沪教版七年级数学上4.1多彩的几何图形同步练习含答案
七年级数学上册第四章几何图形初步同步练习
4.1. 几何图形(1)同步练习1.把下列立体图形与对应的名称用线连起来。
圆柱圆锥正方体长方体棱柱球2.下面图形中叫圆柱的是()3.长方体共有()个面.A.8 B.6 C.5 D.44.六棱柱共有()条棱.A.16 B.17 C.18 D.205.下列说法,不正确的是()A.圆锥和圆柱的底面都是圆. B.棱锥底面边数与侧棱数相等.C.棱柱的上、下底面是形状、大小相同的多边形. D.长方体是四棱柱,四棱柱是长方体. 6.正方体有个面,个顶点,经过每个顶点有条棱.这些棱的长度(填相同或不同).棱长为acm的正方体的表面积为 cm2.7.五棱柱是由个面围成的,它有个顶点,有条棱.8.从一个七边形的一个顶点出发,连结其余各顶点,将这个七边形分割成个三角形。
9.从一个边数为n的内部一点出发,连结这点与各顶点,将该多边形分割成个三角形。
10.如图,小强拿一张正方形的纸,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线剪去一个角,再打开后的形状是()11.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?12.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.4.1 几何图形(2)同步练习1.某物体的三视图是如图所示的3个图形,那么该物体形状是。
2.物体的形状如图所示,则此物体的俯视图是()3.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边;B.丙在乙的对面,丙的左边是甲,右边是乙;C.甲在乙的对面,甲的右边是丙,左边是丁;D.甲在丁的对面,乙在甲的右边,丙在丁的右边。
沪科版七年级上《4.1+多彩的几何图形》2013年同步练习(1)
沪科版七年级上《4.1 多彩的几何图形》2013年同步练习(1)一、选择题(每小题4分,共12分)1.(4分)下图中所示几何体从左面看到的是()A.B.C.D.2.(4分)(2010•眉山)下列四个图中,是三棱锥的表面展开图的是()A.B.C.D.3.(4分)如图是某几何体的从三个不同方向看到的图形,则这个几何体是()A.圆柱 B.正方体C.球D.圆锥二、填空题(每小题4分,共12分)4.(4分)观察下列图形并填空.上面图形中,圆柱是,棱柱是,圆锥是,棱锥是,圆台是,棱台是,球体是.5.(4分)如图所示,这些物体所对应的立体图形分别是:.6.(4分)(2008•湖州)一个长、宽、高分别为15cm,10cm,5cm的长方体包装盒的表面积为cm2.三、解答题(共26分)7.(8分)桌上放着一个圆柱和一个长方体,如图(1),请说出下列三幅图(如图(2))分别是从哪个方向看到的.8.(9分)如图是用5个棱长为1厘米的小立方块搭成的几何体,请画出从正面、左面、上面看得到的图形.9.(9分)(2006•临安市)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)沪科版七年级上《4.1 多彩的几何图形》2013年同步练习(1)参考答案与试题解析一、选择题(每小题4分,共12分)1.(4分)下图中所示几何体从左面看到的是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面能看到几何体的两个面,成”日“字,故选A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.2.(4分)(2010•眉山)下列四个图中,是三棱锥的表面展开图的是()A.B.C.D.【分析】三棱锥的四个面都是三角形,还要能围成一个立体图形,可排除C,D,而A不能围成立体图形,故可得答案.【解答】解:A、不组成三棱锥,故不是;B、能组成三棱锥,是;C、组成的是四棱锥,故不是;D、组成的是三棱柱,故不是.故选B.【点评】主要考查了三棱锥的表面展开图和空间想象能力.3.(4分)如图是某几何体的从三个不同方向看到的图形,则这个几何体是()A.圆柱 B.正方体C.球D.圆锥【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A.【点评】考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二、填空题(每小题4分,共12分)4.(4分)观察下列图形并填空.上面图形中,圆柱是④,棱柱是③⑥,圆锥是①⑦,棱锥是②,圆台是⑨,棱台是⑩,球体是⑤⑧.【分析】根据立体图形的定义解答.【解答】解:上面图形中,圆柱是④,棱柱是③⑥,圆锥是①⑦,棱锥是②,圆台是⑨,棱台是⑩,球体是⑤⑧.故答案为:④;③⑥;①⑦;②;⑨;⑩;⑤⑧.【点评】本题考查了认识立体图形,了解这些立体图形的定义是解答此题的关键.5.(4分)如图所示,这些物体所对应的立体图形分别是:正方体,圆柱,圆锥,球,棱柱.【分析】根据几何体的形状作出解答即可.【解答】解:以上几个几何体分别是:正方体,圆柱,圆锥,球,棱柱.故答案为:正方体,圆柱,圆锥,球,棱柱.【点评】本题考查了认识立体图形的知识,解题的关键是了解这些几何体的性质.6.(4分)(2008•湖州)一个长、宽、高分别为15cm,10cm,5cm的长方体包装盒的表面积为550cm2.【分析】根据长方体的表面积计算公式即可解.【解答】解:长方体的表面积是:2×(15×10+15×5+10×5)=550cm2.答案:550.【点评】长方体的表面积=2(长×宽+长×高+宽×高).三、解答题(共26分)7.(8分)桌上放着一个圆柱和一个长方体,如图(1),请说出下列三幅图(如图(2))分别是从哪个方向看到的.【分析】从几何体的右边看可得两个矩形;从几何体的上面看可得一个圆和一个矩形,从几何体的正面看可得一个矩形和一个正方形.【解答】解:分别是从右面、上面和正面看到的.【点评】此题主要考查了简单几何体的三视图,关键是注意所看到的棱都要表示到三视图中.8.(9分)如图是用5个棱长为1厘米的小立方块搭成的几何体,请画出从正面、左面、上面看得到的图形.【分析】认真观察立体图形,可得主视图有三列两行小正方形组成,每列小正方形的个数分别为2、1、1,每行小正方形的个数分别为1、3;左视图有两列小正方形组成,每列小正方形的个数分别为2、1;俯视图有三列两行小正方形组成,每列小正方形的个数为1、2、1,每行小正方形的个数分别为3、1.据此画图即可.【解答】解:从不同方向看到的图形如下:【点评】本题考查了三视图的知识,认真观察图形是关键.9.(9分)(2006•临安市)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可,答案不唯一.【解答】解:答案不惟一,如图.【点评】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.参与本试卷答题和审题的老师有:sd2011;蓝月梦;HLing;sjzx;feng;wdxwzk;gbl210;wdxwwzy(排名不分先后)菁优网2016年6月24日。
2019—2020年沪科版七年级数学第一学期课后训练{4.1几何图形}及解析.docx
课后训练基础巩固1.下列图形不是立体图形的是( ).A.球B.圆柱C.圆锥D.圆2.下列图形中为圆柱体的是( ).3.下列图形中是多面体的是( ).A.球B.圆锥C.圆柱D.棱柱4.底面是n边形的棱柱共有的面数是( ).A.n B.n-1C.n+2 D.n-25.按组成面的平或曲划分,与圆柱属于同一类的几何体是( ).A.圆锥B.长方体C.正方体D.棱柱6.有一个面是曲面的立体图形有______________________________(列举出三个).7.将下列实物与相应的几何体用线连接起来.篮球现代汉语词典一堆小麦魔方易拉罐圆柱圆锥正方体长方体球体能力提升8.一个直六棱柱,它的底面周长是40厘米,棱长是6厘米,则这个六棱柱的侧面积是__________平方厘米.9.把图(1)中的平面图形绕虚线旋转一周,便能形成图(2)中的某个几何体,请用直线连一连.10.如图,指出以下各物体是由哪些几何体组成的.11.如图,图①是正方体木块,把它切去一块,得到如图②,③,④,⑤所示的木块.(1)我们知道,图①的正方体木块有8个顶点、12条棱、6个面,请你将图②,③,④,⑤中木块的顶点数、棱数、面数填入下表:图号顶点数x 棱数y 面数z①8 12 6②③④⑤(2)从上表中各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律.请你试写出顶点数x、棱数y、面数z之间的数量关系式.参考答案1答案:D 点拨:本题考查对基本立体图形的认识,观察四个答案可以知道圆是平面图形,不是立体图形,所以选D.2答案:D3答案:D4答案:C 点拨:棱柱底面是n边形,则侧面有n个面,底面是n边形的棱柱有n个侧面,2个底面,所以共有的面数为(n+2).5答案:A 点拨:圆柱和圆锥都有平面也有曲面.6答案:圆柱,圆锥,球7解:如图所示:答案:2409解:如图所示.10解:(1)由正方体、圆柱体、圆锥组成;(2)由圆柱体、长方体、三棱柱组成;(3)由五棱柱、球组成.11解:(1)图号顶点数x 棱数y 面数z①8 12 6② 6 9 5③8 12 6④8 13 7⑤10 15 7(2)顶点数+面数-棱数=2.。
七年级数学上册第四章几何图形初步4.1几何图形同步练习(新版)新人教版
4.1几何图形同步练习一、单选题1.下列图形中不是正方体的平面展开图的是()A. B. C. D.【答案】C【解析】:A、是正方体的展开图,不合题意;B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2.一个几何体的边面全部展开后铺在平面上,不可能是()A. 一个三角形B. 一个圆C. 三个正方形D. 一个小圆和半个大圆【答案】B【解析】:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形;一个圆锥展开可以是一个小圆+半个大圆.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.3.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A. B. C. D.【答案】B【解析】:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.4.下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】:长方体、正方体不可能截出圆,球、圆柱、圆锥都可截出圆,故选:B.【分析】根据几何体的形状,可得答案.5.下列图形是四棱柱的侧面展开图的是()A. B. C. D.【答案】A【解析】:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.6.下面现象能说明“面动成体”的是()A. 旋转一扇门,门运动的痕迹B. 扔一块小石子,小石子在空中飞行的路线C. 天空划过一道流星D. 时钟秒针旋转时扫过的痕迹【答案】A【解析】:A、旋转一扇门,门运动的痕迹说明“面动成体”,故本选项正确;B、扔一块小石子,小石子在空中飞行的路线说明“点动成线”,故本选项错误;C、天空划过一道流星说明“点动成线”,故本选项错误;D、时钟秒针旋转时扫过的痕迹说明“线动成面”,故本选项错误.故选A.【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.7.如图,将正方体沿面AB′C剪下,则截下的几何体为()A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱【答案】A【解析】:∵截下的几何体的底面为三角形,且AB、CB、B′B交于一点B,∴该几何体为三棱锥.故选A.【分析】找出截下几何体的底面形状,由此即可得出结论.8.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A. ①②③④B. ①②③C. ②③④D. ①③④【答案】B【解析】:①一点在平面内运动的过程中,能形成一条线段是正确的;②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;③一个三角形在空间内运动的过程中,能形成一个三棱柱是正确的;④一个圆形在空间内平移的过程中,能形成一个圆柱,原来的说法错误.故选:B.【分析】根据点动成线,可以判断①;根据线动成面,可以判断②;根据面动成体,可以判断③;根据平移的性质,可以判断④.二、填空题9.薄薄的硬币在桌面上转动时,看上去象球,这说明了________.【答案】面动成体【解析】:从运动的观点可知,薄薄的硬币在桌面上转动时,看上去象球,这种现象说明面动成体.故答案为:面动成体.【分析】薄薄的硬币在桌面上转动时,看上去象球,这是面动成体的原理在现实中的具体表现.10.将如图所示的平面展开图折叠成正方体,则a相对面的数字是________.【答案】-1【解析】:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上a相对面的数字是﹣1.故答案为:﹣1.【分析】在正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,得到在此正方体上a相对面的数字是﹣1.11.六棱柱有________个顶点,________个面,________条棱.【答案】12;8;18【解析】:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为.【分析】根据六棱柱的概念和定义即解.12.一个棱柱的棱数是18,则这个棱柱的面数是________.【答案】8【解析】:一个棱柱的棱数是18,这是一个六棱柱,它有6+2=8个面.故答案为:8.【分析】根据棱柱的概念和定义,可知有18条棱的棱柱是六棱柱,据此解答.13.将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).【答案】(1)、(2)、(3);(5)、(6);(4)【解析】:柱体分为圆柱和棱柱,所以柱体有:(1)、(2)、(3);锥体包括棱锥与圆锥,所以锥体有(5)、(6);球属于单独的一类:球体(4).故答案为:(1)、(2)、(3);(5)、(6);(4)【分析】首先要明确柱体,椎体、球体的概念和定义,然后根据图示进行解答.14.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.【答案】24【解析】:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.三、解答题15.如图所示,A、B、C、D、E五个城市,它们之间原有道路相通,现在打算在C、E两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交桥的位置?应架设几座立交桥?【答案】解:连接CE,与BD的交点处架立交桥;1座.【解析】【分析】连接CE时只与BD有一个交点,所以只有一座立交桥.16.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.【答案】解:根据题意得,x﹣3=3x﹣2,解得:x=﹣【解析】【分析】利用正方体及其表面展开图的特点,列出方程x﹣3=3x﹣2解答即可.17.如图所示的正方体被竖直截取了一部分,求被截取的那一部分的体积.(棱柱的体积等于底面积乘高)【答案】解:如图所示:根据题意可知被截取的一部分为一个直三棱柱,三棱柱的体积= =5.【解析】【分析】根据题意可知正方体被截取的一部分为一个直三棱柱,由正方体的棱长相等求出三棱柱各个边的长,求出三棱柱的体积.18.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm 的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?【答案】解:①绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3)【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.。
沪科版七年级上《4.1+多彩的几何图形》2013年同步练习(2)
沪科版七年级上《4.1 多彩的几何图形》2013年同步练习(2)一、填空题1.表的指针旋转时,会形成一个圆面,笔在纸上移动时,能画出线.一般地,点动成线,,.2.长方体由个面围成,圆锥由个面围成.3.(2005•河南)一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是.4.面数最少的多面体有个面,从几何体的分类角度看,它是.5.6根火柴最多能摆成个正方形.6.长方体有个顶点,经过每一个顶点有条棱,共有条棱.7.观察右边立体图得到它的主视图、左视图和俯视图,请写在对应图的下边.①,②,③.8.如图是一个正方体的展开图,请问1号面的对面是号面.9.正方体是由个面围成的,其中底面是形,侧面是形.正方体有条棱,个顶点.二、选择题10.下列图形中是棱锥的是()A.B.C.D.11.下列图形中不是立体图形的是()A.球B.圆C.棱柱 D.长方体12.底面是n边形的棱柱的面共有()A.n个B.(n﹣1)个C.(n+2)个 D.(n﹣2)个13.如图所示的长方体,从不同的方向看得到的图形是()A.三个相同的长方形 B.三个不相同的长方形C.三个长方形中两个相同 D.两个长方形和一个正方形14.(2012•万州区校级模拟)如图是由一些相同的小正方体构成的主体,图形的三种视图构成这个立体图形的小正方体的个数是()A.3 B.4 C.5 D.615.下列选项中,能折成正方体的是()A.B.C.D.16.(2012•平和县模拟)如图下面的图形中,是三棱柱的侧面展开图的为()A. B.C.D.17.下列几何体从正面看不是三角形的是()A.B.C.D.18.(2015秋•淮北期末)下面四个图形是如图的展开图的是()A.B.C.D.19.(2008秋•东城区期末)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.三、解答题20.将以下的物体与相应的几何体用线连接起来.21.如图所示,阴影部分图形绕中间的直线旋转会形成什么几何图形?22.某物体从三个不同方向看到的平面图形如下所示,画出该物体的立体图形.23.按要求画下列立体图形的视图.24.(2011秋•吉州区校级期中)如图所示用5个小立方体块搭成的几何体,请画出它的三视图.25.如图是由几个小正方体块积木搭成的几何体俯视图,小正方形中的数字表示该位置的小正方体块的个数.请你画出这个图形的主视图、左视图.26.有一个正方体,在它的各个面上分别涂着红、黄、蓝、绿、紫、黑六种颜色,小明、小颖和小刚三位同学从三个不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的颜色对面各是什么颜色?27.如图是由5个小正方形组成的7字图形,请你用4种方法分别在下图中添加一个正方形,使它折叠后能成为正方体.沪科版七年级上《4.1 多彩的几何图形》2013年同步练习(2)参考答案与试题解析一、填空题1.表的指针旋转时,会形成一个圆面,笔在纸上移动时,能画出线.一般地,点动成线,线动成面,面动成体.【分析】熟悉点、线、面、体之间的联系,根据运动的观点即可解.【解答】解:根据分析即知:点动成线;线动成面;面动成体.故答案为点动成线;线动成面;面动成体.【点评】本题考查了点、线、面、体之间的联系,点是构成图形的最基本元素.2.长方体由6个面围成,圆锥由2个面围成.【分析】根据长方体,圆锥的概念和特性即可求解.【解答】解:长方体由6个面围成,圆锥由2个面围成.故答案为:6,2.【点评】本题考查几何体的面的组成情况.注意面有平面和曲面之分.3.(2005•河南)一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是自.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:根据图示:“信”和“着”相对,“沉”和“越”相对,“超”相对的字是:”自“.故,“超”相对的字是:“自”.故答案为自.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.4.面数最少的多面体有4个面,从几何体的分类角度看,它是立体图形.【分析】根据多面体指四个或四个以上多边形所围成的立体图形作答.【解答】解:面数最少的多面体有4个面,从几何体的分类角度看,它是立体图形.故答案为:4,立体图形.【点评】本题考查的是多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体图形.5.6根火柴最多能摆成5个正方形.【分析】把6根火柴组成“田”字状,可得最多正方形个数.【解答】解:把6根火柴组成“田”字状,可得较小的正方形有4个,加上最大的正方形,那么可摆成5个正方形,故答案为5.【点评】考查学生的动手操作能力;数正方形的个数的时候,不要忘了最大的正方形.6.长方体有8个顶点,经过每一个顶点有3条棱,共有12条棱.【分析】根据长方形的定义及性质即可作出解答.【解答】解:长方体有8个顶点,经过每一个顶点有3条棱,共有12条棱.故答案为:8,3,12.【点评】本题考查长方体的基本知识,属于基础题,注意熟练掌握基本知识及概念.7.观察右边立体图得到它的主视图、左视图和俯视图,请写在对应图的下边.①俯视图,②左视图,③主视图.【分析】分别从几何体的正面、左面、上面所得到的图形可得主视图、左视图、俯视图.【解答】解:①俯视图;②左视图;③主视图,故答案为:俯视图;左视图;主视图.【点评】此题主要考查了三视图,关键是要把所看到的棱都表示到视图中.8.如图是一个正方体的展开图,请问1号面的对面是5号面.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“1”相对的面上的数字是“5”.故答案为:5.【点评】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.9.正方体是由6个面围成的,其中底面是正方形,侧面是正方形.正方体有12条棱,8个顶点.【分析】根据正方体的特征:(1〕有6个面,每个面完全相同;〔2〕有8个顶点;〔3〕有12条棱,每条棱长度相等作答.【解答】解:正方体是由6个面围成的,其中底面是正方形,侧面是正方形.正方体有12条棱,8个顶点.故答案为:6,正方,正方,12,8.【点评】本题考查了正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”.二、选择题10.下列图形中是棱锥的是()A.B.C.D.【分析】根据棱锥的定义:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥作答.【解答】解:C是柱体,其余是锥体,故选C.【点评】本题主要考查棱锥的定义.棱锥是多面体中重要的一种,它有两个本质特征:①有一个面是多边形;②其余的各面是有一个公共顶点的三角形,二者缺一不可.因此棱锥有一个面是多边形,其余各面都是三角形.但是也要注意“有一个面是多边形,其余各面都是三角形”的几何体未必是棱锥.11.下列图形中不是立体图形的是()A.球B.圆C.棱柱 D.长方体【分析】有些几何图形的各部分不都在同一个平面内,这就是立体图形,由此可判断出答案.【解答】解:根据立体图形的定义可判断出四个选项中只有圆是平面图形.故选B.【点评】本题考查立体图形的定义,属于基础题,注意掌握几种常见的立体图形.12.底面是n边形的棱柱的面共有()A.n个B.(n﹣1)个C.(n+2)个 D.(n﹣2)个【分析】底面是3角形的棱柱的面有(2+3)=5个,底面是四边形的棱柱的面有(2+4)=6个.【解答】解:根据以上分析面是n边形的棱柱的面共有(2+n)个.故选C.【点评】解决本题可由具体图形的规律进而得到一般的知识点.13.如图所示的长方体,从不同的方向看得到的图形是()A.三个相同的长方形 B.三个不相同的长方形C.三个长方形中两个相同 D.两个长方形和一个正方形【分析】根据所给长方体的长,宽,高的长度可得到正确选项.【解答】解:由图中可以看出所给长方体的长,宽,高均不相等,而主视图表现长方体的长和高;左视图表现长方体的宽和高;俯视图表现长方体的长和宽;∴从不同的方向看得到的图形是三个不相同的长方形,故选B.【点评】考查几何体的三视图知识;用到的知识点为:主视图表现长方体的长和高;左视图表现长方体的宽和高;俯视图表现长方体的长和宽.14.(2012•万州区校级模拟)如图是由一些相同的小正方体构成的主体,图形的三种视图构成这个立体图形的小正方体的个数是()A.3 B.4 C.5 D.6【分析】根据主视图下面三个上面一个,这样看到的有4个小正方形,根据俯视图有前后两排,一层共有4个小正方形,上层还有1个小正方形,得到结果.【解答】解:根据主视图下面三个上面一个,这样看到的有4个小正方形,根据俯视图有前后两排,一层共有4个小正方形,上层还有1个小正方形,共有4+1=5.故选C.【点评】本题考查由三视图还原几何体,本题解题的关键是利用三视图看出下层和上层共有多少个小正方形,加起来得到结果.15.下列选项中,能折成正方体的是()A.B.C.D.【分析】根据选项想象着折一下,即可得出答案.【解答】解:A、不能能折成正方体,故本选项错误;B、能折成正方体,故本选项正确;C、不能能折成正方体,故本选项错误;D、不能折成正方体,故本选项错误;故选B.【点评】本题考查了展开图折叠成几何体的应用,主要考查学生的观察图形的能力和空间想象能力.16.(2012•平和县模拟)如图下面的图形中,是三棱柱的侧面展开图的为()A. B.C.D.【分析】利用三棱柱及其表面展开图的特点解题.注意三棱柱的侧面展开图是三个小长方形组合成的大长方形.【解答】解:三棱柱的侧面展开图是一个三个小长方形组合成的矩形.故选A.【点评】本题考查了三棱柱的侧面展开图,三棱柱的侧面展开图是长方形.17.下列几何体从正面看不是三角形的是()A.B.C.D.【分析】找到从正面看所得到的图形判断即可.【解答】解:A、主视图为三角形,不符合题意;B、主视图为三角形,不符合题意;C、主视图为长方形,不是三角形,符合题意;D、主视图为三角形,不符合题意.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.18.(2015秋•淮北期末)下面四个图形是如图的展开图的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题,注意带图案的三个面有一个公共顶点.【解答】解:A、能折叠成原正方体的形式,符合题意;B、C带图案的三个面不相邻,没有一个公共顶点,不能折叠成原正方体的形式,不符合题意;D、折叠后带圆圈的面在上面时,带三角形的面在左边与原正方体中的位置不同,不符合题意.故选A.【点评】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.19.(2008秋•东城区期末)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选B.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.三、解答题20.将以下的物体与相应的几何体用线连接起来.【分析】根据圆柱的主要特征:上下两个平行的,全等的面,侧面是一个曲面;长方体的主要特征:6个长方形组成的几何体;圆锥的主要特征:底面是圆,侧面是一个曲面;球的主要特征:从正面看,从左面看,从上面看,都是一个圆作出判断,再用线连接.【解答】解:连接如下:【点评】本题考查了立体图形的认识,熟记常见立体图形的特征是解决此类问题的关键.21.如图所示,阴影部分图形绕中间的直线旋转会形成什么几何图形?【分析】根据线动成面的知识及直角三角形绕直角边旋转一周可形成圆锥、长方形绕一边旋转一周可形成圆柱,即可得出各图形旋转后的图形.【解答】解:直角三角形绕直线1旋转一周可形成圆锥;长方形绕直线2边旋转一周可形成圆柱;直角梯形绕直线3旋转可形成圆台;直角梯形绕直线4旋转一周可形成圆柱空心圆台.【点评】本题考查线动成面的知识,有一定难度,关键是掌握一些特殊图形旋转后的图形.22.某物体从三个不同方向看到的平面图形如下所示,画出该物体的立体图形.【分析】有2个视图为三角形可得该几何体是柱体,锥体还是球体,进而由第3个视图可得该几何体的具体的形状.【解答】解:∵有2个视图为三角形,∴该几何体为锥体,∵第3个视图为圆,∴该锥体为圆锥.【点评】考查由三视图判断几何体;用到的知识点为:有2个视图为三角形的几何体为锥体.23.按要求画下列立体图形的视图.【分析】圆柱从上面看是一个长方形;圆锥从左面看一个圆;三棱锥从正面看一个三角形,后面的棱长实际存在,又看不到,可用虚线表示.【解答】解:【点评】考查画三视图的知识;注意本题是从指定方向看所给几何体;实际存在,又没有被其他棱长挡住,从所给方向又看不到的棱应用虚线表示.24.(2011秋•吉州区校级期中)如图所示用5个小立方体块搭成的几何体,请画出它的三视图.【分析】主视图从左往右3列正方形的个数依次为2,1,1;左视图从左往右2列正方形的个数依次为2,1;俯视图从左往右2列正方形的个数依次为1,2,1;依此画出图形即可.【解答】解:【点评】考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.25.如图是由几个小正方体块积木搭成的几何体俯视图,小正方形中的数字表示该位置的小正方体块的个数.请你画出这个图形的主视图、左视图.【分析】画出从正面,从左面看到的图形即可.【解答】解:主视图从左往右3列正方形的个数依次为2,3,4;左视图从左往右2列正方形的个数依次为4,2.【点评】考查画几何体的三视图;用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.26.有一个正方体,在它的各个面上分别涂着红、黄、蓝、绿、紫、黑六种颜色,小明、小颖和小刚三位同学从三个不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的颜色对面各是什么颜色?【分析】从前2个图形看,和红相邻的有黄、蓝、绿、黑,那么和红相对的就是紫.从第1个图形和第3个图形看,和绿相邻的有红、蓝、紫、黑,那么和绿相对的就是黄.则和蓝相对的就是黑.【解答】解:根据三个图形的颜色,可推断出来,红对面是紫;绿对面是黄;蓝对面是黑.故这个正方体各个面上的颜色中红对面是紫;绿对面是黄;蓝对面是黑.【点评】本题主要考查学生的空间想象能力和推理能力,也可动手制作一个正方体,根据题意在各个面上标上数字,再确定对面上的数字,可以培养动手操作能力和空间想象能力.27.如图是由5个小正方形组成的7字图形,请你用4种方法分别在下图中添加一个正方形,使它折叠后能成为正方体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.由平面图形的折叠及正方体的展开图解题.注意带“田”字的不是正方体的平面展开图.【解答】解:所作如下所示:【点评】本题考查了将展开图折叠成几何体的知识,解题时勿忘记正方体展开图的各种情形,有一定难度,锻炼了学生的想象和动手能力.参与本试卷答题和审题的老师有:thx;HJJ;feng;wdxwwzy;lanchong;caicl;sd2011;sjzx;zjx111;HLing;cair。
人教版 七年级数学上册 4.1--4.3同步练习题(含答案)
人教版七年级数学上册 4.1--4.3同步练习题(含答案)4.1几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 下列图形中,属于立体图形的是()3. 图中的几何体的面数是()A.5B.6C.7D.84. 下列各组图形中都是平面图形的是( )A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体5. 分别从正面、左面、上面看如图所示的立体图形,得到的平面图形都一样的是()A.①②B.①③C.②③D.①④6. 如图是一座房子的平面示意图,组成这幅图的平面图形是()图A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形7. 如图,下列各组图形中全部属于柱体的是()8. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )9. 如果一个棱柱有12个顶点,那么它的面的个数是()A.10B.9C.8D.710. 下列几何图形中,有3个面的是()二、填空题11. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.12. 如图所示的图形中,是棱柱的有______.(填序号)13. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.14. 如图所示是某几何体的展开图,那么这个几何体是.15. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)三、解答题16. 写出图中立体图形的名称,并按锥体和柱体把它们进行分类.17. 有一个正方体,在它的各个面上分别标有数字1,2,3,4,5,6,甲、乙、丙三名同学分别从三个不同的角度去观察此正方体,观察结果如图所示.这个正方体各个面上的数字的对面分别是什么数字?18. 一个几何体由多个相同的小正方体搭成,从正面及从上面看得到的图形如图所示,这样的几何体只有一种吗?它最多由多少个小正方体构成?最少由多少个小正方体构成?19. 用纸板做两个大小不同的长方体纸盒,尺寸如图1(单位:cm).(1)用含a,b,c的式子表示做这两个纸盒共需用多少纸板;(2)试计算做大纸盒比做小纸盒多用多少纸板.20. 如图①是一张长为4 cm,宽为3 cm的长方形纸片,将该长方形纸片分别绕长、宽所在的直线旋转一周(如图②③),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.人教版七年级数学 4.1几何图形答案一、选择题1. 【答案】A2. 【答案】C[解析] 角、圆、三角形都是平面图形,圆锥是立体图形.3. 【答案】B[解析] 图中几何体是五棱锥,有5个侧面和1个底面,共有6个面.4. 【答案】C5. 【答案】A[解析] 分别从正面、左面、上面看球,得到的平面图形都是圆;分别从正面、左面、上面看正方体,得到的平面图形都是正方形.6. 【答案】C7. 【答案】B8. 【答案】B9. 【答案】C[解析] 一个棱柱有12个顶点,一定是六棱柱,所以它有6个侧面和2个底面,共8个面.10. 【答案】D二、填空题11. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同12. 【答案】②⑥13. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.14. 【答案】圆柱15. 【答案】①②⑤⑦⑧④⑥③三、解答题16. 【答案】解:①②③④⑤⑥分别是圆柱、圆锥、四棱锥、五棱柱、三棱锥、四棱柱.其中②③⑤是锥体,①④⑥是柱体.17. 【答案】解:标有数字1的面与标有数字5的面相对;标有数字2的面与标有数字4的面相对;标有数字3的面与标有数字6的面相对.18. 【答案】解:这样的几何体不止一种.从上面看得到的正方形有7个,那么这个几何体最底层的小正方体有7个;从正面看由下往上数第二层和第三层共有3个正方形,那么这个几何体第二层和第三层最少共有3个小正方体,最多有(6+3)个小正方体,所以搭成这个几何体最少需要7+3=10(个)小正方体,最多需要7+6+3=16(个)小正方体.故这样的几何体不止一种,它最多由16个小正方体构成,最少由10个小正方体构成.19. 【答案】解:(1)做小长方体纸盒需纸板(2ab+2bc+2ac)cm2;做大长方体纸盒需纸板2×1.5a·2b+2×2b·2c+2×1.5a·2c=(6ab+8bc+6ac)cm2,所以做这两个纸盒共需纸板2ab+2bc+2ac+6ab+8bc+6ac=(8ab+10bc+8ac)cm2. (2)(6ab+8bc+6ac)-(2ab+2bc+2ac)=4ab+6bc+4ac,所以做大纸盒比做小纸盒多用(4ab+6bc+4ac)cm2的纸板.20. 【答案】解:绕长方形的长所在的直线旋转一周得到的圆柱的底面半径为3 cm,高为4 cm,体积为π×32×4=36π(cm3).绕长方形的宽所在的直线旋转一周得到的圆柱的底面半径为4 cm,高为3 cm,体积为π×42×3=48π(cm3).因此绕长方形的宽所在的直线旋转一周得到的圆柱的体积大.4.2直线、射线、线段同步练习一.选择题1.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直2.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外3.下列说法正确的()A.连接两点的线段叫做两点之间的距离B.射线AB与射线BA表示同一条射线C.若AC=BC,则C是线段AB的中点D.两点之间,线段最短4.如图,已知线段AB=10cm,M是AB中点,点N在AB上,MN=3cm,那么线段NB的长为()A.2cm B.3cm C.5cm D.8cm5.已知线段AB=12cm,点C是直线AB上一点,BC=4cm,若点P是线段AB的中点,则线段PC的长度是()A.2cm B.2cm或10cm C.10cm D.2cm或8cm 6.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm7.如图,点D是线段AB的中点,点C在线段BD上,且BC=AB,CD=1,则线段AB的长为()A.4 B.6 C.9 D.88.如图,点A、B、C是直线l上的三个定点,点B是线段AC的三等分点,AB =BC+4m,其中m为大于0的常数,若点D是直线l上的一动点,M、N分别是AD、CD的中点,则MN与BC的数量关系是()A.MN=2BC B.MN=BC C.2MN=3BC D.不确定9.如图,点C、D为线段AB上两点,AC+BD=a,且AD+BC=AB,则CD等于()A.2a B.a C.a D.a10.已知线段AB=4cm,点C是直线AB上一点(不同于点A、B).下列说法:①若点C为线段AB的中点,则AC=2cm;②若AC=1cm,则点C为线段AB的四等分点;③若AC+BC=4cm,则点C一定在线段AB上;④若AC+BC>4cm,则点C一定在线段AB的延长线上;⑤若AC+BC=8cm,则AC=2cm.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题11.已知直线l上有三点A,B,C,线段AB=10cm,BC=6cm,点P是线段BC 的中点,则AP等于cm.12.已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.13.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是.14.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=cm.15.如图,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”,若AB=15,点C是线段AB的“巧点”,则AC的长是.三.解答题16.如图,点B、C在线段AD上,且AB:BC:CD=2:3:4,点M是线段AC的中点,点N是线段CD上的一点,且MN=9.(1)若点N是线段CD的中点,求BD的长;(2)若点N是线段CD的三等分点,求BD的长.17.如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).参考答案1.解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.2.解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.3.解:A、连接两点的线段的长度叫做两点之间的距离,故选项错误;B、射线AB的端点是A,射线BA的端点是B,故不是同一条射线,故选项错误;C、若AC=BC,则点C是线段AB的中点,错误,因为点A、B、C不一定共线;故选项错误;D、两点之间,线段最短,正确.故选:D.4.解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵MN=3cm,∴NB=BM﹣MN=5﹣3=2(cm).故选:A.5.解:∵线段AB=12cm,点P是线段AB的中点,∴BP=AB=6(cm),如图1,线段BC不在线段AB上时,PC=BP+BC=6+4=10(cm),如图2,线段BC在线段AB上时,PC=BP﹣BC=6﹣4=2(cm),综上所述,线段PC的长度是10或2cm.故选:B.6.解:当PB的2倍最长时,得PB=30cm,AP=PB=20cm,AB=AP+PB=50cm,这条绳子的原长为2AB=100cm;当AP的2倍最长时,得AP=30cm,AP=PB,PB=AP=45cm,AB=AP+PB=75cm,这条绳子的原长为2AB=150cm.故选:C.7.解:设BC为x,那么AB为 3x,∵D为AB中点,∴AD=BD=1.5x,CD=BD﹣BC=0.5x,又∵CD=0.5x=1,∴x=2,∴AB=3×2=6.故选:B.8.解:设坐标轴上的点A为0,C为12m,∵AB=BC+4m,∴B为8m,∴BC=4m,设D为x,则M为,N为,∴MN为6m,∴2MN=3BC,故选:C.9.解:∵AD+BC=AB,∴2(AD+BC)=3AB,∴2(AC+CD+CD+BD)=3(AC+CD+BD),∴CD=AC+BC=a,故选:B.10.解:(1)如图1所示:∵点C为线段AB的中点,∴AC=BC=,又∵AB=4cm,∴AC=2cm,∴结论①正确;(2)如图2所示:∵AC1=1,AB=4,∴,∴点C1为线段AB的四等分点又∵AC2=1,∴又∵点C2在AB的反向延长线上,∴点C2不是线段AB的四等分点,∴结论②错误;(3)如图3所示:点C为线段AB上的一动点,∴AB=AC+BC,又∵AB=4cm,∴AC+BC=4cm,∴结论③正确;(4)如图4所示:若点C在AB的延长线上时,AC+BC1>AB,1∵AB=4,∴AC1+BC1>4cm,若点在AB的反向延长线上时,AC+BC2>AB,2∵AB=4,∴AC2+BC2>4cm,∴结论④错误;(5)如图5所示:若点C在线段AB的延长线时,且BC1=2cm,有AC+BC1=8cm,1若点C在线段AB的反向延长线时,且BC2=2cm,有AC+BC2=8cm,2∴结论⑤错误.综合所述;正确结论是①、③,故选:B.11.解:如图,∵点P是线段BC的中点,∴PB=BC=3当点C在点B左侧时,∴AP=AB﹣PB=10﹣3=7cm;当点C在点B右侧时,AP=AB+BP=10+3=13cm.故答案为7或13.12.解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=AB,∵BD:AB=2:3,∴BD=,∴CD=BC+BD=,∴AB=6;②当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;③当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=,故AB=6或3.故答案为:6或313.解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,故答案为:两点之间线段最短.14.解:∵线段AB被点C,D分成2:4:7三部分,∴设AC=2x,CD=4x,BD=7x,∵M,N分别是AC,DB的中点,∴CM=AC=x,DN=BD=x,∵MN=17cm,∴x+4x+x=17,∴x=2,∴BD=14.故答案为:14.15.解:当点C是线段AB的“巧点”时,可能有BC=2AC、AC=2BC=2BC三种情况:①BC=2AC时,AC=AB=×15=5;②AC=2BC时,AC=AB=×15=10;③AC=2BC=2BC时,AC=AB=×15=7.5.故答案为:5,10或7.5.16.解:(1)如图,∵点M是线段AC的中点,点N是线段CD的中点,∴CM=AC,CN=CD,∴MN=CM+CN=(AC+CD)=AD=9,∴AD=18,∵AB:BC:CD=2:3:4,∴AB=×AD=4,∴BD=AD﹣AB=18﹣4=14;(2)∵点N是线段CD的三等分点,∴当CN=CD时,如图,∵AB:BC:CD=2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=AC=2.5x,∵CN=CD=x,∴CM+CN=x+x=MN=9,∴x=,∴BD=7x=;当CN=CD时,∵AB:BC:CD=2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=AC=2.5x,∵CN=CD=x,∴CM+CN=x+x=MN=9,∴x=,∴BD=7x=.17.解:(1)∵AB=24,AC:CD:DB=3:2:1,∴CD=AB=8,DB=AB=4∴CB=CD+DB=12∵N是CB的中点∴CN=CB=6∴ND=CD﹣CN=8﹣6=2;(2)证明:M,N分别为AC和CB的中点∴MC=AC,CN=CB∴MN=MC+CN=AC+CB=AB∵AC:CD:DB=3:2:1∴CD=AB=ABDB=AB∴CB=CD+DB=AB∴CN=CB=AB∴DN=CD﹣CN=AB﹣AB=AB∴6(CD+DN)=6(AB+AB)=AB∵5MN=5×AB=AB∴5MN=6(CD+DN).4.3角一.选择题1.如图,射线OA的端点O在直线CD上,若∠COA=37°,则∠AOD的度数是()A.163°B.143°C.167°D.148°2.某一时刻,时钟上显示的时间是9点30分,则此时时针与分针的夹角是()A.75°B.90°C.105°D.120°3.如图,下列说法中正确的是()A.OA方向是北偏东30°B.OB方向是北偏西75°C.OC方向是南偏西75°D.OD方向是东南方向4.用度、分、秒表示91.34°为()A.91°20′24″B.91°34′C.91°20′4″D.91°3′4″5.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC 的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A.2 B.3 C.4 D.66.如图,在△ABC中,∠B=60°,∠A=40°,分别以点B,C为圆心,大于BC 长为半径画弧,两弧相交于点M,N,作直线MN,交AB于点P,连接CP,则∠ACP的度数为()A.40°B.30°C.20°D.10°7.如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC 的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=2,CG=,则CF的长为()A.B.2 C.3 D.8.下列尺规作图分别表示:①作一个角的平分线,②作一个角等于已知角.③作一条线段的垂直平分线.其中作法正确的是()A.①②B.①③C.②③D.①②③二.填空题9.把一个周角7等分,每一份的角度是(精确到分).10.钟表显示10点30分时,时针与分针的夹角为度.11.如图,OA的方向是北偏东15°,若∠AOC=∠AOB,则OB的方向是.12.如图,在△ABC中,∠C=90°.按以下步骤作图:①以点A为圆心,小于AC的长为半径作圆弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径作圆弧,两弧相交于点G;③作射线AG交BC边于点D.若∠CAB=50°,则∠ADC的大小为度.13.如图,在矩形ABCD中,AB=6,AD=8,以A为圆心,任意长为半径画弧交AB,AC于M,N,再分别以M,N为圆心,大于MN为半径画弧,两弧交于点G,连接AG,交边BC于E,则△AEC的周长为.三.解答题14.如图,∠AOB是平角,过点O作射线OE,OC,OD(1)∠BOE能表示成哪两个角的和?你有几种不同的表示方法?(2)∠AOE能表示成哪两个角的差?你有几种不同的表示方法?15.如图,确定相应钟表上时针与分针所成的角度.16.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP =4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.17.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.18.如图,△ABC中,用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法)参考答案一.选择题1.解:∵∠COA=37°,∴∠AOD=180°﹣37°=143°,故选:B.2.解:时针与分针相距3+=(份),时钟面上的时针与分针的夹角是30°×=105°,故选:C.3.解:A、OA方向是北偏东60°,错误;B、OB方向是北偏西15°,错误;C、OC方向是南偏西25°,错误;D、正确.故选:D.4.解:91.34°=91°+0.34×60′=91°20′+0.4×60″=91°20′24″,故选:A.5.解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,故选:C.6.解:∵∠B=60°,∠A=40°,∴∠ACB=80°,根据作图过程可知:PN是BC的垂直平分线,∴PB=PC,∴∠B=∠PCB=60°,∴∠ACP=∠ACB﹣∠PCB=80°﹣60°=20°.故选:C.7.解:由作图过程可知:DE是BC的垂直平分线,∴FG⊥BC,CG=BG,∴∠FGC=90°,∵∠ACB=90°,∴FG∥AC,∵点G是BC的中点,∴点F是AB的中点,∴FG是△ABC的中位线,∴FG=AC=2=1,在Rt△CFG中,根据勾股定理,得CF===2.答:CF的长为2.故选:B.8.解:①作一个角的平分线的作法正确;②作一个角等于已知角的方法正确;③作一条线段的垂直平分线,缺少另一个交点,故作法错误;故选:A.二.填空题9.解:∵一个周角=360°,∴360°÷7=51°余3°,∵3°=180′,180′÷7≈26′,∴把一个周角7等分,每一份的角度约为51°26′.故答案为:51°26′.10.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上10点30分,时针与分针的夹角可以看成4×30°+0.5°×30=135°.故答案为:135.11.解:∵OA的方向是北偏东15°,OC的方向是北偏西40°,∴∠AOC=15°+40°=55°,∵∠AOC=∠AOB,∴∠AOB=55°,15°+55°=70°,故OB的方向是北偏东70°.故答案为:北偏东70°.12.解:由作法得AG平分∠BAC,∴∠BAD=∠CAD=∠CAB=25°,∵∠C=90°,∴∠ADC=90°﹣25°=65°.故答案为65.13.解:作EF⊥AC于F,如图:由题意得:AE平分∠BAC,∵四边形ABCD是矩形,∴∠B=90°,BC=AD=8,∴AC===10,EB⊥AB,∵AE平分∠BAC,∴EF=EB,在Rt△AEF和Rt△AEB中,,∴Rt△AEF≌Rt△AEB(HL),∴AF=AB=6,∴CF=AC﹣AF=4,设EF=EB=x,则CE=8﹣x,在Rt△CEF中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BE=3,∴CE=5,∴AE==3,∴△AEC的周长为15+3,故答案为:15+3.三.解答题14.解:(1)∠BOE=∠BOD+∠DOE,∠BOE=∠BOC+∠COE,共2种,(2)∠AOE=∠AOC﹣∠EOC,∠AOE=∠AOD﹣∠DOE,∠AOE=∠AOB﹣∠BOE,共3种.15.解:巴黎时间:时针与分针相距的份数是1份,钟表上时针与分针所成角的度数是30°×1=30°;北京时间:时针与分针相距的份数是4份,钟表上时针与分针所成角的度数是30°×4=120°;东京时间:时针与分针相距的份数是3份,钟表上时针与分针所成角的度数是30°×3=90°;伦敦时间:时针与分针相距的份数是1份,钟表上时针与分针所成角的度数是30°×0=0°.16.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.17.(1)解:射线BD即为所求;(2)∵∠A=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵BD平分∠ABC,∴∠CBD=∠ABC=30°,∴∠C=∠CBD=30°,∴DC=DB.18.解:如图,射线BD即为所求.。
七年级上册 第四章 几何图形初步 教材分析 文字稿及例题解析含答案
第四章《几何图形初步》教材分析一、教材分析1.本章地位和作用本章是初中阶段“图形与几何”领域的第一章,是初中几何的起始章节,在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,初步尝试用数学的眼光观察立体图形与平面图形,分析它们之间的关系.并通过对线段和角等一些简单几何图形的再认识,初步接触由实验几何向推理几何的过渡.本章内容是几何知识的重要基础,对后续几何的学习有很重要的意义和作用.(1)内容上:本章分为两部分,第一部分“几何图形”,从观察现实生活中的各种物体抽象出几何图形或几何概念,体会几何图形的抽象性特点和数学的抽象性.第二部分“线段、角”是平面几何中最基础也是最重要的图形,有关线段和角的概念、公理、性质,相关的画法、计算、推理、几何语言与图形语言之间的转化能力,对今后几何学习将起到导向作用.(2)方法上:三种数学语言(文字语言、符号语言、图形语言)的转化贯穿于学习的始终.要学会用分析法、综合法思考解决几何问题,这也是今后解决几何问题的基本方法.(3)思想上:这一章中所涉及到从具体到抽象的思想、把立体图形转化为平面图形的思想、代数方法解决几何问题的思想、数形结合的思想、运动变换的思想、分类讨论的思想、方程的思想以及应用意识的渗透.2.本章学习目标(1)通过从实物和具体模型的抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.(2)能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合体得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程中,培养空间观念和空间想象力.(3)进一步认识直线、射线、线段的概念,掌握它们的符号表示;掌握基本事实:“两点确定一条直线”、“两点之间,线段最短”,了解它们在生活和生产中的应用;理解两点间距离的意义,能度量两点间的距离;了解平面上两条直线具有相交和不相交两种位置关系;会比较线段的大小;理解线段的和、差及线段中点的概念,会画一条线段等于已知线段.(4)理解角的概念,掌握角的符号表示;会比较角的大小;认识度、分、秒,并会进行简单的换算,会计算角的和与差.了解角的平分线、余角、补角的概念,知道余角和补角的性质.(5)初步认识几何图形是描述现实世界的重要工具,初步应用几何图形的知识解决一些简单的实际问题,培养学习图形和几何知识的兴趣,通过交流活动,初步形成积极参与数学活动、主动与他人合作交流的意识.3.本章知识结构图重点:(1)几何与图形的基本概念,线段、角的基本知识,图形与几何的知识与客观实际的联系.(2)熟悉一些基本的几何语言,养成良好的几何作图的习惯,体会和模仿几何计算的较为规范的书写方式.(3)结合立体图形与平面图形的互相转化的学习,来发展空间观念以及一些重要的概念、性质.难点:(1)概念的抽象性:能由实物形状想象(抽象)出几何图形,由几何图形想象出实物形状.(2)对图形的表示方法,对几何语言的认识与运用.(3)根据文字作图的训练,注意到其中可能蕴含的分类讨论等情形.5.本章共16课时,具体分配如下(仅供参考):4.1 几何图形 4 课时4.2 直线、射线、线段 3 课时4.3 角 5 课时4.4 课题学习 2 课时小结 2 课时二、教学建议1. 总体教学建议(1) 教学中要注意与小学知识内容的衔接,要在已有的知识基础上教学,避免不适当的重复.【小学要求】:对于一些简单几何体和平面图形有一些感性的了解,能结合实例了解线段、射线和直线,了解一些几何体和平面图形的基本特征,知道周角、平角,了解周角、平角、钝角、直角、锐角之间的大小关系,能辨认从不同方向(前面、侧面、上面)看到的物体的形状图,能认识最简单的几何体(长方体、正方体和圆柱)的展开图.(2)要善于利用模型、生活实物、图片、多媒体工具演示等要学生充分去体验激发学生兴趣.多从生活中的实物出发,让学生感受到图形普遍存在于我们的周围,运用信息技术工具的展现丰富多彩的图形,进行动态演示.在实践中培养学生学习的兴趣.对于一些抽象的概念、性质等,也可借助实物或多媒体,让学生在探索中逐步理解这些知识. (3)要重视画图技能的培养.应注意要求学生养成良好的习惯,画图要认真,图应该画得清楚、干净,并能很好地表现图形之间的位置关系.在画图的过程中,一方面培养学生的绘图技能,同时也培养学生严谨、认真的学习态度,形成良好的个性品质.在这方面老师也应起到良好的示范作用. (4)要重视几何语言的教学.几何图形是“空间与图形”的研究对象,对它的一般描述表示是按“几何模型→图形→文字→符号”这种程序进行的.其中,图形是将几何模型第一次抽象后的产物,也是形象、直观的语言;文字语言是对图形的描述、解释与讨论;符号语言则是对文字语言的简化和再次抽象.显然,首先建立的是图形语言,其次是文字语言,再次是符号语言,最后形成的是对于研究对象的三种数学语言的综合描述,有了这种整体认识,三种语言达到融汇贯通的程度,就能基本把握对象了.要注意概念的定义和性质的表述,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.准确的几何语言应当贯穿课堂、作业、课外习题等各个环节,逐步训练学生的几何推理表达. 这些不仅是学习好本章的关键,同时对于学好以后各章也是很重要的.(5)在学习中通过对比(如直线、射线、线段)和类比(线段和角)加深理解. (6)注意训练几何推理书写方式,纠正用算术式进行几何计算的习惯: 【“旧”习惯】90245÷=【“新”写法】11904522COB AOB ∠=∠=⨯= 【为什么习惯要“改”?】体现了图形语言和符号语言的对应;体现了推理的过程;从算术思维到代数思维.(7)要通过立体图形的三视图与展开图发展空间概念(不要过于总结规律).(8)要注重基本概念与性质的教学. 例如:①在研究直线、线段、射线的有关概念时,容易出现延长直线或延长射线之类的错误,在用两个大写字母表示射线时,忽视第一个字母表示的是这条射线的顶点.②直线有这样一个重要性质:经过两点有一条直线,并且只有一条直线.即两点确定一条直线.线段有这样一条重要性质:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.这两个性质是研究几何图形的基础,复习时应抓住性质中的关键性字眼,不能出现似是而非的错误.③注意线段的中点是指把线段分成相等的两条线段的点;而连结两点间的线段的长度,叫做这两点的距离.这里应特别注意线段与距离的区别,即距离是线段的长度,是一个量;线段则是一种图形,它们之间是不能等同的.④在复习角的概念时,应注意理解两种方式来描述,即一种是从一些实际问题中抽象地概括出来,即有公共端点的两条射线组成的图形,叫做角;另一种是用旋转的观点来定义,即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.角的两种定义都告诉我们这样一些事实:(1)角有两个特征:一是角有两条射线,二是角的两条射线必须有公共端点,两者缺一不可;(2)由于射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦确定,它的大小就不因图形的位置、图形的放大或缩小而改变.如一个37°的角放在放大或缩小若干倍的放大镜下它仍然是37°不能误认为角的大小也放大或缩小若干倍.另外对角的表示方法中,当用三个大写字母来表示时,顶点的字母必须写在中间,在角的两边上各取一点,将表示这两个点的字母分别写在顶点字母的两旁,两旁的字母不分前后.⑤在研究互为余角和互为补角时,容易混淆这两个概念.常常误认为互为余角的两个角的和等于180°,互为补角的两个角的和等于90°.(9)要准确把握好教学要求总体上说,起始章的教学要求不宜过高,要充分保护学生学习积极性,避免产生畏难情绪,但是基础知识要落实扎实,养成规范的表达分析习惯,为后续学习打好基础,因此要注意根据学生具体情况来把握教学要求.①立体图形和平面图形、点线面体的概念要求学生在实际背景中认识、理解这些概念,体会抽象的过程,而不是通过形式化的描述让学生接受概念.②视图的知识对于三视图大部分内容是安排在第29章“视图与投影”中的.在这一章,没有给出严格的三视图的概念,是要求能从一组图形中辨认出是从什么方向看得到的图形,能说出从不同方向看一些最基本的几何体(长方体、正方体、圆柱、圆锥、球)以及它们的简单组合所能得到的图形(对于语言难以表达的,可画出示意图,基本形状正确即可,不做尺寸要求).③展开图的要求教材从展开和折叠两个方面都有要求,且教材中的习题中出现正方体表面有图案的情况,这也是中考的一个热点.圆锥的侧面展开图在后面的章节还要再学习,其余的多面体的展开图很少涉及,所以尽可能多做一些练习,尽量在本章中过关.在教学中,可以从看图分析图形特点进行想象或先动手做再分析图形,两方面同时进行.正方体的11种展开图,在操作中理解展开和折叠的过程,从不同的分类角度认识展开图.④推理能力的要求教科书是按照“简单说理”“说理”“推理”“用符号表示推理”不同层次分阶段逐步加深安排的.在本章,不仅要求学生通过观察、思考、探究等活动归纳出图形的概念和性质,还要“简单说理”.直线和线段性质的应用、余角和补角的性质的得出等都有简单说理的成分.教学中要注意利用这里“简单说理”的因素,为后面逐步让学生养成言之有据的习惯作准备.规范的推理形式,学生虽然一开始接受有些困难,随着教学的深入不断地纠正、强化,学生是可以掌握的,为以后的几何学习起到示范作用.本章中线段的中点、角平分线、互余、互补、同角的余角(补角)相等,等角的余角(补角)相等,要从文、图、式三方面加深理解,并加以应用,要配上适当的练习,巩固学生的说理.(10)关于本章作图的要求:①作一条线段等于已知线段②作已知线段的中点③作一个角等于已知角④作一个角的平分线2.各小节教学建议4.1.1 立体图形与平面图形知识点1:在实际背景中了解立体图形和平面图形的概念,体会抽象的过程,能举出实例.教学建议:1.理解从模型→图形,就是数学化的过程.2.能够认清N棱柱和N棱锥,圆柱和圆锥,注意“棱”字和“锥”字的写法;能区分棱柱(锥)与圆柱(锥),能区分圆形和球体,不要求但也可以认识棱台或圆台.知识点2:从不同角度看立体图形得到平面图形.教学建议:简单几何体要求会画图;复杂几何体能想象、辨认、说明即可.知识点3:立体图形的展开图.教学建议:1.对于立体图形展开图,学生首先要分析认清立体图形的空间结构,可以把每个面都标上它的位置名称,在展开后方便分清每个面所达到的位置.正方体的11种展开图,不要求学生记忆,重要的是展开和折叠的过程.鼓励学生自己动手尝试.圆锥的侧面展开图在后面圆一章中还能够再学习,其余的多面体的展开图很少涉及,所以尽可能多做一些练习,尽量在本章中过关.2. 通过“展开”和“围成”两种途径认识常见几何体的展开图.尽量提供学生动手操作的机会.4.1.2 点、线、面、体知识点:能从几何实体中抽象出点、线、面、体;知道“…动成…”.教学建议:这部分学生在小学阶段就有了相应的体验,关键是学生能进一步抽象理解这些概念,如对点的认识,它只表示一个位置,没有大小,甚至于无法画出来.这里还要说明线分直线和曲线,面分平面和曲面.4.2 直线、射线、线段知识点1:三种基本几何图形的概念、表示、作图、性质教学建议:联系:射线、线段是直线的一部分,反向延长射线得到直线,两方延长线段得到直线.区别:名称图像表示延伸端点度量直线 1.直线AB(或直线BA)2.直线l 向两端无限延伸0 不可度量射线 1.射线AB2.射线l 向一端无限延伸1 不可度量线段 1.线段AB(或线段BA)2.线段a不可延伸 2 可度量知识点2:几何语言和作图;点和直线教学建议:1.应该学会“过某点”、“点在线上/外”、“相交于某点”、“延长(到某点)”、“在某线上截取”、“连接AB”、“作直线/射线/线段AB”、“有且只有”等说法,并能画出相应的图形.2.学生在书写时可能会出现用小写字母表示点的问题.知识点3:尺规作图:作一条线段等于已知线段;叠合法比较两条线段的长度大小教学建议:要让学生理解为什么在“射线”上截取,在直线或线段上截取行不行.知识点4:线段的中点、N等分点的概念教学建议:1.强调中点必须在线段上,可以提出探究性问题“MA=MB,能否断言M就是线段AB的中点?”,可以要学生利用尺规作图进行探究.2.合理利用中点进行推理.知识点5:线段的和差倍分教学建议:1.注意规范符号语言的书写,要求学生模仿,从现在起必须变算术式为几何语言.2.建议此时不上难题、综合题,目的是先解决“三种语言”的问题,也为后续研究角的计算打好基础,分散难点.4.3.1 角知识点1:角的两种定义方法教学建议:1.通常情况下角的范围是(0,180].2.明确角的分类.3.在第二种定义下,说明角的范围可以进一步扩展到0和大于180的角.知识点2:角的三种表示方法教学建议:1.角的表达规范问题.2.书写时尽量写成简洁的表达形式.知识点3:角的大小、单位制、方位角教学建议:1.度分秒的转换、计算是难点,学生对于60进制的换算还是不太适应.2.一般方位,都统一用“北偏X”或“南偏X”表示;在图中标记角度.4.3.2 角的比较与运算知识点1:叠合法比较角度大小;角分线的概念;角度和差倍分的计算教学建议:1.类比“线段”的研究来学习“角”.可以从以下方面作类比:①定义、图形、符号表示②测量:测量工具、测量方法、度量单位③比较大小:两条线段/两个角的大小关系的方法④特殊位置:线段的等分点、角等分线⑤和差倍分运算:感受运算中的推理和方程思想⑥角的作图:感受作图中的方案设计2.典型习题:A CM BN4.3.3 余角和补角知识点:余角和补角的概念和计算教学建议:1.明确这两个概念仅表示数量关系、不涉及位置关系;但反过来,特殊的位置关系(垂直、邻补角)则往往会出现两个角互为余角/补角,可以用来计算角的大小.2.可以考虑将性质写成“已知-求证-证明”的形式,让学生初步感受几何中的推理和证明.4.4 课题学习制作长方体形状的包装纸盒通过这一学习体会长方体(立体图形)与其侧面展开图(平面图形)之间的关系.教学建议:可以安排与立体图形展开图教学结合进行.第四章几何图形初步小结复习1.建立完善的认知结构,体会一些数学思想方法的应用.2.注重渗透数学思想方法:分类讨论思想、方程思想、数形结合思想等等.分类讨论思想例1.两条相交直线与另外一条直线在同一平面内,求它们的交点个数?分析由于题设条件中并没有明确这三条直线的具体位置,所以应分情况讨论.前两条的关系很确定,当画第三条时,会出现分类,或平行于某一条,或相交于同一个点,或相交不在同一个点等三种情况.说明:在过平面上若干点可以画多少条直线,应注意这些点的分情况讨论;或在画其它的图形时,应注意图形的各种可能性.例2.点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.方程思想在处理有关角的大小,线段大小的计算时常需要通过列方程来解决.例.如果一个角的补角是150°,求这个角的余角.分析若设这个角的大小为x°,则这个角的余角是90°-x,于是由这个角的补角是150°可列出方程求解.数形结合思想例.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.说明:对于几何中的一些概念、性质及关系,应把几何意义与数量关系结合起来加以认识,达到形与数的统一.三、几个主要知识点1.从不同方向看例1.将两个大小完全相同的杯子(如图1-甲)叠放在一起(如图1-乙),则从上往下看图乙,得到的平面图形是()第解析:从上面往下看,可以看到上面杯子的底和两杯子的口都是圆形,应用实线表示,故选C. 例2.图2是一个几何体的实物图,从正面看这个几何体,得到的平面图形是()解析:此几何体由上下两部分组成,从正面看上面的几何体,看到的是一个等腰梯形,从正面看下面的几何体,看到的是一个长方形,再根据上面的几何体放置的位置特征,应选C. 2.展开与折叠例3.如图3所示的平面图形中,不可能围成圆锥的是()解析:圆锥的展开图是一个圆和一个扇形,D 选项中是一个圆和一个三角形,不能围成圆锥,故选D.例4.图4是正方体的展开图,原正方体相对两个面上的数字之和的最小值是DC B A 图1图2图3图4________.解析:将正方体的展开图折成正方体,可以得到2与6两个面相对,3与4两个面相对,1与5两个面相对,所以相对两个面上的数字之和的最小值是:1+5=6.故填6. 3 .线段的性质与计算例5. 在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是___________.解析:本题是线段性质的实际应用,根据线段的性质直接得到答案. 应填“两点之间,线段最短. ”例6.如图5,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =12,AC =8,则CD=______.解析:由图可知,CB=AB-AC=12-8=4. 又因为D 是BC 的中点,所以CD=12BC=2.故填2. 4. 角度的计算例7.如图6所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC ,则∠2的度数是()A. 20°B. 25°C. 30°D. 70°解析:由∠1=40°及平角定义,可求出∠BOC 的度数,由角平分线的定义,通过∠BOC=2∠2可求出∠2的度数.因为∠1=40°,所以∠BOC=180°-∠AOC=140°. 又因为OD 是∠BOC 的平分线,所以∠2=12∠BOC=70°. 故选D. 例8.如图7,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD=45°,则∠COE 的度数是()A. 125°B. 135°C. 145°D. 155° 解析:因为OE ⊥AB ,所以∠BOE=90°.因为∠BOD=45°,所以∠DOE=45°. 所以∠COE=180°-∠DOE=135°. 故选B. 5. 余角与补角例9.(1)已知∠α=20°,则∠α的余角等于度.(2)一个角的补角是36°35′,这个角是.12ABO C D 图6ACBEDO 图7 图5解析:(1)由余角定义,∠α的余角为:90°-20°=70°.故填70.(2)由补角定义,这个角是:180°-36°35′=143°25′.故填143°25′.6. 规律探究问题例10.平面上不重合的两点确定1条直线,不同三点最多可确定3条直线,若平面上不同的八个点最多可确定直线()A. 25条B. 26条C. 27条D. 28条解析:用n 表示平面上的点数,当n=2时,有1条直线;当n=3时,最多有直线:2+1=3(条);当n=4时,最多有直线: 3+2+1=6(条),…,由此可见,平面内有n 个点时,最多可画出2)1(-n n 条直线. 所以平面上不同的八个点最多可确定直线:8(81)2-=28(条).故选D.四、易错点点拨举例易错点1 对概念、性质把握不准例1 有下列说法:①直线是射线长度的2倍;②线段AB 是直线BA 的一部分;③直线、射线、线段中,线段最短. 其中说法正确的有( )A. 3个B. 2个C. 1个D. 0个错解:选A.分析:错解没有真正理解直线、射线的延伸性,这种延伸决定了直线、射线不能度量其长度,不能比较其长短,所以①③是错误的.正解:选C.易错点2 角的表示错误例2如图1所示,∠1,∠2,∠3用字母怎样表示?错解:∠1可表示为∠A ,∠2可表示为∠D ,∠3可表示为∠C.分析:错误的原因在于不能正确理解角的表示方法,同一顶点处有多个角时,必须用三个字母表示.正解:∠1可表示为∠CAD ,∠2可表示为∠ADC ,∠3可表示为∠ECF.易错点3换算之间的错误A CB D E1 2 3 图1例3计算:(1)30°52′+43°50′;(2)106°9′-34°58′.错解:(1)30°52′+43°50′=74°2′;(2)106°9′-34°58′=71°51′.分析:与度、分、秒有关的角度计算,应把度、分、秒分别计算,同时还要注意它们之间是60进制.错解错在把度、分、秒之间的进制当成了100进制.正解:(1)30°52′+43°50′ =(30°+43°)+(52′+50′)=73°102′=74°42′;(2)106°9′-34°58′=(105°+69′)-(34°+58′)=(105°-34°)+(69′-58′)=71°11′.易错点4 拼图识图错误例4如果将标号为A,B,C,D的正方形沿图中的虚线剪开后从新拼接得到标号为P,Q,M,N的四个图形,如图2所示,A,B,C,D分别与哪个图形对应?图2错解:A与P对应,B与Q对应,C与M对应,D与N对应.分析:本题错误的原因是观察图形不细心,像这样的问题,最好动手剪一剪,拼一拼.正解:A与M对应,B与P对应,C与Q对应,D与N对应.。
沪教版七年级数学上4.1多彩的几何图形同步练习含答案
4.1《多彩的几何图形》一、选择题(每小题4分,共12分)1.下图中所示几何体从左面看到的是()选A.从左面能看到几何体的两个面,故选A.2.下列四个图中,是三棱锥的表面展开图的是()选B.本题主要考查空间想象能力,平时多动手操作,训练是培养空间想象能力的关键,此题动手操作即可解决.3.如图是某几何体的从三个不同方向看到的图形,则这个几何体是()(A)圆柱 (B)正方体(C)球 (D)圆锥选A.圆柱从正面、左面看到的都是长方形,从上面看到的是圆.二、填空题(每小题4分,共12分)4.观察下列图形并填空.上面图形中,圆柱是_____,棱柱是_____,圆锥是_____,棱锥是_____,圆台是_____,棱台是_____,球体是_____.④③⑥①⑦②⑨⑩⑤⑧上面图形中,圆柱是④,棱柱是③⑥,圆锥是①⑦,棱锥是②,圆台是⑨,棱台是⑩,球体是⑤⑧.5.如图所示,这些物体所对应的立体图形分别是:______.正方体,圆柱,圆锥,球,棱柱6.一个长、宽、高分别为15 cm、10 cm、5 cm的长方体包装盒的表面积为______cm2.5502(15×10+15×5+10×5)=550(cm2).三、解答题(共26分)7.(8分)桌上放着一个圆柱和一个长方体,如图(1),请说出下列三幅图(如图(2))分别是从哪个方向看到的.分别是从左面、上面和正面看到的.8(9分)下图是用5个棱长为1厘米的小立方块搭成的几何体,请画出从正面、左面、上面看得到的图形.从不同方向看到的图形如下:9.(9分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:(1)只需添加一个符合要求的正方形;(2)添加的正方形用阴影表示)有下列几种添法,可供参考.。
2013-2014学年沪科版七年级数学上4.1几何图形例题与讲解
4.1 几何图形1.认识几何图形我们周围的物体,多姿多彩,如果只研究它们的形状和大小,而不涉及它们的其他性质,就得到各种几何图形.【例1】如图,左面是一些具体的物体,右面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).答案:如图所示:说方法如何确定实物的形状确定实物的形状,关键是分清几何体与实物的区别,实物抽象成几何体,要透过表象看本质,抓住实物的形状特征,看其轮廓和哪个立体图形类似.2.体、面、线、点的概念及几何图形的组成(1)体、面、线、点的概念长方体、四面体、圆柱、圆锥、球等都是几何体,简称体;包围着体的是面.面有平的面与曲的面两种,平面没有边界;几何体中面与面相交形成线;线与线相交得到点.(2)几何图形是由点、线、面、体组成的.其中点是最基本的图形.而点本身也是一个最简单的几何图形,点没有大小,只表示位置.(3)生活中的立体图形其实都是由最基本的几何图形组成的,其中线是由点组成,面是由线构成,体是由面围成,这也就是我们常说的“点动成线,线动成面,面动成体”.释疑点点、线、面、体的关系一条线可以看作是一个点运动之后形成的;线经过运动得到一个面;面经过运动就形成几何体.如流星的运动和我们在纸上画线的过程,就是点动成线的例子.时钟的秒针旋转一周,形成一个圆面,这说明线动成面.一个矩形木板绕着它的一条宽旋转一周,就形成一个圆柱,这说明面动成体.【例2-1】如果我们把流星看作一个点,那么我们观察流星移动时,会看到它划过一条长弧,这说明了__________,当直升机启动后,随着螺旋桨转动速度的加快,我们会看到一个圆面,这说明了__________,把一枚硬币用左手竖放在桌面上,使右手用力一弹,硬币会高速旋转,我们会看到一个球,这说明了__________.答案:点动成线线动成面面动成体说方法理性认识物体的形状理解相关概念,学会观察,对物体形状的认识逐步由感性认识上升到理性认识.【例2-2】将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是().解析:答案:3.多面体与旋转体(1)长方体、四面体等,围成它们的面都是平面的一部分,这样的几何体都是多面体.多面体中面与面的交线是直的,它们叫做多面体的棱,棱与棱相交的点叫做多面体的顶点.例如,如图长方体有12条棱,8个顶点.(2)圆柱、圆锥、球都是旋转体.围成圆柱、圆锥的面有平的面和曲的面,其中平的面是底面、曲的面是侧面.圆柱、圆锥中侧面与底面的交线是曲线;围成球的面是曲的面.【例3】下列结论中正确的是().①圆柱由3个面围成,这3个面都是平面;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;③球仅由1个面围成,这个面是平面;④正方体由6个面围成,这6个面都是平面.A.①②B.②③C.②④D.①④释疑点对多面体的理解应注意的问题多面体的面都是平面,没有曲面,可能是规则的立体图形,也可能是不规则的立体图形.多面体根据组成这个立体图形的面数决定是几面体.如正方体是六面体.4.几何图形的有关概念(1)几何图形中,像直线、角、三角形、圆等,它们上面的各点都在同一个平面内,这样的图形叫做平面图形;(2)像长方体、圆柱体、球等,它们上面的各点不都在同一个平面内,这样的图形叫做立体图形.【例4】下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是().A.③⑤⑥B.①②③C.③⑥D.④⑤解析:三角形、长方形、正方形、圆是平面图形;正方体、圆锥、圆柱是立体图形.答案:A释疑点正确判断立体图形和平面图形判断一个图形是立体图形还是平面图形,关键是判断这个几何图形上面的每一个点是否都在同一个平面内,如果图形上每一个点都在同一个平面内,那么这个几何图形就是平面图形,否则是立体图形.5.区分几何图形几何体两种常见分类:释疑点几何体的分类原则分类的原则是“不重不漏”.“不重”也就是说同一个几何体不能隶属于同一分类标准下并列的两个种类,“不漏”就是说题中所列举的所有图形都要能属于某个种类.【例5】将如图所示的几何体进行分类,并说明理由.分析:几何体的分类不是唯一的.我们应先观察各个几何体,努力发现其共同点,然后可根据其共同点来进行适当的分类.解:若按柱体、锥体、球体来分类:(2)(3)(5)(6)是柱体,(4)是锥体,(1)是球体;若按几何体的面是否含有曲面来分类,则(1)(4)(6)是旋转体,(2)(3)(5)是多面体.6.探究多面体的棱的条数常见的多面体有棱柱和棱锥,判断一个多面体的顶点数和棱数首先要判断这个多面体是棱柱还是棱锥,如果是棱柱,先观察是几棱柱,再判断顶点数和棱数,因为n棱柱有2n个顶点,有3n条棱;如果是棱锥,先观察是几棱锥,再判断顶点数和棱数,因为n棱锥有(n +1)个顶点,有2n条棱.对于简单的棱柱和棱锥也可以根据图形的直观性判断.析规律多面体的顶点数、面数、棱数之间的关系多面体的顶点数、面数和棱数之间存在如下关系,即顶点数+面数-棱数=2,所以一个多面体只要知道了顶点数、面数、棱数中的任意两个可求另一个数.【例6】如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?多少个顶点?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?解:(1)这个八棱柱一共有10个面,上下两个底面是八边形,八个侧面都是长方形;上下两个底面的形状、面积完全相同,八个侧面形状、面积完全相同.(2)这个八棱柱一共有24条棱,16个顶点.(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是长方形,长为5×8=40(厘米),宽为6厘米,所以面积是40×6=240(平方厘米).7.多面体在生活中的应用在现实生活中,多面体的应用十分广泛,解决生活中的多面体问题,一方面,我们要开动脑筋,努力去思考可能会发生的多种情况,培养空间想象能力,一题多解问题有利于我们创造性思维的发展;另一方面,我们要主动动手操作,在实践活动中积累经验,探索规律.通过探究立体图形的棱的数量关系逐步提高同学们对立体图形的认识,以及数形结合的思想.【例7】如图,搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要__________根钢管.解析:图①可以看作是一个正方体和一个三棱柱组合而成的,它共有17条棱.两个这样的图形有17×2-6=28条棱,三个这样的图形有17×3-6×2=39条棱,…,7个这样的图形有17×7-6×6=83条棱.答案:83。
上海上海中学七年级数学上册第四单元《几何图形初步》检测卷(包含答案解析)
一、选择题1.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D . 2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( )A .3B .2C .3 或 5D .2 或 6 3.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .164.将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )A .B .C .D .5.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 6.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 7.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .48.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种9.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的10.两个锐角的和是()A.锐角B.直角C.钝角D.锐角或直角或钝角11.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.12.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线二、填空题13.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm14.若∠A=4817︒',则它的余角是__________;它的补角是___________。
上海中国中学七年级数学上册第四单元《几何图形初步》测试(包含答案解析)
一、选择题1.如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对 2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC等于( )A .3B .2C .3 或 5D .2 或 6 3.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较4.已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为( )A .12α∠B .12β∠ C .()12αβ∠-∠ D .()1+2αβ∠∠ 5.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒6.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转7.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.圆锥,正方体,三棱柱,圆柱8.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q9.如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,110.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有三条水路、两条陆路,从B地到C地有4条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有( )A.10种B.20种C.21种D.626种11.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的12.下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线二、填空题13.(1)375324'''°=________°;(2)1.45︒=________′.14.分别指出图中截面的形状;15.将下列几何体分类,柱体有:______(填序号).16.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n )个图有________个相同的小正方形.17.如图所示,若∠AOC =90°,∠BOC =30°,则∠AOB =________;若∠AOD =20°,∠COD =50°,∠BOC =30°,则∠BOD =______,∠AOC =________,∠AOB =________.18.已知∠A=67°,则∠A 的余角等于______度.19.如图,上午6:30时,时针和分针所夹锐角的度数是_____.20.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.三、解答题21.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 22.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 23.如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示.(1)连接AB ,作射线AD ,作直线BC 与射线AD 交于点E ;(2)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.24.如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.25.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.AB BC CD=,点M是线段AC的中26.如图,点B、C在线段AD上,且::2:3:4MN=.点,点N是线段CD上的一点,且9(1)若点N是线段CD的中点,求BD的长;(2)若点N是线段CD的三等分点,求BD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由OM是∠AOD的平分线,求得∠AOM=21°,利用∠BOC=34°,根据平角的定义求出答案.【详解】∵OM是∠AOD的平分线,∴∠AOM=21°.又∵∠BOC=34°,∴∠MOC=180°-21°-34°=125°.故选:A.【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.2.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D.3.B解析:B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠1=∠2;故选B.【点睛】考查了角的大小比较,培养了学生的推理能力.4.C解析:C【分析】首先根据∠α与∠β互补可得∠α+∠β=180°,再表示出∠β的余角90°-(180°-∠α),然后再把等式变形即可.【详解】∵∠α与∠β互补,∴∠α+∠β=180°,∵∠α>∠β,∴∠β=180°-∠α,∴∠β的余角为:90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α−12∠β=12(∠α-∠β),故选C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的定义.5.D解析:D根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是:故选:B .【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.7.D解析:D【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,正方体,三棱锥,圆柱;故选:D【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.8.C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.9.D解析:D【分析】直线没有端点,射线有一个端点,线段有两个端点.【详解】以A点为端点的射线有2条,以B为端点的射线有3条,以C为端点的射线有2条,以D 为端点射线有1条,合计射线8条.线段:AB,BC,AC,BD ,合计4条.直线:AC,合计1条故本题 D.【点睛】直线没有端点,射线有一个端点,线段有两个端点.10.C解析:C【分析】本题只需分别数出A到B、B到C、A到C的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.11.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B.【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键. 12.B解析:B【分析】根据两点确定一条直线进而得出答案.【详解】在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.【点睛】此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.二、填空题13.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.14.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得 解析:长方形;五边形;圆.【解析】【分析】根据长方体各面的特点,结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答.【详解】①截面与长面平行,可以得到长方形形截面;②截面与棱柱的底面平行,可得到五边形截面;③截面与圆锥底平行,可以得到圆形截面.故答案为:长方形、五边形、圆.【点睛】此题考查截一个几何体,解题的关键是要掌握截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:(1)(2)(3)故答案为(1)(2)(3)【点睛】此题主要考查了认识立体图形几解析:(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:(1)(2)(3).故答案为(1)(2)(3).【点睛】此题主要考查了认识立体图形,几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.16.n(n+1)【分析】通过观察可以发现每一个图形中正方形的个数等于图形序号乘以比序号大一的数根据此规律解答即可【详解】第(1)个图有2个相同的小正方形2=1×2第(2)个图有6个相同的小正方形6=2×解析:n(n+1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n个图应有n(n+1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.17.120°80°70°100°【分析】利用角度的和差计算求各角的度数【详解】若∠AOC=90°∠BOC=30°则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD =20°∠COD=50解析:120° 80° 70° 100°【分析】利用角度的和差计算求各角的度数.【详解】若∠AOC=90°,∠BOC=30°,则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD=20°,∠COD=50°,∠BOC=30°,则∠BOD=∠COD+∠BOC=50°+30°=80°;∠AOC=∠AOD+∠DOC=20°+50°=70°;∠AOB=∠AOD+∠COD+∠BOC=20°+50°+30°=100°;故答案为:120°,80°,70°,100°.【点睛】此题考查几何图形中角度的和差计算,根据图形确定各角度之间的数量关系是解题的关键.18.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.19.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°.故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.20.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP 与∠COP ,∠BOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共4对;②∠AOP =90°-∠AOB =20°时,∴互余的角有∠AOP 与∠COP ,∠AOP 与∠AOB ,∠AOP 与∠COD ,∠COD 与∠COB ,∠AOB 与∠COB ,∠COP 与∠COB ,一共6对;③0<x <50中35°与20°的其余角,互余的角有∠AOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共3对.则m =3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.三、解答题21.7或3【分析】求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =, 12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.22.(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.∠的度数为45︒或30︒.(2)AOP∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.23.(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.24.见解析根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A 点向东北方向作一条线,在B 点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A 和B 所在位置作出不明物体所在它们的方向上的射线,两线的交点D 即为不明物体所处的位置.如图所示,点D 即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键. 25.120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.26.(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①.设AB=2x ,则BC=3x ,CD=4x .∴AC=AB+BC=5x ,∵点M 是线段AC 的中点,∴MC=2.5x ,∵点N 是线段CD 的中点,∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x∵MN=9,∴4.5x=9,解得x=2,∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x , ∴MN=MC+CN=54239236x x x +== 解得,5423x =, ∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x ,∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】 本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.。
上海上海中学东校七年级数学上册第四单元《几何图形初步》测试题(答案解析)
一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B 的长度为( )A .0B .1C .2D .3 2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC等于( )A .3B .2C .3 或 5D .2 或 6 3.观察下列图形,其中不是正方体的表面展开图的是( ) A . B .C .D .4.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南5.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个6.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=° 7.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ). A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 8.如图,长度为12cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC :CB=1:2,则线段AC 的长度为( )A .8cmB .6cmC .4cmD .2cm9.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-110.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A .圆锥,正方体,三棱锥,圆柱B .圆锥,正方体,四棱锥,圆柱C .圆锥,正方体,四棱柱,圆柱D .圆锥,正方体,三棱柱,圆柱 11.体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处,则表示他最好成绩的点是( )A .MB .NC .PD .Q 12.已知线段AB=5,C 是直线AB 上一点,BC=2,则线段AC 长为( )A .7B .3C .3或7D .以上都不对 二、填空题13.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 14.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.15.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.16.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.17.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.18.如图是一个正方体盒的展开图,若在其中的三个正方形A 、B 、C 内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A ,B ,C 内的三个数依次为__,___,___.19.一个圆的周长是62.8m ,半径增加了2m 后,面积增加了____2m .(π取3.14) 20.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.三、解答题21.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)22.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.23.如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.24.如图,A 、B 、C 三点在一条直线上,根据图形填空:(1)AC = + + ;(2)AB =AC ﹣ ;(3)DB+BC = ﹣AD(4)若AC =8cm ,D 是线段AC 中点,B 是线段DC 中点,求线段AB 的长.25.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.26.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D.3.B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.4.D解析:D【分析】如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D.5.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.6.C解析:C【分析】先根据同角的余角相等得出∠1=∠BCE,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH⊥BC,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质.7.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.8.A解析:A【分析】先根据点M是AB中点求出AM=BM=6cm,再根据MC:CB=1:2求出MC即可得到答案.【详解】∵点M是AB中点,∴AM=BM=6cm,∵MC:CB=1:2,∴MC=2cm,∴AC=AM+MC=6cm+2cm=8cm,故选:A.【点睛】此题考查线段的中点性质,线段的和差计算,正确理解图形中线段之间的数量关系是解题的关键.9.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.10.D解析:D【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,正方体,三棱锥,圆柱;故选:D【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.11.C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.12.C解析:C【分析】由点C在直线AB上,分别讨论点C在点B左侧和右侧两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,BC=2,AB=5,∴当点C在点B左侧时,AC=AB-BC=3,当点C在点B右侧时,AC=AB+BC=7,∴AC的长为3或7,故选C.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.二、填空题13.32π【分析】分情况讨论分绕长为2或是4的边旋转再根据圆柱的体积公式即可解【详解】由题意旋转构成一个圆柱的体积为π××4=16π或π××2=32π故答案为:32π【点睛】圆柱的体积公式是底面积与高的积解析:32π【分析】分情况讨论,分绕长为2或是4的边旋转,再根据圆柱的体积公式即可解【详解】由题意,旋转构成一个圆柱的体积为π×22×4=16π或π×24×2=32π,故答案为:32π【点睛】圆柱的体积公式是底面积与高的积.14.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断.【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体,四棱锥,三棱柱;【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.15.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.16.20【解析】【分析】本题需先求出AB之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE是线段AB上的三个点根据题意可得:图中共用=10条线段∵A到B与B到A车票不同∴从A到B的车票解析:20【解析】【分析】本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.【详解】设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()5152-⨯=10条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为20.【点睛】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.17.45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC=60°∠CON=∠BOC=15°∴∠MON=∠MOC-∠CON=60解析:45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=60°,∠CON=12∠BOC=15°,∴∠MON=∠MOC-∠CON=60°-15°=45°;故答案为:45°;【点睛】本题主要考查角平分线的性质,角的度数的计算,关键在于运用数形结合的思想推出∠MON=∠MOC-∠CON.18.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念解析:0 2【分析】利用正方体及其表面展开图的特点解题.【详解】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,0,2.故答案为1,0,2【点睛】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.19.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.20.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.22.(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.23.见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A 点向东北方向作一条线,在B 点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A和B所在位置作出不明物体所在它们的方向上的射线,两线的交点D即为不明物体所处的位置.如图所示,点D即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键.24.(1)AD,DB,BC;(2)BC;(3)AC;(4)6cm.【分析】(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD和CD的长度相等并且都等于AC的一半,DB的长度为CD长度的一半即为AC长度的四分之一.AB的长度等于AD加上DB,从而可求出AB的长度.【详解】(1)AC=AD+DB+BC故答案为:AD,DB,BC;(2)AB=AC﹣BC;故答案为:BC;(3)DB+BC=DC=AC﹣AD故答案为:AC;(4)∵D是AC的中点,AC=8时,AD=DC=4B是DC的中点,∴DB=2∴AB=AD+DB=4+2,=6(cm).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.25.(1)多余一个正方形,图形见解析;(2)表面积为:210cm2;体积为:200cm3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.26.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.。
【最新】人教版七年级数学上册4.1多姿多彩的图形同步练习1含答案.doc
4.1多姿多彩的图形同步练习一、填空题:1.圆锥的底面是形,侧面是的面,侧面展开图是形。
2.长方体有个顶点,经过每个顶点有条棱,共有条棱。
3.下列图形中,是正方体表面展开图的是()(A )(B )(C )(D )4.如图,三棱锥有________个面,它们相交形成了________条棱, 这些棱相交形成了________个点.5 42 3 6 15.将如图所示的六个大小一样的正方形纸片沿虚线折成一个正方体,它的共顶点的三个面上数字之积的最大值是。
6.一个正方体的六个面上分别标有2、3、4、5、6、7中的一个数字,如图,是这个正方体的三种不同的放置方法,则这三种放置方法中,三个正方体底面上所标数字的和是。
73 253 637 67.如图:是某物体从正面从左面从上面三个方向上看所的到的图形,那么物体的形状是8.边长为2cm 和4cm 的长方形绕其一边旋转得到的几何体的表面积为9.将标号为A 、B 、C 、D的正方形沿图中的虚线剪开后得到的标号为P 、Q 、M 、N 的四组图形,试按照对应关系填空。
二、选择题:1.从上向下看图(1),应是右图中所示的( )CDBA2、如图2,四个图形是由立体图形展开得到的,相应的立体图形是顺次是( )A .正方体、圆柱、三棱柱、圆锥B 。
正方体、圆锥、三棱柱、圆柱C .正方体、圆柱、三棱锥、圆锥D 。
正方体、圆柱、四棱柱、圆锥3.下列各图中,不可能围城正方体的是()DcBA4.下面是四棱柱的侧面展开图的是()5.如下面的图形,是由()旋转形成的6.将图中左边的图形折成一个立方体, 判断右边的四个立方体哪个是由左边的图形折成的.()7.如图,有一个无盖的正方体纸盒,下底面标有字母“M ”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( )(A)(B)(C) (D)8.如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的小正方体有()主视图俯视图左视图(A )4个(B )5个(C )6个(D )7个三、画图题:1、下图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图。
【3套打包】上海市七年级数学上册第四章几何图形的初步单元测试(含答案).doc
人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12 COA,∵∠EOD=90几何图形初步单元测试卷一、选择题(本题共计10 小题,每题分,共计30分,)1. 与如图相对应的几何图形名称为()A.四棱锥B.三棱锥C.四棱柱D.三棱柱2. 已知,,那么A. B. C.或 D.3. 已知,则的补角度数是()A. B. C. D.4. ,,则与的大小关系是()A. B.C. D.以上都不对5. 下列说法正确的是()A.一个角的余角只有一个B.一个角的补角必大于这个角C.钝角的补角一定是锐角D.若两个角互为补角,则一个是钝角,一个是锐角6. 如图,,,则的度数为()A. B. C. D.7. 用,,,各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.下图是由,,,中的两种图形组合而成的(组合用“&”表示).那么,下列组合图形中,表示&;的是()A.B.C.D.8. 如果线段 , ,那么下列说法正确的是( ) A.点 在线段 上 B.点 在直线 上 C.点 在直线 外D.点 在直线 上,也可能在直线 外9. 在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( ) A. 枚 B. 枚 C. 枚 D.任意枚10. 如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是( )A.B.C.D.二、 填空题 (本题共计 4 小题,每题 分,共计12分 , )11. 如图所示,小明到小颖家有三条路,小明想尽快到小颖家请你帮他选条线路________.12. 如图, 是线段 的中点, 在直线 上, , ,则 的长等于________.13. 由 时 分到 时 分,时钟的分针旋转的角度为________,时针旋转的角度为________.14. 如图所示, 表示________偏________ 方向,射线 表示________方向, ________.三、解答题(本题共计6 小题,每题分,共计58分,)15.(8分) 计算:(1)(2).16. (10分)已知线段,按要求画出图形并计算:延长线段到,使得,延长到点,使,若,求出与的长.17. (10分)如图,已知,平分,且,求的度数.18. (10分)一缉私船队在的南偏东方向,、两处相距.接通知后,缉私队立刻通过全球定位系统测得走私地点在的北偏东方向,的南偏东方向,人教版七年级数学上册第四章几何图形的初步单元测试(含答案)一、单选题1.如图,图、图、图均由四个全等的等边三角形组成,其中能够折叠围成一个立体图形的有()A.只有图①B.只有图①、图②C.图①、图②、图③D.只有图②、图③2.下列平面图形中不能围成正方体的是()A.B.C.D.3.某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是()A.成B.功C.其D.我4.将一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个规程中不改变的是圆柱的()A.高B.侧面积C.底面积D.体积5.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.1个B.2个C.3个D.4个6.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹7.点A,B,C在一条直线上,AB=6,BC=2,点M是AC的中点,则AM的长度为()A.4 B.6 C.2或6 D.2或48.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线9.将直角三角尺和长方形纸片如图放置,图中与∠1互余的角有A.2个B.3个C.4个D.5个10.如图,点位于点的().A.南偏东方向上B.北偏西方向上C.南偏东方向上D.南偏西方向上11.如图,直线AB,CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是()A.35°B.45°C.30°D.40°12.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.二、填空题13.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=_______.14.如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y=________.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=_____.16.线段,C是线段AB上一点,AC=4,M是AB的中点,点N是AC的中点,则线段NM的长是________.三、解答题17.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图。
《4.1+几何图形》2021年同步练习卷 (原卷+解析)
人教新版七年级上学期《4.1 几何图形》2021年同步练习卷一.选择题(共1小题)1.下图中各图形经过折叠后可以围成一个棱柱的是()A.B.C.D.二.解答题(共30小题)2.已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.3.某长方体包装盒的表面积为146cm2,其展开图如图所示.求这个包装盒的体积.4.将一个正方体的表面涂上颜色.如图把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.(1)如果把正方体的棱4等分,所得小正方体表面涂色情况如何呢?把正方体的棱n等分呢?(请填写下表):棱等分数4等分n等分3面涂色的正方体个个2面涂色的正方体个个1面涂色的正方体个个个个各个面都无涂色的正方体(2)请直接写出将棱7等分时只有一个面涂色的小正方体的个数.5.如图是一个长为4cm,宽为3cm的长方形纸片(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是,这能说明的事实是.(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.6.两种规格的长方体纸盒,尺寸如下(单位:厘米)长宽高小纸盒a b20大纸盒 1.5a2b30(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?7.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.8.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)9.棱长为a的正方体,摆成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.(3)依图中摆放方法类推,如果该物体摆放了上下n层,求该物体的表面积.10.在对第一章“丰富的图形世界”复习前,老师让学生整理正方体截面的形状并探究多面体(由若干个多边形所围成的几何体)的棱数、面数、顶点数之间的数量关系,如图是小颖用平面截正方体后剩余的多面体,请解答下列问题:(1)根据上图完成下表:多面体V(顶点数)F(面数)E(棱数)(1)715(3)69(5)86(2)猜想:一个多面体的V(顶点数),F(面数),E(棱数)之间的数量关系是;(3)计算:已知一个多面体有20个面、30条棱,那么这个多面体有个顶点.11.如果一个棱柱一共有12顶点,底边长是侧棱长的一半,并且所有的棱长的和是120cm,求每条侧棱的长.12.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)13.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示.(1)在图②所示的正方体骰子中,1点对面是点;2点的对面是点(直接填空);(2)若骰子初始位置为图②所示的状态,将骰子向右翻滚90°,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻转后,骰子朝下一面的点数是点;连续完成2016次翻转后,骰子朝下一面的点数是点(直接填空).14.综合与实践:提出问题:有两个相同的长方体纸盒,它们的长、宽、高分别是16cm、6cm、2cm,现要用这两个纸盒搭成一个大长方体,怎样搭可使长方体的表面积最小?实践操作:我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放位置的不同,它们的表面积会发生变化,经过操作,发现共有3种不同的摆放方式,如图所示:探究结论:(1)请计算图1、图2、图3中的大长方体的长、宽、高及其表面积,并填充下表:长(cm)宽(cm)高(cm)表面积(cm2)图1166图262图3162根据上表可知,表面积最小的是所示的长方体.(填“图1”、“图2”、“图3”).解决问题:(2)请在下面的A、B两题中任选一题作答,我选择.A、现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有种不同的方式,搭成的大长方体的表面积最小为cm2.B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有种不同的方式,搭成的大长方体的表面积最小为cm2.(用含a、b、c的代数式表示).15.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,前两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?16.请你画出如图所示的正方体的一种平面展开图,并把对应的汉字写在对应位置.17.我们知道,将一个立方体沿某些棱剪开,可以得到它的平面展开图,请画出下面立方体的一种平面展开图,并分别把﹣3,﹣2,﹣1,1,2,3分别填入展开后的六个正方形内,且使原立方体相对面上的两数和为0.18.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方形的表面积.19.如图是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数.(1)把﹣16,9,16,﹣5,﹣9,5分别填入图中的六个小正方形中;(2)若某相对两个面上的数字分别为和﹣5,求x的值.20.已知长方体ABCD﹣A1B1C1D1长为2cm,宽为2cm,高为3cm,请在虚线框内画出长方体的直观图,并写出长方体ABCD﹣A1B1C1D1的表面积为cm2.21.把八个棱长为10厘米的正方体拼成一个长方体.(1)不同的拼法得出的长方体的体积是否相等?是多少?(2)长方体的表面积是多少?22.指出下列平面图形各是什么几何体的展开图.23.探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?24.将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:①各个扇形的圆心角的度数.②其中最大一个扇形的面积.25.一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周.(温馨提示:①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=πR3,V圆锥=πr2h).(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是.(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?26.10个棱长为acm的正方体摆放成如图的形状,这个图形的表面积是多少?27.若在上述折叠的正方体表面上画如图所示的线段,请你在展开图上标出对应的其它两条线段.28.一个正方体,六个面上分别写有六个连续的整数(如图所示),且每两个相对面上的数字和相等,本图所能看到的三个面所写的数字分别是:3,6,7,问:与它们相对的三个面的数字各是多少?为什么?29.新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形.(1)数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表中多面体顶点数(V)面数(F)棱数(E)正四面体446正方体正八面体正十二面体正二十面体122030(2)观察表中数据,猜想多面体的顶点数(V)、棱数(E)和面数(F)之间的关系.(3)伟大的数学家欧拉(Euler1707﹣1783)证明了这一令人惊叹的关系式,即欧拉公式.若已知一个多面体的顶点数V=196,棱的条数E=294.请你用欧拉公式求这个多面体的面数.30.下图是一个三角形,现分别连接这个三角形三边的中点将这个三角形分割成4个较小的三角形(即分割成四部分)得到图1,再连接中间这个三角形三边的中点继续将它分割得到图2;再继续连接最中心三角形三边的中点将它分割得到图3.(1)图2中大三角形被分割成个三角形;图3中大三角形被分割成个三角形.(2)按上面的方法继续分割下去,第10个图形分割成几个三角形?第n个图形呢(用n 的代数式表示结论)?31.附加题:(1)解方程:.(2)按图示切割正方体就可以切割出正六边形(正六边形的各顶点恰是其棱的中点),请你任意画出此正方体的两种平面展开图,并在展开图上画出所有的切割线.人教新版七年级上学期《4.1 几何图形》2021年同步练习卷参考答案与试题解析一.选择题(共1小题)1.下图中各图形经过折叠后可以围成一个棱柱的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A缺少两个底面,不能围成棱柱;选项C中折叠后没有上底面,不能折成棱柱,选项D不能组成棱柱,是因为上下两底面四个边的长不能与侧面的边等长、重合.,只有B能围成三棱柱.故选:B.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.二.解答题(共30小题)2.已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,可得E面和F 面是相对面,然后根据相对面上的两个的数互为相反数,得出方程求出a的值,再把a 的值代入C=﹣a2﹣2a+1求出C,再根据A面与C面是相对面,求出A面表示的数值.【解答】解:根据题意∵E面和F面的数互为相反数,∴3a+4+2﹣a=0,∴a=﹣3,把a=﹣3代入C=﹣a2﹣2a+1,解得:C=﹣2,∵A面与C面表示的数互为相反数,∴A面表示的数值是2.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.某长方体包装盒的表面积为146cm2,其展开图如图所示.求这个包装盒的体积.【分析】分别表示出长方体的各侧面面积,进而得出等式求出答案.【解答】解:设高为x cm,则长为(13﹣2x)cm,宽为(14﹣2x)cm.由题意,得[(13﹣2x)(14﹣2x)+(14﹣2x)x+x(13﹣2x)]×2=146,解得:x1=2,x2=﹣9(舍去),∴长为:9cm,宽为:5cm.长方体的体积为:9×5×2=90cm3,答:这个包装盒的体积为90cm3.【点评】此题主要考查了几何体的展开图以及几何体的表面积,正确表示出长方体的侧面积是解题关键.4.将一个正方体的表面涂上颜色.如图把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.(1)如果把正方体的棱4等分,所得小正方体表面涂色情况如何呢?把正方体的棱n等分呢?(请填写下表):棱等分数4等分n等分3面涂色的正方体个个2面涂色的正方体个个1面涂色的正方体个个个个各个面都无涂色的正方体(2)请直接写出将棱7等分时只有一个面涂色的小正方体的个数.【分析】(1)根据长方体的分割规律可分别得到4等分时的所得小正方体表面涂色情况,由特殊推广到一般即可得到n等分时所得小正方体表面涂色情况;(2)直接把n=7代入(1)中所得的规律中即可.【解答】解:(1)三面涂色8,8;二面涂色24,12(n﹣2),一面涂色24,6(n﹣2)2各面均不涂色8,(n﹣2)3;(2)当n=7时,6(n﹣2)2=6×(7﹣2)2=150,所以一面涂色的小正方体有150个.【点评】主要考查了立体图形的认识和用特殊归纳一般规律的方法.关键是通过正方体的特点来得到有关涂色情况的规律.5.如图是一个长为4cm,宽为3cm的长方形纸片(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是圆柱,这能说明的事实是面动成体.(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为3cm,高为4cm,从而计算体积即可;(3)绕宽旋转得到的圆柱底面半径为4cm,高为3cm,从而计算体积即可.【解答】解:(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是圆柱,这能说明的事实是面动成体;(2)绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;(3)绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.故答案为:圆柱;面动成体.36πcm3;48πcm3.【点评】本题考查了点、线、面、体的知识,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键,另外要掌握圆柱的体积计算公式.6.两种规格的长方体纸盒,尺寸如下(单位:厘米)长宽高小纸盒a b20大纸盒 1.5a2b30(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【分析】(1)先求大纸盒的用料 2 (1.5a×2b+1.5a×30+2b×30)平方厘米,再求出小纸盒的用料2(ab+20a+20b)平方厘米,再相加即可;(2)做一个大纸盒的用料2 (1.5a×2b+1.5a×30+2b×30)平方厘米,做三个小纸盒的用料为(6ab+120a+120b)平方厘米,比较大小后相减即可求解.【解答】解:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b(平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.【点评】本题考查了列代数式以及合并同类项,是基础知识比较简单.7.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了8条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.【分析】(1)根据长方体总共有12条棱,有4条棱未剪开,即可得出剪开的棱的条数;(2)根据长方体的展开图的情况可知有4种情况;(3)设底面边长为acm,根据棱长的和是880cm,列出方程可求出底面边长,进而得到长方体纸盒的体积.【解答】解(1)由图可得,小明共剪了8条棱,故答案为:8.(2)如图,粘贴的位置有四种情况如下:(3)∵长方体纸盒的底面是一个正方形,∴可设底面边长acm,∵长方体纸盒所有棱长的和是880cm,长方体纸盒高为20cm,∴4×20+8a=880,解得a=100,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.8.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)【分析】(1)依据面动成体,即可得到几何体简图.(2)依据几何体的底面半径,运用圆锥体积计算公式即可得到几何体的体积.【解答】解:(1)以4cm为轴,得;以3cm为轴,得;以5cm为轴,得;(2)以4cm为轴体积为×π×32×4=12π(cm3),以3cm为轴的体积为×π×42×3=16π(cm3),以5cm为轴的体积为×π()2×5=9.6π(cm3).【点评】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.9.棱长为a的正方体,摆成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.(3)依图中摆放方法类推,如果该物体摆放了上下n层,求该物体的表面积.【分析】由题中图示,从上、下、左、右、前、后等六个方向直视的平面图相同,即三视图的面积相等,故根据正方形的数量求出主视图的面积,即可得到该物体的表面积.【解答】解:(1)6×(1+2+3)•a2=36a2.故该物体的表面积为36a2;(2)6×(1+2+3+…+20)•a2=1260a2.故该物体的表面积为1260a2;(3)6×(1+2+3+…+n)•a2=3n(1+n)a2.故该物体的表面积为3n(1+n)a2.【点评】本题考查了平面图形的有关知识,关键是要注意立体图形的各个面及每个面的正方形的个数.10.在对第一章“丰富的图形世界”复习前,老师让学生整理正方体截面的形状并探究多面体(由若干个多边形所围成的几何体)的棱数、面数、顶点数之间的数量关系,如图是小颖用平面截正方体后剩余的多面体,请解答下列问题:(1)根据上图完成下表:多面体V(顶点数)F(面数)E(棱数)(1)10715(3)659(5)8612(2)猜想:一个多面体的V(顶点数),F(面数),E(棱数)之间的数量关系是V+F ﹣E=2;(3)计算:已知一个多面体有20个面、30条棱,那么这个多面体有12个顶点.【分析】(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.【解答】解:(1)观察图形,多面体(1)的顶点数为10;多面体(3)的面数为5;多面体(5)的棱数为12;故答案为:10,5,12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,即关系式为:V+F﹣E=2;故答案为:V+F﹣E=2;(3)由题意得:V+20﹣30=2,解得V=12.故答案为:12.【点评】本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2.这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律.11.如果一个棱柱一共有12顶点,底边长是侧棱长的一半,并且所有的棱长的和是120cm,求每条侧棱的长.【分析】设底边长为xcm,则侧棱长为2xcm,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设底边长为xcm,则侧棱长为2xcm,根据题意得:12x+12x=120,解得:x=5,∴2x=10,答:侧棱长为10cm.【点评】此题考查了一元一次方程的应用,以及认识立体图形,找出题中的等量关系是解本题的关键.12.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)【分析】根据正方体的展开图中每个面都有对面,可得答案.【解答】解:如图所示:【点评】本题考查了作图,利用正方体的展开图中每个面都有对面作出第二层右边的小正方形的对面是解题关键.13.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示.(1)在图②所示的正方体骰子中,1点对面是6点;2点的对面是5点(直接填空);(2)若骰子初始位置为图②所示的状态,将骰子向右翻滚90°,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻转后,骰子朝下一面的点数是3点;连续完成2016次翻转后,骰子朝下一面的点数是4点(直接填空).【分析】(1)根据正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.(2)正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再用2016除以4,根据商和余数的情况作答.【解答】解:(1)根据正方体的表面展开图,相对的面之间一定相隔一个正方形,所以在图②所示的正方体骰子中,1点对面是6点;2点的对面是5点;故答案为:6、5;(2)正方体的表面展开图,相对的面之间一定相隔一个正方形,“2点”与“5点”是相对面,“3点”与“4点”是相对面,“1点”与“6点”是相对面,∵2016÷4=504,∴完成2016次翻转为第504组,∴骰子朝下一面的点数是4.故答案为:3、4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.综合与实践:提出问题:有两个相同的长方体纸盒,它们的长、宽、高分别是16cm、6cm、2cm,现要用这两个纸盒搭成一个大长方体,怎样搭可使长方体的表面积最小?实践操作:我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放位置的不同,它们的表面积会发生变化,经过操作,发现共有3种不同的摆放方式,如图所示:探究结论:(1)请计算图1、图2、图3中的大长方体的长、宽、高及其表面积,并填充下表:长(cm)宽(cm)高(cm)表面积(cm2)图11664368图23262536图316122496根据上表可知,表面积最小的是图1所示的长方体.(填“图1”、“图2”、“图3”).解决问题:(2)请在下面的A、B两题中任选一题作答,我选择A或B.A、现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有7种不同的方式,搭成的大长方体的表面积最小为544cm2.B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b且b=3c)种不同的方式,搭成的大长方体的表面积最小为2ab+8ac+8bc cm2.(用含a、b、c的代数式表示).【分析】(1)根据长方体的表面积的计算方法分别计算即可.(2)A:有7种方法,分别求出表面积即可;B:用分类讨论的思想思考问题即可解决问题;【解答】解:(1)图1中,长方体的高为4,表面积=2(16×6+16×4+4×6)=368.图2中,长为32,表面积=2(32×6+32×2+6×2)=536.图3中,宽为12,表面积=2(16×12+16×2+12×2)=496.∴图1的表面积最小.故答案为368,536,496,图1;。
沪教版七年级数学练习册答案
沪教版七年级数学练习册答案沪教版七年级数学练习册答案【导语】数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.以下是wo为您整理的《沪教版七年级数学练习册答案》,供大家学习参考。
【第一单元第1节认识立体图形答案】1、2、3、4、DBDB5、3;相等;6a26、n+2;2n;3n7、18;488、8;2;4【第一单元第2节练习一答案】1、2、3、4、5、DCBBE和C6、5;37、1【第一单元第2节练习二答案】1、2、3、4、5、DBDCB6、正方体;圆锥7、(1)圆锥;棱柱(2)扇形(3)长方体(4)相同;相等;相等8、250/πcm39、78.5cm2【第一单元第3节几何体的截面答案】1、2、3、4、5、BDDDC6、圆;长方形;三角形7、球体8、能;能;能9、能;不能【第一单元第4节从三个方向看几何体答案】1、2、3、CCB4、从左面看;从上面看;从正面看5、球;正方体【第二单元第1节认识有理数答案】1、2、3、4、DCBC5、整数;分数7、支出20元9、380g10、(1)下跌了;(2)周一的股票指数,为3588.4点,周五的股票指数最低,为3417点【第二单元第2节数轴及其应用答案】1、2、3、4、CABD5、5或-56、87、-5或1【第二单元第3节相反数与绝对值答案】1、2、3、CCA4、5、6、BCD7、±3;互为相反数8、6和-6;±3;2;1;09、(1)>(2)<10、a=4,b=-3【第二单元第4节练习一答案】1、2、3、4、5、BABCD7、128、(1)(2)(3)(4)-155-4-309、(1)(2)(3)(4)0-100-1/151/15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1《多彩的几何图形》
一、选择题(每小题4分,共12分)
1.下图中所示几何体从左面看到的是()
选A.
从左面能看到几何体的两个面,故选A.
2.下列四个图中,是三棱锥的表面展开图的是()
选B.
本题主要考查空间想象能力,平时多动手操作,训练是培养空间想象能力的关键,此题动手操作即可解决.
3.如图是某几何体的从三个不同方向看到的图形,则这个几何体是()
(A)圆柱 (B)正方体
(C)球 (D)圆锥
选A.
圆柱从正面、左面看到的都是长方形,从上面看到的是圆.
二、填空题(每小题4分,共12分)
4.观察下列图形并填空.
上面图形中,圆柱是_____,棱柱是_____,圆锥是_____,棱锥是_____,圆台是_____,棱台是_____,球体是_____.
④③⑥①⑦②⑨⑩⑤⑧
上面图形中,圆柱是④,棱柱是③⑥,圆锥是
①⑦,棱锥是②,圆台是⑨,棱台是⑩,球体是⑤⑧.
5.如图所示,这些物体所对应的立体图形分别是:______.
正方体,圆柱,圆锥,球,棱柱
6.一个长、宽、高分别为15 cm、10 cm、5 cm的长方体包装盒的表面积为______cm2.
550
2(15×10+15×5+10×5)=550(cm2).
三、解答题(共26分)
7.(8分)桌上放着一个圆柱和一个长方体,如图(1),请说出下列三幅图(如图(2))分别是从哪个方向看到的.
分别是从左面、上面和正面看到的.
8(9分)下图是用5个棱长为1厘米的小立方块搭成的几何体,请画出从正面、左面、上面看得到的图形.
从不同方向看到的图形如下:
9.(9分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:(1)只需添加一个符合要求的正方形;(2)添加的正方形用阴影表示)
有下列几种添法,可供参考.。