北京航空航天大学概率与数理统计2008年真题
北航数理统计答案
北航数理统计答案【篇一:北航数理统计考试题】术部2011年12月2007-2008学年第一学期期末试卷一、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?,?2)的样本,令t?x?x),试证明t服从t-分布t(2)二、(6分,b班不做)统计量f-f(n,m)分布,证明1f的?(0?1)的分位点x?是1f1??(n,m)。
三、(8分)设总体x的密度函数为?(1??)x?,0?x?1p(x;?)??0,其他?其中???1,是位置参数。
x1,x2,…,xn是来自总体试求参数?的矩估计和极大似然估计。
四、(12分)设总体x的密度函数为?1?x???exp???,x???p(x;?)??????,??0,其它其中???????,?已知,??0,?是未知参数。
x1,x2,…,xn是来自总?体x的简单样本。
(1)试求参数?的一致最小方差无偏估计?;(2)?是否为?的有效估计?证明你的结论。
五、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,y1,y2,…,yn是来自正态总体n(?两样本相互独立,其中?设h0:?1??2,h1:?1??2,1221?,?1)2的,?2)的简单样本,且21,?1,?2,?222是未知参数,???22。
为检验假可令zi?xi?yi, i?1,2,...,n ,???1??2 ,则上述假设检验问题等价于h0:?1?0,h1:?1?0,这样双样本检验问题就变为单检验问题。
基于变换后样本z1,z2,…,zn,在显著性水平?下,试构造检验上述问题的t-检验统计量及相应的拒绝域。
六、(6分,b班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,?0已知,?2未知,试求假设检验问题h0:?2,?)02的??0,h1:?22??02的水平为?的umpt。
七、(6分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6分)设方差分析模型为?xij????i??j??ij?2??ij服从正态总体分布n(0,?)且?ij相互独立??i?1,2,...,p;j?1,...,q?pq??和?满足??i?0,??j?0.j?ii?1j?1?总离差平方和pst?sa?sb?se中sa?q?(xi??x),x?i?1x??pqi?1j?11pqij,xi??1qijx?qj?1,且e(se)=(p-1)(q-1)?.?...??p?0的拒绝2试求e(sa),并根据直观分析给出检验假设h0:?1??2域形式。
北航概率统计期末试题和答案
3.设 F1 ( x) 与 F2 ( x) 分别为两个随机变量的分布函数,令 F ( x) aF1 ( x) bF2 ( x) , 则下列各组数中能使 F ( x) 为某随机变量的分布函数的有( ( A)a (C ) a ) .
2 2 , b ; 3 3 3 1 , b ; 2 2
s 2 0.81 。给定检验水平 0.05 ,从该性能指标抽样结果检验这一天的生产是
否正常。 ( z0.95 1.645 , z0.975 1.960 , t0.95 (8) 1.8595 , t0.975 (8) 2.3060 ,
t0.95 (9) 1.8331 , t0.975 (9) 2.2622 )
4.设随机变量 X ~ B( n , p ) ,则数学期望 E ( e 2 X ) 5.设随机变量 X 服从参数为 2 的指数分布,由契比雪夫不等式得
P{ X 1 2 1}
E ( XY )
, D( XY )
。
6.设 X 和 Y 是相互独立的两个随机变量,且 X ~ (5) , Y ~ N (1 , 4) ,则 。
2
X 与 Y 是相互独立的随机变
(2) E[ Z (t )] , E[ Z (t ) Z (t )] , E[ Z 2 (t )] ;
(3)问 Z (t ) 是否为广义平稳过程?
[七]、 (8 分) (此题讲 1 至 9 章学生做,讲 1 至 13 章学生不做)
某工厂有四种不同类型的机床,型号为 1,2,3,4,其台数之比为 9 : 3 : 2 : 1 , 它们在一定时间内需要修理的概率之比为 1 : 2 : 3 : 1 ,当有一台机床需要修理时, 问这台机床恰是型号为 1 的机床的概率是多少。
2008年(下)概率与数理统计
全国2008年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =2.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6D .0.83.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31 B .3eC .11--eD .1311--e4.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31C .3D .45.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )A .161B .163 C .41 D .836.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .17.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(ND .)45,11(N8.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( ) A .np p )1(- B .np p )1(- C .)1(p np - D .)1(p np -9.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(tD .)1,1(F10.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
自考2008_概率论与数理统计试题详解(珍藏版)
全国2008年4月自考试题概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( ) A .601B .457C .51 D .157 2.下列各函数中,可作为某随机变量概率密度的是( ) A .⎩⎨⎧<<=其他,0;10,2)(x x x fB .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f3.某种电子元件的使用寿命X (单位:小时)的概率密度为⎪⎩⎪⎨⎧<≥=,100,0;100,100)(2x x x x f 任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21 D .32 4.下列各表中可作为某随机变量分布律的是( ) A . B .C .D .5.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=,x ,;x ,ce f(x)x -0005则常数c 等于( )A .-51B .51 C .1D .56.设E (X ),E (Y ),D (X ),D (Y )及Cov(X,Y )均存在,则D (X-Y )=( ) A .D (X )+D (Y )B .D (X )-D (Y )C .D (X )+D (Y )-2Cov(X,Y )D .D (X )-D (Y )+2Cov(X,Y )7.设随机变量X ~B (10,21),Y ~N (2,10),又E (XY )=14,则X 与Y 的相关系数=XY ρ( )A .-0.8B .-0.16C .0.16D .0.88.已知随机变量X 的分布律为E (X )=1,则常数x =( ) A .2 B .4 C .6D .89.设有一组观测数据(x i ,y i ),i =1,2,…,n ,其散点图呈线性趋势,若要拟合一元线性回归方程x y 10ˆˆˆββ+=,且n i x y ii ,,2,1,ˆˆˆ10 =+=ββ,则估计参数β0,β1时应使( ) A .∑=-ni i iyy1)ˆ(最小 B .∑=-ni i iyy1)ˆ(最大 C .∑=-ni i iyy1)ˆ(2最小 D .∑=-ni i iyy1)ˆ(2最大 10.设x 1,x 2,…,1n x 与y 1,y 2,…,2n y 分别是来自总体),(21σμN 与),(22σμN 的两个样本,它们相互独立,且x ,y 分别为两个样本的样本均值,则y x -所服从的分布为( ) A .))11(,(22121σμμn n N +- B .))11(,(22121σμμn n N -- C .))11(,(2222121σμμn n N +- D .))11(,(2222121σμμn n N -- 二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
2008年高考数学试题分类汇编——概率与统计
2008年高考数学试题分类汇编(概率与统计)1.(全国一20).(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.2.(全国二18).(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为410-.10.999(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).3.(北京卷17).(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.4.(四川卷18).(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望。
08级本科《概率论与数理统计》A卷答案(教考分离)
上海立信会计学院2009~2010学年第二学期2008级本科《概率论与数理统计》期终考试试卷(A )(本场考试属闭卷考试,考试时间120分钟,可使用计算器) 共8页学院 班级 学号 姓名一、单项选择题(每题2分,共10分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.对于事件设B A ,,下列命题正确的是 ( ) A .若B A ,互不相容,则A 与B 也互不相容 B .若B A ,相容,则A 与B 也相容C .若B A ,互不相容,且概率都大于零,则A 与B 也相互独立D .若B A ,相互独立,则A 与B 也相互独立2.将一枚骰子掷两次,记21X X 、分别第一、第二掷出的点数。
记:}10{21=+=X X A ,}{21X X B <=。
则=)|(A B P ( )A .31 B .41 C .52 D .65 3.设随机变量X 与Y 均服从正态分布,)2,(~2μN X ,)5,(~2μN Y ,记}2{1-≤=μX P p ,}5{2+≥=μY P p ,则 ( )A .对任何实数μ,都有21p p =B .对任何实数μ,都有21p p <C .只对μ的个别值才有21p p =D .对任何实数μ,都有21p p > 4.设随机变量21,X X 独立,且21}1{}0{====i i X P X P (2,1=i ),那么下列结论正确的是 ( )A .21X X =B .1}{21==X X PC .21}{21==X X P D .以上都不正确 5.设21,X X 取自正态总体)2,(μN 的容量为2的样本,下列四个无偏估计中较优的是( )A .2114341ˆX X +=μB .2122121ˆX X +=μC .21332ˆX X +=μD .2147374ˆX X +=μ 二、填空题(每题2分,共10分)1.设B A ,为随机事件,5.0)(=A P ,6.0)(=B P ,8.0)|(=A B P ,则=)(B A P2.设离散型随机变量X 的分布列为kA k X P )2/1(}{==( ,2,1=k ),则常数=A3.设X 的概率密度为21)(x ex f -=π,则=)(X D4.已知随机变量X 的密度为⎩⎨⎧<<=其它010)(x x a x f ,则=a5.设随机变量X 和Y 相互独立且都服从正态分布)3,0(2N ,而91,,X X 和91,,Y Y 分别是来自总体X 和Y 简单随机样本,则统计量292191YY X X U ++++=服从 分布。
课程代码为04183的概率论与数理统计-试题及答案(2008年1月、4月、7月、10月)
课程代码为04183的概率论与数理统计-试题及答案(2007年4月、7月、10月) 2008年1月高等教育自学考试全国统一命题考试概率论与数理统计(经管类) 试卷课程代码 4183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设事件A 与B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.AB=φB.P(A B )=P(A)P(B )C.P(B)=1-P(A)D.P(B |A )=0 2.设A 、B 、C 为三事件,则事件C B A =( )A.A C BB.A B CC.( A B )CD.( A B )C3. 设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是( )4.设随机变量X~N(1,4),Φ(1)=8413.0,Φ(0)=0.5,则事件{1≤X ≤3}的概率为( )A.0.1385B.0.2413C.0.2934D.0.34135.设随机变量(X ,Y )的联合概率密度为f(x,y)=则A=( ) A.21 B.1 C.23 D.2 6.Y X0 5 041 61 2 31 41则P{XY=0}=( ) A. 41 B.125 C.43 D.17.设X~B (10,31),则E (X )=( ) A.31 B.1C.310 D. 10 8.设X~N (1,23),则下列选项中,不成立...的是( ) A.E (X )=1B.D (X )=3C.P (X=1)=0D.P (X<1)=0.59.设且P(A)=0.8,1000021X ,,X ,X 相互独立,令Y=则由中心极限定理知Y 近似服从的分布是( )A.N(0,1)B.N(8000,40)C.N(1600,8000)D.N(8000,1600)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
北京航空航天大学概率统计各章试题 概率统计与随机过程各章试题
第1章 随机事件的概率一、事件关系:1、设B A ,为任意两事件,则下列关系成立的是( C ).(A) A B B A =-+)( ; (B) ()A B AB A +-= ;(C) ()()A B AB B A A B -++-=+ ; (D) A B B A =+-)(.1、 设A 、B 为试验E 的两个事件,且1)(0<<B P ,则下列各式中成立的是( D )。
(A) )(1)|(A P B A P -=; (B) )|()|(B A P B A P =;(C) )()()(B P A P AB P =; (D) )|()()(B A P B P B A P = 。
二、古典概率:2、一盒内装有5个红球和15个白球,从中不放回取10次,每次取一个球,则第5次取球时得到的是红球的概率是( B )。
(A )15; (B )14; (C )13 ;(D )12。
三、(9分)从9~0这十个数码中任意取出4个排成一行数码,求: (1) 所取4个数码恰排成四位偶数的概率;(2) 所取4个数码恰排成四位奇数的概率;(3)没排成四位数的概率.解(1) 设=A 排成四位偶数, (末尾是2,4,6,8之一,或末尾是0), 9041)(4101139142818=+=A C A C A C A P ; (2) 设=B 排成四位奇数, 9040)(410152818==A C A C B P ; (3)设=C 没排成四位数, 101909)(4103911===A A A C P 6、从9~0这十个数码中任意取出4个排成一串数码,则数码恰成四位偶数的概率为:(A)(A )4190 ;(B )12;(C )4090;(D )3290 。
1、设有n 个球,每个球都能以同样的概率N1落到N 个格子)(n N ≥的每一个格子中, 则恰有n 个格子中各有一个球的概率为 !!()()!n n N N n n n C n A N P B N N N N n ===- 。
北京航空航天大学2008-2009年概率统计与随机过程历年试卷(第二学期)
。
5、设随机变量 X 在 (
, ) 上服从均匀分布,则 Y tan X 的概率密度为 2 2
。
fY ( y )
6、设总体 X ~ N ( , 2 ) , X1 , X 2 , , X n 是来自于 X 的一个样本,令 X
1 n 1 n 2 ˆ , X ( X i X )2 。 i n i 1 n 1 i 1
1 n 1
, (B)
2
(A)
1 1 , ( C) , n 1 n
( D )
).
1 。 n
4、设随机变量 X ~ N ( , ) ,则 E | (A)
4
;
(B)
2
4
求 E X Y 及 E XY 。
六、(满分 12 分)
设总体 X ~ N (1 , 2 ) , Y ~ N (2 , 2 ) ,且 X 与 Y 相互独立;
X1 , X 2 , , X n ; Y1 , Y2 , , Ym 别是来自 X 和 Y 的样本,
4、D;5、C;6、C;
1、D;2、B;3、A 。
二、填空题(每小题 3 分,满分 18 分
1 1 ;2、 2 2 p 1 (1 p)
1、 P{ X取奇数}
p
fY ( y )
1 1 y2
1
,
y
2 4 3、 DS ( n 1)
2
.
n n CN n! AN N! 5 1 4、 P ( B ) ; 5 、 Nn N n N n ( N n)! 5 15 4 22 11 P( A) 56 28
北航概率统计试卷及答案解析
Detailed : T
x ~ N(, 2 ) n
x
0
~
N (0,1)
n
(n
1)s2 2
~
2 (n
1)
T
x s
0
~t
n
1
n
x 0
n (n 1)s2
2
x 0
s
x 0 s
n
n
(n 1)
2、设 X 为随机变量,且 EX 1, DX 0.1 ,则一定成立的是 B 。
7、设随机变量
X
的概率密度为
f
(x)
ex
a ex
,
x ,(常数 a 0 ),
A 卷 5 页-3
则 P{0 X ln 3}
。
A. 1 ; 6
B. ; C. 1 ; D. 2 。
ห้องสมุดไป่ตู้
6
12
ln 3 0
f
(x)dx
ln 3 0
ex
a e
x
dx
P(B) 0.2
2、设在试验 E 中事件 A发生的概率 P( A) ( 0 1),
n 把试验 E 独立地重复做下去, 令 Bn “在前 次实验中事件 A至少发生一次”,
则
lim
n
P(Bn
)
。
Answer:一旦涉及到
lim
n
P(
X
)
?
的题时,后面的不是
0
就是
1,根据经验判断即可。
一、 选择题,根据题目要求,在题下选项中选出一个正确答案(本题共 36 分,
20082009第1学期北京航空航天大学概率统计期末考试卷A卷及答案A和B卷
北京航空航天大学BEIHANG UNIVERSITY2008-2009 学年第一学期期末考试统一用答题册班级_____________ 学号 _____________姓名______________ 成绩 _________考场教室_________ 任课教师_________A2009年1月16 日10:30—12:30一、单项选择题(每小题3分,满分18分)1、设1234,,,X X X X 是来自正态总体2(0,)N σ的样本,设∑==4141i i X X ,当2σ= ( )时, 概率}21{≤≤X P 最大。
(A, (B )6ln2 , (C, (D ) 32ln 2。
2、 设总体X 的密度函数为1(1)01(;)0x x x f x θθθθ-⎧+<<=⎨⎩(1-),,其它,其中0θ>,12,,,n X X X 是来自总体X 的样本,则参数θ的矩估计量为( )。
(A )1X X - , ( B )22X X - , (C ) 2X X - , ( D ) 21XX-。
3、设1,,n X X 是来自正态总体2(,)N μσ的样本,当c =( )时,222ˆˆX c μσ=+是 2μ的无偏估计,其中2211ˆ()n i i X X n σ==-∑,∑==n i i X n X 11 。
(A )11n -- , (B )11n - , ( C ) 1n - , ( D )1n。
4、设随机变量),(~2σμN X ,则=-||μX E [ ].(A) 0, (B) σ, (C)σπ22, (D) μ.5、两人约定在某地相会,假定每人到达的时间是相互独立的,且到达时间在中午12时到下午1时之间服从均匀分布,则先到者等待10分钟以上的概率为[ ]. (A) 3625, (B) 7225, (C)5247, (D)3611.6、设n X X X ,,,21⋅⋅⋅是总体),(2σμN 的样本,μ已知,下列几个作为2σ的估计量中,较优的是[ ].(A) 2121)(1ˆX X n n i i -=∑=σ, (B) 2122)(11ˆX X n n i i --=∑=σ, (C) 2123)(1ˆμσ-=∑=n i i X n , (D) 21124)(11ˆμσ--=∑-=n i i X n .二、填空题(每小题3分,满分18分)1、有n 个白球与n 个黑球任意地放入两个袋中,每袋装n 个球.现从两袋中各取一 球,则所取两球颜色相同的概率为 。
北京航空航天大学2007-2008年概率统计与随机过程历年试卷汇编
北京航空航天大学BEIHANG UNIVERSITY2007-2008 学年第二学期期末考试统一用答题册班级_____________ 学号 _____________姓名______________ 成绩 _________考场教室_________ 任课教师_________A2008年6月 26 日一、单项选择题(每小题3分,满分18分)1、 设事件A 、B 为任意事件,则下列各式中成立的是( )。
(A) )()()(B P A P B A P +=+; (B) )()()(B P A P B A P -=-; (C) )()()()(A P AB P B P B A P -+=-; (D) )()()(B P A P B A P =- 。
2、 有)3(≥n n 个人随机围坐在一个圆桌的一圈, 甲、乙两人相邻的概率是( )。
(A)n 2; (B) 12-n ; (C) )1(2-n n ; (D) )!1(1-n . 3、 已知随机变量X 的概率密度为⎩⎨⎧≤≤+=其它,020,)(x bx a x f , 且41}1{=≥X P ,则有( ) 。
(A) 21,1-==b a ; (B) 1,21=-=b a ;(C) 21,1==b a ; (D) 1,21==b a 。
4、 设随机变量X 在]2,2[ππ-上服从均匀分布,则X Y cos =的概率密度为( )。
(A )⎪⎩⎪⎨⎧≤≤-=其它,022,1)(πππy y f Y ; (B )⎪⎩⎪⎨⎧<≤--=其它,011,111)(2y y y f Y π; (C )2111)(y y f Y +=π, +∞<<∞-y ; (D )⎪⎩⎪⎨⎧<≤-=其它,010,112)(2y yy f Y π 。
5、设随机变量4321,,,X X X X 相互独立,且服从同一分布,数学期望0=i EX ,方差02≠=σi DX ,4,3,2,1=i ;令321X X X X ++=,432X X X Y ++=, 则X 与Y 的相关系数XY ρ为( ). (A )32 ; (B )49σ; (C )292σ; (D )22σ 。
08年秋季学期概率统计考试题及解答(xin2)
概率论与数理统计试题(2008秋)(注:需用到的标准正态分布表,t -分布表见第四页末尾处。
)一、填空题(每题3分,共计15分)1.设事件,A B 满足()0.5,()0.6,(|)0.6P A P B P B A ===, 则()P A B = .2.设事件,,A B C 两两独立,且ABC φ=,1()()()2P A P B P C ==<,9()16P A B C =,则()P A = .3.设r. v X 的概率密度为⎩⎨⎧<<=其他,010,2)(x x x f ,对X 进行三次独立重复观察,用Y表示事件1()2X ≤出现的次数,则(1)P Y ==_______.4.已知一批零件长度未知μμ),4,(~N X ,从中随机地抽取16个零件,得样本均值,30=X 则μ的置信度为0.95的置信区间是 .5.在区间)1,0(中随机取两数,则事件“两数之差的绝对值小于21”的概率为 .二、单项选择题(每题3分,共计15分)1.设,A B 为两个事件,()()0P A P B ≠>,且B A ⊂,则一定成立 (A )(|)1P B A =; (B )(|)1P A B =;(C )(|)1P B A =; (D )(|)0P A B =. 【 】 2.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是 (A )A 与B C 独立; (B )A B 与A C 独立;(C )A B 与A C 独立; (D )A B 与A C 独立. 【 】 3.设随机变量X 的密度函数为||1()2x f x e-=,则对随机变量||X 与X ,下列结论成立的是(A )相互独立; (B )分布相同; (C )不相关; (D )同期望. 【 】4.设随机变量X 服从参数为31的指数分布,Y ~)6,0(U ,且31=XY ρ,根据切比晓夫不等式有:)44(≤-≤-Y X P ≥(A )81. (B )85. (C )41. (D )92. 【 】5.设12,,,n X X X 是总体X ~),(2σμN 的样本,2,,EX DX X μσ==是样本均值,2S 是样本方差,2*S为样本的二阶中心矩,则(A )),(~2σμN X . (B ))1(~)1222*--n Sn χσ(.(C )∑=-n i i X X 122)(1σ是2σ的无偏估计. (D )相互独立与22S X . 【 】三、(10分)今从装有白球3个,黑球3个的甲箱子中任取2个,然后将2个球放入含有2个白球3个黑球的乙箱中,再从乙箱中任取1个球,求(1)从乙箱中取到1个白球的概率;(2)已知从乙箱中取到一个白球的条件下,从甲箱中取出两个白球的概率。
北京航空航天大学841参考答案
不独立
n 十一、
n
∑ xi
i=1
n
∑ xi
十二、 i=1 n
十三、
十四、(-0.01789,0.01389) 十五、0.09551
2005 年 一、 1、0.848 2、0.804 二、 1、0.226 2、0.977 三、0.005 四、 单个元件寿命大于 75h 的概率为 0.472 两件并联寿命大于 75h 的概率为 0.722 五、
2
1、0.40375 2、0.1925 六、0.8727 七、1.33 八、不独立、相关 九、 1、-0.204
2、8.25 十、0.9793
n 十一、 - n
∑ xi
i=1
十二、 1、(-0.01567,0.01967) 2、(0.0239,0.0448) 十三、 1、8854。06 2、1320.55 十四、 1、0.975 2、0.8 十五、 1、0.1264 2、0.8354
6
2010 年 一、
1、0.5 2、0.9856 二、0.02857 三、
四、
1、0.9639 2、0.9801
1 五、
(2 n -1) 六、
1、0.5 2、
⎛ Φ⎜
y-x
⎞ ⎟
七、
⎜ ⎝
S2x
+
S2y
⎟ ⎠
八、
1、0.8185 2、92 九、0.3846;0.3077;0.3077 十、(0.4407,8.4993) 十一、
1、 2X
θ2
2、 5n
十三、 1、16.67 h;0.7408 2、0.99985 十四、 1、(3.1962MPa, 3.2498 MPa);(0.0,4526,0.08592) 2、1 十五、 1、(0.01696 mm, 0.03075 mm) 2、(0.6785mm, 0.6935mm);(0.01341mm, 0.02517mm)
08年7月概率论与数理统计(经管类)试题答案
S
2 n
1 n
n i 1
0,Y
1 D.
4
1
3
x 0, y 0 ,则 其它
(Xi
3 D.
4
D.2
X )2
2
,
2
1 n 1
S 2
A. Z X 0 / n
n
(Xi
i 1
2 未知,采用统计量 T X 0 . S/ n
X )2
,检验假设
B. T X 0 Sn / n
6.已知 X,Y 的联合概率分布为
F (x, y) 为其联合分布函数,则 F 0, 1 ( D ) 3
0
1
3 1
2 2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
北京航空航天大学概率统计2012-2013(1)期末考卷A及AB卷答案
北京航空航天大学概率统计2012-2013(1)期末考卷A及AB 卷答案北京航空航天大学BEIHANG UNIVERSITY2012-2013学年第一学期期末考试统一用答题册考试课程概率统计A (A09B204A)概率统计B(A09B204B)A(试卷共6页,五道题)班级_____________ 学号 _____________姓名______________ 成绩 _________考场教室_________ 任课教师_________2013年元月18日10:30--12:30一、单项选择题(每小题4分,满分36分)1、设随机变量X 存在数学期望EX 和方差0DX ≠,则对任意正数ε,下列不等式恒成立的是 。
(A )2{||}DXP X EX εε-≥>; (B )2{||}1DXP X EX εε-<<-;(C )21{||}P X DX ε≥≤; (D )22||{||}E X P X εε≥≤。
2、设事件A 、B 同时发生时,事件C 必然发生,则下列结论成立的是 。
(A) 1)()()(-+≥B P A P C P ; (B) )()(B A P C P +=;(C) )()(AB P C P =; (D) ()()()()P C P A P B P A B ≤+-+ 。
3、对随机事件B A ,,下列命题正确的是 。
(A )如果B A ,互不相容,则B A ,也互不相容; (B )如果B A ,互逆,则B A ,也互逆 ;(C )如果B A ,互不相容,且0)(,0)(>>B P A P ,则B A ,相互独立; (D )如果B A ,相容,则B A ,也相容。
4、设随机变量),(Y X 的分布函数为(,)F x y ,对任意实数z ,则有{max{,}}P X Y z ≤= 。
(A )1{,}P Xz Y z ->> , (B) {}{}P X z P Y z ≤+≤,(C) (,)F z z , (D) 1(,)F z z -。
北航08-09高数第2学期期末试卷及参考答案.doc
北京航空航天大学2008-2009学年第二学期期末考试统一用答题册考试课程高等數学2院系: ____________ 学号_______________ 姓名_________________2009年6月”日一.填空题(每小题4分,共20分) 1.设比=/ \ 2,则? -!ln2dz(12-1) 2 2. 微分方程冬=」一的通解为x=y(\ny + C)^y = Ce^ . dx x+ y ---------------------------------3. 设 D = {(x, y)\x 2 + y 2 < 2x, y > o},则 jj y dxdy =—.D A兀24. 已知 d u(x, y) = (x + ye x )dx + (e x + 2y)dy,则 u(x, y) = 一— y 2 4- ye x + C . 2JV v y v 0 则f (劝的傅里叶级数在X = 7T3 九 Q<X <7T,71 点处收敛于—• 2二.单项选择题(每小题4分,共2()分)1・设函数/(兀,y)有一阶连续偏导数,则使得方程几兀,y) = z 在点P(x 0, y 0,z 0)的某邻域内 能唯一确定一个单值、冇连续偏导数的函数x = g(y,z)的充分条件是(C )(A)于(兀0,为)=0,且咒(兀0』0)工。
・ (B)/UoO ;o )= °»且(兀0*0)工°・ (C) /(兀o ,yo )= Z0,且齐(兀0』0)工°・(D) /(Xo ,yo )= Zo ,且 (兀0,沟)工°・ 2.设空间有界闭区域々由分片光滑有向闭曲面2 (外侧)围成,函数P(x 9y,z)f Q(X 9y 9z),R (兀”z)在X2上有一阶连续偏导数,则卜•列正确的公式是(A )d* = # Qdydz + Rclzdx + Pdxdy. Xfff — + + — dv = Pdxdy + Qdydz + Rclzdx.J#® dy dzj 左{(A)塑+艺+叩 dx dy dz 丿 (B)in 込塑+逖 dx dy dz ) dv = ff(P + Q + H)dS(C)法线方程 x-1 y - V32V33.微分方程(\-x )y f + xy-y = 0的通解是(B )4.设曲面S:x 2+y 2+z 2 =a 2 (z>0), S t 是S 在第一卦限的部分,则有(C )(A) JJ xdS = 4JJ xdS .(B) j|ydS = 4JJ ydS . S S] S S](C) JJ zdS = 4JJ zdS.S S]5.下列叙述中正确的是(C )8(A )若正项级数工知收敛, n=\88 OO (C )若级数工知与工%?都收敛,则级数Y (知+乙)收敛.8 8 OO(D )若级数工知与工b 都发散,贝IJ 级数工(知)发散77=1 n=l n=\三.(10分)求|11|面3”+2〉,2+3, =12在点(1,V3,1)处的切平面与法线方程. 解 设 F(x,y, z) = 3x 2 + 2y 2 + 3z 2 -12,F : = 6无,F ; = 4y, F ; = 6z,则在点(1,V3,D 的法向量n = (6,4V3,6),于是切平面方程3(兀-D + 2巧(y-73) + 3(z-1) = 0, 即 3 无+ 2 巧 y + 3z — 12 = 0, (D) JJJ(P + Q + /?如 强 dydz + dQ j j dR .. —-cizdx + —— dxdy. oy dz(A) y = c x e x 4-C 2 . (C) y = c x e x +c 2x 2.(B) . y = c {e A + c 2x.(D) y = c x e x +c 2e~x . 则lim 也<1."Too U n (B) 若 lim 也 vl U n 8 则级数工2如收敛.n=\x+2y + 3z,求该平而薄板的质量.W M = JJ(x + 2y+ 3z)dS 二 JJ (3 — 2兀一 y)y/3dxdy,D: 0<^<l-x, 0<x<l,S D二间;述 \3-2x-y)dyR i=J^(5 -8x + 3x 2 )dx =逅.五. (10分)计算严+ Mz 力+z 艸,其中刀为球面兀2十2+z2= 1的外侧 Z J (2宀宀 z2)3解 作椭球工。
2008年高考试题分类(11)(数学-概率与统计)
11 概率与统计一、选择题1.(福建5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( C )A.12125B.16125C.48125D.961252.(江西11)电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( C )A.1180B.1288C.1360D.14803.9辽宁)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C )A.13B.12C.23D.344.(山东9) 从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )分数 5 4 3 2 1人数20 10 30 30 10A.3B.2105C.3 D.855.(重庆5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( D )(A)简单随机抽样法(B)抽签法(C)随机数表法(D)分层抽样法6.(重庆9)从编为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大码是6的概率为( B )(A)184(B)121(C)25(D)357.(陕西) 某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C )A.30 B.25 C.20 D.15二、填空题1.(广东11)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)[)55,65,65,75,75,85,85,95,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的人数是________.132.(宁夏16)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271273280285285 287292294295301303303307308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ; ② . 参考答案:(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). (3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . (4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.注:上面给出了四个结论.如果考生写出其他正确答案,同样给分.3.(湖南12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多_____________人。