金属拉伸试验报告

合集下载

金属材料拉伸实验

金属材料拉伸实验

金属材料拉伸实验金属材料的力学性能是工程材料中非常重要的一部分,而拉伸实验是评价金属材料力学性能的重要手段之一。

本文将对金属材料拉伸实验的原理、方法和实验结果进行详细介绍。

1.原理。

金属材料的拉伸实验是通过施加拉伸力,使试样产生塑性变形,从而研究金属材料的力学性能。

在拉伸实验中,试样会逐渐发生颈缩,最终断裂。

通过实验中得到的应力-应变曲线,可以分析出金属材料的屈服强度、抗拉强度、延伸率等力学性能指标。

2.方法。

进行金属材料拉伸实验,首先需要准备好金属试样。

在实验过程中,需要使用拉伸试验机,将试样夹紧在拉伸试验机上。

然后,施加拉伸力,记录下试样的载荷和变形数据。

在实验过程中,需要注意保持试样的表面光洁,避免表面缺陷对实验结果的影响。

3.实验结果。

通过拉伸实验得到的应力-应变曲线可以反映出金属材料的力学性能。

曲线的起始部分为弹性阶段,此时金属材料受到的应力与应变呈线性关系。

当应力超过一定数值时,金属材料进入塑性阶段,此时应力与应变不再呈线性关系,试样开始产生颈缩。

最终,在应力达到最大值时,试样发生断裂。

4.分析与讨论。

通过实验结果,可以计算出金属材料的屈服强度、抗拉强度、延伸率等力学性能指标。

这些指标对于工程设计和材料选型具有重要的指导意义。

另外,通过对不同金属材料进行拉伸实验,可以比较它们的力学性能,为工程实践提供参考。

5.结论。

金属材料拉伸实验是研究金属材料力学性能的重要手段,通过实验可以得到金属材料的应力-应变曲线,分析出其力学性能指标。

这些指标对于工程设计和材料选型具有重要的指导意义。

综上所述,金属材料拉伸实验是评价金属材料力学性能的重要手段,通过实验可以得到金属材料的力学性能指标,为工程实践提供重要参考。

金属的拉伸实验(实验报告)

金属的拉伸实验(实验报告)

金属的拉伸实验一一、实验目的1、测定低碳钢的屈服强度二S、抗拉强度匚b、断后延伸率「•和断面收缩率'■2、观察低碳钢在拉伸过程中的各种现象,并绘制拉伸图( F —「丄曲线)3、分析低碳钢的力学性能特点与试样破坏特征二、实验设备及测量仪器1、万能材料试验机2、游标卡尺、直尺三、试样的制备试样可制成圆形截面或矩形截面,采用圆形截面试件,试件中段用于测量拉伸变形,其长度I。

称为“标矩”。

两端较粗部分为夹持部分,安装于试验机夹头中,以便夹紧试件。

试验表明,试件的尺寸和形状对材料的塑性性质影响很大,为了能正确地比较材料力学性能,国家对试件的尺寸和形状都作了标准化规定。

直径d0= 20mm ,标矩I。

=2O0nm(k 1 0或I0 =100mm(l0 =5d0)的圆形截面试件叫做“标准试件”,如因原料尺寸限制或其他原因不能采用标准试件时,可以用“比例试件”。

四、实验原理在拉伸试验时,禾U用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图2-11所示的F—△L曲线。

图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。

分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。

拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。

但同一种材料的拉伸曲线会因试样尺寸不同而各异。

为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力F)除以试样原始横截面面积并将横坐标(伸长△ L)除以试样的原始标距I。

得到的曲线便与试样尺寸无关,此曲线称为应力一应变曲线或R —;曲线,如图2 —12所示。

从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。

爲一上屈服力:①一下屈服力'厂最尢力;叫一断裂后塑性伸恰业一彈性佃长團2—11低碳钢拉伸曲线拉伸试验过程分为四个阶段,如图2—11和图2-12所示。

金属材料拉伸试验报告

金属材料拉伸试验报告

金属材料拉伸试验报告一、实验目的。

本次实验旨在通过对金属材料进行拉伸试验,了解金属材料在受力作用下的变形和破坏规律,掌握金属材料的拉伸性能参数,为材料的选用和设计提供依据。

二、实验原理。

拉伸试验是通过在金属试样上施加拉力,使试样产生塑性变形,最终达到破坏的一种试验方法。

在拉伸试验中,通常会测定材料的抗拉强度、屈服强度、断裂伸长率等指标。

三、实验步骤。

1. 准备试样,按照标准制备金属试样,保证试样的尺寸符合要求。

2. 安装试验机,将试样安装在拉伸试验机上,并调整好试验机的参数。

3. 进行拉伸试验,开始施加拉力,记录拉力-位移曲线,直至试样发生破坏。

4. 测定参数,根据拉力-位移曲线,测定材料的抗拉强度、屈服强度、断裂伸长率等参数。

四、实验数据及结果分析。

通过拉伸试验得到的数据如下:1. 抗拉强度,XXX MPa。

2. 屈服强度,XXX MPa。

3. 断裂伸长率,XX%。

根据实验数据分析可得,材料在受拉力作用下,首先表现出线性的弹性变形,随后进入塑性变形阶段,最终发生破坏。

在拉伸试验中,抗拉强度是材料抵抗拉伸破坏的能力,屈服强度是材料开始发生塑性变形的临界点,断裂伸长率则反映了材料的延展性能。

五、实验结论。

通过本次拉伸试验,我们得出了材料的抗拉强度、屈服强度、断裂伸长率等重要参数。

这些参数对于材料的选用和工程设计具有重要意义。

在实际工程中,我们应该根据材料的拉伸性能参数,合理选择材料,并设计合适的结构,以确保工程的安全可靠。

六、实验总结。

拉伸试验是对金属材料力学性能进行评价的重要手段,通过拉伸试验可以全面了解材料在受拉力作用下的性能表现。

因此,掌握拉伸试验的原理和方法,对于材料工程师和设计人员来说是非常重要的。

在今后的工作中,我们将继续深入学习材料力学知识,不断提高对材料性能的认识,为工程实践提供更加可靠的技术支持。

七、参考文献。

1. 《金属材料拉伸试验方法》。

2. 《金属材料力学性能测试手册》。

以上就是本次金属材料拉伸试验的报告内容,希望能对大家有所帮助。

拉伸试验报告 北京科技大学

拉伸试验报告 北京科技大学

拉伸试验预习报告一、试验目的:1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能2、测定低碳钢的应变硬化指数和应变硬化系数二、试验要求:按照相关国标标准(GB/T228-2002:金属材料室温拉伸试验方法)要求完成试验测量工作。

三、引言◆拉伸试验是评定金属材料性能的常用测量方法,可以检测强度与塑性性能。

◆拉伸试验测定的拉伸曲线还是观察金属材料塑性变形过程的良好手段。

在均匀塑性变形阶段,Hollommon公式可以较好地描述金属塑性变形规律。

该经验公式中,反映材料性能的两个参数是应变硬化系数k和应变硬化指数n。

◆低碳钢是具有良好塑性的金属,经过不同的热处理获得不同微观组织结构,因而具有不同的强度与塑性。

通过拉伸试验观察淬火、正火和退火三种不同的热处理后,低碳钢的性能与塑性参数n,k的变化。

按我国目前执行的国家GB/T 228—2002标准——《金属材料室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。

将试样安装在试验机的夹头中,然后开动试验机,使试样受到缓慢增加的拉力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。

应当指出,试验机自动绘图装置绘出的拉伸变形ΔL主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。

由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。

(a)低碳钢拉伸曲线图(b)铸铁拉伸曲线图图1 由试验机绘图装置绘出的拉伸曲线图低碳钢(典型的塑性材料)当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过F P 后拉伸曲线将由直变曲。

保持直线关系的最大拉力就是材料比例极限的力值F P 。

在F P 的上方附近有一点是F c ,若拉力小于F c 而卸载时,卸载后试样立刻恢复原状,若拉力大于F c 后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而F c 是代表材料弹性极限的力值。

金属材料的拉伸实验报告

金属材料的拉伸实验报告

金属材料的拉伸实验报告一、实验目的。

本实验旨在通过对金属材料进行拉伸实验,了解金属材料在受力作用下的力学性能,探究金属材料的拉伸性能参数,为工程设计和材料选用提供参考依据。

二、实验原理。

金属材料在拉伸过程中,受到外力作用下会发生形变,通过拉伸试验可以得到金属材料的应力-应变曲线。

应力-应变曲线的斜率即为材料的弹性模量,而应力-应变曲线的最大点即为材料的屈服强度,最大点后的应力下降即为材料的延展性能。

三、实验步骤。

1. 将金属试样固定在拉伸试验机上,对试样施加拉伸力。

2. 记录拉伸试验机上的拉伸力和试样的伸长量。

3. 根据拉伸力和伸长量计算金属材料的应力和应变。

4. 绘制应力-应变曲线,并得到材料的弹性模量、屈服强度和延展性能参数。

四、实验数据和结果分析。

通过实验得到金属材料的应力-应变曲线如下图所示:[插入应力-应变曲线图]根据实验数据计算得到金属材料的弹性模量为XXX,屈服强度为XXX,延展性能为XXX。

五、实验结论。

通过本次拉伸实验,我们得到了金属材料的力学性能参数,这些参数对于工程设计和材料选用具有重要意义。

在实际应用中,我们可以根据金属材料的弹性模量、屈服强度和延展性能来选择合适的材料,以确保工程结构的安全可靠性。

六、实验总结。

本次实验通过拉伸试验,探究了金属材料的力学性能,得到了金属材料的应力-应变曲线和相关参数。

同时,我们也深刻认识到了金属材料在受力作用下的变形规律,对于进一步研究金属材料的力学性能具有重要意义。

七、参考文献。

[1] XXX. 金属材料力学性能测试与分析[M]. 北京,科学出版社,2008.[2] XXX. 金属材料力学性能测试方法与应用[M]. 上海,上海科学技术出版社,2010.以上是本次金属材料的拉伸实验报告,谢谢阅读。

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)大学物理实验讲义实验4.2.1 拉伸法测金属丝的杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量,是工程技术上常用的参数,是工程技术人员选择材料的重要依据之一。

条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。

测量材料杨氏模量方法很多,其中最基本的方法有伸长法和弯曲法。

伸长法一般采用拉伸法,其采用的具体测量方法有光杠杆放大法和显微镜直读法;弯曲法包括静态弯曲法和动态弯曲法。

本实验采用拉伸法当中的显微镜直读法。

【实验目的】1. 熟悉米尺和千分尺的使用,掌握读数显微镜的使用方法;2. 学习用逐差法处理数据;3. 了解CCD 成像系统。

【实验仪器】YWC-III 杨氏模量测定仪、钢卷尺、千分尺、水准仪和0.1kg 、0.2kg 的砝码若干。

杨氏模量测定仪的结构如图4-2-1所示。

(a)学生实验配置 (b)教学演示配置图4-2-1 杨氏模量测定仪1. 金属丝支架S 为金属丝支架,高约1.30m ,可置于实验桌上,支架顶端设有金属丝夹持装置,金属丝长度可调,约77cm ,金属丝下端的夹持装置连接一小方块,方块中部的平面上有细十字线供读数用,小方块下端附有砝码盘。

支架下方还有一钳形平台,设有限制小方块转动的装置(未画出),支架底脚螺丝可调。

2. 读数显微镜读数显微镜M 用来观测金属丝下端小圆柱中部平面上细横线位置及其变化,目镜前方装有分划板,分划板上有刻度,其刻度范围0-8mm, 分度值0.01mm ,每隔1mm 刻一数字。

H 1为读数显微镜支架。

D 成像、显示系统(作为示教仪)CCD 黑白摄像机:灵敏度:最低照度≤0.2Lux;CCD 接在显微镜目镜与电视显示器上。

H 2为CCD 黑白摄像机支架。

【实验原理】物体在外力作用下,总会发生形变。

当形变不超过某一限度时,外力消失后形变随之消失,这种形变称为弹性形变。

发生弹性形变时,物体内部产生恢复原状的内应力。

金属拉伸实验报告

金属拉伸实验报告

金属拉伸实验报告导言:金属材料在工业界和科研领域中广泛应用,而了解金属的物理性质对于设计和制造高性能金属构件尤为重要。

本实验旨在通过对金属材料进行拉伸实验,研究其拉伸性能。

实验目的:通过金属拉伸实验,掌握金属的力学性能,包括强度、延伸性以及断裂行为,并分析其与微观组织的关联。

实验方法:本实验选取了常见的工程金属铜作为实验样品,首先将金属样品切割成标准试样。

然后,通过金属材料力学试验机进行实验,即将金属试样夹持在两个夹具之间,然后施加逐渐增加的拉力,在不断测量拉伸过程中的应力和应变的同时,记录下试样断裂之前的长度。

实验过程中,要确保试样质量恒定、环境温度稳定。

实验结果与分析:根据实验数据,我们得到了铜样品在不同拉力下的应力和应变曲线,通过分析这些数据,可以得出以下结论:1. 弹性阶段:在应力小于材料屈服强度时,金属样品表现出弹性变形特性。

应力与应变呈线性关系,即满足胡克定律。

应力-应变曲线为一条直线,斜率等于杨氏模量。

2. 屈服阶段:随着应力的增加,金属样品会在达到一定应力值时开始发生屈服变形。

此时应力-应变曲线出现明显的非线性区域,曲线出现弯曲并逐渐平缓,表示金属样品进入塑性变形阶段。

屈服强度是表征金属材料抵抗塑性变形的能力。

3. 闭口阶段:当金属样品已达到最大应力值时,应力开始急剧下降,直到最终断裂。

这个过程称为闭口阶段。

在这个阶段,金属材料已无法承受更大的应力,进一步拉伸会导致断裂。

通过实验数据的分析,我们可以计算出金属样品的屈服强度、抗拉强度和延伸率等力学性能参数。

这些数据对于制定合适的金属材料应用方案,比如结构设计和材料选型,有着重要的意义。

结论:通过本次金属拉伸实验,我们对金属材料的力学性能有了深入的了解。

金属的力学性能直接受到其微观组织的影响,因此在设计和制造金属构件时,需考虑各种因素对金属力学性能的影响。

此外,为了获得准确可靠的测试结果,实验过程中要注意控制试样形状和尺寸的一致性,并确保实验环境的稳定性。

金属拉伸试验测量审核分析报告(供参考)

金属拉伸试验测量审核分析报告(供参考)

实验室间比对结果和评价报告(金属室温拉伸试验测量审核)根据《CNAS RL02;2007能力验证规则》规定,申请认可和获准认可的实验室必须通过参加能力验证活动(包括CNAS组织实施或承认的能力验证计划、实验室间比对和测量审核)证明其技术能力。

只有在能力验证活动中表现满意,或对于不满意结果能证明已开展了有效纠正措施的实验室,CNAS方受理或予以认可;对于未按规定的频次和领域参加能力验证的获准认可实验室,CNAS将采取警告、暂停、撤销资格等处理措施。

对参加了CNAS组织及其承认的能力验证活动且有稳定满意表现的机构,在CNAS的各类评审中可适当根据情况简化相关项目的能力确认过程。

编号NIL MA016-C-198。

样品为直径10mm金属棒材一、本次验证的实施情况:1、检测仪器设备:上海华龙测试器有限公司微机控制液压万能试验机WEW-100、北京纳克分析仪器有限公司YYV-10/100引伸计。

2、检测依据:GB/228-2002 《金属材料室温拉伸试验方法》3、评定依据:CNAS GL02:2006《能力验证结果的统计处理和能力评价指南》测量审核结果通知单表:注:测量审核结果为满意注:满意值(|Z|≤2);实验室存在可疑值(2<|Z|<3);实验室存在离群值|Z|≥3(部分检测结果不合格)。

二、结果分析:1、检测仪器设备:本次试压检测的仪器均使用了上海华龙测试器有限公司微机控制液压万能试验机WEW-100、京纳克分析仪器有限公司YYV-10/100引伸计。

该仪器设备按照程序检定计划要求及时进行了检定,检定结果为合格,且在有效期限内,仪器状态正常。

该仪器量程2、及准确度等级均满足检测要求。

3、环境条件及场地:检测力学室设有控温、控湿设备,设备状态正常,保证检测结果的准确性;检测场地空间符合检测项目要求。

4、检测方法:采用现行有效的GB/228-2002 《金属材料室温拉伸试验方法》,其数据处理和精度要求均按照该标准执行。

45号钢金属材料拉伸试验数据

45号钢金属材料拉伸试验数据

45号钢金属材料拉伸试验数据1. 引言拉伸试验是一种常见的材料力学测试方法,用于评估材料的力学性能和变形行为。

本文将介绍45号钢金属材料的拉伸试验数据及其分析。

2. 实验方法2.1 材料准备45号钢是一种常见的碳素结构钢,含有适量的碳、硅、锰和其他元素。

实验前,我们首先从市场上购买了45号钢的样品,并进行了必要的预处理,如切割和研磨,以确保样品的表面光滑和尺寸一致。

2.2 实验设备本次实验使用了一台电子拉伸试验机,该试验机能够施加均匀的拉力,并测量样品的拉伸力和变形。

同时,我们还使用了一台计算机来记录和分析实验数据。

2.3 实验步骤1.将45号钢样品安装到拉伸试验机上,确保样品在试验过程中不会发生松动或滑动。

2.开始施加拉力,逐渐增加拉力的大小,直到样品发生断裂。

在该过程中,我们记录了拉伸试验机施加的拉力和样品的变形。

3.实验结束后,我们分别测量了断裂前和断裂后的样品尺寸,并记录下来。

3. 实验结果3.1 拉伸试验数据在本次实验中,我们记录了45号钢样品在拉伸试验过程中的拉力和变形数据。

以下是部分数据示例:施加拉力(N)变形(mm)0 0100 0.05200 0.12300 0.21400 0.35……3.2 拉伸曲线根据实验数据,我们可以绘制出45号钢样品的拉伸曲线。

拉伸曲线反映了材料在拉伸过程中的力学性能和变形行为。

从上图中可以看出,45号钢样品的拉伸曲线呈现出典型的拉伸曲线形状。

在拉力逐渐增加的过程中,样品的变形也随之增加。

当拉力达到一定值时,样品开始发生塑性变形,即拉伸曲线出现明显的线性段。

最终,样品发生断裂,拉伸曲线急剧下降。

3.3 材料性能参数根据拉伸曲线,我们可以计算出一些重要的材料性能参数,如屈服强度、抗拉强度和伸长率等。

•屈服强度:材料开始发生塑性变形的拉力值。

在拉伸曲线的线性段上,取一点与起始点连线与曲线的交点,该点对应的拉力即为屈服强度。

•抗拉强度:材料在拉伸过程中达到的最大拉力值。

拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告引言:杨氏模量是描述某物质材料在受到拉伸或压缩时,弹性变形程度大小的一个物理量。

在实际应用中,杨氏模量常用于描述金属、合金、非晶态材料等材料的弹性特性。

在本次实验报告中,我们将通过拉伸法测量金属丝的杨氏模量。

实验目的:1. 了解拉伸法测定金属丝杨氏模量的基本原理。

2. 掌握拉伸法测定金属丝杨氏模量的实验方法。

3. 掌握实验数据的处理方法,确定金属丝的杨氏模量。

实验原理:当杆(或丝)在轴向受到拉伸力 F 后,其长度增加ΔL,应变为 E。

定义贯穿力 F、应变 E 和初始长度 L 的比值为一项物理量,称为杨氏模量 Y。

根据杨氏定律可得:$$ Y = \frac {F/A} {\Delta L/L} $$其中 A 为截面面积。

实验步骤:1. 用细钢丝制备试件,长度大于两倍的所需要的长度。

2. 将一个试件端固定,另一端悬挂一重物,使得钢丝呈直线状,测试钢丝的长度L0。

3. 用万能测量仪测试钢丝悬挂重物后的长度 L1。

4. 根据悬挂的重量计算钢丝的拉力 F。

5. 重复以上步骤,重复至少三次,记录不同重量下的拉力及钢丝的长度变化。

6. 计算每个拉力及钢丝长度变化的平均值,并绘制拉力-长度变化曲线。

7. 根据拉力-长度变化曲线计算钢丝杨氏模量 Y。

实验数据及处理:重量(kg)|拉力F(N)|长度变化ΔL(mm)|-|-|-|0.001|0.0098|0.15|0.002|0.0196|0.30|0.003|0.0294|0.45|0.004|0.0392|0.60|0.005|0.0490|0.74|计算钢丝的杨氏模量:平均截面积A = πd^2/4 = π(0.18mm)^2/4 = 2.54×10^(-5)m^2计算平均应变 E 平均长度变化ΔL/L =(0.15mm+0.30mm+0.45mm+0.60mm+0.74mm)/(200mm) = 0.0025E = ΔL/L = 0.0025/5 = 0.0005计算杨氏模量 Y Y = F/A/E =(0.0098N+0.0196N+0.0294N+0.0392N+0.0490N)/(5×2.54×10^(-5)m^2×0.0005) =1.96×10^11 Pa实验结果:经过实验测试,我们得到了金属丝的杨氏模量为 1.96×10^11 Pa。

拉伸实验报告

拉伸实验报告

拉伸实验报告拉伸实验报告一、实验目的通过拉伸实验,了解金属材料在受力下的力学性能,并掌握实验室中拉伸试验的操作方法。

二、实验原理拉伸试验是将试样置于拉伸试验机上,施加拉力,逐渐加大试样的应变,测定在不同应变下的力和伸长量,然后计算应力和应变。

通过绘制应力-应变曲线,可获得材料的力学性能参数,如屈服强度、抗拉强度、断裂强度等。

三、实验仪器与试样实验仪器:拉伸试验机试样:金属材料试样,常见的有钢材、铝材等。

四、实验步骤1. 准备试样:根据实验要求,将金属试样切割成标准尺寸,并进行必要的表面处理。

2. 放置试样:将试样固定在拉伸试验机上,确保试样与试验机保持紧密接触。

3. 调试试验机:开启拉伸试验机的电源,根据试样材料的特性确定试验机的工作参数,如拉拔速度、力程范围等。

4. 实施拉伸:通过操作试验机上的控制按钮,开始施加拉力,并逐渐增大拉力,直到试样断裂。

5. 记录数据:在拉伸实验过程中,实时记录试验机上的读数,包括载荷和伸长量。

6. 分析结果:根据实验数据,计算应力、应变,并绘制应力-应变曲线。

根据曲线上的特征点,确定材料的力学性能,如屈服强度、抗拉强度等。

五、实验结果与分析根据实验数据,我们得到了一条应力-应变曲线。

通过该曲线,我们可以计算出各个特征点的数值,如屈服强度、抗拉强度等。

比较不同材料的曲线,可以得出它们的力学性能差异。

六、实验注意事项1. 操作拉伸试验机时,应注意安全,严禁近距离观察试样断裂过程,以免发生危险。

2. 实施拉伸时,应逐渐增大拉力,以避免试样突然断裂造成伤害。

3. 试样应尽量选择无损伤的部位,以保证实验结果的准确性。

4. 实验结束后,要及时关闭拉伸试验机的电源。

七、实验总结通过本次拉伸实验,我掌握了拉伸试验的基本操作方法,并了解了金属材料受力下的力学性能。

通过分析实验结果,我发现不同材料的力学性能存在差异,这对我今后从事相关行业的工作极具参考意义。

同时,本次实验也加深了我对实验安全操作的认识,提高了我的实验技能。

金属拉伸实验报告

金属拉伸实验报告

绘制 σ-ε 简图以及端口形状
抗拉强度 Rm/GPa
断后伸长率 /%
断面收缩率 Ψ/%
0、4567 0、1682
24、16 10、06
67、51 ╱
断口形状:
【实验讨论】
1、什么叫比例试样?它应满足什么条件?国家为什么要对试样得形状、尺寸、 公差与表面粗糙度等做出相应得规定?
答:拉力试件分为比例试件与非比例试件。比例试件得标距长度与横截面积之间具有如下关
系:
,常数k通常为5、65 与 11、3,前者称为短试件,后者称为长试件。所以,长
试件满足
,短试件满足
。因为,试件得形状、尺寸、公差与表面粗糙度(不同),
会对试验数据(结果)产生影响得,因此要做出规定得,使得检测结果标准化。
2、参考试验机自动绘图仪绘出得拉伸图,分析低碳钢试样从加力至断裂得 过程可分为哪几个阶段?相应于每一阶段得拉伸曲线各有什么特点?
78、54
10、 00
10、 00
10、0 0
10、 00
10、0 0
10、0 0
10、00
10、 00
10、0 0
78、54
表2-2、试验数据记录
材 料 上屈服荷载FeH 下屈服荷载FeL
低 碳钢
28、56
25、99
铸铁


单位:KN 屈服荷载Fe
25、99 ╱
最大荷载 Fm 35、87 13、21
查试样得质量与夹具得工作状况,以判断就是否属于偶然情况。
7、归整实验设备:
取下绘记录图纸,请教师检查试验记录,经认可后清理试验现场与所用仪器 设备,并将所用得仪器设备全部恢复原状.
二、铸铁拉伸试验 1、测量试样原始尺寸: 测量方法要求同前,但只用快干墨水或带色涂料标出两标距端点,不用等分 标距段。 2、试验机准备:(要求同前)。 3、安装试样:(方法同前)。 4、检查试验机工作就是否正常:(检查同前,但勿需试车)。 5、进行试验: 开动试验机,保持试验机两夹头在力作用下得分离速率使试样平行长度内得 应变速率不超过 0、008/s得条件下对试样进行缓慢加载,直至试样断裂为止.停

金属材料的拉伸试验

金属材料的拉伸试验

金属材料的拉伸试验
试样一般为圆形(GB/T228.1—2010)规定试样截面可为:圆形、矩形、多边形、环形)拉伸试样。

两端为夹持部分,中间为试验长度。

L为标距(测量伸长用的试样的圆柱部分长度);L0为原始标距(室温下施力前的试样标距)。

试样的一端被夹紧在固定于拉伸试验机静止端(下端)的卡具上,其另一端紧固在试验机的作动筒(运动部分,上端)上。

作动筒通常以固定不变的速率移动并给试样施加载荷。

试验通常持续进行到试样断裂为止。

在试验过程中,作用于试样上的载荷是用叫做“载荷箱”的测力传感器来测定的。

应变是通过直接连接到试样标距上的伸长计(测量试样长度变化的仪器)来测量的。

载荷和伸长量可以用计算机以数字形式或者用x-y记录仪以模拟信号形式记录下来。

可以由载荷—伸长量的测定结果直接获得应力—应变关系曲线。

金属材料拉伸实验

金属材料拉伸实验

金属材料拉伸实验金属材料的拉伸实验是材料力学实验中的一项重要内容,通过对金属材料的拉伸性能进行测试,可以了解材料的力学性能和工程应用特性,为材料的选用和设计提供依据。

本文将介绍金属材料拉伸实验的基本原理、实验步骤和实验结果分析。

1. 实验原理。

金属材料在受力作用下,会发生拉伸变形。

拉伸实验通过施加拉力,使金属试样产生塑性变形,测量拉伸过程中的载荷和位移,得到应力-应变曲线。

应力-应变曲线反映了材料在拉伸过程中的力学性能,包括屈服强度、抗拉强度、断裂伸长率等重要参数。

2. 实验步骤。

(1)试样制备,按照标准规范,制备金属试样,通常为圆柱形或矩形截面。

(2)试样安装,将试样安装在拉伸试验机上,保证试样受力均匀、无偏斜。

(3)施加载荷,逐渐增加拉力,记录载荷和位移的变化。

(4)记录数据,实时记录载荷-位移曲线,得到应力-应变曲线。

(5)实验结束,当试样断裂后,停止施加拉力,记录最大载荷和断裂位置。

3. 实验结果分析。

通过拉伸实验得到的应力-应变曲线,可以分析金属材料的力学性能。

在曲线上可以得到屈服点、抗拉强度、断裂伸长率等参数。

根据这些参数,可以评价材料的塑性变形能力、强度和韧性。

同时,还可以观察试样的断口形貌,了解断裂方式和断裂特征。

4. 实验注意事项。

在进行金属材料拉伸实验时,需要注意以下事项:(1)试样的制备和安装要符合标准规范,保证实验结果的准确性。

(2)拉伸试验机的使用要符合操作规程,避免发生意外。

(3)实验过程中要及时记录数据,并注意试样的变形情况,确保实验的顺利进行。

(4)实验结束后,要对试样的断口进行观察和分析,得出准确的实验结论。

5. 结语。

金属材料拉伸实验是材料力学实验中的重要内容,通过对金属材料的拉伸性能进行测试,可以全面了解材料的力学性能和工程应用特性。

掌握金属材料的力学性能参数,对于材料的选用和工程设计具有重要意义。

希望本文对金属材料拉伸实验有所帮助,谢谢阅读!以上就是金属材料拉伸实验的全部内容,希望对你有所帮助。

金属材料室温拉伸实验报告

金属材料室温拉伸实验报告

金属材料室温拉伸实验报告1、低碳钢当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过FP后拉伸曲线将由直变曲。

保持直线关系的最大拉力就是材料比例极限的力值FP 。

在FP的上方附近有一点是Fc,若拉力小于Fc而卸载时,卸载后试样立刻恢复原状,若拉力大于Fc后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而Fc是代表材料弹性极限的力值。

当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力几乎不变但变形却在继续,这种现象称为材料的屈服。

低碳钢的屈服阶段常呈锯齿状,其上屈服点B′受变形速度及试样形式等因素的影响较大,而下屈服点B则比较稳定(因此工程上常以其下屈服点B所对应的力值FeL作为材料屈服时的力值)。

确定屈服力值时,必须注意观察读数表盘上测力指针的转动情况,读取测力度盘指针首次回转前指示的最大力FeH(上屈服荷载)和不计初瞬时效应时屈服阶段中的最小力FeL(下屈服荷载)或首次停止转动指示的恒定力FeL(下屈服荷载),将其分别除以试样的原始横截面积(S0)便可得到上屈服强度ReH和下屈服强度ReL。

即ReH= FeH/S0 ReL = FeL/S0屈服阶段过后,虽然变形仍继续增大,但力值也随之增加,拉伸曲线又继续上升,这说明材料又恢复了抵抗变形的能力,这种现象称为材料的强化。

在强化阶段内,试样的变形主要是塑性变形,比弹性阶段内试样的变形大得多,在达到最大力Fm之前,试样标距范围内的变形是均匀的,拉伸曲线是一段平缓上升的曲线,这时可明显地看到整个试样的横向尺寸在缩小。

此最大力Fm为材料的抗拉强度力值,由公式Rm=Fm/S0 即可得到材料的抗拉强度Rm。

如果在材料的强化阶段内卸载后再加载,直到试样拉断,则所得到的曲线如图2-3所示。

卸载时曲线并不沿原拉伸曲线卸回,而是沿近乎平行于弹性阶段的直线卸回,这说明卸载前试样中除了有塑性变形外,还有一部分弹性变形;卸载后再继续加载,曲线几乎沿卸载路径变化,然后继续强化变形,就像没有卸载一样,这种现象称为材料的冷作硬化。

金属材料拉伸试验报告

金属材料拉伸试验报告

金属材料拉伸试验报告金属材料室温拉伸试验方法GB中华人民共和国国家标准GB/T228-2002eqv ISO 6892:1998金属材料室温拉伸试验方法Metallic materials——Tensile testing at ambient temperature发布GB/T228-2002目次前言ⅢISO前言Ⅳ1 范围12 引用标准13 原理14 定义15 符号和说明56 试样67 原始横截面积(So)的测定78 原始标距(Lo)标记79 试验设备的准确度710 试验要求811 断后伸长率(A)和断裂总伸长率(At)的测定812 最大力总伸长率(Agt)和最大力非比例伸长率(Ag)的测定913 屈服点延伸率(Ae)的测定914 上屈服强度(ReH)和下屈服强度(ReH)和下屈服强度(ReL)的测定1015 规定非比例延伸强度(Rp)的测定1016 规定总延伸强度(Rt)的测定1117 规定残余延伸强度(Rr)的验证方法1118 抗拉强度(Rm)的测定1119 断面收缩率(Z)的测定1220 性能测定结果数值的修约1421 性能测定结果的准确度1422 试验结果处理1523 试验报告15附录A(标准的附录)厚度0.1mm~<3 mm薄板和薄带使用的试样类型16附录B(标准的附录)厚度等于或大于3mm板材和扁材以及直径或厚度等于或大于4mm线材、棒材和型材使用的试样型17附录C(标准的附表录)直径或厚度小于4mm线材、棒材和型材使作的试样类型20附录D(标准的附录)管材使用的试样类型21附录E(提示的附录)断后伸长率规定值低于5%的测定方法24附录F(提示的附录)移位方法测定断后伸长率24附录G(提示的附录)人工方法测定棒材、线材和条材等长产品的最大力总伸长率25附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(Rp)26附录I(提示的附录)卸力方法测定规定残余延伸强度(Rr0。

2)举例27附录J(提示的附录)误差累积方法估计拉伸试验的测量不确定度28附录K(提示的附录)拉伸试验的精密度—根据实验室间试验方案的结果31附录L(提示的附录)新旧标准性能名称和符号对照34GB/T228-2002前言本标准有效采用国际标准ISO 6892:1998《金属材料室温拉伸试验》。

拉伸实验报告结论

拉伸实验报告结论

拉伸实验报告结论拉伸实验报告结论引言:拉伸实验是一种常见的材料力学测试方法,通过施加外力对材料进行拉伸,观察其变形和破坏行为,从而获得材料的力学性能参数。

本文将对拉伸实验的结果进行分析和总结,得出结论。

1. 实验目的及方法回顾本次拉伸实验的目的是研究不同材料在受力下的变形和破坏行为,以及计算材料的力学性能参数。

实验中,我们使用了标准拉伸试验机,将不同材料的试样放置在拉伸机上,并施加逐渐增加的拉力。

同时,通过传感器记录试样的变形和力的变化,以便后续分析。

2. 实验结果分析通过对实验数据的分析,我们得出以下结论:2.1 材料的拉伸强度拉伸强度是材料在拉伸过程中所能承受的最大应力。

实验结果显示,不同材料的拉伸强度存在显著差异。

例如,钢材的拉伸强度通常很高,而塑料材料的拉伸强度较低。

这与材料的分子结构和原子间的结合方式有关。

2.2 材料的屈服点屈服点是材料在拉伸过程中开始产生可见塑性变形的应力值。

实验结果表明,不同材料的屈服点也有较大差异。

一些金属材料具有明显的屈服点,而一些非金属材料则没有明显的屈服点。

这些差异可能与材料的晶体结构和原子间的滑移方式有关。

2.3 材料的延伸率延伸率是材料在拉伸过程中的延展性能指标,表示材料在断裂前能够拉伸的长度与原始长度之比。

实验结果表明,不同材料的延伸率也有显著差异。

金属材料通常具有较高的延伸率,而塑料材料的延伸率较低。

这与材料的分子结构和原子间的排列方式有关。

3. 结论通过对拉伸实验结果的分析,我们得出以下结论:3.1 不同材料的力学性能差异较大,这与材料的分子结构、晶体结构以及原子间的结合方式有关。

3.2 金属材料通常具有较高的拉伸强度和延伸率,而塑料材料的拉伸强度和延伸率较低。

3.3 材料的屈服点与其塑性变形能力相关,金属材料通常具有明显的屈服点,而非金属材料则没有明显的屈服点。

综上所述,拉伸实验结果表明不同材料在受力下的力学性能存在显著差异。

通过对这些差异的研究,我们可以更好地理解材料的力学行为,并为材料的设计和应用提供参考依据。

金属拉伸试验报告

金属拉伸试验报告
若长段所余格数为奇数时,如图3(b)所示,可在长段上取所余格数减1之半得C点,再取所余格数加1之半得C1点,于是l1=AB+BC+BC1
图3a);b)
当断口非常接近试件两端部,而与其端部的距离等于或小于直径的两倍时,需重作试验.
四、试验方法和步骤
1.试件准备
先用游标卡尺测量试件中间等直杆两端及中间这三个横截面处的直径:在每一横截面内沿互相垂直方向各测量一次并取平均值。用所测得的三个平均值中最小的值作为试件的初始直径d0,并按d0计算试件的初始横截面面积A0。
整理试验数据,按要求填写试验报告并写出结论。
铸铁拉伸试验步骤与低碳钢拉伸试验步骤相同,只记录最大载荷并绘出拉伸曲线。
拉伸试验报告
班级姓名学号
试验日期成绩
一、试验目的
二、试验设备和仪器
三、试验数据记录和处理
1.试验前试件尺寸
材 料
标 距
l0
(mm)
试件直径d (mm)
横截面
面 积
A0(mm2)
截面I
截面II
低碳钢
铸铁
(2)计算低碳钢延伸率δ和断面收缩率Ψ
再根据试件的初始直径d0计算试件的标距l0,并用游标卡尺在试件中部等直杆段内量取试件标距l0,用刻线器将标距长度分为十等份。
2.试验机准备
熟悉万能试验机的操作规程,估计拉伸试验所需的最大载荷Pb,并根据Pb值选定试验机的测力度盘(Pb值在测力度盘40% -80%范围内较宜)。调整测力指针对准零点,并使从动针与之靠拢,同时调整好自动绘图装置。
当测力指针不动或倒退时,说明材料开始屈服,测力指针停止转动时的恒定值或第一次回转的最小值即屈服载荷Ps。当测力指针和从动指针再次分离时,试件开始颈缩,直至最后被拉断。测力指针回到零点,而从动指针则指示出最大载荷Pb。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.61
19.58
101
270
390
26.5
8
50.27
80
13.97

20.08
103
280
400
29.0 5809017303


1.万能试验机编号:70103 2.试验方法: GB/T228-2002
试验:
计算:
复核:
审核:
监理工程师:
0.27073801 0.38949672 0.27789934 0.39944301
国道主干线昆明绕城高速公路西南段(安宁至晋宁)
金属拉伸试验报告
第 六 合同段
试验单位
昆明绕城高速公路西南段土建工程 第六合同段中心试验室
工程名称
桥梁工程
监理单位 钢材来源
试表24 云南云路工程监理咨询有限公司 试验编号 AJ06-GJ(Y)-QL-001-2
武钢集团昆明钢铁股份有限公司 报告日期
2008.9.11
里程桩号
K22+440-K27+342.7
取样部位
桩基
试验标准
GB1499.1-2008
编 号
名称及规格
试件直径 横截面积 标距 屈服荷载 极限荷载
(mm)
(mm2) (mm) (KN)
(KN)
试后长度 (mm)
屈服强度 (MPa)
极限强度 伸长率
(MPa)
(%)
炉(批)号
1
Q235J
8
50.27
80
相关文档
最新文档