2017-2018版高中数学第二章基本初等函数(Ⅰ)2.2.1函数的单调性(二)学案苏教版必修1
高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质教材梳理素材 新人教A版必修1
2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1
与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.
2017-2018版高中数学 第二章 函数 3 函数的单调性(一)课件 北师大版必修1
命题角度2 用单调性解不等式 例5 已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(2a-1),求a的 取值范围.
-1<1-a<1,
解
f(1-a)<f(2a-1)等价于-1<2a-1<1,
解得 0<a<23,
1-a>2a-1,
即所求 a 的取值范围是 0<a<23.
知识点二 函数的单调区间
思考
我们已经知道f(x)=x2在(-∞,0]上是减少的,f(x)= 1 在区间 x
(-∞,0)上是减少的,这两个区间能不能交换? 答案 f(x)=x2的减区间可以写成(-∞,0),而f(x)= 1 的减区间
x (-∞,0)不能写成(-∞,0],因为0不属于f(x)=1x 的定义域.
跟踪训练2
求证:函数f(x)=x+
1 x
在[1,+∞)上是增函数.
证明
命题角度2 证明抽象函数的单调性 例3 已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0 时,f(x)>1.求证:函数f(x)在R上是增函数.
证明
反思与感悟
因为抽象函数不知道解析式,所以不能代入求f(x1)-f(x2),但可以借助 题目提供的函数性质来确定f(x1)-f(x2)的大小,这时就需要根据解题需 要对抽象函数进行赋值.
解答
反思与感悟
若已知函数f(x)的单调性,则由x1,x2的大小,可得f(x1),f(x2)的大小; 由f(x1),f(x2)的大小,可得x1,x2的大小.
跟踪训练5 在例5中若函数y=f(x)的定义域为R,且为增函数,f(1-a)< f(2a-1),则a的取值范围又是什么? 解 ∵y=f(x)的定义域为R,且为增函数, f(1-a)<f(2a-1),∴1-a<2a-1,即 a>23, ∴所求 a 的取值范围是(23,+∞).
高中数学知识点:基本初等函数的单调性
第 1 页 共 1 页 高中数学知识点:基本初等函数的单调性
1.正比例函数(0)y kx k =≠
当k>0时,函数y kx =在定义域R 是增函数;当k<0时,函数y kx =在定义域R 是减函数.
2.一次函数(0)y kx b k =+≠
当k>0时,函数y kx b =+在定义域R 是增函数;当k<0时,函数y kx b =+在定义域R 是减函数.
3.反比例函数(0)k y k x =≠
当0k >时,函数k y x =的单调递减区间是()(),0,0,-∞+∞,不存在单调增区间;
当0k <时,函数k y x
=的单调递增区间是()(),0,0,-∞+∞,不存在单调减区间.
4.二次函数2(0)y ax bx c a =++≠
若a>0,在区间(]2b a -∞-
,,函数是减函数;在区间[)2b a -∞,+,函数是增函数;
若a<0,在区间(]2b a -∞-
,,函数是增函数;在区间[)2b a -∞,+,函数是减函数.。
高中数学第二章基本初等函数(ⅰ)2.2.2对数函数及其性质第1课时对数函数的图象及性质
【解析】(1)由xlg+x1+>01,-3≠0, 得xx>+-1≠1,103, ∴x>-1 且 x≠999. ∴函数的定义域为{x|x>-1 且 x≠999}.
(2)由xx>≠01,, 2-x>0,
得xx>≠01,, x<2,
∴函数的定义域为{x|0<x<2 且 x≠1}.
12/9/2021
第二十页,共三十四页。
logax(a>0且a≠1)的形式,即必须满足以下条件: (1)系数为1;(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x.
12/9/2021
第十一页,共三十四页。
1. 函 数 f(x) = (a2 - a + 1)log(a + 1)x 是 对 数 函 数 , 则 实 数 a =
【答案】(2,1)
【解析(jiě xī)】函数图象过定点,则与a无关,故loga(x-1)=0, ∴x-1=1,x=2,y=1.∴y=loga(x-1)+1的图象过定点(2,1).
5.函数y=ln x的反函数是________. 【答案】y=ex
【解析】由同底指数函数和对数函数互为反函数,可得y=ln x的 反函数为y=ex.
2.2 对数函数(duìshùhán shù)
2.2.2 对数函数(duìshù hán shù)及其性质
第1课时 对数函数的图象(tú xiànɡ)及性质
12/9/2021
第一页,共三十四页。
目标定位
1.理解对数函数的概念. 2.初步掌握对数函数的图 象及性质. 3.会类比指数函数,研究 对数函数的性质.
过点(0,1)作平行于x轴的直线,则直线与四条曲线交点的横坐标
从左向右依次为c,d,a,b,显然b>a>1>d>c.
2017-2018学年高中数学 第二章 基本初等函数(Ⅰ)2.2 对数函数 2.2.2 第一课时 对数函数的图象及性质
K12课件
16
有关对数型函数图象问题的应用技巧 (1)求函数 y=m+logaf(x)(a>0,且 a≠1)的图象过定点 时,只需令 f(x)=1 求出 x,即得定点为(x,m). (2)给出函数解析式判断函数的图象,应首先考虑函数对 应的基本初等函数是哪一种;其次找出函数图象的特殊点, 判断函数的基本性质、定义域、单调性以及奇偶性等;最后 综合上述几个方面将图象选出,解决此类题目常采用排除法. (3)根据对数函数图象判断底数大小的方法:作直线 y=1 与所给图象相交,交点的横坐标即为各个底数,根据在第一 象限内,自左向右,图象对应的对数函数的底数逐渐变大, 可比较底数的大小.
K12课件
3
[点睛] 底数 a 与 1 的大小关系决定了对数函数图象的“升 降”:当 a>1 时,对数函数的图象“上升”;当 0<a<1 时, 对数函数的图象“下降”.
3.反函数 指数函数 y=ax 和对数函数 y=logax(a>0 且 a≠1) 互为反函数.
K12课件
4
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
K12课件
7
判断一个函数是对数函数的方法
K12课件
8
[活学活用] 1.函数 f(x)=(a2-a+1)log(a+1)x 是对数函数,则实 数 a=________.
解析:a2-a+1=1,解得 a=0 或 1. 又 a+1>0,且 a+1≠1,∴a=1. 答案:1
K12课件
9
求对数型函数的定义域
K12课件
17
(4)
要
使
函
数
式
有
意
义
,
需
4x-3>0, log0.54x-3≥0,
2017_2018版高中数学第二章基本初等函数(Ⅰ)章末复习课课件苏教版必修1
(1)求y=f(x)的解析式及定义域;
解答
(2)求△APM面积的最大值及此时点P位置.
5 解 易知 f(x)在(0,1)上为单调增函数,在[1, )上为单调减函数, 2
3 1 1 ∴当 x=1 时,f(x)max=4-4=2.
解答
命题角度2 函数性质的综合应用 例2 已知函数f(x)对任意x,y∈R,总有f(x) +f(y) =f(x+y) ,且当x>0 时, 2 f(x)<0,f(1)= - . 3 (1)求证:f(x)在R上是单调减函数;
知识点二
函数的单调性
1.函数的单调性主要涉及求函数的单调区间,利用函数的单调性比较函数值的 大小,利用函数的单调性解不等式等相关问题.深刻理解函数单调性的定义是解 答此类问题的关键. 2.函数单调性的证明 根据增函数、减函数的定义分为四个步骤证明,步骤如下: (1)取值:任取x1,x2∈D,且x1<x2,得x2-x1>0; (3)判断符号:确定Δy的符号,当符号不确定时,可以进行分类讨论;
知识点三
函数的奇偶性
对于定义域内的任意x(定义域关于原点对称)→
f-x=-fx⇔fx为奇函数, f-x=fx⇔fx为偶函数.
性质:①函数y=f(x)是偶函数⇔f(x)的图象关于y轴对称.
②函数y=f(x)是奇函数⇔f(x)的图象关于原点对称.
③偶函数在其定义域内关于原点对称的两个区间上的单调性相反.
第2章
函 数
章末复习课
学习目标
1.构建知识网络,理解其内在的联系.
2.盘点重要技能,提炼操作要点.
3.体会数学思想,培养严谨灵活的思维能力.
内容索引
问题导学
题型探究 当堂训练
问题导学
高中数学第二章基本初等函数(ⅰ)2.1.2指数函数及其性质(第1课时)指数函数的图象及性质
12/13/2021
第十二页,共三十八页。
(1)判断一个函数是指数函数的方法 ①看形式:只需判断其解析式是否符合 y=ax(a>0,且 a≠1)这 一结构特征; ②明特征:看是否具备指数函数解析式具有的三个特征.只要 有一个特征不具备,则该函数不是指数函数.
12/13/2021
第十三页,共三十八页。
解析:选 B.法一:由图象可知③④的底数必大于 1,①②的底
数必小于 1.
作直线 x=1,在第一象限内直线 x=1 与各曲线的交点的纵坐
标即各指数函数的底数,则 1<d<c,b<a<1,从而可知 a,b,
c,d 与 1 的大小关系为 b<a<1<d<c.
法二:根据图象可以先分两类:
③④的底数大于 1,①②的底数小于 1,再Байду номын сангаас③④比较 c,d 的
12/13/2021
第十八页,共三十八页。
求解指数函数图象问题的策略 (1)抓住特殊点:指数函数的图象过定点(0,1). (2)巧用图象变换:函数图象的平移变换(左右平移、上下平移). (3)利用函数的性质:奇偶性与单调性.
12/13/2021
第十九页,共三十八页。
1.指数函数①f(x)=mx,②g(x)=nx 满足不等式 0<m<n<1,则 它们的图象是( )
第二十一页,共三十八页。
2.已知 0<a<1,b<-1,则函数 y=ax+b 的图象必定不经过
() A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析:选 A.函数恒过点(0,1+b),因为 b<-1,所以点(0,1 +b)在 y 轴负半轴上.故图象不经过第一象限.
12/13/2021
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第二节 函数的单调性与最值)
第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f x的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”. 考点一 确定函数的单调性区间)[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-x -12+2,x ≥0,-x +12+2,x <0.画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法 f ′(x )=ax ′x -1-ax x -1′x -12=ax -1-ax x -12=-ax -12.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数;当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域最值)[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52(3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3, 又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧ 0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2,解得a =25. 12.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.解:(1)证明:当a =-2时,f (x )=x x +2. 任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2. 因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)内单调递增.(2)任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a. 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0,所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1.所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2m x +1在区间[2,4]上都是减函数,则m 的取值范围是( ) A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2m x 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧ a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a>0,所以a>3.答案:(3,+∞)3.已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.解:(1)令x=y=0,得f(0)=-1.在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1>f(x2),所以函数f(x)在R上是单调增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),又函数f(x)在R上是增函数,故x2+x+1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.。
2017_2018年高中数学第二章函数2.1函数2.1.3函数的单调性(1)课件新人教B版必修1
势.数学上的单调性,是绝对上升或下降的趋势,这是数学单调趋势的特
征.怎样表示这种绝对的上升和下降呢?如果是有限个数字,把它们一个个排 列起来就行了,现在的问题是有无限多个变量的值,没法排.数学的思考是 “任意取两个,都是上升(下降),保证不出意外”,这就是无限多个变量时,对 “一个不能少”的数学处理.下面我们就一起来探索吧!
如果一个函数在某个区间 M 上是增函数或是减函数,就说这个函数在这个
单调性 区间M称为__________) 单调区间 . 区间M上具有________(
2.判断函数单调性的步骤 利用定义证明函数f(x)在给定的区间M上的单调性的一般步骤: (1)任取x1、x2∈M, 且Δy=x2-x1________0; f(x2)-f(x1) ; (2)作差:Δy=_____________ (3)________(通常所用的方法有:因式分解、配方、分子有理化、分母有理 化、通分等);
[解析] 根据减函数的定义可知,x1>x2.
x+2 5 . 设函 数 f(x) = , 用 单 调性 定义 证 明 f(x) 在 ( - 1 ,+ ∞) 上 是减 函 x+1 数. 导学号 65164330
[证明] 设任意 x1∈(-1,+∞),x2∈(-1,+∞),且 x1<x2. x2+2 x1+2 x1-x2 f(x2)-f(x1)= - = x2+1 x1+1 x2+1x1+1 ∵x1<x2,x1∈(-1,+∞),x2∈(-1,+∞), x1-x2 ∴x1-x2<0,x1+1>0,x2+1>0,∴ <0, x2+1x1+1 ∴f(x2)<f(x1),∴函数 f(x)在(-1,+∞)上是减函数.
3.一个函数出现两个或两个以上的单调区间时,不能用“∪”连接两个单
高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2指数函数及其性质教学设计新人教A版必修1
2.1.2 指数函数及其性质整体设计教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课〔指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)〕,这是第一节课“指数函数的图象及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.学生学习情况分析指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.设计思想1.函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的好奇心.我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去.2.在本节课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.3.通过课堂教学活动向学生渗透数学思想方法.教学目标根据学生的实际情况,本节课的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.重点难点教学重点:指数函数的概念、图象和性质.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.教学过程一、创设情境、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……,按这样的规律,51号同学该准备多少粒米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重.师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……,按这样的规律,51号同学该准备多少粒米?学情预设学生可能说出很多或能算出具体数目.师:大家能否估计一下51号同学该准备的米有多重吗?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨.师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨.这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!设计意图用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望.在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?学生很容易得出y=2x(x∈N*)和y=2x(x∈N*).学情预设学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的取值范围.二、师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题中,也有一个与y=2x类似的关系式y=1.073x(x∈N*,x≤20).(1)让学生思考讨论以下问题(问题逐个给出,约3分钟):①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 设计意图引导学生从具体问题、实际问题中抽象出数学模型.学生对比已经学过的一次函数、反比例函数、二次函数,发现y =2x ,y =1.073x 是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣.引导学生观察,两个函数中,底数是常数,指数是自变量.师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成y =a x 的形式.自变量在指数位置,所以我们把它称作指数函数.(2)让学生讨论并给出指数函数的定义(约6分钟).对于底数的分类,可将问题分解为:①若a <0,会有什么问题?(如a =-2,x =12,则在实数范围内相应的函数值不存在) ②若a =0,会有什么问题?(对于x ≤0,a x 都无意义)③若a =1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要)师:为了避免上述各种情况的发生,所以规定a >0且a ≠1.在这里要注意生生之间、师生之间的对话.①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a >0,且a ≠1;a =1为什么不行?②若学生只给出y =a x ,教师可以引导学生通过类比一次函数(y =kx +b ,k ≠0)、反比例函数(y =k x ,k ≠0)、二次函数(y =ax 2+bx +c ,a ≠0)中的限制条件,思考指数函数中底数的限制条件.学情预设设计意图①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出a >0,且a ≠1,也为下面研究性质时对底数的分类做准备.接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y =2×3x ,y =32x ,y =-2x.学情预设学生可能只是关注指数是否是变量,而不考虑其他的.设计意图加深学生对指数函数定义和呈现形式的理解.2.指数函数的性质(1)提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面?设计意图让学生在研究指数函数时有明确的目标:函数三要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性).②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考.设计意图①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)两个不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透.(2)分组活动,合作学习(约8分钟)师:下面我们就从图象和解析式这两个不同的角度对指数函数进行研究.①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组);③每组都将研究所得到的结论或成果写出来以便交流.学情预设考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导.通过自主探索、合作学习,不仅让学生充当学习的主人更可加深对所得到结论的理解.设计意图(3)交流、总结(约10~12分钟)师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果.教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析.这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?〔〕如过定点(0,1),y =a x 与y =⎝ ⎛⎭⎪⎫1a x 的图象关于y 轴对称学情预设①首先选一个从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其他小组有没有不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化.设计意图①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的.②让学生上台汇报研究成果,使学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题,使该难点的突破显得自然.师:从图象入手我们很容易看出函数的单调性、奇偶性,以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到.教师通过几何画板中改变参数a的值,追踪y=a x的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律.师生共同总结指数函数的图象和性质,教师可以边总结边板书.0<a<1a>1(0,+∞)过定点(0,1)1.例:已知指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,π),求f(0),f(1),f(-3)的值.解:因为f(x)=a x的图象经过点(3,π),所以f(3)=π,即a 3=π.解得13πa =,于是f (x )=3πx . 所以f (0)=1,f (1)=3π,f (-3)=1π. 设计意图通过本题加深学生对指数函数的理解.师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了.设计意图让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想.2.练习:(1)在同一平面直角坐标系中画出y =3x 和y =⎝ ⎛⎭⎪⎫13x 的大致图象,并说出这两个函数的性质;(2)求下列函数的定义域:①y =112xy ⎛⎫= ⎪⎝⎭. 3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?学情预设学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数.设计意图①让学生再一次复习对函数的研究方法(可以从多个角度进行),让学生体会本节课的研究方法,以便能将其迁移到其他函数的研究中去.②总结本节课中所用到的数学思想方法.③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通.4.作业:课本习题2.1A 组 5.教学反思1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”.2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本节课使用几何画板可以动态地演示出指数函数的底数的变化过程,让学生直观地观察底数对指数函数单调性的影响.3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉地运用这些数学思想方法去分析、思考问题.指数函数及其性质的应用整体设计三维目标1.知识与技能理解指数函数的图象和性质,会利用性质来解决问题.2.过程与方法能利用指数函数的图象和性质来比较两个值的大小,图象间的平移,去探索利用指数函数的单调性来求未知字母的取值范围.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.重点难点教学重点:指数函数的图象和性质.教学难点:指数函数的性质应用.教学过程第2课时指数函数及其性质的应用(1)作者:王建波导入新课思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明(特别是指数函数的单调性),以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质的应用(1).应用示例例1 比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的方法,再写出答案(最好用实物投影仪展示写得正确的答案).比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;图1二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y=1.7x的图象,如图1.在图象上找出横坐标分别为2.5,3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法三:利用函数单调性,(1)1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x在R上是增函数,而2.5<3,所以1.72.5<1.73;(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x在R上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;(3)因为1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思考在上面的解法中,你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习强化来实现.例活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1,x 2∈R ,且x 1<x 2,则y 2-y 1=21121(1)x x x x a a a a x -=--.因为a >1,x 2-x 1>0,所以21>1x x a-,即21x x a --1>0. 又因为1x a >0,所以y 2-y 1>0,即y 1<y 2.所以当a >1时,y =a x,x ∈R 是增函数.同理可证,当0<a <1时,y =a x 是减函数. 证法二:设x 1,x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=2211x x x x a a a -=. 因为a >1,x 2-x 1>0,所以21>1x x a->1,即y 2y 1>1,y 1<y 2. 所以当a >1时,y =a x ,x ∈R 是增函数.同理可证,当0<a <1时,y =a x是减函数.例1%,那么经过20年后,我国人口数最多为多少(精确到亿)?活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;……经过x 年 人口约为13(1+1%)x亿;经过20年 人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 y =13(1+1%)x ,当x =20时,y =13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N ,平均增长率为p ,则对于经过时间x 后总量y =N (1+p )x (x ∈N ),像y =N (1+p )x 等形如y =ka x (k ∈R ,且k ≠0;a >0,且a ≠1)的函数称为指数型函数.知能训练1.函数y =a |x |(a >1)的图象是( )图2解析:当x ≥0时,y =a |x |=a x 的图象过(0,1)点,在第一象限,图象下凸,是增函数. 答案:B2.下列关系中正确的是( )A .221333111252⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答案:D3.已知函数f (x )的定义域是(0,1),那么f (2x)的定义域是( )A .(0,1)B .⎝ ⎛⎭⎪⎫12,1 C .(-∞,0) D .(0,+∞) 解析:由题意得0<2x <1,即0<2x <20,所以x <0,即x ∈(-∞,0). 答案:C4.若集合A ={y |y =2x,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .AB B .AB C .A =B D .A ∩B =∅解析:A ={y |y >0},B ={y |y ≥0},所以A B .答案:A5.对于函数f (x )定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论: ①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=10x时,上述结论中正确的是__________. 解析:因为f (x )=10x,且x 1≠x 2,所以f (x 1+x 2)=1212101010x x xx +=⋅=f (x 1)·f (x 2),所以①正确;因为f (x 1·x 2)=1212101010x x xx ⋅≠+=f (x 1)+f (x 2),②不正确;因为f (x )=10x是增函数,所以f (x 1)-f (x 2)与x 1-x 2同号, 所以f (x 1)-f (x 2)x 1-x 2>0,所以③正确.因为函数f (x )=10x图象如图3所示是上凹下凸的,可解得④正确.图3答案:①③④另解:④.∵10x 1>0,10x 2>0,x 1≠x 2,∴1210102xx +>1210102xx +>即121221010102x x x x ++>.∴f (x 1)+f (x 2)2>f ⎝⎛⎭⎪⎫x 1+x 22.拓展提升在同一坐标系中作出下列函数的图象,讨论它们之间的联系. (1)①y =3x,②y =3x +1,③y =3x -1;(2)①y =⎝ ⎛⎭⎪⎫12x ,②y =⎝ ⎛⎭⎪⎫12x -1,③y =⎝ ⎛⎭⎪⎫12x +1.活动:学生动手画函数图象,教师点拨,学生没有思路,教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.解:如图4及图5.观察图4可以看出,y =3x,y =3x +1,y =3x -1的图象间有如下关系:y =3x +1的图象由y =3x 的图象左移1个单位得到; y =3x -1的图象由y =3x 的图象右移1个单位得到; y =3x -1的图象由y =3x +1的图象向右移动2个单位得到.观察图5可以看出,y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫12x -1,y =⎝ ⎛⎭⎪⎫12x +1的图象间有如下关系:y =⎝ ⎛⎭⎪⎫12x +1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象左移1个单位得到;y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象右移1个单位得到; y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x +1的图象向右移动2个单位得到. 你能推广到一般的情形吗?同学们留作思考.课堂小结思考本节课我们主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.作业课本习题2.1 B组1,3,4.设计感想本节课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0<a<1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.第3课时指数函数及其性质的应用(2)作者:刘玉亭导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=a x与y=a x+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质的应用(2).思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本节课要解决的问题——指数函数及其性质的应用(2).推进新课新知探究提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:图象分布在一、二象限,与轴相交,落在x轴的上方都过点(0,1)第一象限的点的纵坐标都大于1第二象限的点的纵坐标都大于第一象限的点的纵坐标都大于0且小于1;第二象限的点①取值.即设x1,x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f(g(x))可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考查式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例例 1 在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.解:(1)列出函数数据表作出图象如图6.图6比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.(2)列出函数数据表作出图象如图7.图7比较可知函数y =2x -1、y =2x -2与y =2x的图象的关系为:将指数函数y =2x的图象向右平行移动1个单位长度,就得到函数y =2x -1的图象;将指数函数y =2x的图象向右平行移动2个单位长度,就得到函数y =2x -2的图象.点评:类似地,我们得到y =a x与y =ax +m(a >0,a ≠1,m ∈R )之间的关系:y =a x +m (a >0,m ∈R )的图象可以由y =a x 的图象变化而来.当m >0时,y =a x的图象向左移动m 个单位得到y =ax +m的图象; 当m <0时,y =a x 的图象向右移动|m |个单位得到y =a x +m的图象.上述规律也简称为“左加右减”.例2 已知定义域为R 的函数f (x )=2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 活动:学生审题,考虑解题思路.求值一般是构建方程,求取值范围一般要转化为不等式,如果有困难,教师可以提示,(1)从条件出发,充分利用奇函数的性质,由于定义域为R ,所以f (0)=0,f (-1)=-f (1),(2)在(1)的基础上求出f (x ),转化为关于k 的不等式,利用恒成立问题再转化.(1)解:因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1.所以f (x )=1-2xa +2x +1;。
2017-2018版高中数学 第二章 基本初等函数(Ⅰ)2.2.2 函数的奇偶性课件 苏教版必修1
12345
答案
3.已知函数y=f(x)+x是偶函数,且f(2)=1,则f(-2)=__5___.
解析 ∵函数y=f(x)+x是偶函数, ∴x=±2时函数值相等. ∴f(-2)-2=f(2)+2,∴f(-2)=5.
12345
解析 答案
4.若函数f(x)=(m-1)x2+(m-2)x+m2-7m+12为偶函数,则m的值是 ___2__.
证明
命题角度3 证明抽象函数的奇偶性 例3 f(x),g(x)是定义在R上的奇函数,试判断y=f(x)+g(x),y=f(x)g(x), y=f[g(x)]的奇偶性. 解 ∵f(x),g(x)是定义在R上的奇函数, ∴f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)],y=f(x)+g(x)是奇函数. f(-x)g(-x)=[-f(x)][-g(x)]=f(x)g(x),y=f(x)g(x)是偶函数. f[g(-x)]=f[-g(x)]=-f[g(x)],y=f[g(x)]是奇函数.
解析 答案
类型二 奇偶性的应用 命题角度1 奇(偶)函数图象的对称性的应用 例4 定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.
(1)画出f(x)的图象;
解答
(2)解不等式xf(x)>0. 解 xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集 是(-2,0)∪(0,2).
x-1
证明
(2)证明f(x)=(x+1)(x-1)是偶函数; 证明 函数的定义域为R,因函数f(x)=(x+1)(x-1)=x2-1,又因f(-x) =(-x)2-1=x2-1=f(x),所以函数为偶函数.
证明
(3)证明 f(x)= 1-x2+ x2-1既是奇函数又是偶函数. 证明 定义域为{-1,1},因为对定义域内的每一个x,都有f(x)=0, 所以 f(-x)=f(x),故函数 f(x)= 1-x2+ x2-1为偶函数. 又 f(-x)=-f(x),故函数 f(x)= 1-x2+ x2-1为奇函数. 即该函数既是奇函数又是偶函数.
2017_2018版高中数学第二章基本初等函数(Ⅰ)2.2.1函数的单调性(二)课件苏教版必修1
反思与感悟
(1)若函数y=f(x)在区间[a,b]上为单调增函数,则f(x)的最大值为f(b),最 小值为f(a). (2)若函数y=f(x)在区间[a,b]上为单调减函数,则f(x)的最大值为f(a),最 小值为f(b). (3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区 间的最值中决出最大(小).函数的最大(小)值是整个值域范围内最大(小)的. (4)如果函数定义域为开区间,则不但要考虑函数在该区间上的单调性, 还要考虑端点处的函数值或者发展趋势.
跟踪训练1 已知函数f(x)=|x+1|+|x-1|. (1)画出f(x)的图象; 解 f(x)的图象如图.
解答
(2)根据图象写出f(x)的最小值.
解
由图知,f(x) 在( -∞ ,-1]上为单调减函数,在 [-1,1]上为常函数,
在[1,+∞)上为单调增函数,
∴f(x)min=2.
解答
类型二
第2章
2.2 函数的简单性质
2.2.1 函数的单调性(二)
学习目标
1.理解函数的最大(小)值的概念及其几何意义.
2.会借助单调性求最值.
3.掌握求二次函数在闭区间上的最值.
内容索引
问题导学
题型探究 当堂训练
问题导学
知识点一
函数的最大(小)值
思考
在如图表示的函数中,最大的函数值和最小的函数值分别是多 少?1为什么不是最小值?
y=t2-2t-3(t≥0)在[0,1]上为单调减函数,在[1,+∞)上为单调增函数.
∴当t=1即x=±1时,f(x)min=-4,无最大值.
解答
(2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值;
解 ∵函数图象的对称轴是x=a,
高中数学第二章基本初等函数(ⅰ)2.2对数函数2.2.2第2课时对数函数及其性质的应用
第三页,共三十一页。
1.y=ln(x2+1)的值域是( A.R C.(0,+∞) 答案:B
[双基自测] ) B.[0,+∞) D.(-∞,0)
12/9/2021
第四页,共三十一页。
2.设 a=log54,b=log53,c=log 1 5,则( )
3
A.a<c<b
B.c<a<b
C.b<a<c
第二十页,共三十一页。
3.(1)若 f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上递减,则 a 的取值范围是( )
A.[1,2)
B.[1,2]
C.[1,+∞)
D.[2,+∞)
(2)求函数 f(x)=log2(x2-x-2)的单调减区间.
解析:(1)令函数 g(x)=x2-2ax+1+a=(x-a)2+1+a-a2 的对称轴为 x=a,要
12/9/2021
第二十九页,共三十一页。
(2)令 f(x)-g(x)>0,得 f(x)>g(x), 即 loga(x+1)>loga(4-2x), 当 a>1 时,可得 x+1>4-2x,解得 x>1. 由(1)知-1<x<2,∴1<x<2; 当 0<a<1 时,可得 x+1<4-2x,解得 x<1, 由(1)知-1<x<2,∴-1<x<1. 综上,当 a>1 时,x 的取值范围是(1,2);当 0<a<1 时,x 的取值范围是(-1,1).
C.(1,+∞)
D.(0,1)
12/9/2021
第二十五页,共三十一页。
解析:当 a>1 时,loga34<0<1,成立.
当 0<a<1 时,y=logax 为减函数.
由
loga34<1=logaa,得
三色笔记、回顾重点、章节例题
三色笔记、回顾重点、章节例题一、[学科名称]三色笔记示例(以数学为例)1. 红色重点(必背概念与定理)- 函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
- 函数的单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2)(或f(x1)>f(x2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
2. 蓝色易错点(容易混淆的知识点)- 函数的奇偶性:- 奇函数满足f(-x)= - f(x),偶函数满足f(-x)=f(x)。
易错点在于判断奇偶性时,首先要确定函数的定义域是否关于原点对称,如果定义域不关于原点对称,则函数既不是奇函数也不是偶函数。
- 导数的定义:函数y = f(x)在x = x0处的导数f′(x0)的定义为f^′(x_0)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
容易出错的是在求极限的过程中,对Δ x的趋近过程理解错误。
3. 黑色基础内容(基础知识补充)- 实数的运算:包括加、减、乘、除、乘方、开方等运算。
加法交换律a +b=b + a,加法结合律(a + b)+c=a+(b + c)等基本运算律。
- 代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
例如3x+2y,√(x)(x≥slant0)等。
二、回顾重点。
1. [学科名称]重点回顾(以物理为例)- 运动学:- 匀变速直线运动的速度公式v = v_0+at,位移公式x=v_0t+(1)/(2)at^2,速度 - 位移公式v^2-v_0^2=2ax。
这些公式是解决匀变速直线运动问题的关键,要熟练掌握公式的推导过程以及适用条件。
18版高中数学第二章基本初等函数(Ⅰ)2.2.1函数的单调性(一)学案苏教版必修1
2.2.1 函数的单调性(一)学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一函数的单调性思考画出函数f(x)=x、f(x)=x2的图象,并指出f(x)=x、f(x)=x2的图象的升降情况如何?梳理一般地,单调性是相对于区间来说的,函数图象在某区间上上升,则函数在该区间上为单调增函数,该区间称为单调增区间.反之则为单调减函数,相应区间称为单调减区间.因为很多时候我们不知道函数图象是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义:设函数y=f(x)的定义域为A,区间I⊆A.(1)如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说y=f(x)在区间I上是单调增函数,I称为y=f(x)的单调增区间.(2)如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间I上是单调减函数,I称为y=f(x)的单调减区间.单调增区间和单调减区间统称为单调区间.知识点二函数的单调区间思考 我们已经知道f (x )=x 2的单调减区间为(-∞,0],f (x )=1x的单调减区间为(-∞,0),这两个单调减区间的书写形式能不能交换?梳理 一般地,有下列常识(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开. (2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大.类型一 求单调区间并判断单调性例1 如图是定义在区间[-5,5]上的函数y =f (x ),根据图象说出函数的单调区间,以及在每一单调区间上,它是单调增函数还是单调减函数?反思与感悟函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D上函数要么是单调增函数,要么是单调减函数,不能二者兼有.跟踪训练1 写出函数y=|x2-2x-3|的单调区间,并指出单调性.类型二证明单调性命题角度1 证明具体函数的单调性例2 证明f(x)=x在其定义域上是单调增函数.反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1<x 2的条件下,转化为确定f (x 1)与f (x 2)的大小,要牢记五大步骤:取值→作差→变形→定号→小结.跟踪训练2 求证:函数f (x )=x +1x在[1,+∞)上是单调增函数.命题角度2 证明抽象函数的单调性例3 已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.求证:函数f (x )在R 上是单调增函数.反思与感悟 因为抽象函数不知道解析式,所以不能代入求f (x 1)-f (x 2),但可以借助题目提供的函数性质来确定f (x 1)-f (x 2)的大小,这时就需要根据解题需要对抽象函数进行赋值. 跟踪训练3 已知函数f (x )的定义域是R ,对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.求证:f (x )在R 上是单调减函数.类型三 单调性的应用命题角度1 利用单调性求参数范围例4 若函数f (x )=⎩⎪⎨⎪⎧3a -1 x +4a ,x <1,-ax ,x ≥1是定义在R 上的单调减函数,则a 的取值范围为________.反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要保证在接口处不能反超.另外,函数在单调区间上的图象不一定是连续不断的.跟踪训练 4 已知函数f(x)=x2-2ax-3在区间[1,2]上单调,则实数a的取值范围为________________.命题角度2 用单调性解不等式例5 已知y=f(x)在定义域(-1,1)上是单调减函数,且f(1-a)<f(2a-1),求a的取值范围.反思与感悟若已知函数f(x)的单调性,则由x1,x2的大小,可得f(x1),f(x2)的大小;由f(x1),f(x2)的大小,可得x1,x2的大小.跟踪训练5 在例5中若函数y=f(x)的定义域为R,且为单调增函数,f(1-a)<f(2a-1),则a的取值范围又是什么?1.函数y =f (x )在区间[-2,2]上的图象如图所示,则此函数的单调增区间是________.2.函数y =6x的单调减区间是________.3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是________.(填序号)①f (x )=x 2;②f (x )=1x;③f (x )=|x |;④f (x )=2x +1. 4.给出下列说法:①若定义在R 上的函数f (x )满足f (3)>f (2),则函数f (x )在R 上为单调增函数; ②若定义在R 上的函数f (x )满足f (3)>f (2),则函数f (x )在R 上不可能为单调减函数;③函数f (x )=-1x 在(-∞,0)∪(0,+∞)上为单调增函数;④函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-x 2+1,x <0在定义域R 上为单调增函数. 其中说法正确的是________.(填序号)5.若函数f (x )在R 上是单调减函数,且f (|x |)>f (1),则x 的取值范围是________.1.若f (x )的定义域为D ,A ⊆D ,B ⊆D ,f (x )在A 和B 上都为单调减函数,未必有f (x )在A ∪B 上为单调减函数.2.对单调增函数的判断,对任意x 1<x 2,都有f (x 1)<f (x 2),也可以用一个不等式来替代: (x 1-x 2)[f (x 1)-f (x 2)]>0或f x 1 -f x 2x 1-x 2>0.对单调减函数的判断,对任意x 1<x 2,都有f (x 1)>f (x 2),相应地也可用一个不等式来替代:(x 1-x 2)·[f (x 1)-f (x 2)]<0或f x 1 -f x 2x 1-x 2<0.3.熟悉常见的一些函数的单调性,包括一次函数,二次函数,反比例函数等.4.若f (x ),g (x )都是单调增函数,h (x )是单调减函数,则:①在定义域的交集(非空)上,f (x )+g (x )为单调增函数,f (x )-h (x )为单调增函数,②-f (x )为单调减函数,③1f x为单调减函数(f (x )≠0).5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f x 1f x 2与1比较.答案精析问题导学 知识点一思考 两函数的图象如下:函数f (x )=x 的图象由左到右是上升的;函数f (x )=x 2的图象在y 轴左侧是下降的,在y 轴右侧是上升的. 知识点二思考 f (x )=x 2的单调减区间可以写成(-∞,0),而f (x )=1x的单调减区间(-∞,0)不能写成(-∞,0],因为0不属于f (x )=1x的定义域.题型探究例1 解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是单调减函数,在区间[-2,1],[3,5]上是单调增函数.跟踪训练1 解 先画出f (x )=⎩⎪⎨⎪⎧x 2-2x -3,x <-1或x >3,- x 2-2x -3 ,-1≤x ≤3的图象,如图.所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调减区间是(-∞,-1],[1,3];单调增区间是[-1,1],[3,+∞). 例2 证明 f (x )=x 的定义域为[0,+∞).设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=x 1-x 2= x 1-x 2 x 1+x 2x 1+x 2=x 1-x 2x 1+x 2.∵0≤x 1<x 2,∴x 1-x 2<0,x 1+x 2>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )=x 在定义域[0,+∞)上是单调增函数.跟踪训练2 证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1<x 2, 则f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2)=(x 1-x 2)+(1x 1-1x 2)=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)(1-1x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2). ∵1≤x 1<x 2,∴x 1-x 2<0,1<x 1x 2, ∴x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2)<0, 即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )=x +1x在区间[1,+∞)上是单调增函数.例3 证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2.令x +y =x 1,y =x 2,则x =x 1-x 2>0.f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1.∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴函数f (x )在R 上是单调增函数. 方法二 设x 1>x 2,则x 1-x 2>0, 从而f (x 1-x 2)>1, 即f (x 1-x 2)-1>0.f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是单调增函数.跟踪训练3 证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0),∵当x >0时,0<f (x )<1,∴f (1)≠0,∴f (0)=1.令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1,又∵-x >0时,0<f (-x )<1,∴f (x )=1f -x>1. ∴对任意实数x ,f (x )恒大于0.设任意x 1<x 2,则x 2-x 1>0,∴0<f (x 2-x 1)<1,∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0,∴f (x )在R 上是单调减函数.例4 [18,13) 解析 要使f (x )在R 上是单调减函数,需满足:⎩⎪⎨⎪⎧ 3a -1<0,-a <0,3a -1 ·1+4a ≥-a ·1,解得18≤a <13. 跟踪训练4 (-∞,1]∪[2,+∞)解析 由于二次函数开口向上,故其单调增区间为[a ,+∞),单调减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]⊆[a ,+∞)或[1,2]⊆(-∞,a ],即a ≤1或a ≥2. 例5 解 f (1-a )<f (2a -1)等价于⎩⎪⎨⎪⎧ -1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23, 即所求a 的取值范围是0<a <23.跟踪训练5 解 ∵y =f (x )的定义域为R ,且为单调增函数,f (1-a )<f (2a -1),∴1-a <2a -1,即a >23, ∴所求a 的取值范围是(23,+∞). 当堂训练1.[-2,1] 2.(-∞,0),(0,+∞)3.②4.②④解析 由单调增函数的定义,可知①错误;由单调减函数的定义,可知②正确;因为函数f (x )=-1x在(-∞,0)和(0,+∞)上为单调增函数,所以③错误;作出函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≥0,-x 2+1,x <0的图象,如图所示,由图象可知④正确.5.(-1,1)。
2017_2018版高中数学第二章大体初等函数Ⅰ2_2_1函数的单调性一学案苏教版必修1
知识点二 函数的单调区间
试探 咱们已经明白f(x)=x2的单调减区间为(-∞,0],f(x)= 的单调减区间为(-∞,0),这两个单调减区间的书写形式能不能互换?
梳理 一样地,有以下常识
(1)函数单调性关注的是整个区间上的性质,单唯一点不存在单调性问题,因此单调区间的端点假设属于概念域,那么该点处区间可开可闭,假设区间端点不属于概念域那么只能开.
跟踪训练2 证明 设x1,x2是实数集R上的任意实数,且1≤x1<x2,
则f(x1)-f(x2)=x1+ -(x2+ )
=(x1-x2)+( - )
=(x1-x2)+
=(x1-x2)(1- )
=(x1-x2)( ).
∵1≤x1<x2,∴x1-x2<0,1<x1x2,
∴ >0,故(x1-x2)( )<0,
2.2.1 函数的单调性(一)
学习目标 1.明白得函数单调区间、单调性等概念.2.会划分函数的单调区间,判定单调性.3.会用概念证明函数的单调性.
知识点一 函数的单调性
试探 画出函数f(x)=x、f(x)=x2的图象,并指出f(x)=x、f(x)=x2的图象的起落情形如何?
梳理 一样地,单调性是相关于区间来讲的,函数图象在某区间上上升,那么函数在该区间上为单调增函数,该区间称为单调增区间.反之那么为单调减函数,相应区间称为单调减区间.因为很多时候咱们不明白函数图象是什么样的,而且用上升下降来刻画单调性很粗糙.因此有以下概念:
1.假设f(x)的概念域为D,A⊆D,B⊆D,f(x)在A和B上都为单调减函数,未必有f(x)在A∪B上为单调减函数.
2.对单调增函数的判定,对任意x1<x2,都有f(x1)<f(x2),也能够用一个不等式来替代:
2018版第2章2.2.1第1课时函数的单调性
2.2函数的简单性质2.2.1函数的单调性第1课时函数的单调性1.理解并掌握单调增(减)函数的定义及其几何意义.(重点)2.会用单调性的定义证明函数的单调性.(重点、难点)3.会求函数的单调区间.(重点、难点)[基础·初探]教材整理1单调性的定义阅读教材P37,完成下列问题.1.定义一般地,设函数y=f (x)的定义域为A,区间I⊆A.如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f (x1)<f (x2),那么就说y=f (x)在区间I上是单调增函数,I称为y=f (x)的单调增区间.如果对于区间I内的任意两个值x1,x2,当x1<x2时,都有f (x1)>f (x2),那么就说y=f (x)在区间I上是单调减函数,I称为y=f (x)的单调减区间.2.函数单调性与单调区间如果函数y=f (x)在区间I上是单调增函数或单调减函数,那么就说函数y =f (x)在区间I上具有单调性.单调增区间和单调减区间统称为单调区间.1.判断(正确的打“√”,错误的打“×”)(1)所有函数在定义域上都具有单调性.()(2)若函数y=f (x)在定义域上有f (1)<f (2),则函数y=f (x)是增函数.()(3)若函数f (x)在实数集R上是增函数,则有f (1)<f (4).()(4)若函数y=f (x)在区间[1,3]上是减函数,则函数 f (x)的单调区间是[1,3].()【解析】(1)y=2在定义域上无单调性;(2)只根据f (1)<f (2),无法确定f (x)的单调性;(3)由f (x)在R上递增,可以得出f (1)<f (4);(4)一个函数的增区间也是单调区间.【答案】(1)×(2)×(3)√(4)×2.下列说法正确的是________.(填序号)①定义在(a,b)上的函数f (x),若存在x1<x2,使f (x1)<f (x2),那么f (x)在(a,b)上为增函数;②定义在(a,b)上的函数f (x),若有无穷多对x1,x2∈(a,b),使得当x1<x2时,有f (x1)<f (x2),那么f (x)在(a,b)上为增函数;③若f (x)在区间I1上为增函数,在区间I2上也为增函数,那么f (x)在I1∪I2上也一定为增函数;④若f (x)在区间I上为增函数,且f (x1)<f (x2)(x1,x2∈I),那么x1<x2.【解析】①②都是用部分x1和x2对应的函数值的大小来判断单调性,忽略了“任意”.③可举反例排除,如y=-1x在(-∞,0),(0,+∞)上均递增,但在定义域上不具有单调性.【答案】④教材整理2单调性的判断阅读教材P38例1、例2,完成下列问题.判断单调性的常用方法是图象法、定义法.根据下列函数的图象,说明函数的单调性.(1)一次函数y=kx+b,当k>0时,函数在R上单调递______,当k<0时,函数在R上单调递______.(2)反比例函数y =kx ,当k >0时,函数在(-∞,0),(0,+∞)上单调递______,当k <0时,函数在(-∞,0),(0,+∞)上单调递______.(3)二次函数y =ax 2+bx +c ,当a >0时,函数在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递______,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递______, 当a <0时,函数在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递______,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递____.【答案】 (1)增 减 (2)减 增 (3)减 增 增 减[小组合作型]利用函数图象求单调区间作出下列函数的图象,并写出单调区间.(1)y =x 2-4;(2)y =-2x ;(3)f (x )=⎩⎨⎧(x -2)2,x ≥0,x +4,x <0.【精彩点拨】 在图象上看从左向右上升的部分即递增,从左向右下降的部分即递减.【自主解答】 三个函数图象如图(1)(2)(3).(1) (2) (3)(1)y =x 2-4的单调递减区间为(-∞,0),递增区间为(0,+∞).(2)y =-2x 的单调增区间为(-∞,0),(0,+∞),无递减区间. (3)f (x )的单调增区间为(-∞,0),(2,+∞),递减区间为(0,2).1.应用图象确定单调性时,应掌握各种基本函数的图象的形状,并能通过图象的“上升”或“下降”趋势来找到函数的递增或递减区间,但应注意端点是否在定义域之内.2.当函数的单调区间不唯一时,中间用“,”隔开,或用“和”连接,但不能用“或”和“∪”连接.[再练一题]1.函数f (x )=-x 2+|x |(x ∈R )的单调递增区间为________. 【解析】 (1)f (x )=-x 2+|x |=⎩⎪⎨⎪⎧-x 2+x ,x >0,-x 2-x ,x ≤0,图象如图所示:∴f (x )的单调增区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.【答案】 ⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12函数单调性的判断与证明用定义证明函数f (x)=x+2x+1在(-1,+∞)上是减函数.【精彩点拨】解答本题可直接利用函数单调性的定义来判断.【自主解答】证明:设x1,x2是区间(-1,+∞)上任意两个实数,且x1<x2,则f (x1)-f (x2)=x1+2x1+1-x2+2x2+1=x2-x1(x1+1)(x2+1).∵-1<x1<x2,∴x2-x1>0,x1+1>0,x2+1>0,∴x2-x1(x1+1)(x2+1)>0,即f (x1)>f (x2),∴y=x+2x+1在(-1,+∞)上是减函数.用定义证明(判断)函数单调性的步骤[再练一题]2.证明函数f (x)=x2+1x在(1,+∞)上单调递增.【证明】任取x1,x2∈(1,+∞),且x1<x2,f (x1)-f (x2)=x21+1x1-x22+1x2=⎝⎛⎭⎪⎫x1+1x1-⎝⎛⎭⎪⎫x2+1x2=(x1-x2)+x2-x1x1x2=(x1-x2)⎝⎛⎭⎪⎫x1x2-1x1x2.∵x 1,x 2>1,∴x 1x 2>1,∴x 1x 2-1>0. 又x 1<x 2,∴x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(1,+∞)上单调递增.[探究共研型]单调性的应用探究1 如何利用函数的单调性比较两个函数值的大小?【提示】 先判断函数f (x )在区间D 上的单调性,如果函数f (x )在D 上是增函数,当x 1<x 2时,则f (x 1)<f (x 2),如果f (x )在D 上是减函数,结论则相反.探究2 如果已知函数的单调性和函数值的大小,能否判断对应自变量的大小?【提示】 能.利用函数单调性,将函数值的大小关系转化为自变量的大小关系,即脱去f 符号,转化为自变量的大小关系.已知函数f (x )是定义在[-2,2]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围为________.【精彩点拨】 根据单调性可以去掉f ,还应考虑定义域.【自主解答】 ∵f (x )是定义在[-2,2]上的增函数,且f (x -2)<f (1-x ), ∴x -2<1-x ,∴x <32.又f (x )的定义域为[-2,2],∴⎩⎪⎨⎪⎧-2≤x -2≤2,-2≤1-x ≤2,∴⎩⎪⎨⎪⎧0≤x ≤4,-1≤x ≤3,∴0≤x ≤3,综上,0≤x <32. 【答案】 ⎣⎢⎡⎭⎪⎫0,321.利用函数单调性的定义比较大小,一方面是正向应用,即若y =f (x )在给定区间上是增函数,则当x 1<x 2时,f (x 1)<f (x 2),当x 1>x 2时,f (x 1)>f (x 2);另一方面是逆向应用,即若y =f (x )在给定区间上是增函数,则当f (x 1)<f (x 2)时,x 1<x 2,当f (x 1)>f (x 2)时,x 1>x 2.当y =f (x )在给定区间上是减函数时,同理可得相应结论.2.根据函数的单调性研究参数的取值范围,往往会根据函数在某一区间上的增减性确定不等式,此时常需要将含参数的变量单独移到一侧,用变量的范围推出参数的范围.[再练一题]3.已知f (x )在R 上为减函数且f (2m )≥f (9-m ),则m 的取值范围是________. 【解析】 由题意可得2m ≤9-m , ∴m ≤3.【答案】 m ≤31.已知函数f (x )的图象如图2-2-1所示,则f (x )的单调减区间为________.图2-2-1【解析】 由题图知,f (x )在⎝ ⎛⎭⎪⎫12,2上图象呈下降趋势,∴单调减区间为⎝ ⎛⎭⎪⎫12,2.【答案】 ⎝ ⎛⎭⎪⎫12,22.下列四个函数中,在(0,+∞)上是增函数的是________. (1)f (x )=-1x +1;(2)f (x )=x 2-3x ;(3)f (x )=3-x ;(4)f (x )=-|x |. 【解析】 函数f (x )=-1x +1的单调递增区间是(-∞,-1),(-1,+∞),显然在(0,+∞)上是增函数;函数f (x )=x 2-3x 在⎝ ⎛⎭⎪⎫0,32上单调递减,在⎝ ⎛⎭⎪⎫32,+∞上单调递增;函数f (x )=3-x 在(0,+∞)上是减函数;函数f (x )=-|x |在(0,+∞)上是减函数,故(2)(3)(4)错误.【答案】 (1)3.若函数f (x )=(k -2)x +b 在R 上是减函数,则k 的取值范围为________. 【解析】 ∵f (x )=(k -2)x +b 在R 上是减函数, ∴k -2<0, ∴k <2.【答案】 k <24.已知函数f (x )=⎩⎨⎧3x -5,x ≥1,-2x ,-1<x <1,x +2,x ≤-1,则f (x )的单调增区间为________.【解析】 f (x )为分段函数,当x ≥1时,f (x )单调递增,当x ∈(-1,1)时,f (x )单调递减,当x ≤-1时,f (x )单调递增.【答案】 [1,+∞),(-∞,-1]5.已知函数f (x )=x +12x +2,x ∈[1,+∞).(1)判断函数f (x )在区间[1,+∞)上的单调性; (2)解不等式:f ⎝ ⎛⎭⎪⎫2x -12<f (x +1 008).【解】 (1)设1≤x 1<x 2, f (x 1)-f (x 2)=x 1+12x 1-x 2-12x 2=(x 1-x 2)+x 2-x 12x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-12x 1x 2=(x 1-x 2)·2x 1x 2-12x 1x 2.由1≤x 1<x 2得 x 1-x 2<0,x 1x 2>1, ∴2x 1x 2-1>0, ∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )在[1,+∞)上为增函数. (2)∵f (x )在[1,+∞)上为增函数, ∴f ⎝ ⎛⎭⎪⎫2x -12<f (x +1 008) ⇒⎩⎪⎨⎪⎧2x -12≥1,2x -12<x +1 008,解得34≤x <2 0172,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2 0172.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1 函数的单调性(二)学习目标 1.理解函数的最大(小)值的概念及其几何意义.2.会借助单调性求最值.3.掌握求二次函数在闭区间上的最值.知识点一函数的最大(小)值思考在如图表示的函数中,最大的函数值和最小的函数值分别是多少?1为什么不是最小值?梳理设y=f(x)的定义域为A.如果存在x0∈A,使得对于任意的x∈A,都有f(x)≤f(x0),那么称f(x0)为y=f(x)的最大值,记为y max=f(x0).如果存在x0∈A,使得对于任意的x∈A,都有f(x)≥f(x0),那么称f(x0)为y=f(x)的最小值,记为y min=f(x0).知识点二函数的最大(小)值的几何意义思考函数y=x2,x∈[-1,1]的图象如下:试指出函数的最大值、最小值和相应的x的值.梳理函数最大值对应图象中的最高点,最小值对应图象中的最低点.知识点三函数的单调性与最值若函数y=f(x)在区间[a,b]上是单调增函数,则函数的最小值为y min=f(a),最大值为y max =f(b);若函数y=f(x)在区间[a,b]上是单调减函数,则函数的最小值为y min=f(b),最大值为y max=f(a).即单调函数在闭区间上必有最大值、最小值.类型一借助单调性求最值例1 已知函数f(x)=xx2+1(x>0),求函数的最大值和最小值.反思与感悟(1)若函数y=f(x)在区间[a,b]上为单调增函数,则f(x)的最大值为f(b),最小值为f(a).(2)若函数y=f(x)在区间[a,b]上为单调减函数,则f(x)的最大值为f(a),最小值为f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决出最大(小).函数的最大(小)值是整个值域范围内最大(小)的.(4)如果函数定义域为开区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势.跟踪训练1 已知函数f(x)=|x+1|+|x-1|.(1)画出f(x)的图象;(2)根据图象写出f(x)的最小值.类型二求二次函数的最值例2 (1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值;(2)已知函数f(x)=x2-2x-3,若x∈[t,t+2],求函数f(x)的最值;(3)已知函数f(x)=x-2x-3,求函数f(x)的最值;(4)“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h m与时间t s之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1 m)?反思与感悟(1)二次函数在指定区间上的最值与二次函数的开口、对称轴有关,求解时要注意这两个因素.(2)图象直观,便于分析、理解;配方法说理更严谨,一般用于解答题.跟踪训练2 (1)已知函数f(x)=x4-2x2-3,求函数f(x)的最值;(2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值;(3)如图,某地要修建一个圆形的喷水池,水流在各个方向上以相同的抛物线路径落下,以水池的中央为坐标原点,水平方向为x轴、竖直方向为y轴建立平面直角坐标系.那么水流喷出的高度h(单位:m)与水平距离x(单位:m)之间的函数关系式为h=-x2+2x+54,x∈[0,52],求水流喷出的高度h的最大值是多少?类型三 函数最值的应用例3 已知x 2-x +a >0对任意x ∈(0,+∞)恒成立,求实数a 的取值范围. 引申探究若将本例中“x ∈(0,+∞)”改为“x ∈(12,+∞)”,再求a 的取值范围.反思与感悟 恒成立的不等式问题,任意x ∈D ,f (x )>a 恒成立,一般转化为最值问题:f (x )min >a 来解决.任意x ∈D ,f (x )<a 恒成立⇔f (x )max <a .当最值不存在时,可求值域,但要注意a 的取值的变化.跟踪训练3 已知ax 2+x ≤1对任意x ∈(0,1]恒成立,求实数a 的取值范围.1.函数y =-x +1在区间[12,2]上的最大值是________.2.函数f (x )=1x在[1,+∞)上的最大值为________.3.函数f (x )=x 2,x ∈[-2,1]的最大值,最小值分别为________.4.已知函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,,则f (x )的最大值,最小值分别为________.5.若不等式-x +a +1≥0对一切x ∈(0,12]恒成立,则a 的最小值为________.1.函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y =1x.如果有最值,则最值一定是值域中的一个元素.(2)若函数f (x )在闭区间[a ,b ]上单调,则f (x )的最值必在区间端点处取得.即最大值是f (a )或f (b ),最小值是f (b )或f (a ). 2.二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.答案精析问题导学 知识点一思考 最大的函数值为4,最小的函数值为2.1没有A 中的元素与之对应,不是函数值. 知识点二思考 x =±1时,y 有最大值1,对应的点是图象中的最高点,x =0时,y 有最小值0,对应的点为图象中的最低点. 题型探究例1 解 设x 1,x 2是区间(0,+∞)上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+-x 2x 21+x 21+x 22+=x 2-x 1x 2x 1-x 21+x 22+.当x 1<x 2≤1时,x 2-x 1>0,x 1x 2-1<0,f (x 1)-f (x 2)<0,f (x 1)<f (x 2),∴f (x )在(0,1]上为单调增函数; 当1≤x 1<x 2时,x 2-x 1>0,x 1x 2-1>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2),∴f (x )在[1,+∞)上为单调减函数. ∴f (x )max =f (1)=12,无最小值.跟踪训练1 解 (1)f (x )的图象如图.(2)由图知,f (x )在(-∞,-1]上为单调减函数,在[-1,1]上为常函数,在[1,+∞)上为单调增函数, ∴f (x )min =2.例2 解 (1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上为单调减函数,在[1,2]上为单调增函数,且f (0)=f (2). ∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4.(2)∵对称轴x =1, ①当1≥t +2即t ≤-1时,f (x )max =f (t )=t 2-2t -3, f (x )min =f (t +2)=t 2+2t -3.②当t +t +22≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3, f (x )min =f (1)=-4.③当t ≤1<t +t +22,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (1)=-4.④当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (t )=t 2-2t -3.设函数最大值为g (t ),最小值为φ(t ),则有g (t )=⎩⎪⎨⎪⎧t 2-2t -t ,t 2+2t -t,φ(t )=⎩⎪⎨⎪⎧t 2+2t -t ≤-,--1<t,t 2-2t -t(3)设x =t (t ≥0),则x -2x -3=t 2-2t -3.由(1)知y =t 2-2t -3(t ≥0)在[0,1]上为单调减函数,在[1,+∞)上为单调增函数. ∴当t =1即x =1时,f (x )min =-4,无最大值.(4)作出函数h (t )=-4.9t 2+14.7t +18的图象(如图).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t )=-4.9t 2+14.7t +18,我们有:当t =-14.7-=1.5时,函数有最大值h =--14.72-≈29.于是,烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29 m. 跟踪训练2 解 (1)设x 2=t (t ≥0),则x 4-2x 2-3=t 2-2t -3.y =t 2-2t -3(t ≥0)在[0,1]上为单调减函数,在[1,+∞)上为单调增函数.∴当t =1即x =±1时,f (x )min =-4,无最大值. (2)∵函数图象的对称轴是x =a ,∴当a <2时,f (x )在[2,4]上是单调增函数, ∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是单调减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2. ∴f (x )min =⎩⎪⎨⎪⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.(3)由函数h =-x 2+2x +54,x ∈[0,52]的图象可知,函数图象的顶点就是水流喷出的最高点.此时函数取得最大值.对于函数h =-x 2+2x +54,x ∈[0,52],当x =1时,函数有最大值h max =-12+2×1+54=94.于是水流喷出的最高高度是94 m.例3 解 方法一 令y =x 2-x +a ,要使x 2-x +a >0对任意x ∈(0,+∞)恒成立,只需y min =4a -14>0,解得a >14.∴实数a 的取值范围是(14,+∞).方法二 x 2-x +a >0可化为a >-x 2+x . 要使a >-x 2+x 对任意x ∈(0,+∞)恒成立, 只需a >(-x 2+x )max , 又(-x 2+x )max =14,∴a >14.∴实数a 的取值范围是(14,+∞).11 引申探究解 f (x )=-x 2+x 在(12,+∞)上为单调减函数,∴f (x )的值域为(-∞,14),要使a >-x 2+x 对任意x ∈(12,+∞)恒成立,只需a ≥14,∴a 的取值范围是[14,+∞).跟踪训练3 解 ∵x >0, ∴ax 2+x ≤1可化为a ≤1x 2-1x .要使a ≤1x 2-1x 对任意x ∈(0,1]恒成立, 只需a ≤(1x 2-1x )min .设t =1x ,∵x ∈(0,1],∴t ≥1. 1x 2-1x =t 2-t =(t -12)2-14.当t =1时,(t 2-t )min =0,即x =1时,(1x 2-1x )min =0,∴a ≤0.∴a 的取值范围是(-∞,0]. 当堂训练1.122.13.4,04.10,65.-12。