甘肃省秦安县第二中学2018届高三数学一轮复习专训2:四种常见的几何关系的探究(附答案)
甘肃省秦安县第二中学2018届高三数学一轮复习专训:全章热门考点整合应用含答案
全章热门考点整合应用名师点金:本章主要学习了全等三角形的性质与判定及角平分线的性质与判定,对于三角形全等主要考查利用全等三角形证明线段或角的等量关系,以及判断位置关系等,对于角平分线主要考查利用角平分线的性质求距离、证线段相等.两个概念概念1:全等形1.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,Q,M,P的四个图形,填空:A与________对应;B与________对应;C与________对应;D与________对应.(第1题)概念2:全等三角形2.如图,已知△ABE与△ACD全等,∠1=∠2,∠B=∠C,指出全等三角形中的对应边和对应角.(第2题)3.如图所示,已知△ABD≌△ACD,且B,D,C在同一条直线上,那么AD与BC有怎样的位置关系?为什么?(第3题)两个性质错误!全等三角形的性质4.【2016·天水】(1)如图①,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图②,已知△ABC,以AB,AC为边分别向△ABC外作正方形ABFD和正方形ACGE,连接BE,CD,猜想BE与CD有什么数量关系?并说明理由.(第4题)错误!角平分线的性质5.如图,在正方形ABCD中,点E是BC的中点,点F在CD 上,∠EAF=∠BAE.求证:AF=BC+FC.(第5题)两个判定6.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35 cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).(第6题)错误!角平分线的判定7.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)猜想写出AB+AC与AE之间的数量关系并给予证明.(第7题)四个技巧错误!构造全等三角形法8.如图∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE。
甘肃省秦安县第二中学2018届高三数学一轮复习专训2:四种常见的几何关系的探究
专训2 四种常见的几何关系的探究位置关系1.如图,已知BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:AM⊥AN.(第1题)相等关系2.【2015·珠海】已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图①,连接BD,AF,则BD________AF.(填“>”“<”或“=”)(2)如图②,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF.求证:BH=GF.(第2题)和差关系3.如图,∠BCA=α,CA=CB,C,E,F分别是直线CD上的三点,且∠BEC=∠CFA=α,请提出对EF,BE,AF三条线段之间数量关系的合理猜想,并证明.(第3题)不等关系4.【2016·贵阳】(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D 逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是________________________________________________________________________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC 于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD, ∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.(第4题)答案1.证明:如图,∵BE⊥AC,CF⊥AB,∴∠1+∠BAC=90°,∠2+∠B AC=90°.∴∠1=∠2.又∵BM=CA,AB=NC,∴△ABM≌△NCA.∴∠3=∠N.∵∠N+∠4=90°,∴∠3+∠4=90°,即∠MAN=90°.∴AM⊥AN.(第1题)2.(1)=(2)证明:将△DEF沿FE方向平移,使点E与点C重合,设ED平移后与MN相交于R,如图,(第2题)∵MN∥BC,RC∥EH,∴∠GRC=∠RHE=∠DEF,∠RGC=∠GCB,易得∠GRC=∠RG C,∴△CGR是等腰三角形.∴CG=CR.又∵MN∥BF,CR∥EH,∴四边形RCEH为平行四边形,∴CR=EH.∴CG=HE.由平移的性质得BC=EF,∴BC+CE=CE+EF,即BE=CF.易得∠HEB=∠GCF,∴△BEH≌△FCG(SAS),∴BH=FG.3.解:猜想:EF=BE+AF.证明:∵∠BCE+∠CBE+∠BEC=180°,∠BCE+∠ACF+∠BCA=180°,∠BCA=α=∠BEC,∴∠CBE=∠ACF.又∵∠BEC=∠CFA=α,CB=AC,∴△BEC≌△CFA(AAS).∴BE=CF,EC=FA.∴EF=CF+EC=BE+AF.4.(1)2<AD<8(2)证明:如图,延长FD至点G,使DG=DF,连接BG,EG.∵点D是BC的中点,∴DB=DC.∵∠BDG=∠CDF,DG=DF,∴△BDG≌△CDF(SAS).∴BG=CF.∵ED⊥FD,∴∠EDF=∠EDG=90°,又∵ED=ED,FD=GD,∴△EDF≌△EDG,∴EF=EG.∵在△BEG中,BE+BG>EG,∴BE+CF>EF.(3)解:BE+DF=EF.证明如下:如图,延长AB至点G,使BG=DF,连接CG.∵∠ABC+∠D=180°,∠ABC+∠CBG=180°,∴∠CBG=∠D.∵CB=CD,∴△CBG≌△CDF(SAS).∴CG=CF,∠BCG=∠DCF.∵∠BCD=140°,∠ECF=70°,∴∠DCF+∠BCE=70°.∴∠BCE+∠BCG=70°.∴∠ECG=∠ECF=70°.∵CE=CE,CG=CF,∴△ECG≌△ECF(SAS).∴EF=EG.∵BE+BG=EG,∴BE+DF=EF.。
2018届甘肃省天水市第二中学高三下学期开学前考试数学(理)试题 PDF版
(1)分别计算参加这次知识竞赛的两个学段学生的平均成绩; (2)规定竞赛成绩达到[75,80)为优秀,经统计初中年级有 3 名男同学,2 名女同学达到优秀,现从上述 5 人中任选 两人参加复试,求选中的 2 人恰好都为女生的概率; (3)完成下列 2×2 的列联表,并回答是否有 99%的把握认为“两个学段的学生对四大名著的了解有差异”?
1 3
B. 1, 3
1
C. 1,
1 3
1 3
D. 1, 3 3
4
1
二、填空题:(本大题共 4 小题,每小题 5 分,共 20 分) 13. ( x
1 6 ) 的展开式中的常数项为 2x
秦安一中 2017—2018 学年度高三四检数学(理)
(应届:高三甲 7,甲 10,A7 A8 A10
命题:冯和平
1. 已知集合 A = A. C.
7.下列函数中,是奇函数且在 (0,1) 内是减函数的是( ① f ( x) x A.①③
3
)
理科补习班 )
审题:邵建平
)
② f ( x) ( ) B.①④
4 6.5 A. y x
2
ˆ 0.83 x a ,则其中 a 的值是( 得到 y 对 x 的回归方程 y
A.2.84 5.过双曲线 B.2.95 C.3.95 D.4.35
C. y 3 x
2
D. y 4 x
2
11.在三棱锥 S ABC 中,已知 SA SC A. 23 B. 24
A. 3
2 2
C.
4 2 3
D. 4 2
B. 10
2 2
甘肃省天水市秦安县第二中学高三数学下学期第二次模拟考试试题 理
甘肃省天水市秦安县第二中学2015届高三数学下学期第二次模拟考试试题 理一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号) 1.已知集合{}1,0,1M =-,{}2,N x x a a M ==∈,则集合MN =A.{}0B.{}0,2- C.{}2,0,2- D. {}0,22. 复数z 为纯虚数,若(3i)i z a -⋅=+ (i 为虚数单位),则实数a 的值为A .13-B .3C .3-D .133. 设双曲线)0,0(12222>>=-b a b y ax的渐近线方程为y x=±,则该双曲线的离心率为A .223 B .2 C .332 D .24. 如图所示的程序框图,若输入的x 值为0,则输出的y 值为A .32B .0C .1D5. 已知条件p :|1|2x +≤,条件q :x a ≤,且p 是q 不必要条件,则a 的取值范围是 A. 1≥a B .1≤aC .1-≥aD .3-≤a已知实数,x y 满足⎪⎩⎪⎨⎧≥++≥+-≤-010102y x y x y x ,则y x z +=2的最大值为A .2-B .1-C .0D .47.双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y2=25截得的弦长为6,则双曲线的离心率为( )(第4题图)A . 2B .C . 4D .8.已知函数f (x )=ex+x ,g (x )=lnx+x ,h (x )=x ﹣的零点依次为a ,b ,c ,则( )A . c <b <aB . a <b <cC . c <a <bD . b <a <c9.已知实数x ,y 满足约束条件,若y≥kx ﹣3恒成立,则实数k 的数值范围是( )A .B .C .(﹣∞,0]∪∪12.执行如图所示的一个程序框图,若f (x )在上的值域为,则实数a 的取值范围是( )A .(0,1]B .C .D .二、填空题(4×5=20分, 把答案填在答题纸的相应位置上)13. 6,2)(=-⋅,则向量a 与b 的夹角是___________.14. 若函数)20)(sin()(πϕωϕω<>+=且x x f 在区间⎥⎦⎤⎢⎣⎡ππ326,上是单调减函数,且函数值从1减小到1-,则=)4(πf ___________. 抛物线x 4y 2=的焦点为F ,点P 为抛物线上的动点,若)01(,-A ,则PA PF的最小 值为___________.16. 已知数列2sin2πn n a n =,则=+⋅⋅⋅+++100321a a a a ___________.三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17.(12分)已知{an}的各项均为正数的数列,其前n 项和为Sn ,若2Sn=an2+an (n≥1),且a1、a3、a7成等比数列. (1)求{an}的通项公式;(2)令bn=2,数列{bn}的前n 项和为Tn ,证明:Tn+4=2b .18.(12分)现有一个寻宝游戏,规则如下:在起点P 处有A 、B 、C 三条封闭的单向线路,走完这三条线路所花费的时间分别为10分钟、20分钟、30分钟,游戏主办方将宝物放置在B 线路上(参赛方并不知晓),开始寻宝时参赛方在起点处随机选择路线顺序,若没有寻到宝物,重新回到起点后,再从没有走过的线路中随机选择路线继续寻宝,直到寻到宝物并将其带回至P 处,期间所花费的时间记为X .(1)求X≤30分钟的概率;(2)求X 的分布列及EX 的值.19.(12分)如图所示,在菱形ABCD 中,对角线AC ,BD 交于E 点,F ,G 分别为AD ,BC 的中点,AB=2,∠DAB=60°,沿对角线BD 将△ABD 折起,使得AC=.(1)求证:平面ABD ⊥平面BCD ;(2)求二面角F ﹣DG ﹣C 的余弦值. 20.(本小题满分12分)在平面直角坐标系xOy 中,21F F 、分别为椭圆C :)0(12222>>=+b a b y a x 的左、右焦点,B为短轴的一个端点,E 是椭圆C 上的一点,满足OF OE 1+=,且21F EF ∆的周长为)12(2+.(1)求椭圆C 的方程;(2)设点M 是线段2OF 上的一点,过点2F 且与x 轴不垂直的直线l 交椭圆C 于Q P 、两点,若MPQ ∆是以M 为顶点的等腰三角形,求点M 到直线l 距离的取值范围. 21. ( 本小题满分12分)设函数)1()(+=x ae x f x (其中718.2=e 28...),2)(2++=bx x x g ,已知它们在0=x 处有相同的切线.(1) 求函数)(x f ,)(x g 的解析式;(2) 求函数)(x f 在[]1,+t t )3(->t 上的最小值;(3) 若对2-≥∀x ,)()(x g x kf ≥恒成立,求实数k 的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,CF ABC ∆是边AB 上的高,,.FP BC FQ AC ⊥⊥ (1)证明:A 、B 、P 、Q 四点共圆;(2)若CQ=4,AQ=1,CB 的长.23.(2014•洛阳三模)已知直线l 的参数方程为,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4cos (θ﹣). (1)求直线l 的参数方程化为普通方程,将圆C 的极坐标方程化为直角坐标方程;(2)求圆C 上的点到直线l 距离的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数222)(--+=x x x f(1)解不等式2)(-≥x f ;(2)设a x x g -=)(,对任意),[+∞∈a x 都有 )()(x f x g ≥,求a 的取值范围.理科数学参考答案三、解答题:17、解:(Ⅰ)∵2Sn=an2+an (n≥1), ∴n≥2时,2Sn ﹣1=an ﹣12+an ﹣1, 两式相减,得2an=﹣+an ﹣an ﹣1,整理,得(an+an ﹣1)(an ﹣an ﹣1﹣1)=0, ∵an+an ﹣1≠0,∴)an﹣an﹣1=1,又4s1=+a1,即﹣a1=0,解得:a1=1,P(X=50)=P(CB)==,P(X=60)=P(ABC)+P(CAB)=,∴X的分布列为:X 20 30 50 60P∴EX=20×+30×+50×+60×=40(分).19.(1)证明;在菱形ABCD中,AB=2,∠DAB=60°,∴△ABD,△CBD为等边三角形,∵E是BD的中点,∴AE⊥BD,AE=CE=,∵AC=,∴AE2+CE2=AC2,∴AE⊥EC,∴AE⊥平面BCD,又∵AE⊂平面ABD,∴平面ABD⊥平面BCD;(2)解:由(1)可知建立以E为原点,EC为x轴,ED为y轴,EA为z轴的空间直角坐标系E﹣xyz,则D(0,1,0),C(,0,0),F(0,,)G(﹣,1,),平面CDG的一个法向量=(0,0,1),设平面FDG的法向量=(x,y,z),=(0,﹣,),=(﹣,1,)∴,即,令z=1,得x=3,y=,故平面FDG 的一个法向量=(3,,1),∴cos==,∴二面角F ﹣DG ﹣C 的余弦值为﹣.20、(本小题满分12分)解:(1)由已知)0,(1c F -,设),0(b B ,即),0(),0,(1b c OF =-=∴)22,(b c OE -=即)22,(b c E - ∴1222122=+b b a c 得:22=ac ①………2分 又21F PF ∆的周长为)12(2+∴ 22222+=+c a ② ………4分又①②得:2,1==a c ∴1=b ∴所求椭圆C 的方程为:1222=+y x …5分(2)设点)1)(0,(<<m o m M ,直线l 的方程为)0)(1(≠-=k x k y由⎩⎨⎧=+-=22)1(22y x x k y 消去y ,得:0224)21(2222=-+-+k x k x k 设),(),,(2211y x Q y x P ,PQ 中点为),(00y x N则2221214k k x x +=+ ∴22121212)2(k k x x k y y +-=-+=+ ∴222102122k k x x x +=+= 2210212k k y y y +-=+= 即)21,212(222k kk k N +-+ ………8分∵MPQ ∆是以M 为顶点的等腰三角形 ∴PQ MN ⊥ 即12)21(222-=-+k k m k∴)21,0(12121222∈+=+=k kk m ………10分设点M 到直线0:=--k y kx l 距离为d ,则41)21()1()21()1(1)1(222224122222222=+++<++=+-=k k k k k k k m k d ∴)21,0(∈d 即点M 到直线距离的取值范围是)21,0(。
甘肃省天水市秦安二中2018届高三上学期期末数学试卷理科 含解析
2018-2018学年甘肃省天水市秦安二中高三(上)期末数学试卷(理科)一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的.)1.设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则a的范围是()A.(﹣∞,1)B.(1,+∞)C.(﹣∞,1]D.[1,+∞)2.已知O、A、B、C为同一平面内的四个点,若2+=,则向量等于()A.﹣B.﹣+C.2﹣ D.﹣﹣23.已知a,b是实数,则“”是“log3a>log3b”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.若命题“∃x0∈R,使得x18+mx0+2m﹣3<0”为假命题,则实数m的取值范围是()A.[2,6]B.[﹣6,﹣2]C.(2,6)D.(﹣6,﹣2)5.若,则=()A.B. C.D.6.如图所示的程序框图的功能是()A.求数列{}的前10项的和B.求数列{}的前11项的和C.求数列{}的前10项的和 D.求数列{}的前11项的和7.下列函数:①y=xsinx,②y=xcosx,③y=x|cosx|,④y=x2x的图象(部分)如图(但顺序被打乱):则从左到右的各图象依次对应的函数序号是()A.①④②③B.①④③②C.④①②③D.③④②①8.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x9.变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.510.已知非零向量、满足,则与的夹角为()A. B.C. D.11.设双曲线﹣=1的两条渐近线与直线x=分别交于A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是()A.(1,)B.(,2)C.(1,2)D.(,+∞)12.设函数f(x)=e x(x3﹣3x+3)﹣ae x﹣x(x≥﹣2),若不等式f(x)≤0有解,则实数α的最小值为()A.B.2﹣C.1﹣D.1+2e2二、填空题(本大题共四小题,每小题5分,共20分)13.=________.14.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则函数f(x)解析式________.15.已知函数f(x)=lnx﹣(m∈R)在区间[1,e]取得最小值4,则m=________.16.已知抛物线y2=4x的准线与双曲线=1(a>0,b>0)交于A、B两点,点F 为抛物线的焦点,若△FAB为直角三角形,则双曲线离心率的取值范围是________.三、解答题(本大题共六小题共70分.解答应写出必要的文字说明,证明过程或演算步骤.17.已知正项等比数列{a n}满足a1,2a2,a3+6成等差数列,且a42=9a1a5,(I)求数列{a n}的通项公式;(Ⅱ)设b n=(log a n+1)•a n,求数列{b n}的前n项和T n.18.某校在2 015年11月份的高三期中考试后,随机地抽取了50名学生的数学成绩并进行了分析,结果这50名同学的成绩全部介于80分到140分之间.现将结果按如下方式分为6组,第一组[80,90),第二组[90,100),…第六组[130,140],得到如图所示的频率分布直方图.(Ⅰ)试估计该校数学的平均成绩(同一组中的数据用该区间的中点值作代表);(Ⅱ)这50名学生中成绩在120分以上的同学中任意抽取3人,该3人在130分(含130分)以上的人数记为X,求X的分布列和期望.19.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2(Ⅰ)证明:AG∥平面BDE;(Ⅱ)求平面BDE和平面BAG所成锐二面角的余弦值.20.椭圆C: +=1(a>b>0),作直线l交椭圆于P,Q两点,M为线段PQ的中点,O为坐标原点,设直线l的斜率为k1,直线OM的斜率为k2,k1k2=﹣.(1)求椭圆C的离心率;(2)设直线l与x轴交于点D(﹣,0),且满足=2,当△OPQ的面积最大时,求椭圆C的方程.21.已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=﹣1时,求函数f(x)在区间[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.【选修4-4:坐标系与参数方程】23.在极坐标系中,曲线C的方程为,点,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)求曲线C的直角坐标方程及点R的直角坐标;(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS 周长的最小值及此时点P的直角坐标.【选修4-5:不等式选讲】24.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.2018-2018学年甘肃省天水市秦安二中高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的.)1.设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则a的范围是()A.(﹣∞,1)B.(1,+∞)C.(﹣∞,1]D.[1,+∞)【考点】子集与交集、并集运算的转换;集合关系中的参数取值问题.【分析】先求出∁U A,再根据(∁U A)∪B=R,求出a【解答】解:集合A={x|x>1},∁U A={x|x≤1},B={x|x>a},若(∁U A)∪B=R,则a≤1,即a∈(﹣∞,1].故选C2.已知O、A、B、C为同一平面内的四个点,若2+=,则向量等于()A.﹣B.﹣+C.2﹣ D.﹣﹣2【考点】平面向量的基本定理及其意义.【分析】如图,计算即可.【解答】解:∵2+=,∴点A、B、C共线,且A为BC中点,则点O的位置有5种情况,如图:(1)∵,∴;(2)=+2()=;(3)=+2()=;(4)=+2()=;(5)=+2()=;故选:C.3.已知a,b是实数,则“”是“log3a>log3b”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;对数函数的单调性与特殊点.【分析】根据指数函数和对数函数的单调性,利用充分条件和必要条件的定义进行判断.【解答】解:若“”,则a>b,若“log3a>log3b”,则a>b>0.所以“”是“log3a>log3b”的必要不充分条件.故选B.4.若命题“∃x0∈R,使得x18+mx0+2m﹣3<0”为假命题,则实数m的取值范围是()A.[2,6]B.[﹣6,﹣2]C.(2,6)D.(﹣6,﹣2)【考点】特称命题;命题的真假判断与应用.【分析】先写出原命题的否定,再根据原命题为假,其否定一定为真,利用不等式对应的是二次函数,结合二次函数的图象与性质建立不等关系,即可求出实数m的取值范围.【解答】解:命题“∃x0∈R,使得”的否定为:“∀x0∈R,都有”,由于命题“∃x0∈R,使得”为假命题,则其否定为:“∀x0∈R,都有”,为真命题,∴△=m2﹣4(2m﹣3)≤0,解得2≤m≤6.则实数m的取值范围是[2,6].故选A.5.若,则=()A.B. C.D.【考点】三角函数的化简求值.【分析】由条件利用二倍角的余弦公式、诱导公式,求得要求式子的值.【解答】解:若,则=cos(+α)=sin[﹣(+α)]=sin(﹣α)=,故选:A.6.如图所示的程序框图的功能是()A.求数列{}的前10项的和B.求数列{}的前11项的和C.求数列{}的前10项的和 D.求数列{}的前11项的和【考点】程序框图.【分析】分析程序中循环变量的初值,终值,步长及累加项的通项公式,可得程序的功能.【解答】解:由已知框图可得:循环变量k的初值为1,终值为10,步长为1,故循环共进而10次,又由循环变量n的初值为1,步长为2,故终值为20,由S=S+可得:该程序的功能是计算S=的值,即数列{}的前10项的和,故选:C.7.下列函数:①y=xsinx,②y=xcosx,③y=x|cosx|,④y=x2x的图象(部分)如图(但顺序被打乱):则从左到右的各图象依次对应的函数序号是()A.①④②③B.①④③②C.④①②③D.③④②①【考点】函数的图象.【分析】根据函数的奇偶性和函数值得特点即可判断.【解答】解:①y=xsinx是偶函数,其图象关于y轴对称;②y=xcosx是奇函数,其图象关于原点对称;③y=x|cosx|是奇函数,其图象关于原点对称.且当x>0时,y≥0;④y=x2x为非奇非偶函数,且当x>0时,y>0;当x<0时,y<0;故选A.8.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x【考点】抛物线的标准方程.【分析】根据抛物线方程算出|OF|=,设以MF为直径的圆过点A(0,2),在Rt△AOF 中利用勾股定理算出|AF|=.再由直线AO与以MF为直径的圆相切得到∠OAF=∠AMF,Rt△AMF中利用∠AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程.【解答】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.9.变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.5【考点】简单线性规划.【分析】作出不等式组对应的平面区域,设z=(x﹣2)2+y2,利用距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:D.10.已知非零向量、满足,则与的夹角为()A. B.C. D.【考点】平面向量数量积的运算.【分析】对平方得出,=.从而得到=.计算()•()==.代入向量的夹角公式计算夹角的余弦.【解答】解:∵,∴,=.∴=.∴()•()==.∴cos<>=.∴<>=.故选:D.11.设双曲线﹣=1的两条渐近线与直线x=分别交于A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是()A.(1,)B.(,2)C.(1,2)D.(,+∞)【考点】双曲线的简单性质.【分析】确定双曲线﹣=1的两条渐近线方程,求得A,B的坐标,利用60°<∠AFB<90°,可得,由此可求双曲线的离心率的取值范围.【解答】解:双曲线﹣=1的两条渐近线方程为,x=时,y=,∴A(,),B(,﹣),∵60°<∠AFB<90°,∴,∴,∴,∴,∴1<e2﹣1<3,∴.故选B.12.设函数f(x)=e x(x3﹣3x+3)﹣ae x﹣x(x≥﹣2),若不等式f(x)≤0有解,则实数α的最小值为()A.B.2﹣C.1﹣D.1+2e2【考点】根的存在性及根的个数判断.【分析】化简a≥x3﹣3x+3﹣,从而令F(x)=x3﹣3x+3﹣,求导以确定函数的单调性,从而解得.【解答】解:f(x)≤0可化为e x(x3﹣3x+3)﹣ae x﹣x≤0,即a≥x3﹣3x+3﹣,令F(x)=x3﹣3x+3﹣,则F′(x)=3x2﹣3+=(x﹣1)(3x+3+e﹣x),令G(x)=3x+3+e﹣x,则G′(x)=3﹣e﹣x,故当e﹣x=3,即x=﹣ln3时,G(x)=3x+3+e﹣x有最小值G(﹣ln3)=﹣3ln3+6=3(2﹣ln3)>0,故当x∈[﹣2,1)时,F′(x)<0,x∈(1,+∞)时,F′(x)>0;故F(x)有最小值F(1)=1﹣3+3﹣=1﹣;故实数α的最小值为1﹣.故选:C.二、填空题(本大题共四小题,每小题5分,共20分)13.=3.【考点】定积分.【分析】将(0,2)区间分为(0,1)和(1,2),分别化简2﹣|1﹣x|,转化成=∫01(1+x)dx+∫12(3﹣x)dx,求解即可.【解答】解:=∫01(1+x)dx+∫12(3﹣x)dx=(x+x2)|01+(3x﹣)|12=(1+﹣0)+(6﹣2﹣3+)=3故答案为:314.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则函数f(x)解析式f(x)=2sin(2x﹣).【考点】正弦函数的图象.【分析】由最值求出A,由周期求出ω,代入特殊点坐标求出φ.【解答】解:由图象可知f(x)的最大值为2,周期T=2()=π,∴ω=.∵f()=2,∴2sin(φ)=2,∴+φ=,即φ=﹣+2kπ.∵﹣<φ<,∴k=0时,φ=﹣.故答案为:f(x)=2sin(2x﹣).15.已知函数f(x)=lnx﹣(m∈R)在区间[1,e]取得最小值4,则m=.【考点】利用导数求闭区间上函数的最值.【分析】求出函数的导函数,然后分m的范围讨论函数的单调性,根据函数的单调性求出函数的最小值,利用最小值等于4求m的值.【解答】解:函数的定义域为(0,+∞),.当f′(x)=0时,,此时x=﹣m,如果m≥0,则无解.所以,当m≥0时,f′(x)>0,f(x)为增函数,所以f(x)min=f(1)=﹣m=4,m=﹣4,矛盾舍去;当m<0时,若x∈(0,﹣m),f′(x)<0,f(x)为减函数,若x∈(﹣m,+∞),f′(x)>0,f(x)为增函数,所以f(﹣m)=ln(﹣m)+1为极小值,也是最小值;①当﹣m<1,即﹣1<m<0时,f(x)在[1,e]上单调递增,所以f(x)min=f(1)=﹣m=4,所以m=﹣4(矛盾);②当﹣m>e,即m<﹣e时,f(x)在[1,e]上单调递减,f(x)min=f(e)=1﹣=4.所以m=﹣3e.③当﹣1≤﹣m≤e,即﹣e≤m≤1时,f(x)在[1,e]上的最小值为f(﹣m)=ln(﹣m)+1=4.此时m=﹣e3<﹣e(矛盾).综上m=﹣3e.16.已知抛物线y2=4x的准线与双曲线=1(a>0,b>0)交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线离心率的取值范围是.【考点】双曲线的简单性质.【分析】求出抛物线的焦点坐标,利用三角形是直角三角形求出顶点坐标,代入双曲线方程,利用双曲线的几何量之间的关系,求出离心率的表达式,然后求解即可.【解答】解:抛物线焦点F(1,0),由题意0<a<1,且∠AFB=90°并被x轴平分,所以点(﹣1,2)在双曲线上,得,即,即,所以,∵0<a <1,∴e 2>5,故.故答案为:.三、解答题(本大题共六小题共70分.解答应写出必要的文字说明,证明过程或演算步骤.17.已知正项等比数列{a n }满足a 1,2a 2,a 3+6成等差数列,且a 42=9a 1a 5, (I )求数列{a n }的通项公式;(Ⅱ)设b n =(loga n +1)•a n ,求数列{b n }的前n 项和T n .【考点】数列的求和;数列递推式. 【分析】(I )利用等差数列与等比数列的通项公式即可得出. (II )b n =(loga n +1)•a n =(2n +1)•3n .再利用“错位相减法”与等比数列的前n 项和公式即可得出. 【解答】解:(I )设正项等比数列{a n }的公比为q >0,∵a 1,2a 2,a 3+6成等差数列,∴2×2a 2=a 3+6+a 1,又a 42=9a 1a 5,∴,解得a 1=q=3.∴a n =3n . (II )b n =(loga n +1)•a n =(2n +1)•3n .∴数列{b n }的前n 项和T n =3×3+5×32+…+(2n +1)•3n . 3T n =3×32+5×33+…+(2n ﹣1)•3n +(2n +1)•3n+1,∴﹣2T n =32+2×(32+33+…+3n )﹣(2n +1)•3n+1=+3﹣(2n +1)•3n+1=﹣2n •3n+1, ∴T n =n •3n+1.18.某校在2 015年11月份的高三期中考试后,随机地抽取了50名学生的数学成绩并进行了分析,结果这50名同学的成绩全部介于80分到140分之间.现将结果按如下方式分为6组,第一组[80,90),第二组[90,100),…第六组[130,140],得到如图所示的频率分布直方图.(Ⅰ)试估计该校数学的平均成绩(同一组中的数据用该区间的中点值作代表);(Ⅱ)这50名学生中成绩在120分以上的同学中任意抽取3人,该3人在130分(含130分)以上的人数记为X ,求X 的分布列和期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(Ⅰ)根据频率分布直方图,求出成绩在[120,130)的频率以及平均成绩;(Ⅱ)根据题意,计算对应的概率值,求出X的分布列与数学期望值.【解答】解:(Ⅰ)根据频率分布直方图,得:成绩在[120,130)的频率为1﹣(0.01×10+0.184×10+0.18×10+0.016×10+0.018×10)=1﹣0.88=0.12;所以估计该校全体学生的数学平均成绩为85×0.1+95×0.24+118×0.3+115×0.16+125×0.12+135×0.18=8.5+22.8+31.5+18.4+15+10.8=118,所以该校的数学平均成绩为118;(Ⅱ)根据频率分布直方图得,这50人中成绩在130分以上(包括130分)的有0.18×50=4人,而在[120,140]的学生共有0.12×50+0.18×50=10,所以X的可能取值为0、1、2、3,所以P(X=0)===,P(X=1)===,P(X=2)===,P(X=3)===;数学期望值为EX=0×+1×+2×+3×=1.2.19.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2(Ⅰ)证明:AG∥平面BDE;(Ⅱ)求平面BDE和平面BAG所成锐二面角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)建立空间坐标系,求出平面的法向量,利用向量法即可证明AG∥平面BDE;(Ⅱ)求出平面的法向量,利用向量法即可求平面BDE和平面BAG所成锐二面角的余弦值.【解答】解:由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE⊂平面BCEG,∴EC⊥平面ABCD.…根据题意建立如图所示的空间直角坐标系,可得B(0,2,0),D(2,0,0),E(0,0,2),A(2,1,0)G(0,2,1)….(Ⅰ)设平面BDE的法向量为,∵,∴,即,∴x=y=z,∴平面BDE的一个法向量为…..∵∴,∴,∵AG⊄平面BDE,∴AG∥平面BDE.….(Ⅱ)设平面BAG的法向量为,平面BDE和平面BAG所成锐二面角为θ….因为,,由得,….∴平面BAG的一个法向量为,∴.故平面BDE和平面BAG所成锐二面角的余弦值为….20.椭圆C: +=1(a>b>0),作直线l交椭圆于P,Q两点,M为线段PQ的中点,O为坐标原点,设直线l的斜率为k1,直线OM的斜率为k2,k1k2=﹣.(1)求椭圆C的离心率;(2)设直线l与x轴交于点D(﹣,0),且满足=2,当△OPQ的面积最大时,求椭圆C的方程.【考点】椭圆的简单性质.【分析】(1)设P(x1,y1),Q(x2,y2),代入椭圆方程,作差,结合直线的斜率公式和中点坐标公式,即可得到b2=a2,运用离心率公式可得所求;(2)椭圆C的方程为:2x2+3y2=6c2,设直线l的方程为:,代入椭圆方程,运用韦达定理,再由向量共线的坐标表示,求得三角形的面积,化简运用基本不等式可得最大值,即可得到所求椭圆方程.【解答】解:(1)设P(x1,y1),Q(x2,y2),代入椭圆C的方程有:,两式相减:,即,直线l的斜率为k1,直线OM的斜率为k2,可得k1=,k2=,即有,即b2=a2,c2=a2﹣b2=a2,可得;(2)由(1)知,得a2=3c2,b2=2c2,可设椭圆C的方程为:2x2+3y2=6c2,设直线l的方程为:,代入椭圆C的方程有,因为直线l与椭圆C相交,所以△=48m2﹣4(2m2+3)(6﹣6c2)>0,由韦达定理:,.又,所以y1=﹣2y2,代入上述两式有:,=,当且仅当时,等号成立,此时c2=5,代入△,有△>0成立,所以所求椭圆C的方程为:.21.已知f(x)=xlnx﹣ax,g(x)=﹣x2﹣2.(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;(Ⅱ)当a=﹣1时,求函数f(x)在区间[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有成立.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,即xlnx﹣ax≥﹣x2﹣2恒成立,可化为a≤lnx+x+在x∈(0,+∞)上恒成立.令F(x)=lnx+x+,利用导数研究其单调性极值与最值即可得出;(Ⅱ)把a=﹣1代入f(x),再求出f′(x),由f'(x)=0得,然后分类讨论,当时,在上f'(x)<0,在上f'(x)>0,因此f(x)在处取得极小值,由于f(m)=m(lnm+1)<0,f(m+3)=(m+3)[ln(m+3)+1]>0,因此f(x)max=f(m+3)=(m+3)[ln(m+3)+1],当时,f'(x)≥0,因此f(x)在[m,m+3]上单调递增,从而可求出函数f(x)在区间[m,m+3](m>0)上的最值;(Ⅲ)要证成立,即证,由(Ⅱ)知a=﹣1时,f(x)的最小值是,当且仅当时取等号.设,x∈(0,+∞),则,易知,当且仅当x=1时取到,即可证得结论.【解答】(Ⅰ)解:对一切x∈(0,+∞),f(x)≥g(x)恒成立,即xlnx﹣ax≥﹣x2﹣2恒成立.也就是在x∈(0,+∞)上恒成立.令,则.x∈(0,1)时,F'(x)<0,x∈(1,+∞)时,F'(x)>0.因此F(x)在x=1处取极小值,也是最小值,即F(x)min=F(1)=3,∴a≤3;(Ⅱ)解:当a=﹣1时,f(x)=xlnx+x,f′(x)=lnx+2,由f'(x)=0得.当时,在上f'(x)<0,在上f'(x)>0.因此f(x)在处取得极小值,也是最小值.故.由于f(m)=m(lnm+1)<0,f(m+3)=(m+3)[ln(m+3)+1]>0,因此f(x)max=f(m+3)=(m+3)[ln(m+3)+1].当时,f'(x)≥0,因此f(x)在[m,m+3]上单调递增,故f(x)min=f(m)=m(lnm+1),f(x)max=f(m+3)=(m+3)[ln(m+3)+1];(Ⅲ)证明:要证成立,即证,x∈(0,+∞).由(Ⅱ)知a=﹣1时,f(x)=xlnx+x的最小值是,当且仅当时取等号.设,x∈(0,+∞),则,易知,当且仅当x=1时取到.从而可知对一切x∈(0,+∞),都有.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.【考点】与圆有关的比例线段;圆內接多边形的性质与判定.【分析】(1)推导出B,C,D,E四点在以BC为直径的圆上,由割线定理能证明AD•AB=AE•AC.(2)过点F作FG⊥BC于点G,推导出B,G,F,D四点共圆,F,G,C,E四点共圆,由此利用割线定理能求出BC的长.【解答】证明:(1)由已知∠BDC=∠BEC=90°,所以B,C,D,E四点在以BC为直径的圆上,由割线定理知:AD•AB=AE•AC.…解:(2)如图,过点F作FG⊥BC于点G,由已知,∠BDC=90°,又因为FG⊥BC,所以B,G,F,D四点共圆,所以由割线定理知:CG•CB=CF•CD,①…同理,F,G,C,E四点共圆,由割线定理知:BF•BE=BG•BC,②…①+②得:CG•CB+BG•BC=CF•CD+BF•BE,即BC2=CF•CD+BF•BE=3×5+3×5=30,…所以BC=.…【选修4-4:坐标系与参数方程】23.在极坐标系中,曲线C的方程为,点,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)求曲线C的直角坐标方程及点R的直角坐标;(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS 周长的最小值及此时点P的直角坐标.【考点】简单曲线的极坐标方程.【分析】(1)由极坐标转化为直角坐标即可;(2)由参数方程,设出P的坐标,得到矩形的周长,根据三角函数的图象和性质即可求出最值.【解答】解:(1)由x=ρcosθ,y=ρsinθ,∴曲线C的直角坐标方程为,点R的直角坐标为(2,2),(2)曲线C的参数方程为为参数,α∈[0,2π)),设,如图,依题意可得:|PQ|=2﹣cosα,,∴矩形周长=,∴当时,周长的最小值为4,此时,点P的坐标为.【选修4-5:不等式选讲】24.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.【考点】不等式的证明;绝对值不等式的解法.【分析】(1)利用绝对值不等式的解法求出集合M,利用绝对值三角不等式直接证明:|a+b|<;(2)利用(1)的结果,说明ab的范围,比较|1﹣4ab|与2|a﹣b|两个数的平方差的大小,即可得到结果.【解答】解:(1)记f(x)=|x﹣1|﹣|x+2|=,由﹣2<﹣2x﹣1<0解得﹣<x<,则M=(﹣,).…∵a、b∈M,∴,所以|a+b|≤|a|+|b|<×+×=.…(2)由(1)得a2<,b2<.因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)=(4a2﹣1)(4b2﹣1)>0,…所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.…2018年9月7日。
2018届甘肃省天水市秦安县第二中学高三上学期期中考试文科数学试卷及答案 精品
甘肃省天水市秦安县第二中学2018届高三上学期期中考试数学(文)试题本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟 第Ⅰ卷 (选择题,50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的 1、设全集(2),{|21},{|ln(1)}x x U R A x B x y x -==<==-,则图中阴影部分表示的集合为 A .{}|1x x ≥ B .{}|1x x ≤ C .{}|01x x <≤ D .{}|11x x ≤<2、已知()3sin f x x x π=-,命题():(0,),02p x f x π∀∈<,则A .p 是真命题,():(0,),02p x f x π⌝∀∈>B .p 是真命题,()0:(0,),02p x f x π⌝∀∈≥C .p 是假命题,():(0,),02p x f x π⌝∀∈≥D .p 是假命题,()0:(0,),02p x f x π⌝∀∈≥3、定义在R 上的函数()f x 满足()()()(),22f x f x f x f x -=--=+,且(1,0)x ∈-时,()125x f x =+,则()2log 20f = A .1 B .45 C .1- D .45-A .5- B .2C .5D .325.在ABC ∆中,已知 30,4,34=∠==B AC AB ,则ABC ∆的面积是A .34B .38C .34或38D .36.命题:p 函数)3lg(-+=xa x y 在区间[)+∞,2上是增函数;命题:q )4lg(2+-=ax x y 函数的定义域为R.则p 是q 成立的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7、已知函数()sin()(0)4f x x πωω=+>的最小正周期为π,则该函数的图象是A .关于直线8x π=对称 B .关于点(,0)4π对称C .关于直线4x π=对称 D .关于点(,0)8π对称8、一只受伤的丹顶鹤在如图所示(直角梯形)的草原上飞过, 其中2,1AD DC BC ===,它可能随机在草原上任何一处(点),若落在扇形沼泽区域ADE 以外丹顶鹤能生还,则该丹顶鹤生还的概率是( )A .1215π- B .110π- C .16π- D .3110π-9、已知函数()y f x =对于任意的(,)22x ππ∈-满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( ) A()()34f ππ< B .(0)2()3f f π<C .(0)()4f π<D ()()34f ππ-<-10.对于定义域为[0,1]的函数)(x f ,如果同时满足以下三个条件:①对任意的]1,0[∈x ,总有0)(≥x f ②1)1(=f③若0,021≥≥x x ,121≤+x x ,都有)()()(2121x f x f x x f +≥+ 成立; 则称函数)(x f 为理想函数. 下面有三个命题: (1)若函数)(x f 为理想函数,则0)0(=f ; (2)函数])1,0[(12)(∈-=x x f x 是理想函数; (3)若函数)(x f 是理想函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00)]([x x f f =, 则00)(x x f =;其中正确的命题个数有A .3个B .2个C .1个D .0个第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分,把答案填在题中的横线上 11.过原点作曲线xe y =的切线,则切线的方程为 .12.角α的终边过P )32cos ,32(sin ππ,则角α的最小正值是 .13.某几何体的三视图如图所示,则该几何体的体积为 .14.已知数列}{n a 的前n 项和为n S ,且)1(2+=n n a S ,则7a =___. 15.设实数,x y满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数yx b a z ++=)(22 的最大值为8,则ba +的最小值为___________.16、已知命题:p 函数()22lg(4)f x x x a =-+的定义域为R ;命题:q [1,1]m ∀∈-,不等式253a a --≥p q∨“为真命题,且“p q ∧”为假命题,则实数a 的取值范围是 17、已知函数()2x f x e x a =-+有零点,则a 的取值范围是三、解答题:本大题共5小题,共65分,解答应写成文字说明、证明过程或演算步骤 18、(本小题满分12分)已知函数())cos()2,()66f x x x x R ππ=++++∈.(1)求5()6f π的值;(2)求()f x 子啊区间[,]22ππ-上的最大值和最小值及其相应的x 的值.19、(本小题满分12分)2018年国庆节之前,市教育局为高三学生在紧张学习之余,不忘体能素质的提升,要求该市高三全体学生进行一套满分为120分的体能测试,市教育局为了迅速了解学生体能素质状况,按照全市高三测试学生的先后顺序,每间隔50人就抽取一人的抽样方法抽取40分进行统计分析,将这40人的体能测试成绩分成六段[)[)[)[)[)[)80,85,85,90,90,95,95,100,100,105,105,110后,得到如下图的频率分布直方图.(1)市教育局在采样中,用的是什么抽样方法?并估计这40人体能测试成绩平均数;(2)从体能测试成绩在[)80,90的学生中任抽取2人,求抽出的2人体能测试成绩在[)85,90概率. 参考数据:82.50.0187.50.0292.50.0497.50.06102.50.05107.50.0219.4⨯+⨯+⨯+⨯+⨯+⨯=20.(本小题满分13分)设数列{}n a 的前n 项和为n S ,点(,)n n a S 在直线312y x =-上.(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列,求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T .21.(本小题满分14分)设 x 1、x 2(12x x ≠)是函数322()f x ax bx a x =+-(0a >)的两个极值点.(1)若 11x=-,22x =,求函数 ()f x 的解析式;(2)若12||||x x +=,求 b 的最大值.22、(本小题满分14分) 已知()(),ln g x mx G x x ==.(1)若()()1f x G x x =-+,求函数()f x 的单调区间; (2)若()()2G x x g x ++≤恒成立,求m 的取值范围; (3)令()2b G a a =++,求证:21b a -≤.参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.二、填空题:(7题,每题5分)11.y=ex 12. 611π 13.200 14.-12815.22- 16. []()2,12,6--17. (],22ln 2-∞-+三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.解(1) 2)6cos()6sin(3)(++++=ππx x x f ⎪⎭⎫ ⎝⎛+=3sin 2πx +2 (2)分+2………………4分=1 ……………………………………………………… 6分(2)22ππ≤≤-x6536πππ≤+≤-∴x ………………… 7分13sin 21≤⎪⎭⎫⎝⎛+≤-∴πx …………………8分从而当23ππ=+x 时,即6π=x 时4)(max =x f …………………………………… 10分而当63ππ-=+x 时,即2π-=x 时1)(min =x f (12)分19.解(1)根据“每间隔50人就抽取一人”,符合系统抽样的原理,故市教育局在采样中,用到的是系统抽样方法.…………3分20..解:由题设知,312n n S a =- ..................... (1)分得*1131(,2)2n n S a n n --=-∈≥N ),………………………………2分两式相减得:13()2n n n a a a -=-,即*13(,2)n n a a n n -=∈≥N , (4)分又11312S a =- 得12a =,所以数列{}n a 是首项为2,公比为3的等比数列, ∴123n n a -=⋅. …………………………6分(Ⅱ)由(Ⅰ)知123n n a +=⋅,123n n a -=⋅因为1(1)n n n a a n d +=++ , 所以1431n n d n -⨯=+所以11143n n n d -+=⨯ ……………………8分 令123111n T d d d =+++…1n d +,则012234434343n T =+++⨯⨯⨯ (1)143n n -++⨯ ① 1212334343n T =++⨯⨯…114343n nn n -+++⨯⨯ ②①…②得01222113434343n T =+++⨯⨯⨯...1114343n n n -++-⨯⨯ (10)分 111(1)111525331244388313n n n n n --++=+⨯-=-⨯⨯- 1152516163n n n T -+∴=-⨯ …………………………………12分21.解:(1)∵)0()(223>-+=a x a bx ax x f ,∴)0(23)(22>-+='a a bx ax x f …………………………2分依题意有-1和2是方程02322=-+a bx ax 的两根 ∴⎪⎪⎩⎪⎪⎨⎧-=--=32321aa b , 解得⎩⎨⎧-==96b a , ∴x x x x f 3696)(23--=.(经检验,适合)…………………………5分(2)∵)0(23)(22>-+='a a bx ax x f ,依题意,12,x x 是方程()0f x '=的两个根, ∵0321<-=a x x 且22||||21=+x x , ∴8)(221=-x x . ∴834)32(2=+-a a b , ∴)6(322a a b -=. …………………………8分∵20b ≥ ∴06a <≤. …………………………9分 设2()3(6)p a a a =-,则2()936p a a a '=-+.由()0p a '>得40<<a ,由()0p a '<得4>a . 即:函数()p a 在区间(0,4]上是增函数,在区间[4,6]上是减函数,∴当4=a 时, ()p a 有极大值为96,∴()p a 在]6,0(上的最大值是96, ∴b 的最大值为64. …………………………14分22.解(Ⅰ)1)()(+-=x x G x f =1﹣x+lnx ,求导得:'11()1x f x x x -=-=,由'()0f x =,得1x =.当()0,1x Î时,'()0f x >;当()1,x ??时,'()0f x <.所以,函数()y f x =在()0,1上是增函数,在()1,+?上是减函数.…………5分(Ⅱ) 令。
甘肃省秦安县第二中学2018届高三数学一轮复习专训2:“三线合一”解题的六种技巧
专训2 “三线合一”解题的六种技巧利用“三线合一”求角1.如图,房屋顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋檐AB=AC.求顶架上的∠B,∠C,∠BAD,∠CAD的度数.(第1题)利用“三线合一”求线段2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于点E,若BC=10,且△BDC的周长为24,求AE的长.(第2题)利用“三线合一”证线段(角)相等3.已知△ABC中,∠BAC=90°,AB=AC,D为BC的中点.(1)如图①,E,F分别是AB,AC上的点,且BE=AF,试判断△DEF的形状,并说明理由.(2)如图②,若E,F分别为AB,CA的延长线上的点,且仍有BE=AF.请判断△DEF是否仍有(1)中的形状,并说明理由.(第3题)利用“三线合一”证垂直4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC.求证:EB⊥AB(第4题)利用“三线合一”证线段的倍数关系(构造三线法)5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD 交BF的延长线于点D.试说明: BF=2CD.(第5题)利用“三线合一”证线段的和差关系(构造三线法)6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C.试说明:CD=AB+BD.(第6题)答案1.解:因为AB =AC ,∠BAC=100°,AD⊥BC,所以∠B=∠C=40°,∠BAD=∠CAD=50°2.解:因为△BDC 的周长=BD +BC +CD =24,BC =10,所以BD +CD =14. ∵AD=BD ,∴AC=AD +CD =BD +CD =14. 又∵AB=AC =14.AD =DB ,DE⊥AB, ∴AE=EB =12AC =7.3.解:(1)△DEF 为等腰直角三角形.理由:连接AD ,易证△BDE≌△ADF, ∴DE=DF ,∠BDE=∠ADF, 又∵∠BAC=90°,AB =AC , D 为BC 的中点,∴AD⊥BC.∴∠ADB=90°.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠ADB=90°. ∴△DEF 为等腰直角三角形. (2)是,理由略.4.证明:如图,过点E 作EF⊥AC 于F.∵AE=EC ,∴AF=12AC.又∵A B =12AC ,∴AF=AB.∵AD 平分∠BAC,∴∠FAE=∠BAE.又∵AE=AE ,∴△AEF≌△AEB(SAS ).∴∠ABE=∠AFE=90°,即EB⊥AB.(第4题)5.解:如图,延长BA ,CD 交于点E.(第5题)∵BF平分∠ABC,CD⊥BD,BD=BD,∴△BDC≌△BDE.∴BC=BE.又∵BD⊥CE,∴CE=2CD.∵∠BAC=90°,∠BDC=90°,∠AFB=∠DFC,∴∠ABF=∠DCF.又∵AB=AC,∠BAF=∠CAE=90°,∴△ABF≌△ACE(ASA).∴BF=CE.故BF=2CD.6.解:如图,以点A为圆心,AB长为半径画弧交CD于点E,连接AE,则AE=AB,所以∠AEB=∠ABC.(第6题)又因为AD⊥BC,所以AD是BE边上的中线,即DE=BD.又因为∠ABC=2∠C,所以∠AEB=2∠C.而∠AEB=180°-∠AEC=∠CAE+∠C,所以∠CAE=∠C.所以CE=AE=AB,故CD=CE +DE=AB+BD.。
甘肃省秦安县高考数学一轮复习 专训1 活用乘法公式进行计算的六种技巧
专训1 活用乘法公式进行计算的六种技巧巧用乘法公式的变形求式子的值1.已知(a +b)2=7,(a -b)2=4.求a 2+b 2和ab 的值.2.已知x +1x =3,求x 4+1x 4的值.巧用乘法公式进行简便运算3.计算:(1)2 0172-2 016×2 018;(2)⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×⎝ ⎛⎭⎪⎫1-142×…×⎝ ⎛⎭⎪⎫1-192× ⎝ ⎛⎭⎪⎫1-1102;(3)1002-992+982-972+…+42-32+22-12.巧用乘法公式解决整除问题4.对任意正整数n ,整式(3n +1) (3n -1)-(3-n)(3+n)是不是10的倍数?为什么?应用乘法公式巧定个位数字5.试求(2+1)(22+1)(24+1)·…·(232+1)+1的个位数字.巧用乘法公式解决复杂问题(换元法)6.计算20 182 017220 182 0162+20 182 0182-2的值.7.王老师在一次团体操队列队形设计中,先让全体队员排成一方阵(行与列的人数一样多的队形,且总人数不少于25人),人数正好够用,然后再进行各种队形变化,其中一个队形需分为5人一组,手执彩带变换图形,在讨论分组方案时,有人说现在的队员人数按5人一组分将多出3人,你说这可能吗?答案1.解:(a +b)2=a 2+2ab +b 2=7,(a -b)2=a 2-2ab +b 2=4,所以a 2+b 2=12×(7+4)=12×11=112, ab =14×(7-4)=14×3=34. 2.解:因为x +1x =3,所以⎝ ⎛⎭⎪⎫x +1x 2=9, 所以x 2+1x 2=7,所以⎝ ⎛⎭⎪⎫x 2+1x 22=49,所以x 4+1x 4=47. 3.解:(1)原式=2 0172-(2 017-1)×(2 017+1)=2 0172-(2 0172-12)=2 0172-2 0172+1=1. (2)原式=⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+13×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+14×⎝ ⎛⎭⎪⎫1-14×…×⎝ ⎛⎭⎪⎫1+19×⎝ ⎛⎭⎪⎫1-19×⎝ ⎛⎭⎪⎫1+110×⎝ ⎛⎭⎪⎫1-110 =32×12×43×23×54×34×…×109×89×1110×910=12×1110=1120. (3)原式=()1002-992+(982-972)+…+(22-12) =(100+99)×(100-99)+(98+97)×(98-97)+…+(2+1)×(2-1)=100+99+98+97+…+2+1=100×(100+1)2=5 050.4.解:对任意正整数n,整式(3n+1)·(3n-1)-(3-n)(3+n)是10的倍数,理由如下:(3n+1)·(3n-1)-(3-n)(3+n)=(3n)2-1- (32-n2)=9n2-1-9+n2=10n2-10=10(n2-1).∵对任意正整数n,10(n2-1)是10的倍数,∴(3n+1)·(3n-1)-(3-n)·(3+n)是10的倍数.5.解:(2+1)(22+1)(24+1)·…·(232+1)+1=(2-1)(2+1)(22+1)(24+1)·…·(232+1)+1=(22-1)(22+1)(24+1)·…·(232+1)+1=…=(264-1)+1=264=(24)16=1616.因此个位数字是6.6.解:设20 182 017=m,则原式=m2(m-1)2+(m+1)2-2=m2(m2-2m+1)+(m2+2m+1)-2=m2 2m2=1 2 .7.解:总人数可能为(5n)2人,(5n+1)2人,(5n+2)2人,(5n+3)2人,(5n+4)2人.(n 为正整数)(5n) 2=5n·5n;(5n+1)2=25n2+10n+1=5(5n2+2n)+1;(5n+2)2=25n2+20n+4=5(5n2+4n)+4;(5n+3)2=25n2+30n+9=5(5n2+6n+1)+4;(5n+4)2=25n2+40n+16=5(5n2+8n+3)+1.由此可见,无论哪一种情况总人数按每组5人分,要么不多出人数,要么多出的人数只可能是1人或4人,不可能是3人.。
甘肃省秦安县第二中学2018届高三数学一轮复习专训1:角平分线中常用作辅助线的方法(附答案)$803779
专训1 角平分线中常用作辅助线的方法作一边的垂线段1.如图,已知△ABC的周长是20 cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC 于点D,且OD=1.8 cm,求△ABC的面积.(第1题)作两边的垂线段2.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D,求证:PC=PD.(第2题)延长作对称图形法3.如图,在△AOB中,AO=OB,∠AOB=90°,BD平分∠ABO交AO于点D,AE⊥BD交BD延长线于点E,求证:BD=2AE.(第3题)4.如图,AD为△ABC的中线,DE,DF分别是△ADB和△ADC的角平分线,求证:BE+CF>EF.(第4题)参考答案1.解:连接OA ,过点O 作OE ⊥AB ,OF ⊥AC ,垂足分别为E ,F. ∵BO 是∠ABC 的平分线,且OD ⊥BC , OE ⊥AB ,∴OE =OD =1.8 cm .同理OF =OD =1. 8 cm .∴S △ABC =S △BOC +S △ABO +S △ACO =12BC·OD +12AB·OE +12AC·OF =12(BC +AB +AC)·OD =12×20×1.8=18(cm 2). 2.证明:如图,过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F , ∴∠PEC =∠PFD =90°.∵OM 是∠AOB 的平分线,∴PE =PF.∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°-90°-90°=180°.而∠PDO +∠PDF =180°,∴∠PCE =∠PDF.(第2题)在△PCE 和△PDF 中,⎩⎪⎨⎪⎧∠PCE =∠PDF ,∠PEC =∠PFD ,PE =PF ,∴△PCE ≌△PDF(AAS ).∴PC =PD.3.证明:如图,延长AE 交BO 的延长线于点F.(第3题)∵AE ⊥BE ,∴∠AEB =∠FEB =90°.∵BD平分∠ABO,∴∠ABE=∠FBE.又∵BE=BE,∴△ABE≌△FBE(ASA).∴AE=FE.∴AF=2AE.∵∠AEB=∠AOB=90°,∴∠OAF+∠AFO=90°,∠OBD+∠AFO=90°. ∴∠OAF=∠OBD.又∵OA=OB,∠AOF=∠BOD=90°,∴△AOF≌△BOD(ASA).∴AF=BD.∴BD=2AE.4.证明:在AD上截取DH=BD,连接EH,FH. ∵AD是BC边上的中线,∴BD=CD=DH.∵DE平分∠ADB,∴∠BDE=∠HDE.又∵DE=DE,∴△BDE≌△HDE(SAS).∴BE=HE.同理△CDF≌△HDF(SAS).∴CF=HF.在△HEF中,∵HE+HF>EF,∴BE+CF>EF.。
甘肃省秦安县第二中学2018届高三数学一轮复习专训1:运用幂的运算法则巧计算的常见类型
专训1 运用幂的运算法则巧计算的常见类型运用同底数幂的乘法法则计算题型1:底数是单项式的同底数幂的乘法1.计算:(1)a2·a3·a;(2)-a2·a5;(3)a4·(-a)5.题型2:底数是多项式的同底数幂的乘法2.计算:(1)(x+2)3·(x+2)5·(x+2);(2)(a-b)3·(b-a)4;(3)( x-y)3·(y-x)5.题型3:同底数幂的乘法法则的逆用3.(1)已知2m=32,2n=4,求2m+n的值.(2)已知2x=64,求2x+3的值.运用幂的乘方法则计算题型1:直接运用法则求字母的值4.已知273×94=3x ,求x 的值.题型2:逆用法则求字母式子的值5.已知10a =2,10b =3,求103a +b 的值.题型3:运用幂的乘方解方程 6.解方程:⎝ ⎛⎭⎪⎫34x -1=⎝ ⎛⎭⎪⎫9162.运用积的乘方法则进行计算题型1:逆用积的乘方法则计算7.用简便方法计算:(1)⎝ ⎛⎭⎪⎫-1258×0.255×⎝ ⎛⎭⎪⎫578×(-4)5; (2)0.1252 015×(-82 016).题型2:运用积的乘方求字母式子的值8.若|a n |=12,|b|n =3,求(ab)4n 的值.运用同底数幂的除法法则进行计算题型1:运用同底数幂的除法法则计算9.计算:(1)x 10÷x 4÷x 4;(2)(-x)7÷x 2÷(-x)3;(3)(m -n)8÷ (n-m)3.题型2:运用同底数幂的除法求字母的值10.已知(x -1)x 2÷(x-1)=1,求x 的值.答案1.解:(1)a 2·a 3·a=a 6.(2)-a 2·a 5=-a 7.(3)a 4·(-a)5=-a 9.2.解:(1)(x +2)3·(x+2)5·(x+2)=(x +2)9.(2)(a -b)3·(b-a)4=(a -b)3·(a-b)4=(a -b)7.(3)(x -y)3·(y-x)5=(x -y)3·=-(x -y)8.3.解:(1)2m +n =2m ·2n =32×4=128. (2)2x +3=2x ·23=8·2x =8×64=512.4.解:273×94=(33)3×(32)4=39×38=317=3x ,所以x =17.5.解:103a +b =103a ·10b =(10a )3·10b =23×3=24. 6.解:由原方程得⎝ ⎛⎭⎪⎫34x -1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫3422, 所以⎝ ⎛⎭⎪⎫34x -1=⎝ ⎛⎭⎪⎫344, 所以x -1=4,解得x =5.7.解:(1)原式=⎝ ⎛⎭⎪⎫-758×⎝ ⎛⎭⎪⎫145×⎝ ⎛⎭⎪⎫578×(-4)5=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-758×⎝ ⎛⎭⎪⎫578×[⎝ ⎛⎭⎪⎫145×(-4)5] =⎝ ⎛⎭⎪⎫-75×578×⎣⎢⎡⎦⎥⎤14×(-4)5=1×(-1)=-1. (2)原式=⎝ ⎛⎭⎪⎫182 015×(-82 015×8) =⎝ ⎛⎭⎪⎫182 015×(-82 015)×8=-⎝ ⎛⎭⎪⎫18×82 015×8 =-1×8=-8.8.解:∵|a n |=12,|b|n =3, ∴a n =±12,b n =±3. ∴(ab)4n =a 4n ·b 4n =(a n ) 4·(b n )4=⎝ ⎛⎭⎪⎫±124×(±3)4=116×81=8116. 9.解:(1)x 10÷x 4÷x 4=x 2.(2)(-x)7÷x 2÷(-x)3=-x 7÷x 2÷(-x 3)=x 2.(3)(m -n)8÷(n-m)3=(n -m)8÷(n-m)3=(n -m)5.10.解:由已知得(x -1)x 2-1=1,分三种情况:①因为任何不等于0的数的0次幂都等于1,所以,当x 2-1=0且x -1≠0时,(x -1)x 2-1=1,此时x =-1.②因为1的任何次幂都等于1,所以,当x -1=1时,(x -1)x 2-1=1,此时x =2. ③因为-1的偶数次幂等于1,所以,当x -1=-1且x 2-1为偶数时,(x -1)x 2-1=1.此种情况无解.综上所述,x 的值为-1或2.。
甘肃省秦安县2018届高考数学一轮复习专训1轴对称与轴对称图形的应用
专训1 轴对称与轴对称图形的应用轴对称的作图1.如图所示,已知△ABC和直线MN,求作△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)(第1题)轴对称图形的折叠与展开的关系2.如图所示,将一张正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“”的图形,将纸片展开,得到的图形是( )(第2题)轴对称与轴对称图形的面积3.如图,正方形的边长为2 cm,则图中阴影部分的面积为________cm2.(第3题)轴对称与坐标4.已知点M(2a-b,5+a),N(2b-1,-a+b).(1)若点M,N关于x轴对称,试求a,b的值;(2)若点M,N关于y轴对称,试求(b+2a)2 016的值.5.如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC的三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,直接写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,直接写出PP2的长.(第5题)轴对称与折叠6.把一张长方形纸片ABCD按图中的方式折叠,使点A与点E重合,点C与点F重合(E,F两点均在BD上),折痕分别为BH,DG.求证:△BHE≌△DGF.(第6题)答案1.解:如图.(第1题)2.D 3.24.解:(1)∵点M ,N 关于x 轴对称,∴⎩⎪⎨⎪⎧2a -b =2b -1,5+a =-(-a +b ), 解得⎩⎪⎨⎪⎧a =-8,b =-5.(2)∵点M ,N 关于y 轴对称,∴⎩⎪⎨⎪⎧2a -b =-(2b -1),5+a =-a +b , 解得⎩⎪⎨⎪⎧a =-1,b =3.∴(b+2a)2 016=2 016=1.5.解:(1)A 2(4,0),B 2(5,0),C 2(5,2). (2)PP 2=6.6.证明:由折叠可知∠ABH=∠EBH=12∠ABD,∠CDG=∠GDF=12∠CDB,∠HEB=∠A=∠GFD=∠C=90°,AB =BE ,CD =FD.∵AB∥CD,∴∠ABD=∠CDB.∴∠EBH=∠GDF.∵AB=CD ,∴BE=DF.在△BHE 和△DGF 中, ⎩⎪⎨⎪⎧∠EBH=∠FDG,BE =DF ,∠HEB=∠GFD, ∴△BHE≌△DG F(ASA ).点拨:用轴对称的性质解决折叠问题,解决这类问题的关键是折叠前后重合的部分全等,所以对应角相等、对应线段相等.。
甘肃省天水市秦安县第二中学高三数学上学期第二次月考
甘肃省天水市秦安县第二中学2015~2016学年上学期第二次检测考试高三(文科)数学试卷第Ⅰ卷(共60分)一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的选项中,只有一项是符合题目要求的)1、设复数1i z =+(i 是虚数单位),则22z z+等于 ( ) A.1i + B.1i -+ C.i - D.1i --2、设全集U R =,{}0)2(|<-=x x x A ,{})1ln(|x y x B -==,则)(B C A U I 是( ) A.(-2,1) B .(1,2)C .(-2,1]D . [1,2)3、等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于( ) A .1 B.53C.- 2 D 3 4.设等差数列}{n a 的前n 项和为n S ,若7662a a +=,则9S 的值是( )A .27B .36C .45D .54 5.若向量→a ,→b 满足|→a +→b |=|→a -→b |=2|→a |,则向量→a +→b 与→a 的夹角为( ) A .6πB .3πC .32πD .65π6.设函数xxe x f =)(,则( )A .1=x 为)(x f 的极大值点B .1=x 为)(x f 的极小值点C .1-=x 为)(x f 的极大值点D .1-=x 为)(x f 的极小值点7、函数()|2|ln f x x x =--在定义域内的零点的个数为( )A .0B .1C .2D .38、已知向量(2,1),10,||||a a b a b b =⋅=+=r r r r r r则=( )A B C .5D .259、将函数sin y x =的图象向右平移2π个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为 ( )A.1sin y x =-B.1sin y x =+C.1cos y x =-D.1cos y x =+ 10、设R ∈ϕ,则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的( ) A 、充分而不必要条件 B 、必要而不充分条件 C 、充要条件 D 、既不充分也不必要条件11、已知,,,则的大小关系是( ) A .B .C .D .12.若1x 满足522=+xx , 2x 满足5)1(log 222=-+x x , 21x x += ( )A .25 B .3 C .27D .4 第Ⅱ卷 (共90分)二、填空题(共4小题,每小题5分,共20分,把答案填写在答题卡中横线上.) 13.已知数列{n a }的通项公式n a =19-2n ,则n S 取得最大值时n 的值为________. 14.给出下列说法,其中说法正确的序号是________.① 小于ο90的角是第Ⅰ象限角; ②若α是第一象限角,则ααsin tan >; ③ 若x x f 2cos )(=,π=-12x x ,则)()(12x f x f =;④ 若x x f 2sin )(=,x x g 2cos )(=,21,x x 是方程)()(x g x f =的两个根,则12x x -的最小值是π.15.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =21AB ,BE =32BC. 若→→→+=AC AB DE 21λλ(21,λλ为实数),则21λλ+的值为________.16.已知函数1)(23+++=mx x x x f 在区间)2,1(-上不是单调函数,则实数m 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.) 17、(12分)已知向量)1,cos sin 3(x x -=,)21,(cos x n =ρ,若n m x f ρρ⋅=)(.13a π=log 3b π=1)c =,,a b c b c a<<c b a<<b a c<<a b c <<(Ⅰ) 求函数)(x f 的最小正周期;(Ⅱ) 已知ABC ∆的三内角A B C 、、的对边分别为a b c 、、,且3=a ,23)122(=+πA f (A 为锐角),2sin sin C B =,求A 、c b 、的值.18、(12分)已知函数()sin()(f x A x A ωϕ=+>0,ω>0,||ϕ<π)2的图象与y轴的交点为)1,0(,它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为0(,2)x 和0(2π,2).x +-(Ⅰ)求函数()f x 的解析式;(Ⅱ)求函数()f x 在区间[]ππ3,3-上的 单调递增区间;19、(12分)已知公差不为0的等差数列{}n a 的前n 项和为n S ,,243+=a S 且1,1,321--a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,求证:).(2131*N n T n ∈<≤20、(12分)已知函数).,()1(31)(223R ∈+-+-=b a b x a ax x x f (Ⅰ) 若1x =为)(x f 的极大值点,求a 的值;(Ⅱ) 若)(x f y =的图象在点))1(,1(f 处的切线方程为03=-+y x ,求)(x f 在区间[]4,2-上的最大值.21、(12分)已知函数).21)(log 2(log )(42--=x x x f (Ⅰ) 当[]4,2∈x 时,求该函数的值域;(Ⅱ) 若]16,4[log )(2∈≥x x m x f 对于恒成立,求m 的取值范围.选考题:(10分)请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22、选修4-1:几何证明选讲 如图,AB 是⊙O 的直径 ,AC 是弦 ,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F. (Ⅰ) 求证:DE 是⊙O 的切线;(Ⅱ) 若54=AB AC ,求DF AF的值.23.选修4—4:坐标系与参数方程已知曲线1C 的极坐标方程为6cos ρθ=,曲2方程为()4R πθρ=∈,曲线1C 、2C 相交于点A 、B .(Ⅰ)将曲线1C 、2C 的极坐标方程化为直角坐标方程; (Ⅱ)求弦AB 的长.24.选修4-5:不等式选讲 设函数a x x x f +-++=21)(.(I )当5-=a 时,求函数)(x f 的定义域;(II )若函数)(x f 的定义域为R ,试求a 的取值范围.B数学答案:选择题:1--5 ADCCB 6--10 DCCCA 11--12 AC 13、4114、{}13|≥-≤x x x 或 15、(-4,2) 16、6 17、答案:ππ=-=T x x f ),62sin()(1)((2)32,33A ===b c ,π18、答案:Z k k k x x f A ∈⎥⎦⎤⎢⎣⎡+++====ππππππϕω432,434-),621sin(2)(,6,21,2)1(增区间为:(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-ππππ3,3832,34和19、20.解:(1).12)(22-+-='a ax x x f∵ 1=x 是()f x 的极值点,0)1(='∴f ,即022=-a a 0a ∴=或2a =.当0a =时,'()(1)(1)f x x x =-+,1x =是()f x 的极小值点,当2a =时,'()f x 243(1)(3)x x x x =-+=--,1x =是()f x 的极大值点∴a 的值为2.(2)∵))1(,1(f 在03=-+y x 上. 2)1(=∴f∵(1,2)在)(x f y =上 b a a +-+-=∴13122 2131.21,131,1121121)2(,12,2,1)1(*1<≤∴<>==⎥⎦⎤⎢⎣⎡+-=∈-===n n n n n T T n T n n T N n n a d a 时当时当又(1)1f k '==-,21211a a ∴-+-=-,2210a a ∴-+=,81,3a b == 3218().33f x x x ∴=-+ 2()2(2)f x x x x x '=-=-,由0)(='x f 得0x =和2x =,列表:x-2 (2,0)-0 (0,2) 2 (2,4)4 '()f x+ — + ()f x4-增8/3减4/3增8由上表可得()f x 在区间[-2, 4]上的最大值为8. ……12分 21、解:(1))21)(log 2log 2()(44--=x x x f ,]1,21[]4,2[,log 4∈∈=t x x t 时,令 此时,132)21)(22(2+-=--=t t t t y ,]0,81[-∈∴y(2)即恒成立对恒成立,对]2,1[312]2,1[1322∈-+≤∴∈≥+-t tt m t mt t t , 易知.0,0)1()(]2,1[312)(min ≤∴==∴∈-+=m g t g t tt t g 上单调递增,在 22. 解:(Ⅰ)证明:连接OD ,∵AD 平分∠CAB , ∴∠CAD=∠BAD ,∵OA=OD , ∴∠BAD=∠ADO ,∴∠CAD=∠ODA , ∴OD ∥AC ,∵DE ⊥AC ,∴DE ⊥OD , ∴直线DE 是⊙O 的切线.----------5分(Ⅱ)连接BC 交OD 于G ,∵AB 是直径,∴∠ACB=90°,54=AB AC Θ∴设AC=4a ,AB=5a ,由勾股定理得:BC=3a ,∴OA=OD=OB=2.5a ,∵∠ECG=90°=∠DEC=∠EDG ,∴四边形ECGD 是矩形,∵OG 为△ABC 中位线,∴G 为BC 中点∴DE=CG=1.5a ,∵OD ∥AE ,OA=OB ,∴CG=BG ,∴OG=21AC=2a ,∴DG=EC=2.5a-2a=0.5a ,∴AE=AC+CE=4a+0.5a=4.5a , ∵OD ∥AC ,∴△AEF ∽△DOF ,∴.59==OD AE DF AF ----------10分 23. (Ⅰ)2260x y x +-= 0x y -= ……5分(Ⅱ)32AB = ……10分24.解:(Ⅰ)由题设知:05|2||1|≥--++x x如图,在同一坐标系中作出函数21-++=x x y 和5=y 的图象(如图所示) 得定义域为][),32,(+∞⋃--∞. (Ⅱ)由题设知,当R x ∈时,恒有0|2||1|≥+-++a x x即 a x x -≥-++|2||1| 又由(Ⅰ)3|2||1|≥-++x x ∴ ⇒≤-3a 3-≥a。
甘肃省天水市秦安县第二中学高一数学上学期第四次月考试题
数学试题一、选择题(本大题共10小题,每小题4分,共40分)1.若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A . 相交 B. 异面 C. 平行 D. 异面或相交2.如图:直线L 1 的倾斜角α1=300,直线 L 1⊥L 2 ,则L 2的斜率为( ) A.33- B. 33 C.3- D.33.如果0,0>>BC AB ,那么直线0=--C By Ax 不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.若A (-2,3),B (3,-2),C (21,m)三点共线,则m的值为( ) A.21 B.21- C.-2 D.2 5.若直线01243=+-y x 与两坐标轴交点为A 、B ,则以AB 为直径的圆的方程为( )A . 03422=-++y x y xB . 03422=--+y x y xC . 043422=--++y x y x D. 083422=+--+y x y x6. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是 ( )A.①和②B.②和③C.③和④D.①和④7. 直线:10l x y -+=关于y 轴对称的直线方程为( )A .10x y +-=B .10x y -+=C .10x y ++=D .10x y --=8.如图,长方体ABCD —A 1B 1C 1D 1中,BB 1=BC ,P 为C 1D 1上一点,则异面直线PB 与B 1C 所成角的大小( )A .是45°B .是60°C .是90°D .随P 点的移动而变化9. 两直线330x y +-=与610x my ++=平行,则它们之间的距离为 ( )A .4B .21313C .51326D .7102010. 球的体积是32π3,则此球的表面积是 ( ) A .12πB .16π C.16π3 D.64π3二、填空题(本大题共4小题,每小题4分,共16分)11.直线0323=-+y x 截圆422=+y x 所得的弦长是 .12.直线0x ay a +-=与直线(23)0ax a y --=垂直,则a = .13. 已知正方形ABCD 的边长为1,AP ⊥平面ABCD ,且AP=2,则PC = .14. 点P(x,y)在直线x+y-4=0上,O 是坐标原点,则│OP │的最小值是 .三、解答题(共44分)15.(本小题满分10分)直线l 过直线x + y -2 = 0和直线x -y + 4 = 0的交点,且与直线3x -2y + 4 = 0平行,求直线l 的方程.16. (本小题满分12分)已知ABC ∆中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .17.(本小题满分10分)如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1)PA ∥平面BDE ;(2)平面PAC ⊥平面BDE.18. (本小题满分12分)如图,四棱柱1111ABCD A B C D -的底面是正方形,且侧棱和底面垂直。
秦安县第二中学2018-2019学年上学期高二数学12月月考试题含解析
秦安县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.2. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( ) A .{x|x <﹣2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|0<x <4}3. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)4. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .5. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心6. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)7. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .08. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .49.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( )A .2B .4C .1D .﹣110.以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 11.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 12.等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .72二、填空题13.给出下列命题: ①把函数y=sin (x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x﹣);②若α,β是第一象限角且α<β,则cos α>cos β; ③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x﹣)相同;⑤y=2sin (2x﹣)在是增函数;则正确命题的序号 .14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.15.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .16.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.17.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .18.已知平面向量a ,b 的夹角为3π,6=-b a,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 . 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19.设定义在(0,+∞)上的函数f (x )=ax++b (a >0)(Ⅰ)求f (x )的最小值;(Ⅱ)若曲线y=f (x )在点(1,f (1))处的切线方程为y=,求a ,b 的值.20.设函数f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x+2)=﹣f (x ),当x ∈[0,2]时,f (x )=2x ﹣x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)求f (0)+f (1)+f (2)+…+f (2015)的值.21.(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EF AC ,2AD =,EA ED EF ===.(1)求证:AD BE ⊥;(2)若BE =-F BCD 的体积.22.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则23.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O为AD的中点,且CD⊥A1O(Ⅰ)求证:A1O⊥平面ABCD;(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.245(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.秦安县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 2. 【答案】D【解析】解:∵偶函数f (x )=2x ﹣4(x ≥0),故它的图象 关于y 轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0), 故f (x ﹣2)的图象是把f (x )的图象向右平移2个 单位得到的,故f (x ﹣2)的图象经过点(0,0)、(2,﹣3),(4,0), 则由f (x ﹣2)<0,可得 0<x <4, 故选:D .【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.3. 【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0,f(0)=0﹣1=﹣1<0,∴f(x)=x3﹣的零点在(0,1),∵函数y=x3与y=()x的图象的交点为(x0,y0),∴x0所在的区间是(0,1).故答案为:A.4.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.5.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C6.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.7.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.8.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.9.【答案】A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.10.【答案】D11.【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用. 12.【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2. 则a 2a 6=9×q 6=72.故选:D .二、填空题13.【答案】【解析】解:对于①,把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣),故①正确.对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cos α=cos β=,故②错误.对于③,当x=﹣时,2x+π=π,函数y=cos (2x+π)=﹣1,为函数的最小值,故x=﹣是函数y=cos (2x+π)的一条对称轴,故③正确.对于④,函数y=4sin (2x+)=4cos[﹣(2x+)]=4cos (﹣2)=4cos (2x ﹣),故函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同,故④正确.对于⑤,在上,2x ﹣∈,函数y=2sin (2x ﹣)在上没有单调性,故⑤错误,故答案为:①③④.14.【答案】11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110xxe +-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+,当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点,当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点.故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,). 点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 15.【答案】 35 .【解析】解:∵2a n =a n ﹣1+a n+1,(n ∈N *,n >1), ∴数列{a n }为等差数列,又a 2+a 8=6,∴2a 5=6,解得:a 5=3, 又a 4a 6=(a 5﹣d )(a 5+d )=9﹣d 2=8, ∴d 2=1,解得:d=1或d=﹣1(舍去) ∴a n =a 5+(n ﹣5)×1=3+(n ﹣5)=n ﹣2. ∴a 1=﹣1, ∴S 10=10a 1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n }为等差数列,并求得a n =2n ﹣1是关键,考查理解与运算能力,属于中档题.16.【答案】【解析】解:∵f (x )=a xg (x )(a >0且a ≠1),∴=a x , 又∵f ′(x )g (x )>f (x )g ′(x ),∴()′=>0,∴=a x 是增函数,∴a >1,∵+=.∴a 1+a ﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n }.∵数列{}的前n 项和大于62,∴2+22+23+ (2)==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n >5.∴n 的最小值为6. 故答案为:6.【点评】本题考查等比数列的前n 项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.17.【答案】 (﹣,) .【解析】解:∵,,设OC 与AB 交于D (x ,y )点则:AD :BD=1:5即D 分有向线段AB 所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A (x 1,y 1),B (x 2,y 2).及点C 分线段AB 所成的比,求分点C 的坐标,可将A ,B 两点的坐标代入定比分点坐标公式:坐标公式进行求解.18.【答案】6π,18+ 【解析】三、解答题19.【答案】【解析】解:(Ⅰ)f (x )=ax++b ≥2+b=b+2当且仅当ax=1(x=)时,f (x )的最小值为b+2(Ⅱ)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为y=,可得:f (1)=,∴a++b=①f'(x )=a ﹣,∴f ′(1)=a ﹣=②由①②得:a=2,b=﹣120.【答案】【解析】(1)证明:∵f (x+2)=﹣f (x ), ∴f (x+4)=f[(x+2)+2]=﹣f (x+2)=f (x ), ∴y=f (x )是周期函数,且T=4是其一个周期.(2)令x ∈[﹣2,0],则﹣x ∈[0,2],∴f (﹣x )=﹣2x ﹣x 2,又f (﹣x )=﹣f (x ),∴在x ∈[﹣2,0],f (x )=2x+x 2,∴x ∈[2,4],那么x ﹣4∈[﹣2,0],那么f (x ﹣4)=2(x ﹣4)+(x ﹣4)2=x 2﹣6x+8,由于f (x )的周期是4,所以f (x )=f (x ﹣4)=x 2﹣6x+8,∴当x ∈[2,4]时,f (x )=x 2﹣6x+8.(3)当x ∈[0,2]时,f (x )=2x ﹣x 2.∴f (0)=0,f (1)=1,当x ∈[2,4]时,f (x )=x 2﹣6x+8,∴f (2)=0,f (3)=﹣1,f (4)=0∴f (1)+f (2)+f (3)+f (4)=1+0﹣1+0=0, ∵y=f (x )是周期函数,且T=4是其一个周期.∴2016=4×504∴f (0)+f (1)+f (2)+…+f (2015)=504×[f (0)+f (1)+f (2)+f (3)]=504×0=0,即求f (0)+f (1)+f (2)+…+f (2015)=0.【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用.21.【答案】【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.(2)在EAD △中,EA ED ==,2AD =,22.【答案】【解析】AB23.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,∴A1O==,…(2分)∴+AD2=AA12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A(0,0,),…(6分)1设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.24.【答案】【解析】解:(Ⅰ)解法一:依题意有,精选高中模拟试卷第 21 页,共 21 页 答案一:∵∴从稳定性角度选甲合适. (注:按(Ⅱ)看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适.答案二:∵乙的成绩波动大,有爆发力,选乙合适. 解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为.所以选乙合适.(Ⅱ)依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A ,B ,C .“水平不相当”考试是第一次,第四次,记为a ,b .从这5次摸底考试中任意选取2次有ab ,aA ,aB ,aC ,bA ,bB ,bC ,AB ,AC ,BC 共10种情况. 恰有一次摸底考试两人“水平相当”包括共aA ,aB ,aC ,bA ,bB ,bC 共6种情况.∴5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率.【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训2 四种常见的几何关系的探究
位置关系
1.如图,已知BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:AM⊥AN.
(第1题)
相等关系
2.【2015·珠海】已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.
(1)如图①,连接BD,AF,则BD________AF.(填“>”“<”或“=”)
(2)如图②,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF.求证:BH=GF.
(第2题)
和差关系
3.如图,∠BCA=α,CA=CB,C,E,F分别是直线CD上的三点,且∠BEC=∠CFA =α,请提出对EF,BE,AF三条线段之间数量关系的合理猜想,并证明.
(第3题)
不等关系
4.【2016·贵阳】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是________________________________________________________________________;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF 交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD, ∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF 之间的数量关系,并加以证明.
(第4题)
参考答案
1.证明:如图,∵BE⊥AC,CF⊥AB,
∴∠1+∠BAC=90°,∠2+∠BAC=90°.
∴∠1=∠2.
又∵BM=CA,AB=NC,
∴△ABM≌△NCA.
∴∠3=∠N.
∵∠N+∠4=90°,
∴∠3+∠4=90°,
即∠MAN=90°.
∴AM⊥AN.
(第1题)
2.(1)=
(2)证明:将△DEF沿FE方向平移,使点E与点C重合,设ED平移后与MN相交于R,如图,
(第2题)
∵MN∥BC,RC∥EH,
∴∠GRC=∠RHE=∠DEF,∠RGC=∠GCB,
易得∠GRC=∠RGC,
∴△CGR是等腰三角形.
∴CG=CR.
又∵MN∥BF,CR∥EH,
∴四边形RCEH为平行四边形,
∴CR=EH.
∴CG=HE.
由平移的性质得BC=EF,
∴BC+CE=CE+EF,即BE=CF.
易得∠HEB=∠GCF,
∴△BEH≌△FCG(SAS),
∴BH=FG.
3.解:猜想:EF=BE+AF.
证明:∵∠BCE+∠CBE+∠BEC=180°,
∠BCE+∠ACF+∠BCA=180°,
∠BCA=α=∠BEC,
∴∠CBE=∠ACF.
又∵∠BEC=∠CFA=α,CB=AC,
∴△BEC≌△CFA(AAS).
∴BE=CF,EC=FA.
∴EF=CF+EC=BE+AF.
4.(1)2<AD<8
(2)证明:如图,延长FD至点G,使DG=DF,连接BG,EG. ∵点D是BC的中点,
∴DB=DC.
∵∠BDG=∠CDF,DG=DF,
∴△BDG≌△CDF(SAS).
∴BG=CF.
∵ED⊥FD,
∴∠EDF=∠EDG=90°,
又∵ED=ED,FD=GD,
∴△EDF≌△EDG,
∴EF=EG.
∵在△BEG中,BE+BG>EG,
∴BE+CF>EF.
如图,延长AB至点G,使BG=DF,连接CG.
∵∠ABC+∠D=180°,∠ABC+∠CBG=180°,
∴∠CBG=∠D.
∵CB=CD,
∴△CBG≌△CDF(SAS).
∴CG=CF,∠BCG=∠DCF.
∵∠BCD=140°,∠ECF=70°,
∴∠DCF+∠BCE=70°.
∴∠BCE+∠BCG=70°.
∴∠ECG=∠ECF=70°.
∵CE=CE,CG=CF,
∴△ECG≌△ECF(SAS).
∴EF=EG.
∵BE+BG=EG,
∴BE+DF=EF.。