含铬废液的处理化学实验报告

合集下载

还原法处理含铬废水实验

还原法处理含铬废水实验

含铬废水的处理1. 实验目的1.1了解化学还原法处理含铬废水的原理和方法。

1.2 学习用目视比色法或分光光度法测定废水中Cr(Ⅵ)的含量。

2. 实验原理铬是高毒性元素之一,废水中的铬以六价Cr(Ⅵ)(Cr2O72-或CrO42-)和三价Cr(Ⅲ)形式存在。

其中Cr(Ⅵ)毒性最大,对皮肤有刺激,可致溃烂,;进入呼吸道会引起发炎或溃疡,饮用了含Cr(Ⅵ)废水会导致贫血、神经炎等;Cr(Ⅵ)还是一种致癌物质。

所以,国家规定废水中Cr(Ⅵ)的排放标准应小于0.5mg/L。

Cr(Ⅲ)的毒性比Cr(Ⅵ)低100倍,因此,含铬废水处理的基本原则是将Cr(Ⅵ)还原为Cr(Ⅲ),然后尽可能将Cr(Ⅲ)除去。

处理含铬废水的方法很多,本实验采用铁氧体法。

铁氧体是指具有磁性的Fe3O4中的部分铁被其他+2价或+3价金属离子(如Cr3+等)所取代而形成的以铁为主体的复合氧化物。

铁氧体法就是使含铬废水中的Cr2O72-或CrO42-在酸性条件下,与过量的FeSO4作用生成Cr3+和Fe3+,反应式为:Cr2O72- + 6 Fe2+ + 14 H+ = 2Cr3+ + 6Fe3+ + 7 H2OHCrO4- + 3 Fe2+ + 7H+ = Cr3++ 3Fe3+ + 4 H2O反应完后,加入碱溶液,使废水pH值升至8~10,控制适当温度,使Cr3+、Fe3+、Fe2+转变为沉淀:Fe3+ + 3OH- = Fe(OH)3(s)Fe2+ + 2OH- = Fe(OH)2(s)Cr3+ + 3OH- = Cr(OH)3(s)加入少量的H2O2使部分Fe2+氧化为Fe3+,当二者的氢氧化物的量的比例为1:2左右时,可生成组成类似于Fe3O4·xH2O的磁性氧化物(铁氧体),其组成可写成Fe2+·Fe3+[Fe3+O4 ]·xH2O ,其中部分Fe3+可被Cr3+取代,使Cr3+成为铁氧体的组分而沉淀出来,反应原理可表示为:Fe3+ + Fe2+ + Cr3+ + OH- →Fe2+·Fe3+[Fe(1-y)3+ ·Cr y3+ ·O4 ]·xH2O(s)沉淀物经脱水处理可得到铁氧体。

污水除铬实验报告

污水除铬实验报告

一、实验目的1. 掌握污水除铬的基本原理和实验方法。

2. 熟悉不同除铬工艺的特点和适用范围。

3. 评估实验条件下除铬效果,为实际污水处理提供参考。

二、实验原理重金属铬在污水中主要存在形式为Cr(Ⅵ)和Cr(Ⅲ)。

本实验采用硫酸亚铁法和聚丙烯酰胺(PAC)吸附法两种方法对含铬污水进行处理。

1. 硫酸亚铁法:硫酸亚铁在酸性条件下与Cr(Ⅵ)发生氧化还原反应,生成Cr(Ⅲ)和Fe(Ⅱ)。

Cr(Ⅲ)与硫酸亚铁中的Fe(Ⅱ)进一步反应,生成Fe(OH)3沉淀,从而达到除铬的目的。

2. PAC吸附法:PAC是一种高效絮凝剂,能够吸附污水中的Cr(Ⅵ)离子,形成絮体沉淀,从而实现除铬。

三、实验材料与仪器1. 实验材料:- 含铬污水- 硫酸亚铁- 聚丙烯酰胺(PAC)- 氢氧化钠- 碳酸钠- 硫酸- pH试纸或pH计- 滤纸- 烧杯- 烧瓶- 移液管- 恒温水浴锅2. 实验仪器:- 紫外可见分光光度计- 电子天平- 搅拌器- 酸度计四、实验步骤1. 硫酸亚铁法:(1)取一定量的含铬污水,用pH试纸或pH计测定pH值,调整至2-3。

(2)向溶液中加入硫酸亚铁,按1:6的比例进行反应,搅拌30分钟。

(3)用pH试纸或pH计测定pH值,调整至9。

(4)过滤,收集滤液,测定铬含量。

2. PAC吸附法:(1)取一定量的含铬污水,用pH试纸或pH计测定pH值,调整至9。

(2)向溶液中加入PAC,按5000ppm的比例进行吸附,搅拌30分钟。

(3)过滤,收集滤液,测定铬含量。

五、实验结果与分析1. 硫酸亚铁法:- 实验结果表明,在pH值为9时,铬去除率最高,可达95%以上。

2. PAC吸附法:- 实验结果表明,在pH值为9时,铬去除率最高,可达90%以上。

六、结论1. 硫酸亚铁法和PAC吸附法均可有效去除污水中的铬离子。

2. 硫酸亚铁法在pH值为9时,铬去除率最高,可达95%以上。

3. PAC吸附法在pH值为9时,铬去除率最高,可达90%以上。

含铬废液的实验室处理和铬含量的测定

含铬废液的实验室处理和铬含量的测定

设计性试验含铬废液的处理加锁尔.阿勒木江农学091班093131123含铬废液的实验室处理和铬含量的测定一:实验目的1:学习水样中铬的处理方法2:综合学习加热、移液管的使用、标准溶液的配制、酸碱滴定、固液分离、减压抽滤及用分光光度计测六价铬的方法二:实验原理1:采用铁氧体法除去废液中的铬。

铁氧体是指在含铬废液中加入过量的硫酸亚铁溶液,使六价铬被二价铁还原成三价铬。

调节溶液pH值,使Cr3+、Fe3+、Fe2+转化为氢氧化物沉淀。

然后加入过氧化氢,将部分二价铁转化成三价铁,使Cr3+、Fe3+、Fe2+成适当比例,并以Fe(OH)2、Fe(OH)3、Gr(OH)3形式沉淀共同析出,沉淀物经脱水后,可得组成类似Fe3O4·XH2O的磁性氧化物,即铁氧体。

其中部分三价铁可被三价铬代替,因此可使铬成为铁氧体的组分而沉淀出来。

反应方程式为:含铬的铁氧体是一种磁性材料,可以应用在电子工业上。

用该方法处理废液既环保又利用了废物。

处理后的废液中的六价铬可与二苯碳酰肼(DPCI)在酸性条件下作用产生红紫色配合物来检验结果。

该配合物的最大吸收波长为540nm左右,显色时间为2~3min,配合物可在1.5h内稳定,根据颜色深浅进行比色,即可测定废液中残留的六价铬的含量。

2:处理后废液中铬含量的测定,一般以二苯碳酰二肼作显色剂,在酸性介质条件下与六价铬生成红紫色配合物。

该配合物的最大吸收波长为540nm左右,显色温度以15℃为宜,过低温度显色速度慢,过高温度配合物稳定性差,显色时间为2~3min,配合物可在1.5h内稳定,根据颜色深浅进行比色,即可测定废液中六价铬的含量。

三:实验用品1:仪器电磁铁、722分光光度计、台式天平、电子天平、50ml容量瓶8个、25ml 移液管、吸量管、250ml锥形瓶、酒精灯、温度计(100℃)、漏斗、蒸发皿、比色皿2:试剂①显色剂 0.5g二苯碳酰二肼加入50ml 95﹪的乙醇溶液。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告
实验目的:
本实验旨在研究含铬废水的处理方法,找到一种高效、经济且环保的处理方案,以减少对环境和人体健康的影响。

实验原理:
含铬废水是指含有铬离子(Cr3+和Cr6+)的废水,铬离子对
环境和人体健康有一定的危害。

一般的处理方法包括沉淀法、离子交换法、电化学法等,本实验将探讨离子交换法对含铬废水进行处理的效果。

实验步骤:
1. 实验前准备:准备所需的实验器材和试剂,包括离子交换树脂、含铬废水样品、蒸馏水等。

2. 样品处理:将含铬废水样品通过滤纸进行过滤,去除悬浮物,并调整pH值至适宜的范围。

3. 离子交换树脂处理:将含铬废水与离子交换树脂充分接触,使树脂吸附或交换掉废水中的铬离子。

4. 洗脱:用适当的溶液洗脱被吸附或交换的铬离子,将洗脱液收集。

5. 检测:利用化学分析方法或仪器对洗脱液中的铬离子浓度进行测定,计算去除率。

6. 结果和分析:根据实验结果对离子交换法的处理效果进行讨论,并与其他处理方法进行对比。

实验结果:
经过离子交换处理的含铬废水样品,铬离子的浓度明显降低,
去除率达到 XX%。

实验结论:
离子交换法是一种有效的处理含铬废水的方法,在本实验条件下,能够达到较高的去除率。

然而,在实际应用中,还需要考虑成本、废水处理量、处理效率等因素,以选择最合适的处理方案。

改进方向:
在进一步研究中,可以优化实验条件,如调整pH值、改变离子交换树脂类型和用量等,以提高处理效果。

同时,还可以探索其他处理方法的结合应用,如与沉淀法或电化学法相结合,以进一步提高废水的处理效率。

含铬废水的处理

含铬废水的处理
含铬废水的处理
1.实验目的 (1)了解化学还原法处理含铬工业废水的原理 (1)了解化学还原法处理含铬工业废水的原理 和方法; 和方法; (2)学习用分光光度法或目视比色法测定和检 (2)学习用分光光度法或目视比色法测定和检 验废水中铬的含量。 验废水中铬的含量。
含铬废水的处理
2.实验原理 铬是毒性较高的元素之一。 铬是毒性较高的元素之一。 铬污染主要来源于电镀、 铬污染主要来源于电镀、制革及印染等工 业废水的排放。Cr(Ⅵ)和Cr(Ⅲ)以 业废水的排放。Cr(Ⅵ)和Cr(Ⅲ)以Cr2O72-或 的形式存在。 CrO42-的形式存在。 对含铬废水处理的方法有离子交换法、 对含铬废水处理的方法有离子交换法、 电解法、化学还原法等。 电解法、化学还原法等。 本实验采用铁氧体化学还原法。 本实验采用铁氧体化学还原法。
含铬废水的处理
试 剂 : H2S04(3mol·L-1) , 硫 — 磷 混 酸 [15 % H2S04+15 % H3P04+70 % H20( 体 积 比 )] , NaOH(6 NaOH3 FeS0 NaOH(6mol·L-1) , NaOH3 % ) , FeS04·7H20(10 10. mg·L% ) , K2Cr2O7 标 准 溶 液 (10.0mg·L-1) , (NH4 Fe(S0 05mol·L”) (NH4)2Fe(S04)2 标 准 溶 液 (0.05mol·L”) , 二苯胺磺酸钠( H202(3%),二苯胺磺酸钠(1%) ,二苯基碳酰 二肼溶液( pH试纸 含铬废水(可自配: 试纸, 二肼溶液(0.1%),pH试纸,含铬废水(可自配: 溶于1000mL自来水中 1000mL自来水中) 1.6gK2Cr2O7溶于1000mL自来水中)。
含铬废水的处理

含铬废液的实验室处理和铬含量的测定

含铬废液的实验室处理和铬含量的测定

含铬废液的实验室处理和铬含量的测定一:实验目的1:学习水样中铬的处理方法2:综合学习加热、移液管的使用、标准溶液的配制、酸碱滴定、固液别离、减压抽滤及用分光光度计测六价铬的方法二:实验原理1:采用铁氧体法除去废液中的铬。

铁氧体是指在含铬废液中参加过量的硫酸亚铁溶液,使六价铬被二价铁复原成三价铬。

调节溶液pH值,使Cr3+、Fe3+、Fe2+转化为氢氧化物沉淀。

然后参加过氧化氢,将局部二价铁转化成三价铁,使Cr3+、Fe3+、Fe2+成适当比例,并以Fe(OH)2、Fe(OH)3、Gr(OH)3形式沉淀共同析出,沉淀物经脱水后,可得组成类似Fe3O4·XH2O的磁性氧化物,即铁氧体。

其中局部三价铁可被三价铬代替,因此可使铬成为铁氧体的组分而沉淀出来。

反响方程式为:含铬的铁氧体是一种磁性材料,可以应用在电子工业上。

用该方法处理废液既环保又利用了废物。

处理后的废液中的六价铬可与二苯碳酰肼〔DPCI〕在酸性条件下作用产生红紫色配合物来检验结果。

该配合物的最大吸收波长为540nm左右,显色时间为2~3min,配合物可在1.5h内稳定,根据颜色深浅进展比色,即可测定废液中残留的六价铬的含量。

2:处理后废液中铬含量的测定,一般以二苯碳酰二肼作显色剂,在酸性介质条件下与六价铬生成红紫色配合物。

该配合物的最大吸收波长为540nm左右,显色温度以15℃为宜,过低温度显色速度慢,过高温度配合物稳定性差,显色时间为2~3min,配合物可在1.5h内稳定,根据颜色深浅进展比色,即可测定废液中六价铬的含量。

三:实验用品1:仪器电磁铁、722分光光度计、台式天平、电子天平、50ml容量瓶8个、25ml移液管、吸量管、250ml锥形瓶、酒精灯、温度计〔100℃〕、漏斗、蒸发皿、比色皿2:试剂①显色剂二苯碳酰二肼参加50ml 95﹪的乙醇溶液。

待溶解后再参加200ml 10﹪硫酸溶液,摇匀。

该物质很不稳定,见光易分解,应储与棕色瓶中,先用现配。

实验室含铬废液的处理与含量测定

实验室含铬废液的处理与含量测定

0.671
含铬溶液标准曲线
0.8 0.7 0.6
吸光度/A
y = 0.0661x + 0.0074 R² 0.9992 =
0.5 0.4
0.3 0.2 0.1 0 0 2 4 6 8 10 12
浓度(mg/L) 经过计算排放浓度为0.5mg/L,此时吸光度为0.040
废液处理相关数据
5gD301R型离子交换树脂的处理效果及树脂再生后的 处理效果如下图:
可见废液经过25ml的吸附柱处理后均可达到国家排放标准。平均每克 树脂可吸附约20mgCr。
回收重铬酸钾的纯度
吸光度A 铬浓度mg/L 体积ml 铬元素的质量mg 粗品中重铬酸钾的质量mg 粗品的总质量mg 粗品中重铬酸钾的纯度% 0.560 8.360 1000 8.36 23.649 26.406 89.56%
12
16
20
含铬废液
树脂 吸附
测体积, 浓度
氢氧化钾溶液
解吸
测体积
结晶 干燥
将洗脱液PH调制4左右, 置于蒸发皿中,于加 热套上进行蒸发结晶。
将结晶后的晶体置于 干燥箱中进行干燥, 100℃。
回收重铬酸 钾的纯度测 定
取10mg回收 的重铬酸钾, 加水溶解,定 容至1000ml 根据六价铬的 测定方法,测 定吸光度 计算纯度
是带有官能团(有交换离 子的活性基团),具有网 状结构,不溶性的高分子 化合物。通常为球形颗粒 状物。
阴 离 子 交 换 树 脂
浓度检测
吸附:2R-OH+CrO42-=R2-CrO42-+2OH解吸:R2-CrO4+2KOH=2R-OH+K2-CrO4
排放
离子交换树脂

含铬废液的处理

含铬废液的处理

含铬废液的处理铬的危害实验室内的含铬废液主要来源于铬标准溶液铬酸洗液及铬酸洗液。

实验室常用的洗液是由重铬酸钾和浓硫酸制成,使用一段时间后浓硫酸被稀释,且六价铬被还原失去氧化性,不能继续使用,形成大量有毒废液。

废水中的Cr以六价Cr(Ⅵ)(Cr2O72-)和Cr(Ⅲ)形式存在[11]。

铬具有强毒性,易被人体吸收并产生积累,损害皮肤、粘膜、消化系统,引起溃疡、肝肿大和肾炎。

其中Cr6+的毒性极强,大约是三价铬毒性的100倍。

其中最为重要的是Cr6+的致癌和突变性,致急性肾衰竭等[12]。

美国环境保护局(EPA)将六价铬确定为17种高危危险的毒性物质之一[13]。

含铬废液的处理我国规定工业排放水中铬含量应小于0.5mg/L即(0.05ppm),饮用水中铬含量应小于0.05mg/L[14]。

Cr(Ⅲ)的毒性比Cr(Ⅵ)低100倍,因此,含Cr废水处理的基本原则是将Cr (Ⅵ)还原为Cr(Ⅲ),然后,尽可能将Cr(Ⅲ)除去。

铁氧体法[15]指铁离子及其他金属离子所组成的复合氧化物,即具有磁性的Fe3O4中的铁离子Fe3+、Fe2+部分被离子半径与其接近的Cr3+离子所取代,而形成以铁为主体的化合物,可写成Crx Fe(3-x)O4。

废液的处理原理:使含铬废液中的Cr2O72-(或CrO42-)在酸性条件下,与过量的还原剂FeSO4反应生成Cr3+与Fe3+,其反应为Cr2O72-+6Fe2++14H+=2Cr3++6Fe3++7H2O然后加入适量碱液,调节溶液的PH值,并在适当的温度下,加少量的H2O2或通以空气,不断搅拌,将溶液中过量的Fe2+氧化为Fe3+,而使Fe3+、Cr3+、Fe2+成适当比例,并以Fe(OH)2、Fe(OH)3、Cr(OH)3形式沉淀共同析出,沉淀物经脱水处理后,可得组成符合铁氧体组成的复合氧化物。

硫酸亚铁-石灰法六价铬在酸性条件下,具有强氧化性,处理时先用亚硫酸氢钠或者硫酸亚铁将六价铬还原为三价,每1克六价铬约需要7克亚硫酸氢钠或者20克硫酸亚铁,还原后加入浓度为10%左右的稀氢氧化钠(也可以使用碱性废液和石灰),调节 PH 为 8~ 9,转化为低毒的氢氧化铬沉淀,放置过夜,最后分离沉淀,上层清液排放,沉淀物分离焙烧。

含铬废液的实验室处理和铬含量的测定

含铬废液的实验室处理和铬含量的测定

含铬废液的实验室处理和铬含量的测定一:实验目的1:学习水样中铬的处理方法2:综合学习加热、移液管的使用、标准溶液的配制、酸碱滴定、固液分离、减压抽滤及用分光光度计测六价铬的方法二:实验原理1:采用铁氧体法除去废液中的铬。

铁氧体是指在含铬废液中加入过量的硫酸亚铁溶液,使六价铬被二价铁还原成三价铬。

调节溶液pH值,使Cr3+、Fe3+、Fe2+转化为氢氧化物沉淀。

然后加入过氧化氢,将部分二价铁转化成三价铁,使Cr3+、Fe3+、Fe2+成适当比例,并以Fe(OH)2、Fe(OH)3、Gr(OH)3形式沉淀共同析出,沉淀物经脱水后,可得组成类似Fe3O4·XH2O的磁性氧化物,即铁氧体。

其中部分三价铁可被三价铬代替,因此可使铬成为铁氧体的组分而沉淀出来。

反应方程式为:含铬的铁氧体是一种磁性材料,可以应用在电子工业上。

用该方法处理废液既环保又利用了废物。

处理后的废液中的六价铬可与二苯碳酰肼(DPCI)在酸性条件下作用产生红紫色配合物来检验结果。

该配合物的最大吸收波长为540nm左右,显色时间为2~3min,配合物可在1.5h内稳定,根据颜色深浅进行比色,即可测定废液中残留的六价铬的含量。

2:处理后废液中铬含量的测定,一般以二苯碳酰二肼作显色剂,在酸性介质条件下与六价铬生成红紫色配合物。

该配合物的最大吸收波长为540nm左右,显色温度以15℃为宜,过低温度显色速度慢,过高温度配合物稳定性差,显色时间为2~3min,配合物可在1.5h内稳定,根据颜色深浅进行比色,即可测定废液中六价铬的含量。

三:实验用品1:仪器电磁铁、722分光光度计、台式天平、电子天平、50ml容量瓶8个、25ml移液管、吸量管、250ml锥形瓶、酒精灯、温度计(100℃)、漏斗、蒸发皿、比色皿2:试剂①显色剂0.5g二苯碳酰二肼加入50ml 95﹪的乙醇溶液。

待溶解后再加入200ml 10﹪硫酸溶液,摇匀。

该物质很不稳定,见光易分解,应储与棕色瓶中,先用现配。

含铬废液处理实验报告

含铬废液处理实验报告

上海应用技术大学实验报告课程名称无机化学综合实验(水环境指标综合分析)实验项目含铬废液的处理班级(课程序号)组别同组者实验日期指导教师成绩一、实验目的1. 学习水样中铬的处理方法。

2.掌握分光光度计测六价铬含量的方法。

二、实验原理在铬矿冶炼、电镀、金属加工、皮革鞣制、油漆等工业废水中都含有铬。

在铬的化合物中,Cr(Ⅵ)的毒性最大,故农田灌溉用水标准规定Cr(Ⅵ)含量不得超过0.1 mg•L-1,而饮用水规定Cr(Ⅵ)含量不得高于0.05 mg•L-1 (强制标准)。

目前含铬废水的处理大体上分为两类:一类是化学法,即采用还原剂把Cr(Ⅵ)还原为Cr(Ⅲ),然后以Cr(OH)3的形式沉淀除去;另一类是离子交换法。

水中Cr(Ⅵ)的分析可采用分光光度法,利用Cr(Ⅵ)与二苯碳酰二肼作用生成紫色配合物的特性,确定溶液中Cr(Ⅵ)的含量。

三、实验内容1.设计处理含Cr(Ⅵ)废液的价廉、简便的处理方案(以框图表示处理工艺过程)。

2. 绘制标准Cr(VI)的含量(μg)与吸光度的曲线图(若用分光光度法)。

3.给出处理后的废液中Cr(VI)的浓度(mg·L-1)。

四、思考题1. Cr(VI)的廉价还原剂有哪些?何者最佳?答焦亚硫酸钠亚硫酸氢钠亚硫酸钠连二亚硫酸钠硫代硫酸钠考虑经济效益和环境效益焦亚硫酸最佳。

2. 为使Cr(OH)3沉淀完全,用碱调pH在什么范围内?答通过计算可知,当三价铬沉淀完全,PH应该大于8.43. 如果要分析处理后的废水中铬的含量,残留的Cr(Ⅲ)也应转化为Cr(VI)才能分析。

在除去Cr(OH)3沉淀的滤液中,用哪种氧化剂把Cr(Ⅲ)氧化为Cr(VI)?写出反应的离子式。

如果选用H2O2作氧化剂,在分析液相中残留Cr(VI)时,H2O2是否应当除去?为什么?答不需要除去,对分析结果无影响。

五、心得体会在实验中,要好好注意每一步操作。

仔细观察实验现象。

学会通过已有的数据来推断实验所需要的结果。

含铬废水的处理实验报告

含铬废水的处理实验报告

一、实验目的1. 了解含铬废水的成分和危害。

2. 掌握化学还原沉淀法处理含铬废水的原理和步骤。

3. 分析实验过程中各因素对铬离子去除率的影响。

4. 评估化学还原沉淀法在含铬废水处理中的实际应用效果。

二、实验原理含铬废水中的铬主要以Cr(VI)和Cr(III)的形式存在,其中Cr(VI)的毒性较大。

化学还原沉淀法是通过加入还原剂将Cr(VI)还原为Cr(III),然后与钙、镁等金属离子形成沉淀,从而实现铬的去除。

本实验采用硫酸亚铁作为还原剂,氢氧化钠作为沉淀剂。

三、实验材料与仪器1. 材料:含铬废水(Cr(VI)浓度约为50 mg/L)、硫酸亚铁、氢氧化钠、丙酮、无水亚硫酸钠等。

2. 仪器:烧杯、玻璃棒、pH计、分光光度计、电子天平等。

四、实验步骤1. 样品处理:取100 ml含铬废水于250 ml烧杯中,在不断搅拌下滴加3mol·L-1H2SO4调整至pH约等于1。

2. 还原反应:向上述溶液中加入10%的FeSO4溶液,直至溶液颜色由浅黄变为深绿色。

3. 沉淀反应:向上述溶液中加入适量的氢氧化钠溶液,调节pH至7-8,观察沉淀的形成。

4. 过滤与洗涤:将形成的沉淀用滤纸过滤,并用蒸馏水洗涤3次。

5. 分析测定:取少量滤液,用分光光度计测定铬离子的浓度,计算去除率。

五、实验结果与分析1. 还原反应:实验结果显示,在酸性条件下,FeSO4可以将Cr(VI)还原为Cr (III),反应过程如下:2Cr(VI)+ FeSO4 + 3H2O → 2Cr(III) + Fe(OH)3 + H2SO42. 沉淀反应:在碱性条件下,Cr(III)与钙、镁等金属离子形成沉淀,反应过程如下:Cr(III) + 3OH- → Cr(OH)3↓3. 去除率:实验结果显示,化学还原沉淀法对含铬废水的铬离子去除率较高,去除率可达90%以上。

六、讨论与结论1. 本实验采用化学还原沉淀法处理含铬废水,结果表明该方法具有操作简便、去除率高等优点,适用于含铬废水的处理。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告含铬废水是制造业、冶金工业等行业经常产生的重要废水种类,铬是一种有毒的重金属,由于一些原因,含铬废水被排放到自然界中,对环境造成了严重污染。

因此,对含铬废水的处理和净化,保护环境,对保障人民健康和可持续发展具有重要意义。

本实验通过对含铬废水进行处理,采集数据,探究废水处理的效果。

实验原理:含铬废水的处理基于还原或氧化原理,将六价铬转化为三价铬或铬离子,使其变得容易沉淀或被吸附,然后通过沉淀或吸附作用去除含有的铬离子。

本实验采用的是还原处理法。

实验步骤:1.制备含铬废水采用一定比例的铬酸钾(K2CrO4)溶解在蒸馏水中,制备一定浓度的含铬废水。

2.添加还原剂将含铬废水分别加入还原剂(还原糖)、氢氧化钠和硫酸等试剂中。

加入过量的还原糖,利用它的还原性,将六价铬还原为三价铬,使其形成颜色不同的沉淀。

加入氢氧化钠和硫酸,通过碱沉淀和酸沉淀分别去除含铬废水中的铬离子。

3.测量去除率通过滴定法,测量含铬废水经过一定时间处理后的铬浓度,计算去除率。

实验结果与分析:本次实验采用还原糖作为还原剂,在适当温度下将六价铬转化为三价铬,通过体积比为1:10的氢氧化钠沉淀法和硫酸沉淀法分别处理含铬废水。

通过实验结果可得出,在经过一定时间的处理后,氢氧化钠沉淀法和硫酸沉淀法去除含铬废水的效果相似,但硫酸沉淀法所得的沉淀颜色较深,处理效率略高于氢氧化钠沉淀法。

由于含铬废水中铬含量较高,硫酸沉淀法还需要进一步调整沉淀pH值,以达到更好的去除效果。

通过滴定法测定含铬废水经过处理后的铬离子浓度,可以得知处理效果,实验结果显示经过一定时间处理后,铬离子的去除率达到了95%以上。

结论:。

实验室含铬废液的处理

实验室含铬废液的处理

C ( H) ( )+ O rO , S H一( 量 )=CO a )+ 适 r ;(q
22 1 H 0()
故要 使 C¨完 全转 化为 C ( H) 沉淀 , 须控 r rO , 必 制 溶液 的 p H值 。
2 材料 与方 法
支持和理论依据 , 产物焙烧得到有实用价值 的铁 将 磁性金属氧化物 , 即铁 氧体 ( rt ) f re 。含铬铁 氧 e is 体 是一 种磁性 材料 ,可 以用于 电子 工业 。
a mas n h s h r e o h s wa twa e a s s s v r n io me t lp l in. I i t d ni l ,a d t e dic a g ft i se tr c u e e e e e vr n n a o l o ut n t s su y,t e h h wa twae o ti i g Cr wa r ae y he c e c l r d c in,a d t e pt m e cin o i o s se t rc n an n s te td b t h mia e u t o n o i h mu r a to c ndt n i
[ e e: CX O , F F3 ( 圳 r ] 即铁氧体。其主要反应为:
C2 ̄(q + F (q 1H a) 2 r r 一a) 6e a)+ 4 (q = C3 0
(q 6 e (q 7 2 1 a )+ F ¨ a )+ H O()
c¨(q + 0 ( r a ) 3 H一 适量) C( H 3S J = rO )() , C ( H) rO 具有两性 , 在过量 O 存在时 , H一 会生
w r civd h rp t n o e , e ad C3 w sajs d b ea dt n o e eeahee .T e po oi fF F n r a d t y t d io fF o ue h i

含铬废液的处理

含铬废液的处理

含铬废液的处理Document number:NOCG-YUNOO-BUYTT-UU986-1986UT注意事项1).要戴防护眼镜、橡皮手套,在通风橱内进行操作。

2).把Cr (Ⅵ)还原成Cr (Ⅲ)后,也可以将其与其它的重金属废液一起处理。

3).铬酸混合液系强酸性物质,故要把它稀释到约1%的浓度之后才进行还原。

并且,待全部溶液被还原变成绿色时,查明确实不含六价铬后,才按操作步骤中从第四点开始进行处理。

处理方法[还原、中和法(亚硫酸氢钠法)][原理]Cr (Ⅵ)不管在酸性还是碱性条件下,总以稳定的铬酸根离子状态存在。

因此,可按照下式将Cr (Ⅵ)还原成Cr (Ⅲ)后进行中和,使之生成难溶性的Cr (OH )3沉淀而除去。

4H 2CrO 4+6NaHSO 3+3H 2SO 4→2Cr 2(SO 4)3+3Na 2SO 4+10H 2O (1)Cr 2(SO 4)3+6NaOH→2Cr(OH )3↓+3Na 2SO 4 (2)(1)式还原反应,若pH 值在3以下,反应在短时间内即进行结束。

如果使(2)式中和反应pH 在~范围内进行,则Cr (Ⅲ)即以Cr(OH)3形式沉淀析出.[操作步骤]1).于废液中加入H 2SO 4,充分搅拌,调整溶液pH 在3以下(采用pH 试纸或pH 计测定。

对铬酸混合液之类废液,已是酸性物质,不必调整pH )。

2).分次少量加入NaHSO 3结晶,至溶液由黄色变成绿色为止,要一面搅拌一面加入(如果使用氧化——还原光电计测定,则很方便)。

3).除Cr 以外还含有其它金属时,确证Cr (Ⅵ)转化后,作含重金属的废液处理。

4).废液只含Cr重金属时,加入浓度为5%的NaOH溶液,调节pH至~(注意,pH过高沉淀会再溶解)。

5).放置一夜,将沉淀滤出并妥善保存(如果滤液为黄色时,要再次进行还原)。

6).对滤液进行全铬检测,确证滤液不含铬后才可排放。

[Cr(Ⅵ)的分析]定性分析采用二苯基碳酰二肼试纸或检测箱进行检测;定量分析则用二苯基碳酰二肼吸光光度法[详见“日本工业标准规格”(以下简称JIS)K0102[全Cr分析]用高锰酸钾氧化Cr(Ⅲ)使之变成Cr(Ⅵ),然后进行分析。

含铬废水的处理实验报告

含铬废水的处理实验报告

含铬废水的处理实验报告一、引言含铬废水是一种常见的工业废水,其中的铬离子对环境和生态系统有严重的污染和破坏作用。

因此,研究和开发高效的废水处理方法对保护环境和人类健康具有重要意义。

本实验旨在探究含铬废水的处理方法,以寻找一种有效的除铬技术。

二、实验方法1. 实验材料本实验使用含铬废水样品、氢氧化钠溶液、铁(III)氯化物溶液和活性炭等材料。

2. 实验步骤(1)制备试样:将含铬废水样品取出一定量置于实验容器中。

(2)调节pH值:向含铬废水中滴加适量的氢氧化钠溶液,调节废水的pH值至碱性条件。

(3)添加铁(III)氯化物溶液:逐渐滴加铁(III)氯化物溶液至废水中,与废水中的铬离子发生反应生成沉淀。

(4)搅拌反应:使用搅拌器对废水进行搅拌,以促进反应的进行。

(5)过滤:将反应后的废水通过滤纸过滤,使生成的沉淀分离出来。

(6)吸附处理:将过滤后的废水通过活性炭吸附处理,去除废水中的余留铬离子。

(7)水质分析:对处理后的废水进行水质分析,包括测定铬离子浓度、pH值等指标。

三、实验结果经过处理后,含铬废水中的铬离子得到了有效去除。

实验结果显示,经过调节pH值和添加铁(III)氯化物溶液后,废水中的铬离子与铁离子发生反应生成了一种沉淀物。

通过过滤和吸附处理,废水中的沉淀物和余留的铬离子得到了有效分离和去除。

水质分析结果显示,处理后的废水中铬离子浓度明显降低,符合环境排放标准。

四、讨论与分析本实验采用了调节pH值和添加铁(III)氯化物的方法处理含铬废水。

调节pH值至碱性条件有助于铬离子与铁离子发生反应生成沉淀物,使铬离子得到有效去除。

此外,活性炭的吸附作用也起到了重要的作用,去除了废水中的余留铬离子。

在实际工业应用中,还可以进一步探究其他方法来处理含铬废水。

例如,利用电化学方法可以将铬离子还原为金属铬,从而实现废水中铬离子的去除和回收。

此外,光催化、生物降解等方法也可以被应用于含铬废水的处理过程中,以提高处理效率和降低成本。

含铬废水处理实验报告

含铬废水处理实验报告

实验含铬废水的处理及其相关参数的测定一、实验目的(1)了解工业废水处理流程,掌握各单元操作的实验原理。

掌握由这些单元操作组成的处理流程。

(2)了解除铬过程中各因素之间的关系。

(3)掌握相关的水质参数的测定方法。

二、实验原理1.化学还原法——铁氧体法铁氧体法处理含铬废水的基本原理就是使废水中的Cr2O72-或CrO42-在酸性条件下与过量还原剂FeSO4作用,生成Cr3+和Fe3+,其反应式为:Cr2O72-+6Fe2++14H+=2Cr3++6Fe3++7H2OHCrO4-+3Fe2++7H+=Cr3++3Fe3++4H2O再通过加入适量碱液,调节溶液pH值,并适当控制温度,加入少量H2O2后,可将溶液中过量的Fe3+部分氧化为Fe2+,得到比例适度的Cr3+,Fe2+和Fe3+沉淀物:Fe3++3OH-=Fe(OH)3↓Fe2++2OH-=Fe(OH)2↓Cr3++3OH-=Cr(OH)3↓由于当Fe(OH)2和Fe(OH)3沉淀量比例1:2左右时,可生成Fe3O4·xH2O磁性氧化物(铁氧体),其组成可写成FeFe2O4·xH2O,其中部分Fe3+可被Cr3+取代,使Cr3+成为铁氧体的组成部分而沉淀下来,沉淀物经脱水等处理后,既得组成符合铁氧体组成的复合物。

因此,铁氧体法处理含铬废水效果好,投资少,简单易行,沉渣量少且稳定。

而且含铬铁氧体是一种磁性材料,可用于电子工业,这样既可以保护环境又进行了废物利用。

实验室检验废水处理的结果,常采用比色法分析水中的铬含量。

其原理为:Cr(Ⅵ)在酸性介质中与二苯基碳酰二肼反应生成紫红色配合物,其水溶液颜色对光的吸收程度与Cr(Ⅵ)的含量成正比。

只要把样品溶液颜色与标准系列的颜色采用目视比较或用分光光度计测出此溶液的吸光度就能确定样品中Cr(Ⅵ)的含量。

为防止溶液中Fe2+、Fe3+及Hg22+、Hg2+等打扰,可适当加入适量的H3PO4消除。

设计实验:含铬废液的处理

设计实验:含铬废液的处理

实验室含铬废液的处理一、实验目的(1)了解含铬废液的类型及处理原理和方法。

(2)掌握还原一沉淀法处理含铬废液及光度法测定水中六价铬的方法。

二、实验原理化学实验室中含铬废液的主要来源是铬及其化合物的性质实验、重铬酸钾测定亚铁盐的含量等实验,主要含有Cr3十、Fe3+及少量Cr2睇一、二苯胺磺酸钠指示剂等。

研究表明,六价铬的毒性比三价铬的毒性高100倍,对土壤、农作物、水生生物均有危害,含铬废液在土壤中积累会导致土壤板结、农作物减产。

六价铬还可通过呼吸道、消化道、皮肤与黏膜侵入人体导致胃肠疾病、贫血等。

国家对各类水中铬的排放标准有明确规定:生活饮用水中Cr(7I)含量不得超过0.05 nag·L~,地表水中Cr(V1)含量不得超过0.1 mg·L~,工业污水中Cr(V1)和总铬的最高允许排放量分别为0.5 mg·r1、1.5 mg·L-1,超过该值则必须处理,而且不允许以稀释方法代替化学与物理处理。

还原一沉淀法是目前应用较为广泛的处理高浓度含铬废液的方法。

基本原理是:在酸性条件下向含铬废液中加入适量还原剂,将六价铬还原成Cr3+,再加入生石灰或NaOH,使Cr3+生成Cr(OH)。

沉淀,达到降低溶液中铬离子浓度的目的。

可作为还原剂的物质有s02、FeS04、Na2 S03、NaHSO。

、Fe等。

还原一沉淀法处理含铬废液投资小、运行费用低、处理效果好,得到的Fe(OH)s和Cr(OH)s可经脱水制成铸石,可用于生产微晶玻璃,Cr(OH)。

还可用来回收金属铬或配成镀件用的抛光膏,同时还原一沉淀法具有操作管理简便的优点,因而得到广泛应用。

除还原一沉淀法以外,处理含铬废液的方法还有钡盐沉淀法、铁氧体法、阴离子交换树脂法、生物治理法、黄原酸酯法、光催化法等方法。

本实验采用还原一沉淀法。

反应式如下:cr2 o;一+3HSO;-+5H+——2cr3++3soi~+4H2 oCr3++30H一一Cr(OH)3士Cr3++30H一——Cr(OH)3士Fe3++30H一——Fe(0H)3‘沉淀分离后,回收Cr(OH)。

实验23-含铬废液的处理

实验23-含铬废液的处理

实验二十三含铬废液的处理1.了解化学还原法处理含铬工业废水的原理和方法;2.学习用分光光度法测定和检验废水中铬的含量。

铬(Ⅵ)化合物对人体的毒害很大,能引起皮肤溃疡、贫血、肾炎及神经炎。

所以含铬的工业废水必须经过处理达到排放标准才准排放。

铬污染主要来源于电镀、制革及印染等工业废水的排放。

Cr(Ⅵ)和Cr(Ⅲ)以Cr2O72-或CrO42-的形式存在。

Cr(Ⅲ)的毒性远比Cr(Ⅵ)小,所以可用硫酸亚铁石灰法来处理含铬废液,使Cr(Ⅵ)转化成Cr(OH)3 难溶物除去。

Cr(Ⅵ)与二苯碳酰二肼作用生成紫红色配合物,可进行比色测定,确定溶液中Cr(Ⅵ)的含量。

Hg(Ⅰ,Ⅱ)也与配合剂生成紫红色化合物,但在实验的酸度下不灵敏。

Fe(Ⅲ)浓度超过1mg/dm3时,能与试剂生成黄色溶液,后者可用H3PO4消除。

Cr2O72-+6Fe2++15H+= Cr3++6Fe3++7H2OHCrO4-+3Fe2++5H+= Cr3++3Fe3++4H2O仪器试剂721 型分光光度计,抽滤装置,移液管(10ml,20ml) 吸量管(10 ml,5 ml),比色管(25 ml);含铬(Ⅵ)废液,H2SO4(1:1),FeSO4·7H2O(固).NaOH(固).H3PO4(1:1),二苯碳酰二肼溶液,H2O2。

实验内容1.氢氧化物沉淀在含铬(Ⅵ)废液中逐滴加入H2SO4使呈酸性,然后加入FeSO4·7H2O 固体充分搅拌,使溶液中Cr(Ⅵ)转变成Cr(Ⅲ)。

加入CaO或NaOH固体,将溶液调至pH 近似为9,此时Cr(OH)3和Fe(OH)3等沉淀,可过滤除去。

2.残留铬的处理将除去Cr(OH)3的滤液,在碱性条件下加入H2O2,使溶液中残留的Cr(Ⅲ)转变成Cr(Ⅵ)。

然后除去过量的H2O2。

3.标准曲线的绘制用移液管量取10cm3 Cr(Ⅵ)贮备液(此液含Cr(Ⅵ)0.100mg/ml)放入1000ml 容量瓶中,用蒸馏水稀释至刻度,摇匀备用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北方民族大学首届化学实验技能大赛
团体赛
综合设计实验报告
题目化学实验室含铬废液的处理及处理后废液中铬含量的测定
学院生科学院姓名邓洁学号:专业:生物工程
学院化工学院姓名:赵长军学号:专业:化工工艺
学院化工学院姓名: 黎洪双学号:专业:化工工艺
大赛时间教师签字
北方民族大学
化学实验室含铬废液的处理及处理后废液中铬含量的测定
摘要:采用D301R型阴离子交换树脂对化学实验室含铬废液进行处理使其达到国家排放标准。

该方法吸附率可达99.972%,经处理后含铬废液中铬的浓度为小于0.5mg/L,达标。

关键词:离子交换树脂,铬废液,二苯碳酰二肼光度法
1、前言
重铬酸钾具有较强的氧化性,可用其除去还原性物质,又可与浓硫酸配成铬酸洗液,故实验室重铬酸钾的使用频率很高。

但是高浓度的含铬废液具有很强的毒性,含铬废液如不进行处理直接排放会对生态和环境造成严重的污染。

六价铬对人体皮肤有刺激性,能使皮肤溃伤,引起鼻腔穿孔;其化合物具有致急性肾衰竭、致癌和突变性,可在体内积蓄,是五毒金属之一。

2、实验原理
离子交换树脂是一类具有离子交换作用的活性吸附官能团,具有网状结构,不溶性的高分子化合物。

通常为球状颗粒物。

D301R型离子交换树脂为大孔径弱碱性苯乙烯系阴离子交换树脂,在水中可游离出-OH,而成弱碱性。

树脂所带的正电荷对溶液中带负电荷的阴离子(重铬酸根离子)进行选择性吸附,从而达到分离重铬酸根离子的目的。

二苯碳酰二肼与六价铬反应可形成复合物,呈现出紫红色,可于540nm 处进行分光
光度检测,从而检测出溶液中铬的含量。

试剂与CrO42-的反应机理至今还不完全清楚,有人认为是二苯碳酰二肼由CrO42-氧化为二苯缩氨基脲,后者再与Cr3+形成络合物。

工艺流程:含铬废液
吸附 解吸 蒸发结晶 干燥 重铬酸钾
3、仪器和试剂
3.1实验室含铬废液
3.2 722型分光光度计,分析天平,容量瓶(50ml ,100ml 等),吸附装置(带铁圈
的铁架台,输液管,塑料瓶,烧杯,碱式滴定管),D301R 型阴离子交换树脂,蒸发皿,电热套,量筒等。

3.3 铬标准储备液(1mg/ml )
称取2. 829克基准级的重铬酸钾于50m l 小烧杯中, 用去离子水溶解,移入1000m l 容
量瓶中, 稀释至刻度, 混匀。

3.4 铬标准工作液(100mg/L )
吸10. 00m l 铬标准储备液用去离子水稀释至100m l 容量瓶中。

3.5 0.2%显色剂
称取二苯碳酰二肼0. 2克, 溶于100m l 95%的乙醇中。

使用时与1: 9的硫酸40m l
混匀, 贮存于棕色瓶中低温保存, 变红色就不能使用, 最好当日配制。

3.6 浓硫酸,无水乙醇,去离子水,氢氧化钾溶液(2mol/L )等。

4、实验步骤
4.1 实验准备
4.1.1 配制实验过程所用的试剂。

4.1.2 离子交换树脂的预处理。

将树脂浸泡于去离子水中24h 。

4.2 标准曲线的测定
按表一配制相应梯度的铬溶液。

用移液管分别移取0(对照组),2,4,6,8,10ml 于
50ml 容量瓶中,加4滴浓硫酸(水:浓硫酸=10:1),加水至刻度。

分别取5ml 稀释液于小烧杯中,加20ml 去离子水及3ml 显色剂,5min 后测定吸光度,选择波长540nm 。

表一 吸光度与六价铬含量值
4.3 铬废液的吸附
4.3.2 用二碳酰二肼吸光法测定废液含铬量,记录吸光度。

4.3.3 将待处理的废液置于上面的废液装置中,控制一定的流速进行吸附。

4.3.4 用量筒测处理后的废液体积,并测定其吸光度,计算出处理后废液中的含铬量。

4.4吸附柱的解吸
4.4.1 将50ml氢氧化钾溶液(2.0mol/L)置于解吸剂承载装置中,设置好流速进行解吸。

4.4.2 吸附完毕,量取吸附剂的体积用量。

4.5洗脱液的处理
℃)。

称量一定质量的粗品m
1
,定容至1000ml。

测定溶液中Cr的含量。

计算出粗品中重
铬酸钾的质量m
2.则粗品中重铬酸钾的纯度=m
2
/m
1。

4.6树脂再生及性能测定
4.6.1 用浓盐酸将树脂洗至酸性,PH=5即可。

4.6.2 用再生后的树脂重新处理含铬废液。

测定处理后铬的含量。

5、数据处理
5.1 根据表一绘制铬溶液标准曲线
图一铬溶液标准曲线
曲线方程为 y=0.0661x+0.0074,R 2=0.9992。

5.2 废液处理 5gD301R 型离子交换树脂对树脂的吸附效果及再生后树脂的吸附性能相关数据如下
表:
表二
可见废液经过25ml 的吸附柱处理后均可达到国家排放标准。

平均每克树脂可吸附约
20mgCr 。

5.3回收的粗品中重铬酸钾的纯度
表三
吸光度A 0.560
吸光度A 稀释倍数 浓度
mg/L 体积 ml 吸附量 mg 吸附率 %
处理前
0.555 100 828.44 —— —— —— 处理后 0.028 ——
0.3116 100 82.813 99.962 树脂再生后处理效果 0.017
—— 0.1452 130 107.678 99.972 吸光度A
浓度mg/L
6、注意事项
6.1废液中的含铬量在0. 00- 20mg /L范围内符合朗伯--比耳定律, 在分光光度计上于540nm有最大吸收峰, 所以, 样品必须经过逐级稀释至允许范围内再进行测定。

且废液本身有颜色, 影响测定结果。

6.2 显色剂应保存于灰色试剂瓶中,若试剂呈现红色则禁止使用,应当重新配置。

所以显色剂配置量应根据使用量配制,避免造成浪费,建议当日配制。

6.3 吸附及洗脱速率对吸附效果有很大影响。

流速不可过快。

6.4 洗脱液的浓度在1.0-2.0之间,过高的话,不仅造成试剂的浪费,而且影响后续树脂再生的处理。

6.5实验过程产生的废液禁止直接排放,可作为实验所用废液,处理达标后再进行排放。

7、实验讨论
分析以上实验结果,可知,离子交换树脂法具有吸附率高,重复性好,操作简单等优点,具有很大的发展潜力。

但是由于时间的紧张及能力的限制,本实验还存在很多不足。

例如:树脂的再生耗费药品;洗脱液达不到有效处理等。

因此,还需要继续对树脂的性能改造及洗脱方法等进行研究,以期提高树脂对Cr的专项吸附能力,方便树脂的洗脱,提高回收重铬酸钾的纯度等。

【参考文献】
[1]张俊然,刘晓莉,成文玉.实验室含铬废液处理的实验研究[J].河北工业大学成人教育
学院学报,2007,22(2):40-42.
[2] 严伟,胡伟,张志勇,等.二苯碳酰二肼分光光度法测定水中六价铬的不确定度评定[J].
青海环境,2006,16(2):69-72.
[3] 季庆玲.离子交换与富集法处理实验室含铬废液[J].化工之友,2007,(5):59-61.
.。

相关文档
最新文档