、正常安装完整操作系统,系统文件格式建议采用FAT32,恢复后还可以转换为NTFS。
镜像疗法医学知识专家讲座
无痛,一些运动视觉感觉反馈来改进感觉运动不协 调。
镜像疗法医学知识专家讲座
第6页
人脑中镜像网络
顶额镜像系统 Broca 区 运动前皮层腹侧( PMv) 中央前回下部 额下回后部( IFG)
顶下小叶( IPL)嘴侧
忽略、疼痛综合征) • 4、 CRPS(慢性区域性疼痛综合征) • 5、手外伤术后治疗
镜像疗法医学知识专家讲座
第4页
二、原理、作用机制(可能)
• ①“习得性废用”减轻——肢体存在感增强 • ②镜像神经元系统激活及大脑重塑 • ③经过视觉皮层纠正内在躯体模式
镜像疗法医学知识专家讲座
第5页
• 患侧肢体运动功效障碍、神经输入一传出环路病理 生理破坏将引发患侧肢体习得性废用。镜像疗法经
三个问题
是什么? 为何? 怎么做?
镜像疗法医学知识专家讲座
第1页
镜像疗法医学知识专家讲座
第2页
一、内涵
• 镜像疗法(mirror therapy,MT)又称镜像视觉反馈疗法 (mirror visual feedback,MVF)
• 指利用平面镜成像原理,将健侧活动画面复制到患侧,让 患者想象患侧运动,经过视错觉、视觉反馈以及虚拟现实, 结合康复训练项目而成治疗伎俩。
• 病人边看着镜子里镜像,边模仿治疗师所展示动作。
• 病人试图主动地尽可能好地双侧进行上述运动。假如这些运动已 经使镜子里想象强度增强,便能够交替地促进患肢运动。
• 另一只手运动好不好其实无所谓,主要是,眼睛看见镜子里运动, 并把镜子里患侧手在运动这么信息输送给大脑。
镜像疗法医学知识专家讲座
《天文算法》 许剑伟译
天文算法译著—许剑伟和他的译友第 1章注释与提示第 2章关于精度第 3章插值第 4章曲线拟合第 5章迭代第 6章排序第 7章儒略日第 8章复活节日期第 9章力学时和世界时第10章地球形状第11章恒星时与格林尼治时间第12章坐标变换第13章视差角第14章升、中天、降第15章大气折射第16章角度差第17章行星会合第18章在一条直线上的天体第19章包含三个天体的最小圆第20章岁差第21章章动及黄赤交角第22章恒星视差第23章轨道要素在不同坐标中的转换第24章太阳位置计算第25章太阳的直角坐标第26章分点和至点第27章时差第28章日面计算第29章开普勒方程第30章行星轨道要素第31章行星位置第32章椭圆运动第33章抛物线运动第34章准抛物线第35章一些行星现象的计算第36章冥王星第37章行星的近点和远点第38章经过交点第39章视差修正第40章行星圆面被照亮的比例及星等第41章火星物理表面星历计算(未译) 第42章木星物理表面星历计算(未译) 第43章木星的卫星位置(未译)第44章土星环(未译)第45章月球位置第46章月面的亮区第47章月相第48章月亮的近地点的远地点第49章月亮的升降交点第50章月亮的最大赤纬第51章月面计算第52章日月食第53章日月行星的视半径第54章恒星的星等第55章双星第56章日晷的计算备注译者说明原著《天文算法》天文算法天文算法 (1)前言 (1)第一章注释与提示 (1)第二章关于精度 (7)第三章插值 (16)第四章曲线拟合 (29)第五章迭代 (40)第六章排序 (47)第七章儒略日 (51)第八章复活节日期 (58)第九章力学时和世界时 (61)第十章地球形状 (65)第十一章恒星时与格林尼治时间 (70)第十二章坐标变换 (75)第十三章视差角 (80)第十四章天体的升、中天、降 (83)第十五章大气折射 (87)第十六章角度差 (89)第十七章行星会合 (97)第十八章在一条直线上的天体 (99)第十九章包含三个天体的最小圆 (101)第二十章岁差 (104)第二十一章章动及黄赤交角 (112)第二十二章恒星视差 (116)第二十三章轨道要素在不同坐标中的转换 (125)第二十四章太阳位置计算 (129)第二十五章太阳的直角坐标 (137)第二十六章分点和至点 (143)第二十七章时差 (148)第二十八章日面计算 (153)第二十九章开普勒方程 (157)第三十章行星的轨道要素 (172)第三十一章行星位置 (175)第三十二章椭圆运动 (178)第三十三章抛物线运动 (193)第三十四章准抛物线 (197)第三十五章一些行星现象的计算 (201)第三十六章冥王星 (211)第三十七章行星的近点和远点 (215)第三十八章经过交点 (221)第三十九章视差修正 (224)第四十章行星圆面被照亮的比例及星等 (230)第四十一章火星物理表面星历计算(未译) (234)第四十二章木星物理表面星历计算(未译) (234)第四十三章木星的卫星位置(未译) (234)第四十四章土星环(未译) (234)第四十五章月球位置 (235)第四十六章月面被照亮部分 (243)第四十七章月相 (246)第四十八章月亮的近地点和远地点 (252)第四十九章月亮的升降交点 (259)第五十章月亮的最大赤纬 (261)第五十一章月面计算 (265)第五十二章日月食 (273)第五十三章日月行星的视半径 (284)第五十四章恒星的星等 (286)第五十五章双星 (289)后记 (1)前言十分诚恳地感谢许剑伟和他的译友!在此我作一个拱手。
§2-7 镜像法
当K取不同数值时,就得到一族偏心圆。
a、h、b三者之间的关系满足
令: P 常数
a 2 b2 (
2bK K 1
2
)2 b2 (
K2 1 K 1
2
b) 2 h 2
( x b) 2 y 2 ( x b) 2 y 2
K2
应该注意到,线电荷所在的两个点,对每一个等位圆的圆心来说,互为反演。即
h
图1.7.13
h
两根细导线的电场计算
d ln 1 C1 2 2 0 0 2 ln 2 C2 2 0 P 1 2 ln 2 C 2 0 1 1
Q
1
等位线方程为:
(x
圆心坐标
K 1 K2 1
导体A 常数
S D dS ,
电荷分布不均匀
1.7.12 长直平行圆柱导体传输线
导体B 常数
S D dS ,
电荷分布不均匀
根据唯一性定理,寻找等效线电荷——电轴。
y p b o b 2 x
2. 两根细导线产生的电场
E p E E
(方向指向地面)
Ep 2
q cos 2 40 r
20 (h 2 x 2 )3 / 2 qh p 0 E p 2(h 2 x 2 )3 / 2
整个地面上感应电荷的总量为
qh
S
图1.7.2 点电荷 q 在地面引起的感应电荷的分布
p dS
qh 2(h x )
2 2 3/ 2
0
2xdx
1 q qh 2 2 1/ 2 (h x ) 0
五阶魔方公式
五阶魔方公式本解法的流程为:第一层-----第二、三层----第四、五层,在阅读解法之前,请先看一下以下关于旋转各面的代号:以上皆为转90度。
如果加了一个「2」,如「L2」,即为L转180度。
对于每一面,本解法用以下的代号来指称:边:Edge (Ed) 翼:Wing (W)角:Corner (Co) 叉:Cross (Cr)点:Point (P) 心:Center (C)一、复原第一层在解第一层时,同时要将「第一面」和「第一圈」转正确。
解法不难,以3阶魔方的经验为基础即可轻易解决。
二、复原第二、三层2.1. 复原第二层的叉(Cr)如果在第四层找不到可用的Cr,可用公式(2-5)、(3-1)等,将可用的Cr转到第四层。
公式2-1----F2 u' F22.2. 复原第二层的翼(W)视之为3阶魔方I如果在第五层找不到可用的W,可用公式(2-2)、(3-1)等,将可用的W转到第五层。
镜射情形请自行想象。
公式2-2----U F U' F' L F' L' F ——————————————————————————————————————————————————————————————2.3. 复原第三层的边(Ed)与(2-2)类似,只是视之为3阶魔方II。
用公式(2-3),将可用的Ed转到第五层。
镜射情形请自行想象。
公式2-3----Uu Ff U'u' F'f' Ll F'f' L'l' Ff2.4. 复原第二层的点(P)如果在第五层找不到可用的P,可用公式(2-4)、(3-1)等,将可用的P转到第五层。
镜射情形请自行想象。
如果在第五层找不到可用的P,可用公式(2-4)、(3-1)等,将可用的P转到第五层。
镜射情形请自行想象。
公式2-4----F u' F' U' l' U l2.5. 复原第三层的叉(Cr)与(2-4)类似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R02 或者 b a
两组解。显然后者为物理
R
上的解, 借此求得像电荷的电量 Q' a0 Q 。 (请注意这 里的负号)
导体球外任意一点的电势:
1 Q 2 2 4 0 R a 2 aR cos ( r R0 ) R 2 b 2 2bR cos R0 Q a
注 : 同 样 地 由 于 对 于 球 外 区 域 , r' 0 , 因 此 有
2 镜象 0 , 即在球内区域假想电荷的引入确实并不改
变球外区域内的电荷分布。 根据上述结果进行一些讨论: 1)计算点电荷受到导体球的作用力: 这个作用力来至于导体表面的感应电荷的作用力, 或者更严格地讲是:表面感应电荷所激发的电场对点 电荷的作用力。 由于表面感应电荷在导体球外所激发的电场可用 镜象电荷所激发的电场来替代,因此这个作用力就等 于点电荷与镜象电荷之间的作用力。因此,引力的大 小为:
离球心为 a ( 即: a R0 )处有一点电荷 Q ,求空间各 点的电势。 几点分析: 球外空间的电势有两部分组成:点电荷 Q 所产生 的电势,和导体球表面感应电荷所产生的电势; 静电平衡条件要求导体球的表面是等势面,且电 势为零。 求解的是除去导体球外部空间,因此替代导体球 表面的感应面电荷贡献的像电荷的位置应当选取 在导体球的内部, 解:假设导体球表面的感应电荷所激发的电场可以用 处于导体球所在区域的假想点电荷 Q' 产生的电场来 代替。
2 image 0 , 因此 image 的引入不不会使得所求
解问题的泊松方程的形式发生变化,本质上是 由于所求解区域内自由电荷分布不发生改变而 决定的; 接下来,只需要调整点电荷的量和具体空间位 置,使总的电势 满足所给的边界条件,我们 就找到了唯一的正确解。 例 1:这里首先举一个简单的例子,在距离接地无限 大导体平面为 a 处有一点电荷 Q , 求空间的电势分布。 分析: 空间的电场为点电荷和导体表面的感应电荷共同 激发的; 感应电荷又是在总电场的作用下 达到静电平衡的; 静电平衡条件要求:电场线处处 与导体的表面相垂直;导体的表
Qinduced f dxdy
aQ dxdy 2 2 (a x2 y2 )3/2
aQ 2 rdr aQ 2 2 3/2 2 0 (a r ) a2 r 2
Q
0
结论:镜像点电荷的量等于导体平板上的总感应电荷 量。
c) 点电荷 Q 受到的力: 导体表面感应电荷在 z>0 的区域的电场等价 于镜像电荷-Q 在 z>0 区域的贡献 (从表达式 上看亦是如此) ; 因此 Q 受到的电场力即为镜像电荷-Q 的电场 对它的作用力(吸引力) :
点 面
点
1 4 0 Q x 2 y 2 ( z a)2
根据上面的分析,导体表面的感应面电荷对区域内 场的贡献, 等效地用处于区域外 (导体内) 的 0,0, a 处 点电荷 Q 所产生的电场来替代。 这个假想的电荷称为 镜象电荷。
面 镜象
面为一个等势面,因此这一问题的边界条件为金属 导体表面: const. 另一方面,如果我们考虑这样一个体系,左侧区域 内也只有一个点电荷 Q,但在导体所处的区域内的 -a 处,放置一个点电荷-Q,这样就构成一对正负电 荷的系统。对于这个体系(导体已经不存在! ) ,在 点电荷连线的中垂面上,电力线和此中垂面同样垂 直,且此中垂面是零等位面( 0 ) 。 对比一下两个体系,在求解的区域电荷分布完全相 同,所涉及的边界上的电势也完全一样,因此两个 点电荷的电势的叠加之后, 其在左侧区域的电势就 是我们所要找的解。或者说,我们用一等量异号点 电荷来等效模拟了原来体系边界上的面电荷对左 侧区域电势的贡献。 解:区域内的电势可表示为
这样,问题的解 即变为:
1 4 0 1 4 0 Q x 2 y 2 ( z a)2 Q x 2 y 2 ( z a)2
--(3.2)
这个解正确与否,只要判断它是否满足所求解区域内 的泊松方程和边界条件。 注:对于镜象电荷产生的贡献项,
image charge
1 Q Q' 1 Q' ' 1 2 Q a Q'a Q' ' a
解得:
2 1 Q ' Q 2 1 2 1 Q' ' Q 2 1
综上,可以得出在不同介质中电势的分布: 在 z 0 的区域,电势为:
2
1 4 2 Q x 2 y 2 ( z a) 2 1 4 2 Q' x 2 y 2 ( z a) 2
注意:上式仅定义于 z>0 的区域。
在介质 1 中(z<0): 该区域无自由电荷,但分界面上 的极化电荷对该区域的电势分布 产生贡献; 区域 2 中自由电荷和近邻极化电 荷,以及分界面处的极化电荷在 介质区域 1 中所产生的效果可以用一个处于区域 2 中的镜像电荷 Q' ' 所代替,即试解为
1
1 41 Q' ' x 2 y 2 ( z a) 2
注意:上式仅定义于在 z<0 的区域。 由于在分界面处无自由电荷,因此边界条件为:
2 2 2 z
z 0
1 z 0 1 1 z z 0
z 0
把 1 和 2 的解的形式带入到边界条件中,得到:
1
2
可以验证,解的形式满足泊松方程,及相应的边界条 件。唯一性定理保证了上述解的正确性。 思考: a) 如果一开始不假设把镜像电荷放在+a 或者-a 处,问题能够得到求解吗? b) 如果在界面附近放置一个自由电荷构成的电偶 极子,这个问题能否用镜像法求解?等学到分离 变量法一节,我们还可以采用分离变量法来讨论 相关的问题。 例 3:真空中有一半径为 R0 的接地导体球,在球外距
1 4 0 Q
x2 y2 ( z a)2
利用关系式:
2 1 0 r ( r 0) ,
2 得到 image charge z0 0 ,所以在导体以外的区域,泊松
方程中电荷分布没有发生变化。
由上面简单的例子,可以总结出寻找虚拟电荷来替 代分界面上的感应面电荷/极化面电荷对所求解区域 的电势(电场)的贡献,一般要遵循以下几条原则: 唯一性定理要求像电荷必定在求解区域之外; 像电荷替代了真实的感应电荷或者极化电荷, 原来的界面上的电荷就不存在了,整个空间是 无界均匀的。 对于上述结果,进行以下几个进一步的讨论: a) 导体面上的感应电荷密度 带入到式(3.2)中,可得导体表面电荷分布: aQ 1 f 0 n z0 2 (a2 x2 y2 )3/2 b) 金属板表面总感应自由电荷
2 0 2
0
即:
Q 2 R02 b 2 2bR0 cos Q'2 R02 a 2 2aR0 cos
在任意 的情况下,上式须为恒等式,故满足:
Q 2 R02 b 2 Q'2 R02 a 2 bQ 2 aQ'2
方程组可有 b = a
根据对称性, Q' 应放置在电荷 Q 与球心的连线 上。为了确定 Q' 的大小和位置,使得球面电势满足上 述边界条件:
r R const. 0
0
假设其到球心的距离为 b ,则导体球外 R R0 任一点
的电势 可表示为
点 镜象
其中:
点
Q 4 0 r 1 4 0
Q 1 2 2 4 1 x y 2 ( z a ) 2 1 ( 2 1) x 2 y 2 ( z a ) 2 2
1
2
( 2 1)
在 z 0 的区域,电势为:
1
2 2 Q 4 2 ( 1 2 ) x 2 y 2 ( z a ) 2 1
1
1
Q R 2 a 2 2aR cos
镜象
Q' 4 0 r ' 1 4 0 Q' R 2 b 2 2bR cos
将边界条件 r R 0 带入上式,得到
0
Q R a 2aR0 cos
2 0 2
Q' R b 2bR0 cos
习题: 郭硕鸿教材,第二章习题 9、10、11(第三版 P72) 思考题见本课件第 8、17 页
上次课回顾
对于求解静电场问题: 1)需要给定区域内的自由电荷体分布; 2) 内部绝缘介质之间的分界面上, 需要满足边界关系:
n n 3)在非导体的外边界面上,给定每一点的电势,或者
电势的面法梯度; 4)在涉及导体的表面上,给定导体上的电势,或者给 定导体所带电荷的总电量 [ , S n d S Qf ] 则区域内的电场唯一确定。
Q2 F 4 0 4a 2 1
d) 体系的电势能 体系的电势能,相当于把电荷从无穷远处移动到距 离导体 a 处,外力所需要做的功,即:
Q2 1 Q2 W F dl dz 4 4 z2 4 0 4 a 0
P
a
1
这就是体系的电势能。 说明: 体系的电势能为把一个点电荷从无穷远移到场 中的某一位置,外力所需要做的(最少)功; 由两个点电荷体系的能量:W2
1 2 1 1 2 2
§2.3 镜像法 静电边值问题具有唯一的解 (电场) , 然而获得这 个“唯一解”却有很多种途径。我们上一节所讨论的 唯一性定理的意义就在于,它保证了所采用方法的灵