Skewed exponential pairwise velocities from Gaussian initial conditions

合集下载

流体机械——英文论文专用词汇总结

流体机械——英文论文专用词汇总结

翼型:airfoil远场边界:farfield boundary周围条件:ambient conditions几何翼型:airfoil geometry弦长:chord length二维的,平面的:planar顺时针:clockwise逆时针:anticlockwise参数:parameter梯度,倾斜度:gradient连续的,继承的,依次的:successive默认:default动量方程:momentum equation(动量)守恒方程:(momentum) conservation equation 连续方程:continuity equation控制方程:governing equation粘性流体:viscous fluid无粘流体:inviscid fluid理想流体:perfect fluid层流:laminar湍流:turbulence有限差分法:finite difference method or FDM有限元法:finite element method or FEM有限体积法:finite volume method or FVM (又称控制体积法:control volume method or CVM)节点:node控制体积:control volume界面:face网格:grid,网格线:grid line结构网格:constructed grid,非结构网络:unconstructed grid离散格式:discretization scheme中心差分格式:central differencing scheme一阶迎风格式:first order upwind scheme交错网络:staggered grid节点:node层流:laminar flow湍流:turbulent flow湍流涡(涡):turbulent eddies涡:eddy雷诺:reynolds直接数值模拟方法:direct numerical simulation(NDS)大涡模拟:large eddy simulation(LES)雷诺平均法:reynolds averaged navier-stokes(RANS)湍动粘度:turbulent viscosity=涡粘系数:eddy viscosity湍动能:turbulent kinetic energy混合长度模型:mixed length model壁面函数法:wall functions雷诺应力方程模型:(RSM)代数应力方程模型:algebraic stress equation model(ASM)块结构网格:block-structured grids网格单元:cell网格区域:cell zone贴体坐标系:body-fitted coordinates分离式求解器:segregated solver耦合式求解器:coupled solver耦合隐式:coupled implicit耦合显式:coupled explicit相对压力值:gauge pressure参考压力:operating pressure质量进口:mass-flow-inlet区域表面:zone surface子域表面:partition surface点表面:point surface线和靶表面:line and rake surface平面:plane surface二次曲面:quadric surface轴测面:isosurface用户自定义函数:user-defined function (UDF)。

流体力学英语词汇翻译(2)

流体力学英语词汇翻译(2)

流体力学英语词汇翻译(2)流体力学英语词汇翻译(2)流体力学英语词汇翻译(2)动量厚度momentum thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, buckingham theorem 静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管stanton tube文丘里管venturi tubeu形管u-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管pitot- static tube激光多普勒测速计laser doppler anemometer, laser doppler velocimeter热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律fick law巴塞特力basset force埃克特数eckert number格拉斯霍夫数grashof number努塞特数nusselt number普朗特数prandtl number雷诺比拟reynolds analogy施密特数schmidt number斯坦顿数stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程burgers equation对流扩散方程convection diffusion equationkdu方程kdv equation修正微分方程modified differential equation拉克斯等价定理lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析hirt stability analysis相容条件consistency conditioncfl条件courant- friedrichs- lewy condition ,cfl condition 狄里克雷边界条件dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method, flic method通量校正传输法flux-corrected transport method 通量矢量分解法flux vector splitting method伽辽金法galerkin method积分方法integral method标记网格法marker and cell method, mac method 特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, pic method 质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, adi scheme反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式crank-nicolson scheme杜福特-弗兰克尔格式dufort-frankel scheme指数格式exponential scheme戈本诺夫格式godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式lax-wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving difference scheme穆曼-科尔格式murman-cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme tvd scheme迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates[自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion数值通量numerical flux放大因子amplification factor放大矩阵amplification matrix阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method广义连续统力学generalized continuum mechanics 简单物质simple material纯力学物质purely mechanical material微分型物质material of differential type积分型物质material of integral type混合物组份constituents of a mixture非协调理论incompatibility theory微极理论micropolar theory决定性原理principle of determinism等存在原理principle of equipresence局部作用原理principle of objectivity客观性原理principle of objectivity电磁连续统理论theory of electromagnetic continuum 内时理论endochronic theory非局部理论nonlocal theory混合物理论theory of mixtures里夫林-矣里克森张量rivlin-ericksen tensor声张量acoustic tensor半向同性张量hemitropic tensor各向同性张量isotropic tensor应变张量strain tensor伸缩张量stretch tensor连续旋错continuous dislination连续位错continuous dislocation动量矩平衡angular momentum balance余本构关系complementary constitutive relations共旋导数co-rotational derivative, jaumann derivative非完整分量anholonomic component 爬升效应climbing effect协调条件compatibility condition错综度complexity当时构形current configuration能量平衡energy balance变形梯度deformation gradient有限弹性finite elasticity熵增entropy production标架无差异性frame indifference弹性势elastic potential熵不等式entropy inequality极分解polar decomposition低弹性hypoelasticity参考构形reference configuration响应泛函response functional动量平衡momentum balance奇异面singular surface贮能函数stored-energy function内部约束internal constraint物理分量physical components本原元primitive element普适变形universal deformation速度梯度velocity gradient测粘流动viscometric flow当地导数local derivative岩石力学rock mechanics原始岩体应力virgin rock stress构造应力tectonic stress三轴压缩试验three-axial compression test 三轴拉伸试验three-axial tensile test三轴试验triaxial test岩层静态应力lithostatic stress吕荣lugeon地压强geostatic pressure水力劈裂hydraulic fracture咬合[作用] interlocking内禀抗剪强度intrinsic shear strength循环抗剪强度cyclic shear strength残余抗剪强度residual shear strength土力学soil mechanics孔隙比void ratio内磨擦角angle of internal friction休止角angle of repose孔隙率porosity围压ambient pressure渗透系数coefficient of permeability [抗]剪切角angle of shear resistance 渗流力seepage force表观粘聚力apparent cohesion粘聚力cohesion稠度consistency固结consolidation主固结primary consolidation次固结secondary consolidation固结仪consolidometer浮升力uplift扩容dilatancy有效应力effective stress絮凝[作用] flocculation主动土压力active earth pressure被动土压力passive earth pressure 土动力学soil dynamics应力解除stress relief次时间效应secondary time effect贯入阻力penetration resistance 沙土液化liquefaction of sand 泥流mud flow多相流multiphase flow马格努斯效应magnus effect韦伯数weber number环状流annular flow泡状流bubble flow层状流stratified flow平衡流equilibrium flow二组份流two-component flow 冻结流frozen flow均质流homogeneous flow二相流two-phase flow气-液流gas-liquid flow气-固流gas-solid flow液-气流liquid-gas flow液-固流liquid-solid flow液体-蒸气流liquid-vapor flow 浓相dense phase稀相dilute phase连续相continuous phase离散相dispersed phase悬浮suspension气力输运pneumatic transport气泡形成bubble formation体密度bulk density壅塞choking微滴droplet挟带entrainment流型flow pattern流[态]化fluidization界面interface跃动速度saltation velocity非牛顿流体力学non-newtonian fluid mechanics 非牛顿流体non-newtonian fluid幂律流体power law fluid拟塑性流体pseudoplastic fluid触稠流体rheopectic fluid触变流体thixotropic fluid粘弹性流体viscoelastic fluid流变测量学rheometry震凝性rheopexy体[积]粘性bulk viscosity魏森贝格效应weissenberg effect流变仪rheometer稀薄气体动力学rarefied gas dynamics物理化学流体力学physico-chemical hydrodynamics 空气热化学aerothermochemistry绝对压强absolute pressure绝对反应速率absolute reaction rate绝对温度absolute temperature吸收系数absorption coefficient活化分子activated molecule活化能activation energy绝热压缩adiabatic compression绝热膨胀adiabatic expansion绝热火焰温度adiabatic flame temperature电弧风洞arc tunnel原子热atomic heat雾化atomization自燃auto-ignition自动氧化auto-oxidation可用能量available energy缓冲作用buffer action松密度bulk density燃烧率burning rate燃烧速度burning velocity接触面contact surface烧蚀ablation流体力学英语词汇翻译(2) 相关内容:。

整个超构透镜器件的仿真边界条件

整个超构透镜器件的仿真边界条件

整个超构透镜器件的仿真边界条件下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!超构透镜器件仿真边界条件的探究在超构透镜器件的设计与仿真过程中,正确设置仿真边界条件至关重要。

SM Ch1

SM Ch1

The beam width at a distance of 10 m is 2w = 2wo[1 + (z/zo)2]1/2 = (0.810-3 m){1 + [(10 m)/(0.79 m)]2}1/2 = 0.01016 m or 10.16 mm. 1.5 Gaussian beam in a cavity with spherical mirrors Consider an optical cavity formed by two aligned spherical mirrors facing each other as shown in Figure 1.54. Such an optical cavity is called a spherical mirror resonator, and is most commonly used in gas lasers. Sometimes, one of the reflectors is a plane mirror. The two spherical mirrors and the space between them form an optical resonator because only certain light waves with certain frequencies can exist in this optical cavity. The radiation inside a spherical mirror cavity is a Gaussian beam. The actual or particular Gaussian beam that fits into the cavity is that beam whose wavefronts at the mirrors match the curvature of the mirrors. Consider the symmetric resonator shown in Figure 1.54 in which the mirrors have the same radius of curvature R. When a wave starts at A, its wavefront is the same as the curvature of A. In the middle of the cavity it has the minimum width and at B the wave again has the same curvature as B. Such a wave in the cavity can replicate itself (and hence exist in the cavity) as it travels between the mirrors provided that it has right beam characteristics, that is the right curvature at the mirrors. The radius of curvature R of a Gaussian beam wavefront at a distance z along its axis is given by R(z) = z[1 + (zo/z)2] ; zo = wo2/ is the Rayleigh range Consider a confocal symmetric optical cavity in which the mirrors are separated by L = R. (a) Show that the cavity length L is 2zo, that is, it is the same as the Rayleigh range, which is the reason the latter is called the confocal length. (b) Show that the waist of the beam 2wo is fully determined only by the radius of curvature R of the mirrors, and given by 2wo = (2R/)1/2 (c) If the cavity length L = R = 50 cm, and = 633 nm, what is the waist of the beam at the center and also at the mirrors?

罗氏应变应力公式手册

罗氏应变应力公式手册

罗氏应变应力公式手册ε=σ/E其中,ε表示应变,σ表示应力,E表示弹性模量。

弹性模量是材料的一种力学性质,它衡量了材料在受到力的作用下发生形变的能力。

弹性模量越大,材料在受到力的作用下发生的形变越小,说明材料越刚性。

相反,弹性模量越小,材料在受到力的作用下发生的形变越大,说明材料越柔软。

ν = -ε_lateral / ε_longitudinal其中,ν 表示泊松比,ε_lateral 表示横向应变,ε_longitudinal 表示纵向应变。

泊松比描述了材料在受到力的作用时的横向变化情况。

当材料受到压缩时,泊松比是正值;当材料受到拉伸时,泊松比是负值。

泊松比越大,材料在受到外力作用时的横向变化越明显。

除了哈克定律和泊松比公式,罗氏应变应力公式还可以通过材料的代表性模型来计算应变和应力的关系。

常见的代表性模型包括胡克模型和麦克斯韦模型。

胡克模型将材料看作是由弹簧和几何高度连接的颗粒组成,它认为应变是与应力成正比的。

σ=kε其中,σ表示应力,ε表示应变,k表示材料的弹簧常数。

麦克斯韦模型是胡克模型的扩展,它考虑到材料在受到外力作用时的滞后效应。

麦克斯韦模型的公式为:σ = kε + β(dε / dt)其中,σ 表示应力,ε 表示应变,k 表示材料的弹簧常数,β 表示材料的阻尼系数,dε / dt 表示应变的时间导数。

通过以上公式和模型,我们可以计算材料在受到力的作用时产生的应变和应力。

这些公式不仅适用于均匀材料,也适用于各种复杂材料和结构。

它们为材料力学的研究和应用提供了重要的理论基础。

在工程实践中,我们可以通过罗氏应变应力公式手册来查阅和使用这些公式和模型。

手册通常会包含各种材料的弹性模量、泊松比、弹簧常数和阻尼系数的数值,以及具体计算步骤和例题。

通过手册,我们可以快速准确地计算出材料在受力下的应变和应力,为工程设计和应用提供参考。

SEISMIC WAVE VELOCITY MONITORING OF CO2 MIGRATION IN POROUS SANDSTONES SATURATED WITH WATER

SEISMIC WAVE VELOCITY MONITORING OF CO2 MIGRATION IN POROUS SANDSTONES SATURATED WITH WATER

第22卷 第6期岩石力学与工程学报 22(6):1002~10072003年6月 Chinese Journal of Rock Mechanics and Engineering June ,2003Received 5 May 2002,Revised 11 Oct. 2002.Xue Ziqiu :Male ,Dr. Eng.,Senior Researcher ,Research Institute of Innovative Technology for the Earth ,Kyoto ,Japan.SEISMIC WA VE VELOCITY MONITORING OF CO 2 MIGRATION IN POROUS SANDSTONESSATURATED WITH WATERXue Ziqiu ,Ohsumi Takashi ,Koide Hitoshi(Research Institute of Innovative Technology for the Earth , Kyoto 6109-0292 Japan )Abstract Laboratory experiments were conducted to measure the compressional wave velocities under hydrostatic pressure in Shirahama and Tako sandstones with a porosity of 12% and 24%,respectively. In dry samples ,the pressure dependence of velocity is ascribed to the difference in pore structures. Velocities were also measured to map the movement of the injected CO 2 within water-saturated samples during CO 2 injection. In the water-saturated samples , velocity changes caused by the CO 2 injection are typically on the order of 10%. A series of seismic tomography experiments are conducted on porous sandstone samples to demonstrate the use of cross-well seismic profiling for monitoring the migration of CO 2 in geological sequestration projects.Key words P-wave velocity ,sandstone ,pore structure ,monitoring ,carbon dioxide ,geological sequestration CLC number TU 45 Document code A Article ID 1000-6915(2003)06-1002-061 INTRODUCTIONWave velocity and attenuation in porous sand- stones are widely studied in the fields of reservoir engineering and geo-engineering [1]. As an example ,during an enhanced oil recovery operation ,there is a practical need to identify non-flooded compartments within the reservoir. Seismic survey provides substan- tial information concerning positions for new wells and modification of the existing depletion strategy [2]. Cross-well seismic tomography is considered as a pro- mising monitoring method to map the movement of CO 2 in the subsurface [3]. The formation water ,which exists in pore spaces within reservoir rocks ,will be partially displaced by the injected CO 2. This process will affect the propagation characteristics of the seismic waves. Seismic properties depend on the mineralogical composition of the rock as well as thefactors such as porosity ,fluid content ,and in-situstress.Previous works on effects of CO 2 flooding on seismic wave velocity show clearly that CO 2 flooding causes compressional wave (P-wave) velocities to substantially decrease [4,5]. Interpretation of seismicmonitoring of CO 2 flooding requires an understanding of the effects of pore pressure buildup caused by the CO 2 injection and CO 2 saturation. Experimental studies ,such as converting field measurements of wave velocities and attenuations to CO 2 saturation ,support the interpretation of the survey results. A series of seismic tomography experiments are conducted on porous sandstone samples to demonstrate the use of cross-well seismic profiling for monitoring the migration of CO 2 in geological sequestration projects. In this paper ,a preliminary result of measurements is presented on velocity changes while injecting CO 2 into water-saturated Shirahama and Tako sandstone.第22卷第6期Xue Ziqiu,et al. Seismic Wave V elocity Monitoring of CO2Migration in Porous Sandstones • 1003 •2 EXPERIMENTSShirahama and Tako sandstone with porosity of 12% and 24%,respectively,were used in this study. Cylindrical samples with diameter of 50 mm and length of 100 mm were sealed with silicone rubber to exclude the oil used as the hydrostatic pressure medium. Sixteen piezo-electrical transducers with a center frequency of 1MHz and five pairs of cross- strain gages were cemented to the sample surface as shown in Fig.1. Fig.2 shows the pore size distributions obtained by the mercury-injection method. The plots show a difference in pore size between two sand- stones.Dry samples were first subjected to hydrostatic pressure up to 25 MPa for Shirahama and 15 MPa for Tako sandstone. P-wave velocity and strain were measured to examine their dependence on pore structure. The ultrasonic pulse transmission technique was used in this study. After the dry velocities were measured,the sample was saturated with distilled water,and remained inside of the vessel for CO2 injection. The pore pressure was kept constant by a syringe pump to minimize velocity changes caused by pore pressure buildup during CO2 injection. The CO2 injection pressure was also controlled by another syringe pump. The P-wave velocity was measured to monitor the movement of CO2 front within the sample while injecting CO2. P-wave velocity measurements were repeated on the same sample when the gaseous,liquid and supercritical CO2 was injected respectively,to examine the phase dependence of the CO2 front movement. The CO2 was injected at a constant pressureFig.1 Locations of piezo-electric transducers and strain gages cemented on the sample(a)Shirahama sandstone (b)Tako sandstoneFig.2 Pore size distributions obtained by the mercury-injection method[6]BTM(a) Locations of piezo-electric transducers• 1004 • 岩石力学与工程学报 2003年ranged from 5 to 12 MPa ,and the flow rate depends on the sample ′s permeability ,pressure and tempera- ture conditions.3 RESULTSFig.3 shows ,as an example ,the recorded P-wave forms in dry samples. As the hydrostatic pressure increases ,the travel time decreases and amplitude increases for both Shirahama and Tako sandstone. Changes in travel time are more remarkable in Shirahama than those in Tako sandstone. In the water-saturated samples ,pre-existing pore water in pore space will be displaced partially by the injected CO 2,and this process causes changes in P-wave forms. Fig.4 shows an example of P-wave forms obtained from pre- and post-CO 2 injection in Shirahama and Tako sandstone. Comparing the travel times and amplitudes of the P-waves before and after injecting CO 2 in Fig.4(a) and 4(b),it is clear that CO 2 injection causes significant changes in both samples.The variation of P-wave velocity is a good indicator for monitoring CO 2 migration in water- saturated samples. Fig.5(a),5(b) and 5(c) show the results of P-wave velocity changes when the gaseous ,liquid and supercritical CO 2 were injected respectively into the Tako sandstone sample. In each figure ,as starting CO 2 injection ,velocities at first remained almost constant for several minutes and then began to decrease gradually before reaching a new constant finally. In Fig.5(a),5(b) and 5(c),CO 2 was provided at the bottom end surface of the Tako sandstone sample(a) Shirahama sandstone (b) Tako sandstoneFig.3 Examples of P-waves under hydrostatic pressures of 0,5,10 and 15 MPa ,respectively(a) Shirahama (b) Tako sandstoneFig.4 Examples of P-waves obtained from pre- and post-CO 2 injection---1015202530P -w a v e a m p l i t u d eGross travel time/μs---0.000.501.001.501015202530P -w a v e A m p l i t u d e /VGross travel time/μs第22卷第6期Xue Ziqiu,et al. Seismic Wave V elocity Monitoring of CO2Migration in Porous Sandstones • 1005 •(a) Under pressure of 5 MPa(b) Under pressure of 10 MPa(c) Under pressure of 15 MPaFig.5 Curves of velocity changes versus the elapsed time,as injecting the gaseous,liquid and supercritical CO2 into the• 1006 • 岩石力学与工程学报 2003年water-saturated Tako sandstonesandstone sample at a constant pressure of 5,8 and 12 MPa respectively,and the pore pressures were kept constant at a pressure of 2 MPa lower than the CO2 injection pressure in each case.Fig.5(a) is taken as an example to examine the velocity changes caused by the CO2 injection. When the gaseous CO2 was injected into the sample,velocities of ch.1-9 and ch.2-10 began to decrease first,and the velocity of ch.8-16 located close to the top end surface of the sample began to decrease in about 12 minutes and reached a stable state in about 75 minutes. The rate of decrease in velocities of channels located at the middle part of the sample is about 4% lower than that of other channels. This pattern of velocity change is common for all channels in Fig.5(b) and 5(c). The maximum rate of decrease in velocity caused by injecting gaseous,liquid and super- critical CO2,was 10%,12% and 16% respectively.Fig.6 shows an example of effects of pore pressure on p-wave velocity in Tako sandstone. The sample was subjected to hydrostatic pressure of 10 MPa and the P-wave velocity changes were measured when the pore pressure was increased from 3 to 6 MPa,while the hydrostatic pressure was kept constant. The P-wave velocities of all channels decreased about 2% caused by increasing the pore pressure.Fig.6Curves of velocity changes versus the pore pressure,with Tako sandstone sample subjected to a constantpressure of 10 MPa4 DISCUSSION AND CONCLU-SIONSIn most previous experimental studies on the effects of CO2 flooding,wave velocity was measured along the CO2 flow direction,parallel to the lon- gitudinal axis of the sample. In this study,we successfully monitored the migration of the CO2 front,as evidenced by the P-wave velocity changes. As injecting CO2 into the sample,the pre-existing water in pore space was displaced by the injected CO2,and the P-wave velocity decreases were caused by the compressibility contrast between the injected CO2 and the pore water.In the actual operation of injecting CO2 into aquifers,the pore pressure buildup caused by the CO2 injection is an unavoidable problem and this pheno- menon depends strongly on the permeability of the reservoir rock. In field measurements,low-velocity zones are ascribed to the combined effects of CO2 saturation and pore pressure buildup.In this study,we focused on the effect of CO2 saturation by keeping the pore pressure constant during CO2 injection. Our results show that P-wave velocity change is a good indicator for monitoring CO2 migration in water- saturated sandstone.Wang et al[5] suggested that shear wave velocity is useful for separating the pore pressure effect from the combined effects because S-wave velocity is insensitive to CO2 saturation,but sensitive to pore pressure increases. For example,if a zone shows a large decrease in P-wave velocity but little change in S-wave velocity,it is very likely swept by CO2 at a pore pressure near the original reservoir pore pressure. On the other hand,if a zone shows a large decrease in both P- and S-wave velocities,it is probably swept by CO2 with pore pressure buildup. This is a task for our future experimental studies.Our results show that the pore size distribution significantly affects P-wave velocity in dry sandstone samples in this study. The remarkable increase of P-wave velocity in Shirahama sandstone is ascribed to第22卷第6期Xue Ziqiu,et al. Seismic Wave V elocity Monitoring of CO2Migration in Porous Sandstones • 1007 •the closure of micropores with low aspect ratio under hydrostatic pressure. The P-wave velocity changes during CO2 injection suggested that seismic wave monitoring is a useful tool for mapping the movement of the injected CO2 in reservoir rocks. Acknowledgments This work was supported by New Energy and Industrial Technology Development Organization (NEDO) under the contract,Research and Develop- ment of Underground Storage Techno- logy for Carbon Dioxide.REFERENCES1 KoesoemadinataA,McMechan G. Emperical estimation of vis- coelastic seismic parameters from petrophysical properties of sand-stone[J]. Geophysics,2001,66:1 457~1 4702 NesO,Holt R,Fjaer E. The reliability of core data as input to seismic reservoir monitoring studies[R]. SPE 65180,2000,577~5863 HoverstenG,Myer L. Monitoring of CO2 sequestration using integrated geophysical and reservoir data[A]. In:Proceedings of the 5th International Conference on Greenhouse Gas Control Tech- nologies[C]. Cairns,Australia:[s. n.],2000,305~3104 WangZ,Nur A. Effects of CO2 flooding on wave velocities in rocks with hydrocarbons[J]. Soc. Petr. Eng. Res. Eng.,1989,3:429~439 5 WangZ,Cates M,Langan R. Seismic monitoring of a CO2 flooding ina carbonate reservoir:a rock physics study[J]. Geophysics,1998,63:1 604~1 6176 MinoY,Lin W,Takahashi M,et al. Micropore distributions inrocks[A]. In:Proceedings of the 33th National Geotechnical Engineering Conference[C]. [s. l.]:[s. n.],1989,1 243~1 244Calendar of Academic Events (III)May 11~13,2003:International Conference on Fast Slope Movements—Prediction and Prevention for Risk Mitigation—ICFSM2003,Sorrento,Italy.AGI,Piazza Bologna 22 – A/9,I-00162 Roma,Italy. Tel:++39-06-44249272. Fax:++39-06-44249274. E-mail:agiroma@iol.it.Web site:http://www.unina2.it/fsm2003May 14~16,2003:International Workshop on Occurrence and Mechanisms of Flows in Natural Slopes and Earthfills—IWFlows2003,Sorrento,Italy.AGI,Piazza Bologna 22 – A/9,I-00162 Roma,Italy. Tel:++39-06-44249272. Fax:++39-06-44249274. E-mail:agiroma@iol.it.Web site:http://www.unina2.it/flows2003September 07~12,2003:10th International Congress on Rock Mechanics,Sandton—Johannesburg,South Africa.Mrs Karen Norman,Conference Co-Ordinator,Technology Roadmap for Rock Mechanics,P. O. Box 61127,ZA-2107 Marshalltown,South Africa. Fax:+27-11-8385923. Web site:http://www.saimm.co.zaSeptember 22~24,2003:IS Lyon 2003—Deformation Characteristics of Geomaterials,Lyon,France.Ecole des TPE/DGCB,rue Maurice Audin,F-69518,Vaulz en V elin cedex,France. Tel:+33-4-72047066. Fax:+33-4-72047156.Email:ISLYON03@entpe.fr. Web site:http://islyon03.entpe.frOctober 21~23,2004:International Conference on Soil Nailing and Stability of Rock and Soil Engineering,Nanjing,China. Secretaries-general:Wang Zhenyu,Luoyang Hydraulic Engineering Technology Research Institute,China;Song Erren,Department of Civil Engineering, Tsinghua University,Beijing,China. Website://June 19~24,2005:10th International Conference of IACMAG,Turin,Italy.Prof. Giovanni Barla,Politecnico di Torino,Department of Structural and Geotechnical Engineering,corso Duca degli Abruzzi 24,I-10129,Turin,Italy. Fax:+39-011-5644899. Tel:+39-011-5644824. E-Mail:gbarla@polroc. polito.it. Web site:http://www.polito.it/iniziati/iacmagto。

地震地层学常用英文词语

地震地层学常用英文词语
mic stratigraphy 地震地层学,Seismic facies analysis 地震相分 析,seismic sequence 地震层序,Seismic facies 地震相, Seismic configuration内部反射结构 , Seismic form外部几何形态 ,Seismic texture地震相物理参数, Seismic facies analysis 地震相分析 ,Seismic facies parameter地震相参 数,chronostratigraphic correlation chart 年代地层对比图 ,chronostratigraphic 年代地层 Onlap 上超, downlap 下超,distal Onlap远端上超, baselap 底超,toplap 顶超 lapout超覆尖灭,seismic downlap 地震下超 ,distal downlap 远端下超, discordance不整一,unconformity不整合面,conformity整合面 , concordance整一 chaotic seismic reflection configuration 杂乱地震反射 结构 complex sigmoid-oblique reflection configuration 复合S形-斜交反射结构 progradational reflection configuration前积反射结构 shingled reflection configuration叠瓦状反射结构 sheet drape seismic facies unit 席状披盖地震相 sigmoid reflection configurations S形反射结构,sigmoid configurationS形 结构

华新电阻规格书

华新电阻规格书

Functional code X : Thick film low ohm M : Metal low ohm N : Metal low ohm, high power W : Thick film low TCR P : Thick film low TCR high power ( 2512 size=2 watt, 2010 size=1 watt, 1210 size=0.5 watt, 1206 size=0.5 watt,
R002
Tolerance F : +/- 1% J : +/- 5% P : Jumper
Packaging code P : 4” reel taping T : 7” reel taping A : 7” reel taping 15Kpcs Q : 10” reel taping G : 13” reel taping R : 0603 2mm pitch taping B : Bulk K : Bulkcase
Termination code L = Sn base (Lead free) 5 3E SSP (total)
WW
25
M
F
T
L
Type code WW: R< 1ohm MW: R< 1ohm Automotive SW: R< 1ohm Anti-sulfuration
Size code 25 : 2512 (6432) 20 : 2010 (5025) 18 : 1218 (3248) 12 : 1206 (3216) 10 : 1210 (3225) 08 : 0805 (2012) 06 : 0603 (1608) 04 : 0402 (1005)

fluent笔记

fluent笔记

fluent笔记Discretization离散Node values节点值,coarsen粗糙refine细化curvature曲率,X-WALL shear Stress 壁面切应力的X方向。

strain rate应变率1、求解器:(solver)分为分离方式(segeragated)和耦合方式(coupled),耦合方式计算高速可压流和旋转流动等复杂高参数问题时比较好,耦合隐式(implicit)耗时短内存大,耦合显式(explicit)相反;2.收敛判据:观察残差曲线。

可以在残差监视器面板中设置Convergence Criterion(收敛判据),比如设为10 -3 ,则残差下降到小于10 -3 时,系统既认为计算已经收敛并同时终止计算。

(2)流场变量不再变化。

有时候不论怎样计算,残差都不能降到收敛判据以下。

此时可以用具有代表性的流场变量来判断计算是否已经收敛——如果流场变量在经过很多次迭代后不再发生变化,就可以认为计算已经收敛。

(3)总体质量、动量、能量达到平衡。

在Flux Reports (通量报告)面板中检查质量、动量、能量和其他变量的总体平衡情况。

通过计算域的净通量应该小于0.1%。

Flux Reports(通量报告)面板如图2-17 所示,其启动方法为:Report -> Fluxes3.一阶精度与二阶精度:First Oder Upwind and Second Oder Upwind(一阶迎风和二阶迎风)①一阶耗散性大,有比较严重的抹平现象;稳定性好②二阶耗散性小,精度高;稳定性较差,需要减小松弛因子4.流动模型的选择①inviscid无粘模型:当粘性对流场影响可以忽略时使用;例如计算升力。

②laminar层流模型:考虑粘性,且流动类型为层流。

③Spalart-Allmaras (S-A模型):单方程模型,适用于翼型、壁面边界层流动,不适于射流等自由剪切湍流问题。

④k-epsilon (k-ε模型):上述所有模型,适于强旋流动如龙卷风、燃烧室,速度慢。

《统计词汇中英文对照》

《统计词汇中英文对照》

《统计词汇中英文对照》Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方与Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 特殊数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟与优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调与均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不一致质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级有关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩与检验/H 检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线有关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 缺失函数Low correlation, 低度有关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复有关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负有关Negative linear correlation, 负线性有关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性有关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规有关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏有关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正有关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级有关Rank sum test, 秩与检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 同意域Regression coefficient, 回归系数Regression sum of square, 回归平方与Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方与Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单有关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级有关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性有关Square root transformation, 平方根变换Stabilizing variance, 稳固方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计操纵Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积与Sum of squares, 离差平方与Sum of squares about regression, 回归平方与Sum of squares between groups, 组间平方与Sum of squares of partial regression, 偏回归平方与Sure event, 必定事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方与Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方与Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩与检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零有关Z-transformation, Z变换。

中英文力学对准

中英文力学对准

一般力学类:分析力学 analytical mechanics拉格朗日乘子 Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号 Lagrange bracket循环坐标 cyclic coordinate循环积分 cyclic integral哈密顿[量] Hamiltonian哈密顿函数 Hamiltonian function正则方程 canonical equation正则摄动 canonical perturbation正则变换 canonical transformation正则变量 canonical variable哈密顿原理 Hamilton principle作用量积分 action integral哈密顿-雅可比方程 Hamilton-Jacobi equation作用--角度变量 action-angle variables阿佩尔方程 Appell equation劳斯方程 Routh equation拉格朗日函数 Lagrangian function诺特定理 Noether theorem泊松括号 poisson bracket边界积分法 boundary integral method并矢 dyad运动稳定性 stability of motion轨道稳定性 orbital stability李雅普诺夫函数 Lyapunov function渐近稳定性 asymptotic stability结构稳定性 structural stability久期不稳定性 secular instability弗洛凯定理 Floquet theorem倾覆力矩 capsizing moment自由振动 free vibration固有振动 natural vibration暂态 transient state环境振动 ambient vibration反共振 anti-resonance衰减 attenuation库仑阻尼 Coulomb damping同相分量 in-phase component非同相分量 out-of -phase component超调量 overshoot 参量[激励]振动 parametric vibration模糊振动 fuzzy vibration临界转速 critical speed of rotation阻尼器 damper半峰宽度 half-peak width集总参量系统 lumped parameter system 相平面法 phase plane method相轨迹 phase trajectory等倾线法 isocline method跳跃现象 jump phenomenon负阻尼 negative damping达芬方程 Duffing equation希尔方程 Hill equationKBM方法 KBM method, Krylov-Bogoliu- bov-Mitropol'skii method马蒂厄方程 Mathieu equation平均法 averaging method组合音调 combination tone解谐 detuning耗散函数 dissipative function硬激励 hard excitation硬弹簧 hard spring, hardening spring谐波平衡法harmonic balance method久期项 secular term自激振动 self-excited vibration分界线 separatrix亚谐波 subharmonic软弹簧 soft spring ,softening spring软激励 soft excitation邓克利公式 Dunkerley formula瑞利定理 Rayleigh theorem分布参量系统 distributed parameter system优势频率 dominant frequency模态分析 modal analysis固有模态natural mode of vibration同步 synchronization超谐波 ultraharmonic范德波尔方程 van der pol equation频谱 frequency spectrum基频 fundamental frequencyWKB方法 WKB methodWKB方法Wentzel-Kramers-Brillouin method缓冲器 buffer风激振动 aeolian vibration嗡鸣 buzz倒谱cepstrum颤动 chatter蛇行 hunting阻抗匹配 impedance matching机械导纳 mechanical admittance机械效率 mechanical efficiency机械阻抗 mechanical impedance随机振动 stochastic vibration, random vibration隔振 vibration isolation减振 vibration reduction应力过冲 stress overshoot喘振surge摆振shimmy起伏运动 phugoid motion起伏振荡 phugoid oscillation驰振 galloping陀螺动力学 gyrodynamics陀螺摆 gyropendulum陀螺平台 gyroplatform陀螺力矩 gyroscoopic torque陀螺稳定器 gyrostabilizer陀螺体 gyrostat惯性导航 inertial guidance 姿态角 attitude angle方位角 azimuthal angle舒勒周期 Schuler period机器人动力学 robot dynamics多体系统 multibody system多刚体系统 multi-rigid-body system机动性 maneuverability凯恩方法Kane method转子[系统]动力学 rotor dynamics转子[一支承一基础]系统 rotor-support- foundation system静平衡 static balancing动平衡 dynamic balancing静不平衡 static unbalance动不平衡 dynamic unbalance现场平衡 field balancing不平衡 unbalance不平衡量 unbalance互耦力 cross force挠性转子 flexible rotor分频进动 fractional frequency precession半频进动half frequency precession油膜振荡 oil whip转子临界转速 rotor critical speed自动定心 self-alignment亚临界转速 subcritical speed涡动 whirl固体力学类:弹性力学 elasticity弹性理论 theory of elasticity均匀应力状态 homogeneous state of stress 应力不变量 stress invariant应变不变量 strain invariant应变椭球 strain ellipsoid均匀应变状态 homogeneous state of strain应变协调方程 equation of strain compatibility拉梅常量 Lame constants各向同性弹性 isotropic elasticity旋转圆盘 rotating circular disk 楔wedge开尔文问题 Kelvin problem布西内斯克问题 Boussinesq problem艾里应力函数 Airy stress function克罗索夫--穆斯赫利什维利法 Kolosoff- Muskhelishvili method基尔霍夫假设 Kirchhoff hypothesis板 Plate矩形板 Rectangular plate圆板 Circular plate环板 Annular plate波纹板 Corrugated plate加劲板 Stiffened plate,reinforcedPlate中厚板 Plate of moderate thickness弯[曲]应力函数 Stress function of bending 壳Shell扁壳 Shallow shell旋转壳 Revolutionary shell球壳 Spherical shell[圆]柱壳 Cylindrical shell锥壳Conical shell环壳 Toroidal shell封闭壳 Closed shell波纹壳 Corrugated shell扭[转]应力函数 Stress function of torsion 翘曲函数 Warping function半逆解法 semi-inverse method瑞利--里茨法 Rayleigh-Ritz method松弛法 Relaxation method莱维法 Levy method松弛 Relaxation量纲分析 Dimensional analysis自相似[性] self-similarity影响面 Influence surface接触应力 Contact stress赫兹理论 Hertz theory协调接触 Conforming contact滑动接触 Sliding contact滚动接触 Rolling contact压入 Indentation各向异性弹性 Anisotropic elasticity颗粒材料 Granular material散体力学 Mechanics of granular media热弹性 Thermoelasticity超弹性 Hyperelasticity粘弹性 Viscoelasticity对应原理 Correspondence principle褶皱Wrinkle塑性全量理论 Total theory of plasticity滑动 Sliding微滑Microslip粗糙度 Roughness非线性弹性 Nonlinear elasticity大挠度 Large deflection突弹跳变 snap-through有限变形 Finite deformation 格林应变 Green strain阿尔曼西应变 Almansi strain弹性动力学 Dynamic elasticity运动方程 Equation of motion准静态的Quasi-static气动弹性 Aeroelasticity水弹性 Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波 Cylindrical wave水平剪切波 Horizontal shear wave竖直剪切波Vertical shear wave体波 body wave无旋波 Irrotational wave畸变波 Distortion wave膨胀波 Dilatation wave瑞利波 Rayleigh wave等容波 Equivoluminal wave勒夫波Love wave界面波 Interfacial wave边缘效应 edge effect塑性力学 Plasticity可成形性 Formability金属成形 Metal forming耐撞性 Crashworthiness结构抗撞毁性 Structural crashworthiness 拉拔Drawing破坏机构 Collapse mechanism回弹 Springback挤压 Extrusion冲压 Stamping穿透Perforation层裂Spalling塑性理论 Theory of plasticity安定[性]理论 Shake-down theory运动安定定理 kinematic shake-down theorem静力安定定理 Static shake-down theorem 率相关理论 rate dependent theorem载荷因子load factor加载准则 Loading criterion加载函数 Loading function加载面 Loading surface塑性加载 Plastic loading塑性加载波 Plastic loading wave简单加载 Simple loading比例加载 Proportional loading卸载 Unloading卸载波 Unloading wave冲击载荷 Impulsive load阶跃载荷step load脉冲载荷 pulse load极限载荷 limit load中性变载 nentral loading拉抻失稳 instability in tension加速度波 acceleration wave本构方程 constitutive equation完全解 complete solution名义应力 nominal stress过应力 over-stress真应力 true stress等效应力 equivalent stress流动应力 flow stress应力间断 stress discontinuity应力空间 stress space主应力空间 principal stress space静水应力状态hydrostatic state of stress对数应变 logarithmic strain工程应变 engineering strain等效应变 equivalent strain应变局部化 strain localization应变率 strain rate应变率敏感性 strain rate sensitivity应变空间 strain space有限应变 finite strain塑性应变增量 plastic strain increment 累积塑性应变 accumulated plastic strain 永久变形 permanent deformation内变量 internal variable应变软化 strain-softening理想刚塑性材料 rigid-perfectly plastic Material刚塑性材料 rigid-plastic material理想塑性材料 perfectl plastic material 材料稳定性stability of material应变偏张量deviatoric tensor of strain应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain应力球张量spherical tensor of stress路径相关性 path-dependency线性强化 linear strain-hardening应变强化 strain-hardening随动强化 kinematic hardening各向同性强化 isotropic hardening强化模量 strain-hardening modulus幂强化 power hardening塑性极限弯矩 plastic limit bending Moment塑性极限扭矩 plastic limit torque弹塑性弯曲 elastic-plastic bending弹塑性交界面 elastic-plastic interface弹塑性扭转 elastic-plastic torsion粘塑性 Viscoplasticity非弹性 Inelasticity理想弹塑性材料 elastic-perfectly plastic Material极限分析 limit analysis极限设计 limit design极限面limit surface上限定理 upper bound theorem上屈服点upper yield point下限定理 lower bound theorem下屈服点 lower yield point界限定理 bound theorem初始屈服面initial yield surface后继屈服面 subsequent yield surface屈服面[的]外凸性 convexity of yield surface截面形状因子 shape factor of cross-section 沙堆比拟 sand heap analogy屈服Yield屈服条件 yield condition屈服准则 yield criterion屈服函数 yield function屈服面 yield surface塑性势 plastic potential能量吸收装置 energy absorbing device能量耗散率 energy absorbing device塑性动力学 dynamic plasticity塑性动力屈曲 dynamic plastic buckling塑性动力响应 dynamic plastic response塑性波 plastic wave运动容许场 kinematically admissible Field静力容许场 statically admissibleField流动法则 flow rule速度间断 velocity discontinuity滑移线 slip-lines滑移线场 slip-lines field移行塑性铰 travelling plastic hinge塑性增量理论 incremental theory ofPlasticity米泽斯屈服准则 Mises yield criterion普朗特--罗伊斯关系 prandtl- Reuss relation特雷斯卡屈服准则 Tresca yield criterion洛德应力参数 Lode stress parameter莱维--米泽斯关系 Levy-Mises relation亨基应力方程 Hencky stress equation赫艾--韦斯特加德应力空间Haigh-Westergaard stress space洛德应变参数 Lode strain parameter德鲁克公设 Drucker postulate盖林格速度方程Geiringer velocity Equation结构力学 structural mechanics结构分析 structural analysis结构动力学 structural dynamics拱 Arch三铰拱 three-hinged arch抛物线拱 parabolic arch圆拱 circular arch穹顶Dome空间结构 space structure空间桁架 space truss雪载[荷] snow load风载[荷] wind load土压力 earth pressure地震载荷 earthquake loading弹簧支座 spring support支座位移 support displacement支座沉降 support settlement超静定次数 degree of indeterminacy机动分析 kinematic analysis 结点法 method of joints截面法 method of sections结点力 joint forces共轭位移 conjugate displacement影响线 influence line三弯矩方程 three-moment equation单位虚力 unit virtual force刚度系数 stiffness coefficient柔度系数 flexibility coefficient力矩分配 moment distribution力矩分配法moment distribution method力矩再分配 moment redistribution分配系数 distribution factor矩阵位移法matri displacement method单元刚度矩阵 element stiffness matrix单元应变矩阵 element strain matrix总体坐标 global coordinates贝蒂定理 Betti theorem高斯--若尔当消去法 Gauss-Jordan elimination Method屈曲模态 buckling mode复合材料力学 mechanics of composites 复合材料composite material纤维复合材料 fibrous composite单向复合材料 unidirectional composite泡沫复合材料foamed composite颗粒复合材料 particulate composite层板Laminate夹层板 sandwich panel正交层板 cross-ply laminate斜交层板 angle-ply laminate层片Ply多胞固体 cellular solid膨胀 Expansion压实Debulk劣化 Degradation脱层 Delamination脱粘 Debond纤维应力 fiber stress层应力 ply stress层应变ply strain层间应力 interlaminar stress比强度 specific strength强度折减系数 strength reduction factor强度应力比 strength -stress ratio横向剪切模量 transverse shear modulus 横观各向同性 transverse isotropy正交各向异 Orthotropy剪滞分析 shear lag analysis短纤维 chopped fiber长纤维 continuous fiber纤维方向 fiber direction纤维断裂 fiber break纤维拔脱 fiber pull-out纤维增强 fiber reinforcement致密化 Densification最小重量设计 optimum weight design网格分析法 netting analysis混合律 rule of mixture失效准则 failure criterion蔡--吴失效准则 Tsai-W u failure criterion 达格代尔模型 Dugdale model断裂力学 fracture mechanics概率断裂力学 probabilistic fracture Mechanics格里菲思理论 Griffith theory线弹性断裂力学 linear elastic fracturemechanics, LEFM弹塑性断裂力学 elastic-plastic fracture mecha-nics, EPFM断裂 Fracture脆性断裂 brittle fracture解理断裂 cleavage fracture蠕变断裂 creep fracture延性断裂 ductile fracture晶间断裂 inter-granular fracture准解理断裂 quasi-cleavage fracture穿晶断裂 trans-granular fracture裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹 elliptical crack深埋裂纹 embedded crack[钱]币状裂纹 penny-shape crack预制裂纹 Precrack 短裂纹 short crack表面裂纹 surface crack裂纹钝化 crack blunting裂纹分叉 crack branching裂纹闭合 crack closure裂纹前缘 crack front裂纹嘴 crack mouth裂纹张开角crack opening angle,COA裂纹张开位移 crack opening displacement, COD裂纹阻力 crack resistance裂纹面 crack surface裂纹尖端 crack tip裂尖张角 crack tip opening angle,CTOA裂尖张开位移 crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularity Field裂纹扩展速率 crack growth rate稳定裂纹扩展 stable crack growth定常裂纹扩展 steady crack growth亚临界裂纹扩展 subcritical crack growth 裂纹[扩展]减速 crack retardation止裂crack arrest止裂韧度 arrest toughness断裂类型 fracture mode滑开型 sliding mode张开型 opening mode撕开型 tearing mode复合型 mixed mode撕裂 Tearing撕裂模量 tearing modulus断裂准则 fracture criterionJ积分 J-integralJ阻力曲线 J-resistance curve断裂韧度 fracture toughness应力强度因子 stress intensity factorHRR场 Hutchinson-Rice-Rosengren Field守恒积分 conservation integral有效应力张量 effective stress tensor应变能密度strain energy density能量释放率 energy release rate内聚区 cohesive zone塑性区 plastic zone张拉区 stretched zone热影响区heat affected zone, HAZ延脆转变温度 brittle-ductile transitiontemperature剪切带shear band剪切唇shear lip无损检测 non-destructive inspection双边缺口试件double edge notchedspecimen, DEN specimen单边缺口试件 single edge notchedspecimen, SEN specimen三点弯曲试件 three point bendingspecimen, TPB specimen中心裂纹拉伸试件 center cracked tension specimen, CCT specimen中心裂纹板试件 center cracked panelspecimen, CCP specimen紧凑拉伸试件 compact tension specimen, CT specimen大范围屈服large scale yielding小范围攻屈服 small scale yielding韦布尔分布 Weibull distribution帕里斯公式 paris formula空穴化 Cavitation应力腐蚀 stress corrosion概率风险判定 probabilistic riskassessment, PRA损伤力学 damage mechanics损伤Damage连续介质损伤力学 continuum damage mechanics细观损伤力学 microscopic damage mechanics累积损伤 accumulated damage脆性损伤 brittle damage延性损伤 ductile damage宏观损伤 macroscopic damage细观损伤 microscopic damage微观损伤 microscopic damage损伤准则 damage criterion损伤演化方程 damage evolution equation 损伤软化 damage softening损伤强化 damage strengthening 损伤张量 damage tensor损伤阈值 damage threshold损伤变量 damage variable损伤矢量 damage vector损伤区 damage zone疲劳Fatigue低周疲劳 low cycle fatigue应力疲劳 stress fatigue随机疲劳 random fatigue蠕变疲劳 creep fatigue腐蚀疲劳 corrosion fatigue疲劳损伤 fatigue damage疲劳失效 fatigue failure疲劳断裂 fatigue fracture疲劳裂纹 fatigue crack疲劳寿命 fatigue life疲劳破坏 fatigue rupture疲劳强度 fatigue strength疲劳辉纹 fatigue striations疲劳阈值 fatigue threshold交变载荷 alternating load交变应力 alternating stress应力幅值 stress amplitude应变疲劳 strain fatigue应力循环 stress cycle应力比 stress ratio安全寿命 safe life过载效应 overloading effect循环硬化 cyclic hardening循环软化 cyclic softening环境效应 environmental effect裂纹片crack gage裂纹扩展 crack growth, crack Propagation裂纹萌生 crack initiation循环比 cycle ratio实验应力分析 experimental stressAnalysis工作[应变]片 active[strain] gage基底材料 backing material应力计stress gage零[点]飘移zero shift, zero drift应变测量 strain measurement应变计strain gage应变指示器 strain indicator应变花 strain rosette应变灵敏度 strain sensitivity机械式应变仪 mechanical strain gage 直角应变花 rectangular rosette引伸仪 Extensometer应变遥测 telemetering of strain横向灵敏系数 transverse gage factor 横向灵敏度 transverse sensitivity焊接式应变计 weldable strain gage 平衡电桥 balanced bridge粘贴式应变计 bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计 bonded wire gage 桥路平衡 bridge balancing电容应变计 capacitance strain gage 补偿片 compensation technique补偿技术 compensation technique基准电桥 reference bridge电阻应变计 resistance strain gage温度自补偿应变计 self-temperature compensating gage半导体应变计 semiconductor strain Gage集流器slip ring应变放大镜 strain amplifier疲劳寿命计 fatigue life gage电感应变计 inductance [strain] gage 光[测]力学 Photomechanics光弹性 Photoelasticity光塑性 Photoplasticity杨氏条纹 Young fringe双折射效应 birefrigent effect等位移线 contour of equalDisplacement暗条纹 dark fringe条纹倍增 fringe multiplication干涉条纹 interference fringe等差线 Isochromatic等倾线 Isoclinic等和线 isopachic应力光学定律 stress- optic law主应力迹线 Isostatic亮条纹 light fringe 光程差optical path difference热光弹性 photo-thermo -elasticity光弹性贴片法 photoelastic coating Method光弹性夹片法 photoelastic sandwich Method动态光弹性 dynamic photo-elasticity空间滤波 spatial filtering空间频率 spatial frequency起偏镜 Polarizer反射式光弹性仪 reflection polariscope残余双折射效应 residual birefringent Effect应变条纹值 strain fringe value应变光学灵敏度 strain-optic sensitivity 应力冻结效应 stress freezing effect应力条纹值 stress fringe value应力光图 stress-optic pattern暂时双折射效应 temporary birefringent Effect脉冲全息法 pulsed holography透射式光弹性仪 transmission polariscope 实时全息干涉法 real-time holographicinterfero - metry网格法 grid method全息光弹性法 holo-photoelasticity全息图Hologram全息照相 Holograph全息干涉法 holographic interferometry 全息云纹法 holographic moire technique 全息术 Holography全场分析法 whole-field analysis散斑干涉法 speckle interferometry散斑Speckle错位散斑干涉法 speckle-shearinginterferometry, shearography散斑图Specklegram白光散斑法white-light speckle method云纹干涉法 moire interferometry[叠栅]云纹 moire fringe[叠栅]云纹法 moire method云纹图 moire pattern离面云纹法 off-plane moire method参考栅 reference grating试件栅 specimen grating分析栅 analyzer grating面内云纹法 in-plane moire method脆性涂层法 brittle-coating method条带法 strip coating method坐标变换 transformation ofCoordinates计算结构力学 computational structuralmecha-nics加权残量法weighted residual method有限差分法 finite difference method有限[单]元法 finite element method配点法 point collocation里茨法 Ritz method广义变分原理 generalized variational Principle最小二乘法 least square method胡[海昌]一鹫津原理 Hu-Washizu principle 赫林格-赖斯纳原理 Hellinger-Reissner Principle修正变分原理 modified variational Principle约束变分原理 constrained variational Principle混合法 mixed method杂交法 hybrid method边界解法boundary solution method有限条法 finite strip method半解析法 semi-analytical method协调元 conforming element非协调元 non-conforming element混合元 mixed element杂交元 hybrid element边界元 boundary element强迫边界条件 forced boundary condition 自然边界条件 natural boundary condition 离散化 Discretization离散系统 discrete system连续问题 continuous problem广义位移 generalized displacement广义载荷 generalized load广义应变 generalized strain广义应力 generalized stress界面变量 interface variable 节点 node, nodal point[单]元 Element角节点 corner node边节点 mid-side node内节点 internal node无节点变量 nodeless variable杆元 bar element桁架杆元 truss element梁元 beam element二维元 two-dimensional element一维元 one-dimensional element三维元 three-dimensional element轴对称元 axisymmetric element板元 plate element壳元 shell element厚板元 thick plate element三角形元 triangular element四边形元 quadrilateral element四面体元 tetrahedral element曲线元 curved element二次元 quadratic element线性元 linear element三次元 cubic element四次元 quartic element等参[数]元 isoparametric element超参数元 super-parametric element亚参数元 sub-parametric element节点数可变元 variable-number-node element拉格朗日元 Lagrange element拉格朗日族 Lagrange family巧凑边点元 serendipity element巧凑边点族 serendipity family无限元 infinite element单元分析 element analysis单元特性 element characteristics刚度矩阵 stiffness matrix几何矩阵 geometric matrix等效节点力 equivalent nodal force节点位移 nodal displacement节点载荷 nodal load位移矢量 displacement vector载荷矢量 load vector质量矩阵 mass matrix集总质量矩阵 lumped mass matrix相容质量矩阵 consistent mass matrix阻尼矩阵 damping matrix瑞利阻尼 Rayleigh damping刚度矩阵的组集 assembly of stiffnessMatrices载荷矢量的组集 consistent mass matrix质量矩阵的组集 assembly of mass matrices 单元的组集 assembly of elements局部坐标系 local coordinate system局部坐标 local coordinate面积坐标 area coordinates体积坐标 volume coordinates曲线坐标 curvilinear coordinates静凝聚 static condensation合同变换 contragradient transformation形状函数 shape function试探函数 trial function检验函数test function权函数 weight function样条函数 spline function代用函数 substitute function降阶积分 reduced integration零能模式 zero-energy modeP收敛 p-convergenceH收敛 h-convergence掺混插值 blended interpolation等参数映射 isoparametric mapping双线性插值 bilinear interpolation小块检验 patch test非协调模式 incompatible mode 节点号 node number单元号 element number带宽 band width带状矩阵 banded matrix变带状矩阵 profile matrix带宽最小化minimization of band width波前法 frontal method子空间迭代法 subspace iteration method 行列式搜索法determinant search method逐步法 step-by-step method纽马克法Newmark威尔逊法 Wilson拟牛顿法 quasi-Newton method牛顿-拉弗森法 Newton-Raphson method 增量法 incremental method初应变 initial strain初应力 initial stress切线刚度矩阵 tangent stiffness matrix割线刚度矩阵 secant stiffness matrix模态叠加法mode superposition method平衡迭代 equilibrium iteration子结构 Substructure子结构法 substructure technique超单元 super-element网格生成 mesh generation结构分析程序 structural analysis program 前处理 pre-processing后处理 post-processing网格细化 mesh refinement应力光顺 stress smoothing组合结构 composite structure流体动力学类:流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics 液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowskicondition布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid 质量守恒 conservation of mass动量守恒 conservation of momentum 能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线stream line流面 stream surface流管stream tube迹线path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street马蹄涡 horseshoe vortex对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation 偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow 浮体 floating body定倾中心metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量added mass ,associated mass收缩 contraction镜象法 image method无量纲参数 dimensionless parameter几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源source汇sink速度[水]头 velocity head拐角流 corner flow空泡流cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics 高速空气动力学 high-speed aerodynamics 气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow楔流wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速stall脱体激波detached shock wave 波阻wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数critical Reynolds number前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition状态方程 equation of state量热状态方程 caloric equation of state完全气体 perfect gas拉瓦尔喷管 Laval nozzle马赫角 Mach angle马赫锥 Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数 local Mach number冲击波 shock wave激波 shock wave正激波normal shock wave斜激波oblique shock wave头波 bow wave附体激波 attached shock wave激波阵面 shock front激波层 shock layer压缩波 compression wave反射 reflection折射 refraction散射scattering衍射 diffraction绕射 diffraction出口压力 exit pressure超压[强] over pressure反压 back pressure爆炸 explosion爆轰 detonation缓燃 deflagration水动力学 hydrodynamics液体动力学 hydrodynamics泰勒不稳定性 Taylor instability 盖斯特纳波 Gerstner wave斯托克斯波 Stokes wave瑞利数 Rayleigh number自由面 free surface波速 wave speed, wave velocity 波高 wave height波列wave train波群 wave group波能wave energy表面波 surface wave表面张力波 capillary wave规则波 regular wave不规则波 irregular wave浅水波 shallow water wave深水波deep water wave重力波 gravity wave椭圆余弦波 cnoidal wave潮波tidal wave涌波surge wave破碎波 breaking wave船波ship wave非线性波 nonlinear wave孤立子 soliton水动[力]噪声 hydrodynamic noise 水击 water hammer空化 cavitation空化数 cavitation number 空蚀 cavitation damage超空化流 supercavitating flow水翼 hydrofoil水力学 hydraulics洪水波 flood wave涟漪ripple消能 energy dissipation海洋水动力学 marine hydrodynamics谢齐公式 Chezy formula欧拉数 Euler number弗劳德数 Froude number水力半径 hydraulic radius水力坡度 hvdraulic slope高度水头 elevating head水头损失 head loss水位 water level水跃 hydraulic jump含水层 aquifer排水 drainage排放量 discharge壅水曲线back water curve压[强水]头 pressure head过水断面 flow cross-section明槽流open channel flow孔流 orifice flow无压流 free surface flow有压流 pressure flow缓流 subcritical flow急流 supercritical flow渐变流gradually varied flow急变流 rapidly varied flow临界流 critical flow异重流density current, gravity flow堰流weir flow掺气流 aerated flow含沙流 sediment-laden stream降水曲线 dropdown curve沉积物 sediment, deposit沉[降堆]积 sedimentation, deposition沉降速度 settling velocity流动稳定性 flow stability不稳定性 instability奥尔-索末菲方程 Orr-Sommerfeld equation 涡量方程 vorticity equation泊肃叶流 Poiseuille flow奥辛流 Oseen flow剪切流 shear flow粘性流[动] viscous flow层流 laminar flow分离流 separated flow二次流 secondary flow近场流near field flow远场流 far field flow滞止流 stagnation flow尾流 wake [flow]回流 back flow反流 reverse flow射流 jet自由射流 free jet管流pipe flow, tube flow内流 internal flow拟序结构 coherent structure 猝发过程 bursting process表观粘度 apparent viscosity 运动粘性 kinematic viscosity 动力粘性 dynamic viscosity 泊 poise厘泊 centipoise厘沱 centistoke剪切层 shear layer次层 sublayer流动分离 flow separation层流分离 laminar separation 湍流分离 turbulent separation 分离点 separation point附着点 attachment point再附 reattachment再层流化 relaminarization起动涡starting vortex驻涡 standing vortex涡旋破碎 vortex breakdown 涡旋脱落 vortex shedding压[力]降 pressure drop压差阻力 pressure drag压力能 pressure energy型阻 profile drag滑移速度 slip velocity无滑移条件 non-slip condition 壁剪应力 skin friction, frictional drag壁剪切速度 friction velocity磨擦损失 friction loss磨擦因子 friction factor耗散 dissipation滞后lag相似性解 similar solution局域相似 local similarity气体润滑 gas lubrication液体动力润滑 hydrodynamic lubrication 浆体 slurry泰勒数 Taylor number纳维-斯托克斯方程 Navier-Stokes equation 牛顿流体 Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层 boundary layer附面层 boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度 displacement thickness动量厚度 momentum thickness能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出suction泰勒涡 Taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization孔板流量计 orifice meter频率响应 frequency response油膜显示oil film visualization阴影法 shadow method纹影法 schlieren method烟丝法smoke wire method丝线法 tuft method。

南开大学光学工程专业英语重点词汇汇总

南开大学光学工程专业英语重点词汇汇总

光学专业英语部分refraction [rɪˈfrækʃn]n.衍射reflection [rɪˈflekʃn]n.反射monolayer['mɒnəleɪə]n.单层adj.单层的ellipsoid[ɪ'lɪpsɒɪd]n.椭圆体anisotropic[,ænaɪsə(ʊ)'trɒpɪk]adj.非均质的opaque[ə(ʊ)'peɪk]adj.不透明的;不传热的;迟钝的asymmetric[,æsɪ'metrɪk]adj.不对称的;非对称的intrinsic[ɪn'trɪnsɪk]adj.本质的,固有的homogeneous[,hɒmə(ʊ)'dʒiːnɪəs;-'dʒen-] adj.均匀的;齐次的;同种的;同类的,同质的incidentlight入射光permittivity[,pɜːmɪ'tɪvɪtɪ]n.电容率symmetric[sɪ'metrɪk]adj.对称的;匀称的emergentlight出射光;应急灯.ultrafast[,ʌltrə'fɑ:st,-'fæst]adj.超快的;超速的uniaxial[,juːnɪ'æksɪəl]adj.单轴的paraxial[pə'ræksɪəl]adj.旁轴的;近轴的periodicity[,pɪərɪə'dɪsɪtɪ]n.[数]周期性;频率;定期性soliton['sɔlitɔn]n.孤子,光孤子;孤立子;孤波discrete[dɪ'skriːt]adj.离散的,不连续的convolution[,kɒnvə'luːʃ(ə)n]n.卷积;回旋;盘旋;卷绕spontaneously:[spɒn'teɪnɪəslɪ] adv.自发地;自然地;不由自主地instantaneously:[,instən'teinjəsli]adv.即刻;突如其来地dielectricconstant[ˌdaiiˈlektrikˈkɔnstənt]介电常数,电容率chromatic[krə'mætɪk]adj.彩色的;色品的;易染色的aperture['æpətʃə;-tj(ʊ)ə]n.孔,穴;(照相机,望远镜等的)光圈,孔径;缝隙birefringence[,baɪrɪ'frɪndʒəns]n.[光]双折射radiant['reɪdɪənt]adj.辐射的;容光焕发的;光芒四射的; photomultiplier[,fəʊtəʊ'mʌltɪplaɪə]n.[电子]光电倍增管prism['prɪz(ə)m]n.棱镜;[晶体][数]棱柱theorem['θɪərəm]n.[数]定理;原理convex['kɒnveks]n.凸面体;凸状concave['kɒnkeɪv]n.凹面spin[spɪn]n.旋转;crystal['krɪst(ə)l]n.结晶,晶体;biconical[bai'kɔnik,bai'kɔnikəl] adj.双锥形的illumination[ɪ,ljuːmɪ'neɪʃən] n.照明;[光]照度;approximate[ə'prɒksɪmət] adj.[数]近似的;大概的clockwise['klɒkwaɪz]adj.顺时针方向的exponent[ɪk'spəʊnənt;ek-] n.[数]指数;even['iːv(ə)n]adj.[数]偶数的;平坦的;相等的eigenmoden.固有模式;eigenvalue['aɪgən,væljuː]n.[数]特征值cavity['kævɪtɪ]n.腔;洞,凹处groove[gruːv]n.[建]凹槽,槽;最佳状态;惯例;reciprocal[rɪ'sɪprək(ə)l]adj.互惠的;相互的;倒数的,彼此相反的essential[ɪ'senʃ(ə)l]adj.基本的;必要的;本质的;精华的isotropic[,aɪsə'trɑpɪk]adj,各向同性的;等方性的phonon['fəʊnɒn]n.[声]声子cone[kəʊn]n.圆锥体,圆锥形counter['kaʊntə]n.柜台;对立面;计数器;cutoff['kʌt,ɔːf]n.切掉;中断;捷径adj.截止的;中断的cladding['klædɪŋ]n.包层;interference[ɪntə'fɪər(ə)ns]n.干扰,冲突;干涉borderline['bɔːdəlaɪn]n.边界线,边界;界线quartz[kwɔːts]n.石英droplet['drɒplɪt]n.小滴,微滴precision[prɪ'sɪʒ(ə)n]n.精度,[数]精密度;精确inherently[ɪnˈhɪərəntlɪ]adv.内在地;固有地;holographic[,hɒlə'ɡræfɪk]adj.全息的;magnitude['mægnɪtjuːd]n.大小;量级;reciprocal[rɪ'sɪprək(ə)l]adj.互惠的;相互的;倒数的,彼此相反的stimulated['stimjə,letid]v.刺激(stimulate的过去式和过去分词)cylindrical[sɪ'lɪndrɪkəl]adj.圆柱形的;圆柱体的coordinates[kəu'ɔ:dineits]n.[数]坐标;external[ɪk'stɜːn(ə)l;ek-]n.外部;外观;scalar['skeɪlə]n.[数]标量;discretization[dɪs'kriːtaɪ'zeɪʃən]n.[数]离散化synthesize['sɪnθəsaɪz]vt.合成;综合isotropy[aɪ'sɑtrəpi]n.[物]各向同性;[物]无向性;[矿业]均质性pixel['pɪks(ə)l;-sel]n.(显示器或电视机图象的)像素(passive['pæsɪv]adj.被动的spiral['spaɪr(ə)l]n.螺旋;旋涡;equivalent[ɪ'kwɪv(ə)l(ə)nt]adj.等价的,相等的;同意义的; transverse[trænz'vɜːs;trɑːnz-;-ns-]adj.横向的;横断的;贯轴的;dielectric[,daɪɪ'lektrɪk]adj.非传导性的;诱电性的;n.电介质;绝缘体integral[ˈɪntɪɡrəl]adj.积分的;完整的criteria[kraɪ'tɪərɪə]n.标准,条件(criterion的复数)Dispersion:分散|光的色散spectroscopy[spek'trɒskəpɪ]n.[光]光谱学photovoltaic[,fəʊtəʊvɒl'teɪɪk]adj.[电子]光电伏打的,光电的polar['pəʊlə]adj.极地的;两极的;正好相反的transmittance[trænz'mɪt(ə)ns;trɑːnz-;-ns-] n.[光]透射比;透明度dichroic[daɪ'krəʊɪk]adj.二色性的;两向色性的confocal[kɒn'fəʊk(ə)l]adj.[数]共焦的;同焦点的rotation[rə(ʊ)'teɪʃ(ə)n]n.旋转;循环,轮流photoacoustic[,fəutəuə'ku:stik]adj.光声的exponential[,ekspə'nenʃ(ə)l]adj.指数的;fermion['fɜːmɪɒn]n.费密子(费密系统的粒子)semiconductor[,semɪkən'dʌktə]n.[电子][物]半导体calibration[kælɪ'breɪʃ(ə)n]n.校准;刻度;标度photodetector['fəʊtəʊdɪ,tektə]n.[电子]光电探测器interferometer[,ɪntəfə'rɒmɪtə]n.[光]干涉仪;干涉计static['stætɪk]adj.静态的;静电的;静力的;inverse相反的,反向的,逆的amplified['æmplifai]adj.放大的;扩充的horizontal[hɒrɪ'zɒnt(ə)l]n.水平线,水平面;水平位置longitudinal[,lɒn(d)ʒɪ'tjuːdɪn(ə)l;,lɒŋgɪ-] adj.长度的,纵向的;propagate['prɒpəgeɪt]vt.传播;传送;wavefront['weivfrʌnt]n.波前;波阵面scattering['skætərɪŋ]n.散射;分散telecommunication[,telɪkəmjuːnɪ'keɪʃ(ə)n] n.电讯;[通信]远程通信quantum['kwɒntəm]n.量子论mid-infrared中红外eigenvector['aɪgən,vektə]n.[数]特征向量;本征矢量numerical[njuː'merɪk(ə)l]adj.数值的;数字的ultraviolet[ʌltrə'vaɪələt]adj.紫外的;紫外线的harmonic[hɑː'mɒnɪk]n.[物]谐波。

菲涅尔透镜设计方法介绍

菲涅尔透镜设计方法介绍

The Fresnel LensCenturies ago, it was recognized that the contour of the refracting surface of a conventional lens defines its focusing properties. The bulk of material between the refracting sur-faces has no effect (other than increasing absorption losses) on the optical properties of the lens. In a F resnel (point focus) lens the bulk of material has been reduced by the extraction of a set of coaxial annular cylinders of material, as shown in Figure 1. (Positive focal length Fresnel lenses are almost universally plano-convex.) The contour of the curved surface is thus approximated by right circular cylindrical portions, which do not contribute to the lens’ optical proper-ties, intersected by conical portions called “grooves.” Near the center of the lens, these inclined surfaces or “grooves”are nearly parallel to the plane face; toward the outer edge, the inclined surfaces become extremely steep, especially for lenses of low f–number. The inclined surface of each groove is the corresponding portion of the original aspheric surface, translated toward the plano surface of the lens; the angle of each groove is modified slightly from that of the original aspheric profile to compensate for this translation.The earliest stepped-surface lens was suggested in 1748by Count Buffon, who proposed to grind out material from the plano side of the lens until he was left with thin sections of material following the original spherical surface of the lens, as shown schematically in F igure 2a). Buffon’s work was followed by that of Condorcet and Sir D. Brewster, both of whom designed built-up lenses made of stepped annuli. The aspheric Fresnel lens was invented in 1822 by Augustin Jean F resnel (1788–1827), a F rench mathematician and physicist also credited with resolving the dispute between the classical corpuscular and wave theories of light through his careful experiments on diffraction. Fresnel’s original lens was used in a lighthouse on the river Gironde; the main innovation embodied in Fresnel’s design was that the center of curvature of each ring receded along the axis according to its distance from the center, so as practically to eliminate spherical aberration. Fresnel’s original design, including the spherical-surfaced central section, is shown schematically in Figure 2b). The early Fresnel lenses were cut and polished in glass – an expensive process, and one limited to a few large grooves. Figure 3 shows a Fresnel lens, constructed in this way, which is used in the lighthouse at St Augustine, Florida, USA. The large aperture and low absorption of F resnel lenses were especially important for use with the weak lamps found in lighthouses before the invention of high-brightness light sources in the 1900s. The illustrated system is catadioptric: the glass rings above and below the Fresnel lens band in the center of the light are totally-internally-reflecting prisms, which serve to collect an additional frac-tion of the light from the source. The use of catadioptric sys-tems in lighthouses was also due to Fresnel.Until the 1950’s, quality Fresnel lenses were made from glass by the same grinding and polishing techniques used in 1822. Cheap Fresnel lenses were made by pressing hot glass into metal molds; because of the high surface tension of glass, Fresnel lenses made in this way lacked the necessary detail, and were poor indeed.In the last forty years or so, the advent of optical-quality plastics, compression and injection molding techniques,Figure 1 Construction of a Fresnel lens from its correspond-ing asphere. Each groove of the Fresnel lens is asmall piece of the aspheric surface, translated to-ward the plano side of the lens. The tilt of each sur-face must be modified slightly from that of theoriginal portion of aspheric surface, in order tocompensate for the translation.Figure 2 Early stepped–surface lenses. In both illustrations the black area is material, and the dashed curvesrepresent the original contours of the lenses. a)shows the lens suggested by Count Buffon (1748),where material was removed from the plano sideof the lens in order to reduce the thickness. b)shows the original lens of Fresnel (1822), the cen-tral ring of which had a spherical surface. InFresnel’s lens, the center of curvature of each ringwas displaced according to the distance of thatring from the center, so as to eliminate sphericalaberration.a)b)© Copyright Fresnel Technologies, Inc. 20032© Copyright Fresnel Technologies, Inc. 20033and computer-controlled machining have made possible the manufacture and wide application of F resnel lenses of higher optical quality than the finest glass F resnel lenses.Modern computer-controlled machining methods can be used to cut the surface of each cone precisely so as to bring all paraxial rays into focus at exactly the same point, avoid-ing spherical aberration. Better still, newer methods can be used to cut each refracting surface in the correct aspheric contour (rather than as a conical approximation to this con-tour), thus avoiding even the width of the groove (typically 0.1 to 1 mm) as a limit to the sharpness of the focus. Even though each groove or facet brings light precisely to a focus,the breaking up of the wavefront by the discontinuous sur-face of a F resnel lens degrades the visible image quality.Except in certain situations discussed later, Fresnel lenses are usually not recommended for imaging applications in the visible light region of the spectrum.The characteristics of the aspheric “correction”The grinding and polishing techniques used in the manufac-ture of conventional optics lead to spherical surfaces. Spher-ical surfaces produce optics with longitudinal spherical aberration, which occurs when different annular sections of the optic bring light rays to a focus at different points along the optical axis. This phenomenon is illustrated for a positive focal length, plano-convex conventional lens in Figure 4 (in all optical illustrations in this brochure, light is taken to propagate from left to right). The lens illustrated is a section of a sphere with 1" (25 mm) radius of curvature, 1.6"(36 mm) in diameter; the index of refraction of the material is 1.5, typical both for optical glasses and for our plastics materials. The focal length of the illustrated lens is thus 2"(50 mm), and the aperture is /1.3. As is evident from the figure, the longitudinal spherical aberration is very strong.Single-element spherical lenses are typically restricted to much smaller apertures (higher –numbers) than this,because longitudinal spherical aberration of the magnitude shown in Figure 4 is generally unacceptable. Figure 5 shows an aspheric lens of the same focal length and –number;note that the surface contour is modified from the spherical profile in such a way as to bring rays passing through all points on the lens to a focus at the same position on the opti-cal axis. A lens made with the aspheric profile illustrated in Figure 5, therefore, exhibits no longitudinal spherical aber-ration for rays parallel to the optical axis.Since Fresnel lenses are made from the beginning to the correct aspheric profile, the notion of “correcting for spheri-cal aberration” is not meaningful for F resnel lenses. The lenses are more accurately characterized as “free from spherical aberration.” The combination of the aspheric sur-face (which eliminates longitudinal spherical aberration)and the thinness of the lens (which substantially reduces both absorption losses in the material and the change of those losses across the lens profile) allows F resnel lenses with acceptable performance to be made with very large apertures. In fact, F resnel lenses typically have far larger apertures (smaller –numbers) than the /1.3 illustrated in Figure 4.Figure 6 compares an aspheric plano-convex lens with an aspheric F resnel lens (the F resnel lens’ groove structure isf f f f f Figure 3 The light from the St Augustine, Florida (USA) light-house, showing the glass Fresnel optical system used in the lighthouse. The optical system is about 12 feet (3.5 m) tall and 7 feet (2 m) in diameter.Figure 4Illustration of longitudinal spherical aberration.The rays shown were traced through an /1.3 spherical-surface lens; the focus is evidentlyspread out over a considerable distance along theoptical axis.f© Copyright Fresnel Technologies, Inc. 20034tive focal length (EFL), quential, so that the Fresnel lens.focus. (This type of F application and reversed.for a given focal length tion (where object distances, i.e. the conjugates), and are found to be and for the conjugate ratio 3:1. Even though a lens may be designed for conjugates in some particular ratio, it can be used at other finite conjugate ratios as well. The error introduced is usually reasonably small.Fresnel lenses are normally fabricated so that they are correct for the case of grooves toward the collimated beam,plano side toward the focus (grooves “out”). They can, how-ever, be fabricated so that they are correct for the case of grooves toward the focus, plano side toward the collimated beam (grooves “in”). In this case, there is no refraction at all on the plano side for a collimated beam traveling parallel to the optical axis. In the grooves “out” case, both surfaces refract the light more or less equally. The case of grooves toward the collimated beam (“out”) is the optically preferred case. The main difference is that in the grooves “in” case, the grooves at the outer periphery of the lens are canted at muchf f f 1f ⁄1i ⁄1o ⁄+=i 4f 4f 3⁄ Figure 6 Comparison between an aspheric conventionallens and an aspheric Fresnel lens, illustrating the optical quantities discussed in the text.smaller angles to the plano surface than they would be in spherical or grooves “out” lenses. Because the angles made with the plano surface are relatively small toward the periphery of the lens, any small warpage or tilt of the lens surface, or any small deviation of a light ray from parallelism with the optical axis, leads to a very large deviation from the ideal in the angle between the light ray and the lens surface.These errors lead directly to a decrease in the collection effi-ciency of a grooves “in” lens relative to a grooves “out” lens of the same focal length and –number.A third case which is sometimes encountered is that of a Fresnel lens which is correct for grooves “out,” used with its grooves toward the focus (grooves “out” turned groovesf© Copyright Fresnel Technologies, Inc. 20035for angles of intersection between a light ray and the normalto a surface larger than the critical angle = ,where the ray is traveling from a medium of index of refrac-tion into a medium of index of refraction . It is evident that total internal reflection only occurs for , since in the case is greater than π /2 and therefore not physically meaningful.) This phenomenon makes the portion of a grooves “out” lens turned grooves “in” lens past about /1 useless. The phenomenon is easily observed as an appar-ent “silvering” of the outer portion of a grooves “out” lens when its grooves are turned to face the shorter conjugate.Total internal reflection does not occur for grooves “out”lenses used in their correct orientation because the only large-angle intersection between the light and the lens sur-face occurs at a transition from low to high refractive index.MaterialsOur standard materials for visible light applications are acrylic, polycarbonate and rigid vinyl. These materials are suitable for some near infrared applications as well, as dis-cussed later in this brochure. Figure 9 shows useful transmis-sion ranges for a variety of plastics materials. Materials suitable for infrared applications are described in detail in our POLY IR® brochure.The first step in choosing a material is to match the mate-rial to the spectral domain of the application. Other consid-erations include thickness, rigidity, service temperature,weatherability, and other physical properties listed in the table of properties on the next page.AcrylicOptical quality acrylic is the most widely applicable mate-rial, and is a good general-purpose material in the visible. Its transmittance is nearly flat and almost 92% from the ultravi-olet to the near infrared; acrylic may additionally be speci-fied to be UV transmitting (UVT acrylic) or UV filtering (UVF acrylic). The transmittance of our standard acrylic materials between 0.2 µm and 2.2 µm is shown in F igure 10 for a thickness of 1/8" (3.2 mm). Standard acrylic thicknesses are 0.060" (1.5 mm), 0.090" (2.3 mm), and 0.125" (3.2 mm). Rigid vinylRigid vinyl has a number of characteristics which make it both affordable and very suitable for certain applications. It has a high index of refraction; it is reasonably inexpensive;and it can be die-cut. However, polycarbonate has very sim-ilar properties, without the problems associated with rigid vinyl, and its use is encouraged over that of rigid vinyl in new applications. Rigid vinyl has about the same tempera-ture range as acrylic and is naturally fire-retardant. The trans-mittance of rigid vinyl between 0.2 µm and 2.5 µm is shown in F igure 11 for a nominal thickness of 0.030" (0.76 mm).Standard thicknesses for rigid vinyl are 0.010" (0.25 mm),0.015" (0.38 mm), 0.020" (0.51 mm), and 0.030" (0.76 mm). PolycarbonatePolycarbonate is spectrally similar to acrylic, but is useful at higher temperatures and has a very high impact resistance.The transmittance of polycarbonate between 0.2 µm and 2.2 µm is shown in Figure 12 for a nominal thickness of 1/8"θc sin –1n n '⁄()n n 'n 'n >n 'n <θc f Figure 7 Illustration of the strong asymmetry of the asphericFresnel lens. The illustrated lens is correct for the grooves facing the longer conjugate (grooves “out”). When it is turned around so that thegrooves face the shorter conjugate (grooves “out” turned grooves “in”), on-axis performance suffers. As discussed in the text, however, in the case where the grooves must face the shorter conjugate, a grooves “out” lens turned grooves “in” has some advantages over a lens correct for grooves “in.”Figure 8 Aspheric Fresnel lens correct for the grooves facingthe shorter conjugate (grooves “in”).© Copyright Fresnel Technologies, Inc. 20037Figure 12 Transmittance of polycarbonate as a function ofwavelength. Sample thickness = 1/8" (3.2 mm) nominal.Figure 13 The three typical configurations for producing acollimated beam of light: lens only, mirror only, and a combination of lens and mirror.(3.2 mm). Standard thicknesses available in polycarbonate are 0.010” (0.25 mm), 0.015” (0.38 mm), 0.020” (0.5 mm),0.030" (0.76 mm), 0.040” (1 mm), 0.050" (1.3 mm), 0.060"(1.5 mm), and 0.125" (3.2 mm).Focal length in a given materialThe focal lengths listed in the table at the end of this bro-chure are the effective focal lengths in optical grade acrylic.The effective focal length is different when a lens is manu-factured from a different material, but is easily calculated.The effective focal length in any other material iswhere is the refractive index of the material in question.T ypical Fresnel Lens ApplicationsCollimatorProducing a collimated beam from a point source could be said to be a perfect application for F resnel lenses. In this case the spatial distribution of light from the point source tends to favor the central portion of the lens, so that the total lens transmittance can be as much as 90%. The best optical results are obtained when the grooved side faces the longer conjugate.In practice, the point source is never actually a point source, but is extended, so that the imperfection of the coni-cal approximation to the aspheric groove shapes is never noticed.Figure 13 shows the three cases usually encountered in collimation: lens only, mirror only, and lens/mirror combina-tion. Note that adding a lens to the mirror-only case would produce extremely poor results. The mirror must be specially designed to image the light source very near itself.CollectorFocusing a collimated beam of light at a point is another popular use of F resnel lenses, and one for which F resnel lenses are at least adequate. Again, the grooved side toward the infinite conjugate is the optically preferred configura-tion. Because the collimated beam is assumed to be uni-form, there is a substantial loss through the lens in this case for marginal rays. The loss is caused by the increasing angles of incidence and emergence as the margin of the lens is approached. It can be predicted using Fresnel’s equations,which describe the reflection and transmission of light at an interface between media of differing refractive index. The loss due to reflection is graphed as a function of the angle between the incident ray and the (plane) interface in Figure 14.There are two additional losses which must be considered in demanding applications. One is due to the unavoidable width of the vertical step between grooves. This loss is gen-erally reasonably small in well-made F resnel lenses, but light scattered from the step brightens the focal plane and thereby reduces the contrast of an image.The other loss is due to shadowing and blocking effects caused by the vertical step. This loss does not exist for rays parallel to the optical axis striking grooves “in” lenses, but is present in all other cases. For rays making a large angle (20°EFL 1.491–n 1–--------------------EFL acrylic ,=n© Copyright Fresnel Technologies, Inc. 20038cant loss. F and invites your inquiries.Condenserdenser lens will even be frosted.plano–plano sheet.Field lenses (Fresnel screen “brighteners”)A Fresnel lens can be used to redirect the light at the edges of a frosted rear-projection display screen toward the viewer’s eyes, thus eliminating the “hot spot” often observed in such screens by brightening the edges of the display.Screens of this type include camera focusing screens. The grooves must face the light source in this application; the grooves often must therefore face the shorter conjugate, an exception to the usual rule.Conjugates for the field lens should be the distance from the projector lens on the grooved side, and the distance to the viewer on the frosted side. Fresnel Technologies, Inc. can supply suitable lenses with the plano side either optically polished or frosted.MagnifiersAn aspheric lens is an ideal magnifier from several points of view. When used at its conjugates, there is no distortion of the image (a rectangular grid remains a rectangular grid afterwhere is the lens’ focal length. This is usually taken astrue for a virtual image at infinity. A magnifier with a focallength of 50 mm will then have a power of 5X.Because they can be made large, Fresnel lenses are gen-erally used to magnify objects slightly, perhaps as little as 1.2 or 1.5X. One usually expects to see the entire object at once within the Fresnel lens, so that the lens must then be 1.2 or 1.5 times the size of the object in both length and width.Please observe caution when using a F resnel lens as a magnifier around strong light sources, lasers, and in sun-light.ImagingFresnel Technologies, Inc. does not generally recommend its Fresnel lenses for image formation in the visible region of the spectrum, but there are some important exceptions.θff M θ'θ---250mm f-------------------== ,Imaging generally demands some substantial field of view, or the image is uninteresting. With simple plano-convex lenses, coma degrades the image only a degree or so off axis. Chromatic aberration blurs the image as well. As in camera or copy lenses, the faster the lens (the smaller the f–number), the worse the problem becomes – and the small f–numbers of Fresnel lenses are very tempting.The important exceptions include two cases: rays pre-cisely parallel to the axis of the lens (laser rangefinder, for example) and imaging onto a large detector (for instance, a pyroelectric detector or a thermopile).Imaging can be treated as a generalization of collection. Near-infrared applicationsAll of the above applications remain relevant into the near infrared, and the preferred materials (acrylic, polycarbonate, and rigid vinyl) from the visible region can be used to about 1.3 µm without difficulty. The refractive index of each of these materials is slightly lower there, but our plastics are not strongly dispersive.Process monitoring at 3.4 µmAll hydrocarbons – solids, liquids, and gases – exhibit a strong absorption of 3.4 µm radiation. (3.4 µm is the wave-length of the C–H stretch.) POLY IR® 5 is specially formu-lated to contain no hydrogen, and is thus free of the C–H stretch absorption. It can be used to monitor hydrocarbons in a wide variety of applications: uses have ranged from methane monitoring above landfills to process control on production lines.Passive infrared applicationsThe collection of infrared radiation emitted by humans and other warm-blooded animals has become a major applica-tion area for Fresnel lenses. This application requires that the lenses be transparent between approximately the wave-lengths of 8 µm and 14 µm, the region of maximum contrast betwen warm bodies and typical backgrounds.Passive infrared applications are discussed in our bro-chure on POLY IR® infrared-transmitting materials, and in the notes accompanying our passive infrared lens array data sheets.ThermometryOptical pyrometry can be extended toward infrared wave-lengths (and therefore lower temperatures) with appropriate sensors and optics. Fresnel lenses made from our POLY IR®infrared-transmitting materials are used with a variety of bolometers and thermopiles. Our POLY IR® 1 and 2 materi-als are most appropriate for higher temperatures (shorter wavelengths); they can be used for lower-temperature appli-cations as well. Our POLY IR® 4 material is also useful there, particularly in white. Please refer to our POLY IR®infrared-transmitting materials brochure for more informa-tion.Solar Energy CollectionFresnel lenses have often been used as concentrators for photovoltaic cells or arrays of cells in solar energy devices. We can certainly recommend them for this application,though reflectors and nonimaging concentrators are often superior. However, Fresnel Technologies, Inc. does not man-ufacture any Fresnel lenses with uniform energy distribution over typical photovoltaic cell areas; our products all have a damaging “hot spot” in the focal plane. We therefore do not recommend our own products for this application; neither do we manufacture mirrors or nonimaging collectors useful for solar devices.Please use caution with our Fresnel lenses in sunlight. The sun's image can easily ignite flammable materials quickly, and can damage materials which are not flammable. These cautions particularly apply to clothing, skin, and eyes, in both sunlight and laser light.Special OpticsFresnel Technologies, Inc. offers several types of optical ele-ments related to Fresnel lenses. These include:Cylindrical Fresnel lensesA cylindrical Fresnel lens is a collapsed version of a conven-tional cylindrical lens. These lenses can be used in any application which requires focusing in only one dimension of the focal plane. In some cases, two separate cylindrical lenses may be combined to obtain different focal properties in the x and y dimensions of the focal plane; these configu-rations are representative of one type of anamorphic optic. A variety of cylindrical Fresnel lenses is available, with typical –numbers between /1 and /2. Both positive and negative focal lengths are available.Fresnel prism (array of prisms)A Fresnel array of prisms is made up of many small prisms, each with the same vertex angles as the large prism mim-icked by the array. This type of array allows the redirection of light with the advantage of constant transmission over the entire array, instead of the varying losses of a comparably capable conventional prism. The lack of bulk may also be used to advantage when redirection of light is required and space is limited. Not all the incident light emerges on the other side of the array, because some undergoes multiple reflections or refractions at various surfaces, or is totally internally reflected. For our item #400, a collimated beam of light incident on the smooth side is tilted by 20°. The angle of minimum deviation, as defined in optics texts, is 15°. Hexagonal lens arraysWe manufacture two types of lens arrays with closely-packed hexagonal lenslets: those with conventional lenslets and those with Fresnel lenslets. Fresnel lenslets are appropri-ate for larger apertures and shorter focal lengths, where the thickness and weight of conventional lenslets would be pro-hibitive.Rectangular lens arraysAll of our catalogued rectangular lens arrays are arrays of Fresnel lenses, and they are all actually square arrays. We offer some types correct for the infinite conjugate on the smooth side, as well as the more usual circumstance of the infinite conjugate on the grooved side. All are made using Fresnel lenses with aspherically contoured groove surfaces f f f© Copyright Fresnel Technologies, Inc. 20039© Copyright Fresnel Technologies, Inc. 200310and constant groove depths. Rectangular lens arrays can be used to illuminate an area evenly with a matching array of light emitting diodes, or to track motion via an array of pho-todiodes. They can be cut into strips to form linear arrays.Lenticular arraysA lenticular array is a closely-packed array of conventional cylindrical lenslets. These arrays are quite suitable as one-dimensional diffusers, and some are acceptable for 3D pho-tography (the focus must be located at the back (plano) side of the array). Light striking the lenticular array is diffused only in the direction across the cylindrical lenslets; there is no diffusion along the lenslets. As the –number of the lens-lets decreases, the angle of diffusion increases depending on the relative size of the light source as compared with the lenslet spacing. A variety of diffusion angles are possible as our arrays have lenslet –numbers ranging from /1.2 to /5.4. Often it is desired to diffuse light in more than one dimension. For this case, we offer crossed lenticular arrays,such that the same or a different lenticular array can be molded on the back side of the sheet.Special ProductsFresnel Technologies, Inc. through its predecessors has man-ufactured F resnel lenses since the 1960s and has gained extensive experience in custom lens fabrication. A large variety of standard lens products is offered, and these stan-dard products may be modified to suit individual needs at a small additional cost. Fresnel Technologies, Inc. also offers custom lens array systems which may be developed to achieve certain performance requirements. Some of the cus-tom services provided are:Lens FrostingSpecific Modification of Standard Lenses Diffusing SurfacesCustom Lens Array Tooling and ProductionCutting of Lenses and Lens Arrays to Custom Shapes Custom Material DevelopmentWe invite your inquiries about these services.BibliographyA good entry level reference on optics, both geometrical and physical, is E. Hecht, Optics , 3nd edition, Addison-Wesley (Reading, MA), 1997.A more advanced treatment of optics can be found in Princi-ples of Optics , Max Born and Emil Wolf, 7th edition, Cam-bridge University Press (Cambridge, UK), 1999.For a thorough discussion both of the limitations of imaging optical systems in the collection of radiant energy and of the nonimaging collectors which can be used to collect energy efficiently, see W.T. Welford and R. Winston, High Collec-tion Nonimaging Optics , Academic Press (San Diego), 1989.A very interesting article describing an 1822 monograph on lighthouse lenses by F resnel is B.A. Anicin, V .M. Babovic,and D.M. Davidovic, Am. J. Phys. 57, 312 (1989).f f f f Lighthouse lens illustration (F igure 3) created with Canvas 3.5, courtesy Deneba Software, Miami, F lorida, USA and the St Augustine Lighthouse and Museum, St Augustine,Florida, USA.The Fresnel Technologies Product ListAt the end of this brochure are listed the standard stock opti-cal elements that Fresnel Technologies Inc. offers in optical quality acrylic. In the list values for optical quality acrylic material only are shown; some of the specifications apply also to other materials. Fresnel size refers to the size of the optical active area. Overall size refers to the dimensions of the optical element, possibly including a border for mount-ing purposes. All 11” x 11” overall size items have a 1.2”(31mm) x 45° chamfer at each corner. Thickness is specified for the border area (not the grooved area) and carries a toler-ance of ±40%. Much improved tolerances are possible:please contact our factory for assistance. The single piece prices listed are current at the catalog copyright date, and may be changed at any time. Contact us for the latest pricing and for quantity discounts, which can be substantial.Many of our positive focal length F resnel lenses are offered either as blanks with overall size tolerances of ±0.050" or as well centered disks with tolerances on the diameter of ±0.005" in the sizes less than 7" (180 mm) and ±0.008" in the larger sizes, centered to 0.010" to the optical axis. Improved tolerances can be held, and other cuts can be accommodated as special orders. The negative focal length Fresnel lenses listed are the only ones that are offered as stock items; a negative focal length version of most of our positive focal length Fresnel lenses is available as a special order.The grooves and the optical axis plane of items #72–85.1lie in the direction of the second dimension listed for the Fresnel size. There is no border along that dimension, but there is a 1/8" border perpendicular to the grooves, except for item #85.The sampler sheet (item #160) contains nine 2.5" diame-ter lenses in an array on a single sheet. The focal lengths of these lenses are: 2.4" (two), 2.6", 2.8", 3.0", 3.3", 3.15", 3.3",3.6", and 3.9".The lenticular arrays, items #200–260, are normally sup-plied with positive focal length lenslets. Negative focal length arrays are also available on special order, and work well as diffusers in some instances. If an array is to be used for 3D photography, please specify this in your order, so that we can send an array with thickness in the proper range.Item #300 is made of conventional lenslets (the "F ly’s-Eye" lens array) and it is suitable for one type of 3D photog-raphy, for moiré pattern work, or as a high efficiency diffuser.Item #310, suitable as a diffuser, is made of Fresnel lenses.When used as diffusers, both items diffuse light in all direc-tions. These arrays are normally supplied with positive focal length lenslets, but can be supplied with negative focal length lenslets upon request.The triangle formed by each prism in items #4xx has angles as shown in the columns marked “Facet angle with base.” This refers to the angle that each refracting surface makes with the plano side of the prism array. The thickness is measured from the center of the groove to the smooth side.。

VELOCITY INVERSION USING WAVELET REPRESENTED PERTURBATIONS

VELOCITY INVERSION USING WAVELET REPRESENTED PERTURBATIONS

can be decomposed into a ladder of subspaces with orthonormal wavelet bases by fast decomposition
y Department of
MULTIDIMENSIONAL WAVELETS GENERATED BY SINGLE MOTHER WAVELET By Multiresolution Analysis, L2 (R3){square integrable functions of three independent variables{
Z 1 k = (2 )?1 k j b(k) j2 dk;
0
?1=2 b = (2 )
Z 1
0
(k ? k )2 j b(k) j2 dk
:
(4)
The above de nitions are slightly di erent from those of Chui's (1992). Here the Fourier image of f 2 L2(R) is de ned as Z b f(k) = e?ikxf(x)dx: Then, for example, the wavelet coe cients of f 2 L2(R), de ned as
Inversion with wavelets
very striking physical features of both space and aperture, due to the space-aperture localization properties of wavelets. The signal can be reconstructed from these wavelet coe cients by fast reconstruction algorithms. Storing only the nonzero wavelet coe cients can substantially compress the signals. The Daubechies' (1992) orthogonal wavelets are compactly supported. The compactness of support translates to a saving of computation and storage. For geophysical problems, including migration and inversion, symmetry is also desirable. However simultaneous symmetry and compactness is impossible, thus we use the least asymmetric compactly supported wavelets with maximum number of vanishing moments (Daubechies, 1992). More vanishing moments mean better approximation for smooth functions (Wickerhauser, 1992). We choose wavelets with the above features to apply the velocity inversion by wavelet represented perturbation. Suppose 2 L2 (R) and 2 L2(R) are a pair of Daubechies' compactly supported wavelets and scaling functions. In the case of a real orthonormal mother wavelet and real signals to be processed, we can de ne the midpoint and radius of in the space domains, as x = = and in the aperture domains, as

应用光学英文词汇

应用光学英文词汇

光程(optical path)费马原理(Fermat’s principle)共轴光学系统(symmetrical optical system)光轴(optical axis)实物(real object)实像(real image)虚物(virtual object)虚像(virtual image)物空间(object space)像空间(image space)子午面(tangential/meridian plane)弧矢面(sagittal plane)孔径角(aperture angle)顶点(vertex)物方/像方截距(object/image distance)近轴光(paraxial ray)高斯像(Gaussian image)垂轴放大率(transversal magnification)正像(positive image)倒像(inverted image)轴向放大率(longitudinal magnification)角放大率(angular magnification)拉格朗日-亥姆霍兹不变量(LagrangeHelmholz invariant) 球面反射镜(reflecting sphere/spherical mirror)凹面镜(concave mirror)凸面镜(convex mirror)基点(basic points)共轭点(conjugate points)物方焦点(object focus)像方焦点(image focus/rear focus)主平面(principle plane)主点(principle point)焦距(focal length)节点(nodal point)牛顿公式(Newton’s formula)高斯公式(Gauss formula)会聚度(convergence)光焦度(focal power)透镜(lens)正透镜(positive lens)会聚透镜converging lens负透镜(negative lens)发散透镜diverging lens凸透镜(convex lens)凹透镜(concave lens)双凸透镜(biconvex lens)平凸透镜(plane convex lens)月凸透镜(正弯月meniscus convex lens) 双凹透镜(double-concave lens)平凹透镜(plane concave lens)月凹透镜(负弯月meniscus concave lens) 薄透镜(thin lens)平面镜(plane mirror)镜像(mirror image)双平面镜(bimirror)平行平板(parallel-plate)折射率(refractive index)平均色散(mean dispersion)阿贝常数(Abbe constant)部分色散(partial dispersion)相对色散(relative dispersion)冕牌玻璃(Crown glass)火石玻璃(Flint glass)塑料光学材料(optical plastic)聚甲基丙烯酸甲酯(polymethyl methacrylate, PMMA)聚苯乙烯(polystyrene, PS)聚碳酸酯(polycarbonate, PC)光学晶体(optical crystal)光阑diaphragm孔径光阑aperture stop视场光阑field diaphragm渐晕光阑vignetting stop入射光瞳entrance pupil出射光瞳exit pupil主光线chief ray相对孔径relative aperture入射窗entrance window出射窗exit window视场角angle of field渐晕vignetting渐晕系数vignetting factor景深depth of field焦深depth of focus远心光学系统telecentric optical system 球差(spherical aberration)不晕点(aplanatic points)轴外像差(off-axis aberration)慧差(coma)辅轴(secondary optical axis)像散(astigmatism)场曲(field curvature)匹兹万场曲(Petzval field curvature)畸变(distortion)位置色差(longitudinal chromatic aberration) 消色差系统(achromatic system)二级光谱(second order spectrum)倍率色差(lateral chromatic aberration)初级球差(primary spherical aberration)剩余球差(residual spherical aberration)初级像差(primary aberration)塞得和数(Seidel coefficient of aberrations)对称式系统(symmetric optical system)波像差(wave aberration)垂轴离焦(lateral defocusing)轴向离焦(axial defocusing)泽尼克多项式(Zernike polynomial)瑞利判据(Rayleigh criterion)斯特列尔比率(Strehl ratio)分辨率(resolution)点列图(spot diagram)光学传递函数(optical transfer function)调制传递函数(modulation transfer function) 位相传递函数(phase transfer function)点扩散函数(point spread function)角膜(comea)虹膜(sclera)晶状体(crystalline lens)视网膜(retina)黄斑(macula lutea)盲点(blindspot)调节(adjustment)远点(far point)近点(near point)明视距离(distance of distinctvision/normal reading distance)视角分辨率(angle of resolution)分辨率(resolution)正视(normal eye)近视(myopic eye)远视(hyperopic eye)散光(astigmatic eye)双目立体视觉(binocular stereopsis)放大镜(amplifier)显微镜(microscope)齐焦(parfocalization)数值孔径(numerical aperture)有效放大率(effective magnification) 工作距离(operating distance)消色差物镜(achromatic objective)里斯特物镜(Lister objective)阿米西物镜(Amiciobjective)阿贝(Abbe)浸液物镜复消色差物镜(apochromaticobjective) 双胶合物镜(doublet lens)双分离物镜(air-spaced doublet)卡塞格林系统(Cassegrainsystem)格里高里系统(Gregorian system)施密特物镜(Schmidt lens)马克苏托夫物镜(Maksutovobjective) 镜目距(eye relief)惠更斯目镜(Huygens eyepiece)冉斯登目镜(Ramsden’seyepiece)凯涅尔目镜(Kellnereyepiece)对称式目镜(symmetric eyepiece)阿贝无畸变目镜(Abbeeyepiece)爱尔弗目镜(Erfleeyepiece)图像传感器(image sensor)数码相机(digit camera)几何焦深(geometrical focal range)摄影物镜(photographic lens)匹兹万物镜(Petzval lens)柯克三片式物镜(cooke triplet)天塞物镜(Tessar-type split triplet)海利亚物镜(Heliar split triplet)双高斯物镜(double-Gauss objective) 反远距物镜(retrofocus objective)广角物镜(wide-angle lens)超广角物镜(ultra wide-angle lens)阿维岗物镜(Aviogon lens)鲁沙尔物镜(Russar lens)海普岗物镜(Hypogon lens)托普岗物镜(Topogon lens) 变焦距物镜(zoom lens)投影系统(projection system) 投影物镜(projection lens)远距物镜(telephoto lens)。

厄瓦尔德图解与倒易点阵

厄瓦尔德图解与倒易点阵


射 线
2 1 sin
1
1 d
A
倒易点阵
(reciprocal lattice)
倒易点阵是衍射方 法最重要的理论基础:
若一个点的方向矢 量垂直于同名指数的晶 面,大小为1/d,此点便 是相应晶面的倒易点。
1
由晶体所有倒 易点(不一定都落
在倒易球表面)组
成的新点阵,称

为倒易点阵。

倒易点
Ewald图解 与倒易点阵
Ewald 反射球
2dsin
Ewald Transform
(1912)
2
1
sin
1 d
d
Lattice
planes

射 球
晶体位 于反射 球中心
1
Bragg
plane 入
k'
k
射 线
Ag 倒易点阵原点
设一与晶
面垂直的 矢量AB, 若其长度 等于1/d, 则OB方向 产生衍射
正点阵
中的一组 晶面,对 应倒易点 阵中的一 个点。
正点阵 正点阵
倒易点阵 倒易点阵
倒易点与原点的 连线垂直于晶面。
面间距
越大,倒 易点间距 越小。
面间距越
小,倒易点 间距越大。
正点阵 倒易点阵
线
A
若倒易点落
在反射球上则 会产生衍射。
入射波长越长 倒易点越分散
布 拉
Kout Kinq







倒空间、波矢空间或q空间
Paul Peter Ewald
1888.1.22 1985.8.22
German physicist and crystallographer, whose theory of X-ray interference by crystals was the first detailed, rigorous theoretical explanation of the diffraction effects.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

line of sight, while vz and vz′ stand for the line of sight velocity components. The probability that the four considered random fields reach values ℜ = {δ, δ′, v, v′} in the
–2–
ABSTRACT
Using an Eulerian perturbative calculation, we show that the distribution of relative pairwise velocities which arises from gravitational instability of Gaussian density fluctuations has asymmetric (skewed) exponential tails. The negative skewness is induced by the negative mean streaming velocity of pairs (the infall prevails over expansion), while the exponential tails arise because the relative pairwise velocity is a number, not volume weighted statistic. The derived probability distribution is compared with N-body simulations and shown to provide a reasonable fit.
2. The origin of the negative skewness
Let v and δ be the peculiar velocity of a galaxy and the mass density
contrast at comoving position r1, while v′ and δ′ the velocity of another galaxy at position r2 at a certain fixed separation r = r2 − r1. In our coordinate system r = {x, y, z} = r{sin θ cos ϕ, sin θ sin ϕ, cos θ}; the unit vector ˆz points along the observer’s
averages. The latter, however, should not be confused with number-weighted averages
carried over galaxy positions (cf. LSS and F95). The N-th moment of the relative velocity,
Subject headings: large-scale structure of universe — galaxies: interactions
–3–
1. Introduction
Redshift surveys present a distorted picture of the world because peculiar motions displace galaxies from their true spatial positions. This phenomenon, which would make redshift surveys useless for intergalactic spaceship navigators, is extremely useful for cosmologists. It can serve as a probe of the dynamics of gravitational clustering and the cosmological mass density parameter, Ω (Sargent and Turner 1977; Peebles 1980, hereafter LSS; Kaiser 1987; Hamilton 1992; Peebles 1993, hereafter PPC; Reg¨os and Szalay 1995). A convenient statistical measure of the distortion effect is the galaxy two-point correlation function in redshift space. Under certain assumptions it can be expressed as a convolution of the true spatial correlation function, ξ(r), with the distribution of the relative line-of-sight velocities of pairs of galaxies, p(w|r, θ) . Here r and w are respectively, the spatial separation and relative radial velocity of a pair of galaxies, while θ is the angle between the separation vector r and observer’s line of sight (cf. LSS; Fisher 1995, hereafter F95). The purpose of this Letter is to derive p(w|r, θ), using weakly nonlinear gravitational instability theory. This distribution was measured from N-body simulations and estimated indirectly from redshift surveys. At r ∼< 1 h−1Mpc, where6 the galaxies are strongly clustered (ξ ∼> 20), the observations are consistent with an exponential distribution (Peebles 1976; Davis and Peebles 1983; Fisher at al. 1994, hereafter F94; Marzke et al. 1995; Landy, Szalay, & Broadhurst 1997). The fact that p(w) at small separations differs strongly from its initial, Gaussian character, is not surprising: after all, the small-scale velocity field has been ‘processed’ by strongly-nonlinear dynamics in clusters, and exponential distributions were recently derived from the Press-Schechter (1974) theory (Sheth 1996, Diaferio and Geller 1996). On larger scales, where the fluctuations have small amplitudes, one na¨ıvely expects to see the ‘unprocessed’ initial conditions. However, N-body experiments suggest
Skewed exponential pairwise velocities from Gaussian initial conditions
Roman Juszkiewicz,1,2,3 Karl B. Fisher3 and Istv´an Szapudi4,5
Received
; accepted
range dℜ = dδ dδ′ dv dv′ is g(ℜ) dℜ, and we will use brackets to denote ensemble averaging,
. . . = . . . g dℜ. As usual, expectation values . . . are assumed to be qual to spatial
6We use the standard parametrisation for the Hubble constant, H = 100 h km s−1Mpc−1.
–4–
that p(w|r, θ) retains its exponential character even at separations r ∼> 10 h−1Mpc, where ξ ∼< 0.1, despite the fact that the initial density and velocity fields in those experiments were drawn from a Gaussian distribution (Efstathiou et al. 1988, hereafter EFWD; Z˙ urek et al. 1994, hereafter ZQSW; F94). At similar separations, an exponential p(w|r, θ) has also been inferred from observations (F94; Loveday et al. 1996). The simulations also show that the radial component of the distribution, p(w|r, 0◦) is significantly skewed, in particular at large separations (EFWD; ZQSW; F94). The physical origin of the skewness and exponential shape of p(w) at large separations has until now remained unexplained. We provide the explanation below.
相关文档
最新文档