四川省乐山市第一中学2019届高三上学期10月月考数学(文)试题(含答案)
乐山市第一中学2018-2019学年上学期高三数学10月月考试题
乐山市第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D22. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)3. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.4. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞5. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化6. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .77. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣8. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.9. 已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i10.某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.11.为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象( )A .向左平移3π个单位 B .向左平移6π个单位 C.向右平移3π个单位D .向右平移23π个单位12.已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=1二、填空题13.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 . 14. 17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.15.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.16.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.三、解答题17.(本题满分15分)正项数列}{n a 满足121223+++=+n n n n a a a a ,11=a . (1)证明:对任意的*N n ∈,12+≤n n a a ;(2)记数列}{n a 的前n 项和为n S ,证明:对任意的*N n ∈,32121<≤--n n S .【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.18.已知函数f (x )=.(1)求函数f (x )的最小正周期及单调递减区间; (2)当时,求f (x )的最大值,并求此时对应的x 的值.19.在直角坐标系xOy 中,已知一动圆经过点(2,0)且在y 轴上截得的弦长为4,设动圆圆心的轨 迹为曲线C .(1)求曲线C 的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C 交于A ,B 两点与曲线C 交于E ,F 两点, 线段AB ,EF 的中点分别为M ,N ,求证:直线MN 过定点P ,并求出定点P 的坐标.20.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.21.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=成立,且f(1)=1,当0<x<2时,f(x)>0.(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.22.19.已知函数f(x)=ln.乐山市第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 2. 【答案】B 【解析】解:由于函数y=a x (a >0且a ≠1)图象一定过点(0,1),故函数y=a x+2(a >0且a ≠1)图象一定过点(0,3), 故选B .【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.3. 【答案】B【解析】4. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或1211133a a ⎧>⎪⎪⎨⎪+<⎪⎩,∴2a <,选A .5.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.6.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.7.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.8.【答案】C.【解析】易得//BP平面11CC D D,所有满足1PBD PBX∠=∠的所有点X在以BP为轴线,以1BD所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 9. 【答案】A【解析】解:复数===,故选:A .【点评】本题考查了复数的运算法则,属于基础题.10.【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 11.【答案】C 【解析】试题分析:将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位,得2sin 2sin 233y x x ππ⎛⎫=--=- ⎪⎝⎭的图象,故选C .考点:图象的平移. 12.【答案】B【解析】解:已知抛物线y 2=4x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x ,则有a 2+b 2=c 2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y 2=1.故选B .【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.二、填空题13.【答案】 .【解析】解:点(m ,0)到直线x ﹣y+n=0的距离为d=,∵mn﹣m﹣n=3,∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),∴(m﹣1)+(n﹣1)≥2,∴m+n≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.14.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.15.【答案】 2【解析】解:由,消去t 得:2x ﹣y+5=0,由ρ=8cos θ+6sin θ,得ρ2=8ρcos θ+6ρsin θ,即x 2+y 2=8x+6y ,化为标准式得(x ﹣4)2+(y ﹣3)2=25,即C 是以(4,3)为圆心,5为半径的圆.又圆心到直线l 的距离是,故曲线C 上到直线l 的距离为4的点有2个, 故答案为:2.【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.16.【答案】()2212x y -+=或()2212x y ++=【解析】试题分析:由题意知()0,1F ,设2001,4P x x ⎛⎫ ⎪⎝⎭,由1'2y x =,则切线方程为()20001142y x x x x -=-,代入()0,1-得02x =±,则()()2,1,2,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2212x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()2212x y ++=.1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质.三、解答题17.【答案】(1)详见解析;(2)详见解析.18.【答案】【解析】解:(1)f(x)=﹣=sin2x+sinxcosx﹣=+sin2x﹣=sin(2x﹣)…3分周期T=π,因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,所以函数f(x)的单调递减区间为,,k∈Z…7分(2)当,2x﹣∈,…9分sin(2x﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f (x )取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.19.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212(,)22x x y y M ++, 由24,(1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围.20.【答案】【解析】解:(Ⅰ)∵椭圆C :+=1(a >b >0)的短轴长为2,且离心率e=,∴,解得a 2=4,b 2=3,∴椭圆C 的方程为=1.(Ⅱ)设直线MN 的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t 2+4)y 2+6ty ﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.21.【答案】【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.又f(x﹣y)=,所以f(﹣x)=f[(1﹣x)﹣1]======,故函数f(x)奇函数.(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]==,令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,∵f(x﹣2)==,∴f(x﹣4)=,则函数的周期是4.先证明f(x)在[2,3]上单调递减,先证明当2<x<3时,f(x)<0,设2<x<3,则0<x﹣2<1,则f(x﹣2)=,即f(x)=﹣<0,设2≤x1≤x2≤3,则f(x1)<0,f(x2)<0,f(x2﹣x1)>0,则f(x1)﹣f(x2)=,∴f(x1)>f(x2),即函数f(x)在[2,3]上为减函数,则函数f(x)在[2,3]上的最大值为f(2)=0,最小值为f(3)=﹣1.【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.22.【答案】【解析】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1≤a﹣2≤1∴1≤a≤3【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.。
2019届四川省高三上学期10月段考文科数学试卷【含答案及解析】
2019届四川省高三上学期10月段考文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 设x∈R ,则“l < x <2”是“l < x <3”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D .既不充分也不必要条件2. 己知命题p:使得cos x≤x ,则该命题的否定是()A.使得cos x > xB .使得cos x > xC.使得cos x≥xD .使得cos x≤x3. 设A到B的函数f:x→ y= ( x-l ) 2 ,若集合A={0 , l , 2 ),则集合B不可能是()A、{0 , 1}______________________________B、{0 , 1 , 2}______________C、{0 , -1 , 2 )D、{0 , 1 , -1 )4. 函数f ( x ) = 的定义域为()A .( 0 ,+ ∞ )B.[0,+∞)C .( 0 , 1 )( 1 ,+∞ )D . [0 , 1 )( 1 ,+∞ )5. sin 240 ° = ()A .______________________________B .—_________________________________ C . D .—6. 若a为实数,且2+ai= ( 1+i )( 3+i ),则a= ()A . -4_________________________________B .一3________________________C . 3D . 47. 已知则()A . a > b > c ______________B . a > c >b________________________________ C . c > a > b ______________ D . c > b > a8. 函数f ( x ) =ln ( x +1 ) - 的一个零点所在的区间是()A .( 0 , 1 ) ___________B .( 1 , 2 )________________________ C .( 2 , 3 ) D .( 3 , 4 )9. 己知tanθ= ,则sinθcosθ一cos 2 θ= ()A ._________________________________B . -_________________________________ C .________________________D .10. 设偶函数f ( x )在[0 , +m )单调递增,则使得f ( x )> f ( 2x -1 )成立的x的取值范围是()A.________________________ B.C .______________D .11. 己知函数f ( x ) =|x-2|+1 , g ( x ) = kx ,若方程f ( x ) =g ( x )有两个不相等的实根,则实数k的取值范围是A .( 0 ,)B .(, 1 )C .( 1 , 2 )D .( 2 ,+∞ )12. 设函数f ( x ) = 若互不相等的实数 x 1 , x 2 , x 3满足,则 x 1 +x 2 +x 3 的取值范围是()A. B. C. D.二、填空题13. 在区间[0 , 2]上随机地取一个数x ,则事件“0≤x≤ ”发生的概率为______________ .14. 若函数f ( x ) = 的值域为___________________________________ .15. 若3-a =2 a ,则a=______________________________ .16. 己知函数 f ( x ) =2 sin ω x (ω> 0 )在区间上的最小值是 -2 ,则ω的最小值为_________ .三、解答题17. (本题满分10分)己知集合A={x |y= } , B={y|y=x 2 +x+l ,x∈ R ).( 1 )求A , B;( 2 )求.18. (本题满分12分)(1)已知不等式ax 2 一bx+1≥0的解集是,求不等式一x 2 +bx+a > 0的解集;( 2 )若不等式ax 2 + 4x十a > 1—2x 2 对任意x∈R均成立,求实数a的取值范围.19. (本题满分12分)某校为了解高三开学数学考试的情况,从高三的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50 , 60 )的学生人数为6 .(1)求直方图中x的值;( 2 )试根据样本估计“该校高三学生期末数学考试成绩≥ 70” 的概率;(3)试估计所抽取的数学成绩的平均数.20. (本题满分12分)已知函数f ( x ) = sin2x+2sinxcosx+3cos2x ,x∈R .求:(1)函数f(x)的最小正周期和单调递增区间;(2)函数f(x)在区间上的值域.21. (本题满分12分)设函数f ( x ) = .(1)求函数f(x)的单调区间;( 2 )若当x∈[-2 , 2]时,不等式f ( x )< m恒成立,求实数m的取值范围22. (本题满分12分)已知函数,其中a∈R .(1)当a=l时,求曲线y=f(x)在点(2,f(2))处的切线方程;( 2 )当a≠0时,求函数f ( x )的单调区间与极值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。
2019年高三上学期10月月考数学(文)试题 含答案
2019年高三上学期10月月考数学(文)试题含答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合BA. B. C. D.2. 若复数Z,是虚数单位)是纯虚数,则在复平面内Z对应点的坐标为CA.(0,2)B.(0,3i )C.(0,3)D.(0,)3. 下列命题正确的是DA.已知;B.存在实数,使成立;C.命题:对任意的,则:对任意的;D.若或为假命题,则,均为假命题4. 把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为DA.B.C.D.5.下列函数中,既不是奇函数,也不是偶函数的是AA.B.C.D.6. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为BA.134石B.169石C.338石D.1365石7.已知向量m=(λ+1,1), n=(λ+2,2),若(m+n)⊥(m-n),则Bλ=( )A.-4 B.-3 C.-2 D.-18.阅读如图所示的程序框图,运行相应的程序,输出S的值为BA.15B .105C .245D .9459. 已知,,则 B A . B . C . D .10.设是等差数列的前项和,若,则 A A . B . C . D .11.已知定义在R 上的奇函数f (x )满足f (x +2)=﹣f (x ),若f (﹣1)>﹣2,f (﹣7)=,则实数a 的取值范围为 DA .B .(﹣2,1)C .D .12.函数f (x )=的部分图象如图所示,则f (x )的单调递减区间为 DA .(k, k ),kB .(2k, 2k ),kC .(k, k +),kD .(2k, 2k +),k第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.已知函数的图象过点(-1,4),则a = . -2 14. 已知函数,则f (xx )= 015. 已知曲线在点 处的切线与曲线 相切,则a = .816.设△ABC 的内角A ,B ,C 的对边分别为a,b,c .若a =,sinB=,C=,则b = 1 三、 解答题:解答应写出文字说明,证明过程和演算步骤 17.(本小题满分10分)已知函数f (x )=cos 22x -sin 2x cos 2x -21. (Ⅰ)求函数f (x )的最小正周期和值域;(II )若f (α)=102,求sin 2α的值.解:(Ⅰ)f (x )=cos 22x -sin 2x cos 2x -21 =21(1+cos x )-21sin x -21 =22cos (x +4π). 所以f (x )的最小正周期为2π,值域为.(II )由(1)知f (α)=22cos (α+4π)=102,所以cos (α+4π)=53.所以sin 2α=-cos(2π+2α)=-cos 2(α+4π) =1-2cos 2(α+4π)=1-2518=257. 18.(本小题满分12分)已知递增等差数列中,,成等比数列. (Ⅰ)求数列的通项公式; (II )求数列的前项和.解:(Ⅰ)由条件知 解得 或(舍),.………6分 (II ),----(1) ----(2)(1)—(2)得:19. (本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +a sin C -b -c =0. (Ⅰ)求A ;(II )若a =2,△ABC 的面积为,求b ,c .解:(Ⅰ)由a cos C +a sin C -b -c =0及正弦定理得 sin A cos C +sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin(A -6π)=21. 又0<A <π,故A =3π.(II )△ABC 的面积S =21bc sin A =,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.20.(本小题满分12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温(°C)与该奶茶店的这种饮料销量(杯),得到如下数据:日期1月11日1月12日1月13日1月14日1月15日平均气温(°C)9[1012118销量(杯)2325302621(Ⅰ)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程.(参考公式:.)【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(1)利用列举法写出抽出2组数据的所有基本事件,并从中找出2组数据恰好是相邻2天数据的基本事件,利用古典概型公式求出概率;(2)先求出和,再利用参考公式算出和,代入即可得线性回归方程.试题解析:(Ⅰ)解:设“选取的2组数据恰好是相邻2天数据”为事件. ………1分所有基本事件(m,n)(其中m,n为1月份的日期数)有:(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)共10种.3分事件包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种.5分∴.…………6分(Ⅱ)解:由数据,求得,8分,……10分∴y关于x的线性回归方程为.…12分21.(本题满分12分)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.(Ⅰ)求曲线y=在点(1,f(1))处的切线方程;(Ⅱ)设g(x)=f′(x)e-x,求函数g(x)的极值.解:(Ⅰ)因f(x)=x3+ax2+bx+1,故f′(x)=3x2+2ax+b.令x=1,得f′(1)=3+2a+b,由已知f′(1)=2a,因此3+2a+b=2a,解得b=-3.又令x =2,得f ′(2)=12+4a +b ,由已知f ′(2)=-b ,因此12+4a +b =-b ,解得a =-23. 因此f (x )=x 3-23x 2-3x +1,从而f (1)=-25.又因为f ′(1)=2×(-23)=-3,故曲线y =f (x )在点(1,f (1))处的切线方程为y -(-25)=-3(x -1),即6x +2y -1=0.(Ⅱ)由(Ⅰ)知g (x )=(3x 2-3x -3)e -x , 从而有g ′(x )=(-3x 2+9x )e -x .令g ′(x )=0,得-3x 2+9x =0,解得x 1=0,x 2=3.当x ∈(-∞,0)时,g ′(x )<0,故g (x )在 (-∞,0)上为减函数; 当x ∈(0,3)时,g ′(x ) >0,故g (x )在(0,3)上为增函数; 当x ∈(3,+∞)时,g ′(x )<0,故g (x )在(3,+∞)上为减函数; 22. (本小题满分12分)已知a >0,函数f (x )=ln x -ax 2. (Ⅰ)求f (x )的单调区间; (II )当a =81时,求证:f (x )<.解:(Ⅰ)f ′(x )=x 1-2ax =x 1-2ax2,x ∈(0,+∞). 令f ′(x )=0,解得x =2a 2a .当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是(0,2a 2a ),f (x )的单调递减区间是(2a 2a,+∞).(2)证明:当a =81时,f (x )=ln x -81x 2,由(1)知f (x )在 (0,2)内单调递增,在(2,+∞)内单调递减. 令g (x )=f (x )-f (23).由于f (x )在(0,2)内单调递增,所以, ,时 ,故,f (x )<..。
新人教版2019届高三上第一次月考数学(文)试卷(含答案)
5、若 sin α - cos α = ,则 tan 2α 的值为( )B . C. - D . 36、已知函数 f ( x ) = 是奇函数,则 f (log (a + 3)) 的值为()2xA . -52 ≤ ϕ ≤ π )的部分图象2019 届毕业班上学期第一次月考文科数学(函数与导数、数列、三角、选考)一、选择题:(本大题共 12 小题,每小题只有一个正确选项,每小题 5 分,共 60 分)1、已知集合,,则 的子集个数共有( )A. 1 个B. 2 个C. 3 个D. 4 个2、复数 z 满足 z = 2 - i1 - i,则 z 对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限3、已知命题 :“ x < -1 ”是“ ln (x + 2) < 0 ”的充分不必要条件;命题 :设函数,则函数在区间有零点,则下列命题为真命题的是( )A.B.C.D.4、在等差数列{a }中, a = 1, a + a + a + a = 32 ,则 a - a = ()n1 3 4 5 6 7 2A . 7B . 8C . 9D . 101sin α + cos α 2A .3 3 34 5 44x + a1 25 3 3 B .C . -D .22227、函数 f (x ) = 2sin (ωx + ϕ ) ( ω > 0, π如右图所示,其中 A , B 两点之间的距离为 5 ,则 f ( 1 ) = ( )A . 3B . - 3C .1D . - 18、已知函数,且则实数 的值可能是()A. 2B. 3C. 4D. 5,1 1 9、已知 a = ln , b = sin , c =2 2,则 a ,b ,c 的大小关系为()aa ⎭23成等差数列,则9 10 = _______15、若 cos α - ⎪ = ,则16、已知函数 f (x ) = (x - b )ln x + x 2 在区间 1,e 上单调递增,1 -2 2A . a <b <cB . a <c <bC . b <a <cD . b <c <a10、已知数列{a } 为等差数列,若 a 11< -1,且它们的前 n 项和 S 有最大值, n n 10则使得 S > 0 的 n 的最大值为()nA.11B.19C.20D.2111、已知数列满足 a = 1 , a 1 n +1 = 2an a + 2 n⎧ 1 ⎫ .,则数列 ⎨ ⎬ 的前 12 项和为( )⎩ nA.45B.90C.120D.7812、函数 f ( x ) 的导函数为 f '( x ) ,对 ∀x ∈ R ,都有 f '( x ) > f ( x ) 成立,若 f (ln 2) = 2 ,则不等式 f ( x ) > e x 的解是()A . x > 1B . x > ln 2C . 0 < x < 1D. 0 < x < ln 2二、填空题:(本大题共 4 小题,每小题 5 分,共 20 分)13、在等比数列{a }中, 3a , 1 a ,2 a n15a + aa + a7 814、曲线在点 处的切线与坐标轴围成的面积是_______.⎛ ⎝π ⎫ 1 4 ⎭ 3的值为______.[ ]则实数 b 的取值范围是三、解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤。
中学2019届高三10月月考数学(文)试题(附答案) (1)
高三年级10月份月考数学试题考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
第I 卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合{}{},0,1,2A x x B =-1≥0=,则AB = ( )A .{}0B .{}1C .{}1,2D .{}0,1,22.若()125i z i -=,则z 的值为( )A .3B .5CD 3.命题“x R ∃∈,2210x x -+<”的否定是( )A .x R ∃∈,2210x x -+≥B .x R ∃∈,2210x x -+>C .x R ∀∈,2210x x -+≥D .x R ∀∈,2210x x -+<4.已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) A .(7,4)-- B .(7,4) C .(1,4)- D .(1,4)5.已知等差数}{n a 的前n 项和n S ,若34512a a a ++=,则7S 的值为( ) A .14 B .28 C .42 D .56 6.函数()sin ln f x x x =⋅的图象大致是( )7.已知()0,απ∈且1sin cos 2αα+=,则cos 2α的值为( )A . BC .14-D . 8.ABC ∆中,a b c 、、分别是角A B C 、、的对边,若ABC ∆的面积为2224a b c +-,则角C 的值为( ) A .6π B .4π C .3π D .2π 9.将函数()πsin 43f x x ⎛⎫=+⎪⎝⎭的图象向左平移(0ϕϕ>)个单位后关于直线π12x =对称, 则ϕ的最小值为( )A .5π24 B .π4 C .7π24 D .π310.如图,平面四边形ABCD 中,90ABC ADC ∠=∠=,2BC CD ==, 点E 在对角线AC 上,AC=4,AE=1,则EB ED ⋅的值为( ) A .17B .13C .5D .111.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术,隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层.设最底层长有c 个,宽有d 个,则共计有木桶6)]()2()2[(b d d a c b c a n -++++个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为( )A .1530B .1430C .1360D .126012.设()f x 是定义在R 上的函数,其导函数为'()f x ,若()'()1f x f x -<,(0)4f = 则不等式()31xf x e >+的解集为( ) A .(,0)(0,)-∞+∞ B .(0,)+∞ C .(3,)+∞ D .(,0)(3,)-∞+∞第19题图第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填写在答题卡上) 13.已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若()2+c a b ,则λ=14.若锐角,αβ满足4sin 5α=,()2tan 3αβ-=,则tan β= ________. 15.求和122122323233n n n n n ---+⋅+⋅++⋅+= .16.已知函数3()+21x x f x x x e e -=+-+其中e 是自然对数的底数.若2(1)(2)2f a f a -+≤,则实数a 的取值范围是________.三、解答题:(共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答) 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值.18.(本小题满分12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m19.(本小题满分12分)ABC ∆中,a b c 、、分别是角A B C 、、的对边,已知=60,2B b ∠=,D 是边BC的中点且AD =(1)求sin A 的值;(2)求ABC ∆的面积.20.(本小题满分12分)已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列, 数列{}n b 满足 123111223n b b b b n n++++=*()n N ∈ (1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2n S .21.(本小题满分12分)设函数221()(ln ),f x x a x a R x x=---∈ (1)讨论()f x 的单调性(2)当0a >时,记()f x 的最小值为()g a ,证明:()1g a <请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4—4:坐标系与参数方程.在直角坐标系xOy 中,过点(1,2)P 的直线l 的参数方程为1122x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4sin ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于,M N 两点.求11||||PM PN +的值23.(本小题满分10分)选修4—5:不等式选讲已知函数()()23f x x m x m R =++-∈. (1)当3m =-时,解不等式()9f x <;(2)若存在[]2,4x ∈,使得()3f x ≤成立,求m 的取值范围.文科数学参考答案一、CDCAB, ADBAD, CB 二、13.1214.617 15. 1132n n ++- 16. 1[1,]2-17解:(1)1cos 2()22x f x x -=......................................................................... 2分11π12cos 2sin(2)22262x x x =-+=-+. .....................................5分 ∴()f x 的最小正周期为2ππ2T ==. ............................................................................. 6分 (2)由(Ⅰ)知π1()sin(2)62f x x =-+. ∵π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--. ........................................................... 8分要使得()f x 在π[,]3m -上的最大值为32, 即πsin(2)6x -在π[,]3m -上的最大值为1. ................................................................ 9分∴ππ262m -≥,即π3m ≥. .......................................................................................... 11分 ∴m 的最小值为π3. ....................................................................................................... 12分 18解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.. .................................... 4分故1(2)n n a -=-或12n n a -=.. ........................................................................................ 6分 (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解.. ................................................................................................. 8分 若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =............................. 11分 综上,6m =.. .............................................................................................................. 12分19解:(1)∵2b =,由正弦定理得2sin B C =,∴21sin 7C === ................................................................. 3分 ∵,c b <所以角C 为锐角,∴cos C =................................................................. 4分 ∴321sin sin(120)sin120cos cos120sin 14A cC C =-=-=............................ 6分 (2)∵2b,2c=,设,2b c k ==,由sinsin a bA B=,得 sin 143sin sin 60b A a k B === ∴32k BD =............................................................. 9分 在ABD ∆中由余弦定理得22229313422cos6013424k k k AD k k =+-⨯⨯⨯==, ∴2k = .............................................................................................................................11分∴ABC ∆的面积11sin 602322S BA BC k k =⋅=⨯⨯=..........................12分 20解:(1)设等比数列{}n a 的公差为q ,由条件得3242(2)a a a +=+,又12a =则232(22)22q q q +=+即224(1)2(1)q q q +=+因为210q +>得2q =故2n n a = ......................................................................................................... 2分 对于数列{}n b 当1n =时,12b =;当2n ≥时,由123111223n b b b b n n ++++=*()n N ∈得 12311112(1)231n b b b b n n -++++=-- ...................................................................... 4分 ∴12 (2)n b n n=≥可得2n b n =,且12b =也适合,故2n b n =*()n N ∈ ∴2n n a =,2n b n = ....................................................................................................... 6分(2)由(1)得122112222+n n n n S c c c a b a b a b =+++=-++---,122122(+)()n n a a a b b b =-+-+-+- ..............................................................8分 22[1(2)](2)1(2)n n ---=+⋅--- ........................................................................................10分 221212(12)222333n n n n +=---=⋅-- ..................................................................12分 21.解:(1)()f x 的定义域为(0,)+∞,............................................................................... 1分2222323321222(2)()'()1()x x x x a f x a a x x x x x x +++-=+-+=-=, ................................ 2分当0a ≤时,'()0f x >,()f x 在(0,)+∞上单调递增; ..................................................... 3分 当0a >时,当(0,)x a ∈,'()0f x <,()f x 单调递减;当(,)x a ∈+∞,'()0f x >,()f x 单调递增;综上,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增. ......................... 5分(2)由(1)知,min 1()()()ln g a f x f a a a a a===--................................................. 7分 解法一:2211'()1ln 1ln g a a a a a=--+=-, ................................................................. 8分321''()0g a a a=--<,∴'()g a 单调递减, ..................................................................... 9分 又'(1)0,g'(2)0g ><,所以存在0(1,2)a ∈,使得0'()0g a =, ∴当0(0,)a a ∈时,'()0g a >,()g a 单调递增;当0(,)a a ∈+∞时,'()0g a <,()g a 单调递减; ....................................................... 10分∴max 000001()()ln g a g a a a a a ==--,又0'()0g a =, 即0201ln 0a a -=,021ln a a =, ....................................................................................... 11分∴0002000112()g a a a a a a a =--=-,令00()()t a g a =,则0()t a 在(1,2)上单调递增, 又0(1,2)a ∈,所以0()(2)211t a t <=-=,∴()1g a < .............................................. 12分解法二:要证()1g a <,即证1ln 1a a a a --<,即证:2111ln a a a--<, .................. 9分 令211()ln 1h a a a a =++-,则只需证211()ln 10h a a a a=++->, 223331122(2)(1)'()a a a a h a a a a a a---+=--==, ....................................................... 10分 当(0,2)a ∈时,'()0h a <,()h a 单调递减;当(2,)a ∈+∞时,'()0h a >,()h a 单调递增; .............................................................. 11分∴min 111()(2)ln 21ln 20244h a h ==++-=->,∴()0h a >,即()1g a < ................ 12分22解:由已知消去t 得)1(32-=-x y∴化为一般方程为:0323=-+-y x .......................................................................... 2分曲线C :4sin ρθ=得,24sin ρρθ=, ............................................................................ 3分 即224x y y +=,整理得22(2)4x y +-=,即曲线22(2)4C x y +-=: ...................... 5分 (2)把直线l 的参数方程代入曲线C 的直角坐标方程得:221(1))42t ++=,即230t t +-=, ......................................................................7分 设M ,N 两点对应的参数分别为1t ,2t ,则121213t t t t +=-⎧⎨⋅=-⎩,............................................. 8分1212||||11||||||||||||||t t PM PN PM PN PM PN t t ++∴+==⋅⋅1212||||t t t t -=⋅ .................................................. 9分123==. ................................................................................................ 10分23解:(1)当3m =-时,()323f x x x =-+-由()9,()3239f x f x x x <=-+-<即∴33239x x x ≥⎧⎨-+-<⎩或3323239x x x ⎧<<⎪⎨⎪-+-<⎩或323329x x x ⎧≤⎪⎨⎪-+-<⎩ ............................ 3分 故35x ≤<或332x <<或312x -<≤..............................................................................4分 从而15x -<<; ................................................................................................................ 5分 (2)当[2,4]x ∈时,()23f x x m x =++- ∴存在[]2,4x ∈,使得()3f x ≤成立即存在[]2,4x ∈使得62x m x +≤- .......................................................................... 7分 即2662x x m x -≤+≤-成立 ∴存在[]2,4x ∈,使得636x mx m≤+⎧⎨≤-⎩成立即6266m m +≥⎧⎨-≥⎩................................................................................................................... 9分∴40m -≤≤ ................................................................................................................10分。
四川省某知名中学2019届高三数学10月月考试题 文_2
2019届高三10月月考文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知为第二象限角,且,则的值是()A、B、C、D、2、若复数满足,则的虚部为( )A、B、 C、D、43 、集合,,则 ( )A、 B、C、D、4、已知命题:,都有,命题:,使得,则下列命题中为真是真命题的是()A、 p且qB、或qC、 p或qD、且5、已知命题则成立的一个充分不必要条件是()A、B、C、D、6、已知则的最小值为 ( )A、4B、8C、9D、67、已知公差不为0的等差数列满足成等比数列,为数列的前项和,则的值为()A、B、C、2 D、38、设,则( )A、B、C、D、9、已知是定义在上的函数,并满足当时,,则A、B、C、 D、10、若在,其外接圆圆心满足,则()A、B、C、D、 111、函数的部分图像如图所示,若方程在上有两个不相等的实数根,则的取值范围是()A、B、C、D、12、数列满足 ,对任意,满足若则数列的前项和为( )A、 B、C、 D、第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13、若向量 ,且与垂直,则实数的值为14、数列满足,则此数列的通项公式__________.15、若函数为上的奇函数,且当时,,则________.16、函数满足:,且,则关于的方程实数根的个数为.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17、(本题满分10分)某玩具生产厂计划每天生产卡车模型、赛车模型、小汽车模型这三种玩具共个,生产一个卡车模型需分钟,生产一个赛车模型需分钟,生产一个小汽车模型需分钟,已知总生产时间不超过小时,若生产一个卡车模型可获利元,生产一个赛车模型可获利润元,生产一个小汽车模型可获利润元,该公司应该如何分配生产任务使每天的利润最大,并求最大利润是多少元?18、(本题满分12分)已知存在使不等式成立. 方程有解.(1)若为真命题,求的取值范围;(2)若为假命题,为真命题,求的取值范围.19、(本题满分12分)设△ABC的三边a,b,c所对的角分别为A,B,C,(Ⅰ)求A的值;(Ⅱ)求函数的单调递增区间.20. (本题满分12分)已知数列的首项,前项和为. (1)求数列的通项公式;(2)设,求数列的前项和;21、(本题满分12分)已知函数,为的导函数,若是偶函数且⑴求函数的解析式;⑵若对于区间上任意两个自变量的值,都有,求实数的最小值;⑶若过点,可作曲线的三条切线,求实数的取值范围.22、(本题满分12分)已知函数(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.。
四川省乐山市第一中学高三数学文模拟试卷含解析
四川省乐山市第一中学高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若是的重心,,,分别是角的对边,若,则角()A.90° B.60° C.30° D.45°参考答案:C2. 已知集合,B={-1,0,1,2,3},则A∩B=()A. {-1,0,1}B. {-1,0,1,2}C. {0,1,2}D. {0,1,2,3}参考答案:B【分析】通过不等式的解法求出集合A,然后求解交集即可.【详解】由已知得,所以,故选B.【点睛】本题考查二次不等式的求法,交集的定义及运算,属于基础题.3. 函数的零点个数是()A.1 B.2 C.3D.4参考答案:C4. 三个数之间的大小关系是()A. B. C. D.参考答案:B5. 将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增参考答案:B6. 已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则?的取值范围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]参考答案:C【考点】简单线性规划的应用;平面向量数量积的运算.【分析】先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入?分析比较后,即可得到?的取值范围.【解答】解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时, ?=﹣1×1+1×1=0当x=1,y=2时, ?=﹣1×1+1×2=1当x=0,y=2时, ?=﹣1×0+1×2=2故?和取值范围为[0,2]解法二:z=?=﹣x+y,即y=x+z当经过P点(0,2)时在y轴上的截距最大,从而z最大,为2.当经过S点(1,1)时在y轴上的截距最小,从而z最小,为0.故?和取值范围为[0,2]故选:C【点评】本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.7. 若关于的方程恒有实数解,则实数m的取值范围是()A.[0,5] B.[1,8] C.[0,8] D.[1,+∞)参考答案:C略8. 已知||=2,||=3,向量与的夹角为150°,则在方向的投影为()A.—B.—1 C. D.参考答案:A9. 连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A. B. C. D.参考答案:答案:选C解析:由向量夹角的定义,图形直观可得,当点位于直线上及其下方时,满足,点的总个数为个,而位于直线上及其下方的点有个,故所求概率,选C点评:本题综合考察向量夹角,等可能事件概率的计算以及数形结合的知识和方法。
四川省乐山市2019届高三(上)第一次调考数学试卷(文科)(解析版)
2019年四川省乐山市高三(上)第一次调考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,0,1},B={1,2},则A∩B等于()A.{﹣1,0,1} B.{0,1}C.{1}D.{1,2}2.sin50°cos10°+sin140°cos80°=()A.B.C.D.3.命题“∀x∈R,x2﹣2x+4≤0”的否定为()A.∃x∈R,x2﹣2x+4>0 B.∀x∈R,x2﹣2x+4≥0C.∀x∉R,x2﹣2x+4≤0 D.∃x∉R,x2﹣2x+4>04.若a>b,则下列不等式正确的是()A.B.a3>b3 C.a2>b2 D.a>|b|5.已知数列{a n}是递增的等比数例,a1+a4=9,a2a3=8,S n为数列{a n}的前n项和,则S4=()A.15 B.16 C.18 D.316.把函数y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为()A.y=sin(2x﹣),x∈R B.y=sin(2x+),x∈RC.y=sin(+),x∈R D.y=sin(x﹣),x∈R7.某实验室至少需要某种化学药品10kg,现在市场上出售的该药品有两种包装,一种是每袋3kg,价格为12元;另一种是每袋2kg,价格为10元.但由于保质期的限制,每一种包装购买的数量都不能超过5袋,则在满足需要的条件下,花费最少()A.56 B.42 C.44 D.548.已知四棱锥S﹣ABCD的底面是边长为2的正方形,SD⊥平面ABCD,且SD=AB,则四棱锥S﹣ABCD的外接球的表面积为()A.144πB.64πC.12πD.8π9.已知函数f(x)=x2+cosx,对于[]上的任意x1,x2,有如下条件:①x1>x2;②x1<x2;③|x1|>x2;④x12>x22.其中能使f(x1)>f(x2)恒成立的序号是()A.①④B.②③ C.③D.④10.已知函数f(x)=,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1)D.(0,1)∪(1,+∞)二、填空题:本大题共5小题;每小题5分,共25分,把答案填在题中横线上.11.在复平面内,复数对应的点位于第象限.12.若S n是等差数列{a n}的前n项和,a2+a10=4,则S11的值为.13.在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若b=2asinB,则角A等于.14.在△ABC中,点D在线段BC上,且,点O在线段DC上(与点C,D不重合),若,则x的取值范围是.15.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,给出下列四个函数:①f(x)=sin x;②f(x)=2x2﹣1;③f(x)=|1﹣2x|;④f(x)=log2(2x﹣2).其中存在“可等域区间”的“可等域函数”为.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或推演步骤.16.△ABC中,角A、B、C所对的边分别为a、b、c,且bsinA=.(1)求角B的大小;(2)若b=3,a+c=6,求△ABC的面积.17.如图1,在矩形ABCD中,AB=6,BC=2,沿对角线BD将三角形ABD向上折起,使点A移至点P,且点P在平面BCD上的射影O在DC上得到图2.(1)求证:BC⊥PD;(2)判断△PDC是否为直角三角形,并证明;(3)(文)若M为PC的中点,求三棱锥M﹣BCD的体积.(理)若M为PC的中点,求二面角M﹣DB﹣C的大小.18.设函数f(x)=a x﹣(k﹣1)a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)求k的值;(2)若f(1)<0,求使不等式f(x2+tx)+f(4﹣x)<0对于任意x ∈R恒成立的T的取值范围.19.某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2﹣10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)﹣f(x).(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值﹣成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大?(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?20.等比数列{c n}满足c n+1+c n=10•4n﹣1,n∈N,数列{a n}满足c n=.(1)求数列{a n}的通项公式;(2)数列{b n}满足b n=,求数列{b n}的前n项和T n;(3)是否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.21.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k 的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,0,1},B={1,2},则A∩B等于()A.{﹣1,0,1} B.{0,1}C.{1}D.{1,2}【考点】交集及其运算.【分析】要求A∩B,即求由所有属于集合A且属于集合B的元素所组成的集合.【解答】解:∵集合A={﹣1,0,1},B={1,2},∴A∩B={1},故选C.2.sin50°cos10°+sin140°cos80°=()A.B.C.D.【考点】两角和与差的正弦函数.【分析】利用诱导公式,两角和的正弦函数公式,特殊角的三角函数值即可计算求值得解.【解答】解:sin50°cos10°+sin140°cos80°=sin50°cos10°+cos50°sin10°=sin(50°+10°)=sin60°=.故选:B.3.命题“∀x∈R,x2﹣2x+4≤0”的否定为()A.∃x∈R,x2﹣2x+4>0 B.∀x∈R,x2﹣2x+4≥0C.∀x∉R,x2﹣2x+4≤0 D.∃x∉R,x2﹣2x+4>0【考点】特称命题;命题的否定.【分析】命题“∀x∈R,x2﹣2x+4≤0”,是一个全称命题,其否定命题一定是一个特称命题,由全称命题的否定方法,我们易得到答案.【解答】解:∵命题“∀x∈R,x2﹣2x+4≤0”,∴命题“∀x∈R,x2﹣2x+4≤0”的否定为:∃x∈R,x2﹣2x+4>0.故答案为:∃x∈R,x2﹣2x+4>0.4.若a>b,则下列不等式正确的是()A.B.a3>b3 C.a2>b2 D.a>|b|【考点】不等关系与不等式.【分析】用特殊值法,令a=﹣1,b=﹣2,代入各个选项检验可得即可得答案.【解答】解:∵a>b,令a=﹣1,b=﹣2,代入各个选项检验可得:=﹣1,=﹣,显然A不正确.a3=﹣1,b3=﹣6,显然B正确.a2 =1,b2=4,显然C不正确.a=﹣1,|b|=2,显然D 不正确.故选B.5.已知数列{a n}是递增的等比数例,a1+a4=9,a2a3=8,S n为数列{a n}的前n项和,则S4=()A.15 B.16 C.18 D.31【考点】等比数列的前n项和.【分析】由已知得a1,a4是方程x2﹣9x+8=0的两个根,且a1<a4,解方得a1=1,a4=8,由此能求出S4.【解答】解:∵数列{a n}是递增的等比数例,a1+a4=9,a2a3=8,∴a1a4=a2a3=8,∴a1,a4是方程x2﹣9x+8=0的两个根,且a1<a4,解方程x2﹣9x+8=0,得a1=1,a4=8,∴a4=1×q3=8,解得q=2,∴S4==15.故选:A.6.把函数y=sinx(x∈R)的图象上所有的点向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为()A.y=sin(2x﹣),x∈R B.y=sin(2x+),x∈RC.y=sin(+),x∈R D.y=sin(x﹣),x∈R【考点】向量的物理背景与概念.【分析】先根据左加右减的性质进行平移,再根据横坐标伸长到原来的2倍时w的值变为原来的倍,得到答案.【解答】解:向左平移个单位,即以x+代x,得到函数y=sin(x+),再把所得图象上所有点的横坐标伸长到原来的2倍,即以x代x,得到函数:y=sin(x+).故选C.7.某实验室至少需要某种化学药品10kg,现在市场上出售的该药品有两种包装,一种是每袋3kg,价格为12元;另一种是每袋2kg,价格为10元.但由于保质期的限制,每一种包装购买的数量都不能超过5袋,则在满足需要的条件下,花费最少()A.56 B.42 C.44 D.54【考点】简单线性规划的应用;简单线性规划.【分析】设价格为12元的x袋,价格为10元y袋,花费为Z百万元,先分析题意,找出相关量之间的不等关系,即x,y满足的约束条件,由约束条件画出可行域;要求应作怎样的组合投资,可使花费最少,即求可行域中的最优解,在线性规划的解答题中建议使用直线平移法求出最优解,即将目标函数看成是一条直线,分析目标函数Z与直线截距的关系,进而求出最优解.【解答】解:设价格为12元的x袋,价格为10元y袋,花费为Z百万元,则约束条件为:,目标函数为z=12x+10y,作出可行域,使目标函数为z=12x+10y取最小值的点(x,y)是A(2,2),此时z=44,答:应价格为12元的2袋,价格为10元2袋,花费最少为44元.故选:C.8.已知四棱锥S﹣ABCD的底面是边长为2的正方形,SD⊥平面ABCD,且SD=AB,则四棱锥S﹣ABCD的外接球的表面积为()A.144πB.64πC.12πD.8π【考点】球的体积和表面积.【分析】由题意,将四棱锥S﹣ABCD扩充为正方体,体对角线长为2,可得四棱锥外接球的直径、半径,即可求出四棱锥外接球的表面积.【解答】解:由题意,将四棱锥S﹣ABCD扩充为正方体,体对角线长为2,∴四棱锥外接球的直径为2,半径为,∴四棱锥外接球的表面积为4π()2=12π.故选C.9.已知函数f(x)=x2+cosx,对于[]上的任意x1,x2,有如下条件:①x1>x2;②x1<x2;③|x1|>x2;④x12>x22.其中能使f(x1)>f(x2)恒成立的序号是()A.①④B.②③ C.③D.④【考点】利用导数研究函数的单调性.【分析】利用导数可以判定其单调性,再判断出奇偶性,即可判断出结论.【解答】解:∵f′(x)=2x﹣sinx,f″(x)=2﹣cosx>0,f′(x)在[]上递增,f′(﹣)<0,f′()>0,∴当x=0时,f′(0)=0;当x∈[﹣,0)时,f′(x)<0,函数f(x)在此区间上单调递减;当x∈(0,]时,f′(x)>0,函数f(x)在此区间上单调递增.∴函数f(x)在x=0时取得最小值,f(0)=0+1=1,∵∀x∈[﹣,],都有f(﹣x)=f(x),∴f(x)是偶函数,根据以上结论可得:①当x1>x2时,则f(x1)>f(x2)不成立;②当x1<x2|时,则f(x1)>f(x2)不成立;③当|x1|>x2时,则f(x1)=f(|x1|)>f(x2)不恒成立;④当x12>x22时,得|x1|>|x2|,则f(|x1|)>f(|x2|)⇔f(x1)>f(x2)恒成立;综上可知:能使f(x1)>f(x2)恒成立的有④.故选:D.10.已知函数f(x)=,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1)D.(0,1)∪(1,+∞)【考点】分段函数的应用.【分析】利用换元法设t=f(x),则方程等价为f(t)=0,作出函数f (x)的图象,利用数形结合即可得出此题的关键是a•2x取不到1和0.【解答】解:设t=f(x),则f(t)=0,若a<0时,当x≤0,f(x)=a•2x<0.由f(t)=0,即,此时t=1,当t=1得f(x)=1,此时x=有唯一解,此时满足条件.若a=0,此时当x≤0,f(x)=a•2x=0,此时函数有无穷多个点,不满足条件.若a>0,当x≤0,f(x)=a•2x∈(0,a].此时f(x)的最大值为a,要使若关于x的方程f(f(x))=0有且仅有一个实数解,则a<1,此时0<a<1,综上实数a的取值范围是(﹣∞,0)∪(0,1)故选:B二、填空题:本大题共5小题;每小题5分,共25分,把答案填在题中横线上.11.在复平面内,复数对应的点位于第一象限.【考点】复数代数形式的乘除运算.【分析】由复数代数形式的乘除运算化简复数,求出复数在复平面上对应的点的坐标,则答案可求.【解答】解:=,则复数在复平面内对应的点的坐标为:(1,1),位于第一象限.故答案为:一.12.若S n是等差数列{a n}的前n项和,a2+a10=4,则S11的值为22.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式和前n项和公式求解.【解答】解:∵S n是等差数列{a n}的前n项和,a2+a10=4,∴S11====22.故答案为:22.13.在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,若b=2asinB,则角A等于30°.【考点】正弦定理.【分析】利用正弦定理化简已知的等式,根据sinB不为0得出sinA 的值,由A为锐角三角形的内角,利用特殊角的三角函数值即可求出A的度数.【解答】解:利用正弦定理化简b=2asinB得:sinB=2sinAsinB,∵sinB≠0,∴sinA=,∵A为锐角,∴A=30°.故答案为:30°14.在△ABC中,点D在线段BC上,且,点O在线段DC上(与点C,D不重合),若,则x的取值范围是3.【考点】向量的共线定理.【分析】利用向量的运算法则和共线定理即可得出.【解答】解:∵,∴,化为.∴,∵,∴.∴.∴x的取值范围是.故答案为.15.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,给出下列四个函数:①f(x)=sin x;②f(x)=2x2﹣1;③f(x)=|1﹣2x|;④f(x)=log2(2x﹣2).其中存在“可等域区间”的“可等域函数”为①②③.【考点】函数的值域;函数的定义域及其求法.【分析】根据“可等域区间”的定义分别进行判断即可得到结论.【解答】解:①对于f(x)=sin x,存在“可等域区间”,如x∈[0,1]时,f(x)=sin x∈[0,1];②对于函数f(x)=2x2﹣1,存在“可等域区间”,如x∈[﹣1,1]时,f(x)=2x2﹣1∈[﹣1,1];③对于函数f(x)=|1﹣2x|,存在“可等域区间”,如x∈[0,1]时,f(x)=|2x﹣1|∈[0,1];④∵f(x)=log2(2x﹣2)单调递增,且函数的定义域为(1,+∞),若存在“可等域区间”,则满足,即,∴m,n是方程2x﹣2x+2=0的两个根,设f(x)=2x﹣2x+2,f′(x)=2x ln2﹣2,当x>1时,f′(x)>0,此时函数f(x)单调递增,∴f(x)=2x﹣2x+2=0不可能存在两个解,故f(x)=log2(2x﹣2)不存在“可等域区间”.所以其中存在“可等域区间”的“可等域函数”为①②③.故答案为:①②③三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或推演步骤.16.△ABC中,角A、B、C所对的边分别为a、b、c,且bsinA=.(1)求角B的大小;(2)若b=3,a+c=6,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(1)根据条件及正弦定理便可得到,从而可以得到tanB=,从而得出B的值;(2)由已知利用余弦定理可求ac的值,利用三角形面积公式即可求值得解.【解答】解:(1)∵bsinA=.∴,∴sinB=cosB,∴tanB=,∵0<B<π;∴B=.(2)∵B=,b=3,a+c=6,∴利用余弦定理可得:9=a2+c2﹣ac=(a+c)2﹣3ac=36﹣3ac,解得:ac=9,∴S△ABC=acsinB==.17.如图1,在矩形ABCD中,AB=6,BC=2,沿对角线BD将三角形ABD向上折起,使点A移至点P,且点P在平面BCD上的射影O在DC上得到图2.(1)求证:BC⊥PD;(2)判断△PDC是否为直角三角形,并证明;(3)(文)若M为PC的中点,求三棱锥M﹣BCD的体积.(理)若M为PC的中点,求二面角M﹣DB﹣C的大小.【考点】棱柱、棱锥、棱台的体积;与二面角有关的立体几何综合题.【分析】(1)由已知得PO⊥BC,BC⊥CD,从而BC⊥平面PDC,由此能证明BC⊥PD;(2)由已知条件条件出PD⊥平面PBC,从而PD⊥PC,由此证明△PDC是直角三角形.(3)(文)由已知条件推导出M到平面BDC的距离h=,,由此能求出三棱锥M﹣BCD的体积.(3)(理)以平行于BC的直线为x轴,以OC为y轴,以OP为z 轴建立空间直角坐标系,利用向量法能求出二面角M﹣DB﹣C的大小.【解答】(1)证明:∵点P在平面BCD上的射影O在DC上,∴PO⊥BC,∵BC⊥CD,PO∩CD=O,∴BC⊥平面PDC,∵PD⊂平面PDC,∴BC⊥PD;(2)解:△PDC是直角三角形.∵BC⊥PD,PD⊥PB,BC∩PB=B,∴PD⊥平面PBC,∴PD⊥PC,∴△PDC是直角三角形.(3)(文)解:PD=2,DC=6,DP⊥CP,∴PC=2,PO==2,DO=2,OC=4,∵M为PC的中点,∴M到平面BDC的距离h=,,∴三棱锥M﹣BCD的体积V==2.(3)(理)解:如图,以平行于BC的直线为x轴,以OC为y轴,以OP为z轴建立空间直角坐标系,则O(0,0,0),P(0,0,2),D(0,﹣2,0),C(0,4,0),B(2,4,0),M(0,2,),,=(0,4,),设平面DBM的法向量=(x,y,z),则,取x=,得=(,﹣1,2),又=(0,0,1),∴cos<>==二面角M﹣DB﹣C的大小arccos.18.设函数f(x)=a x﹣(k﹣1)a﹣x(a>0且a≠1)是定义域为R 的奇函数.(1)求k的值;(2)若f(1)<0,求使不等式f(x2+tx)+f(4﹣x)<0对于任意x ∈R恒成立的T的取值范围.【考点】函数恒成立问题.【分析】(1)根据奇函数的性质可得f(0)=0,由此求得k值;(2)由f(x)=a x﹣a﹣x(a>0且a≠1),f(1)<0,求得1>a>0,f(x)在R上单调递减,不等式化为f(x2+tx)<f(x﹣4),即x2+(t﹣1)x+4>0 恒成立,由△<0求得t的取值范围.【解答】解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0,∴1﹣(k﹣1)=0,∴k=2.当k=2时,f(x)=a x﹣a﹣x(a>0且a≠1),∴f(﹣x)=﹣f(x)成立∴f(x)是定义域为R的奇函数;(2)函数f(x)=a x﹣a﹣x(a>0且a≠1),∵f(1)<0,∴a﹣<0,∵a>0,∴1>a>0.由于y=a x单调递减,y=a﹣x单调递增,故f(x)在R上单调递减.不等式f(x2+tx)+f(4﹣x)<0,可化为f(x2+tx)<f(x﹣4).∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0 恒成立,∴△=(t﹣1)2﹣16<0,解得﹣3<t<5.19.某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2﹣10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)﹣f(x).(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值﹣成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大?(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?【考点】函数模型的选择与应用.【分析】(1)根据利润=产值﹣成本,及边际函数Mf(x)定义得出利润函数P(x)及边际利润函数MP(x);(2)先对利润函数P(x)求导数,P′(x)=﹣30x2+90x+3240=﹣30(x﹣12)(x+9),利用导数研究它的单调性,从而求得其最大值,即可得出年造船量安排多少艘时,可使公司造船的年利润最大.(3)根据MP(x)=﹣30x2+60x+3275=﹣30(x﹣1)2+3305.利用二次函数的性质研究它的单调性,最后得出单调递减在本题中的实际意义单调递减在本题中的实际意义即可.【解答】解:(1)P(x)=R(x)﹣C(x)=﹣10x3+45x2+3240x﹣5000(x∈N*,且1≤x≤20);MP(x)=P(x+1)﹣P(x)=﹣30x2+60x+3275(x∈N*,且1≤x≤19).(2)P′(x)=﹣30x2+90x+3240=﹣30(x﹣12)(x+9),∵x>0,∴P′(x)=0时,x=12,∴当0<x<12时,P′(x)>0,当x>12时,P′(x)<0,∴x=12时,P(x)有最大值.即年造船量安排12艘时,可使公司造船的年利润最大.(3)MP(x)=﹣30x2+60x+3275=﹣30(x﹣1)2+3305.所以,当x≥1时,MP(x)单调递减,所以单调减区间为[1,19],且x∈N*.MP(x)是减函数的实际意义,随着产量的增加,每艘利润与前一艘利润比较,利润在减少.20.等比数列{c n}满足c n+1+c n=10•4n﹣1,n∈N,数列{a n}满足c n=.(1)求数列{a n}的通项公式;(2)数列{b n}满足b n=,求数列{b n}的前n项和T n;(3)是否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.【考点】数列的求和;数列递推式.【分析】(1)由题意可得,c1+c2=10,c2+c3=40,结合等比数列的通项公式可求公比q及c1,代入等比数列的通项公式可求c n,然后由cn=2an可求a n,(2)由b n==,考虑利用裂项求和即可求解T n.(3)假设否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列,结合(2)代入可得=>0,解不等式可求m的范围,然后结合m∈N*,m>1可求.【解答】解:(1)解:由题意可得,c1+c2=10,c2+c3=c1q+c2q=40,所以公比q=4,∴c1+4c1=10∴c1=2.由等比数列的通项公式可得,c n=2•4n﹣1=22n﹣1.∵c n=═22n﹣1∴a n=2n﹣1;(2)∵b n==,∴b n=(﹣),于是T n= [(1﹣)+(﹣)+…+(﹣)]=.(3)假设否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列,则()2=•.可得=>0,由分子为正,解得1﹣<m<1+,由m∈N*,m>1,得m=2,此时n=12,当且仅当m=2,n=12时,T1,T m,T n成等比数列.说明:只有结论,m=2,n=12时,T1,T m,T n成等比数列.21.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k 的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.【考点】导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,求得切线的斜率,由条件可得斜率为0,解方程可得k=e;(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立,设h(x)=f(x)﹣x=lnx+﹣x(x>0),求出导数,运用参数分离,求出右边函数的最大值,即可得到k的范围;(Ⅲ)由题意可得k=e,由题意f(x)<在[e,3]上有解,即∃x∈[e,3],使f(x)<成立,运用参数分离,求得右边函数的最小值,即可得到m的范围.【解答】解:(Ⅰ)由条件得f′(x)=﹣(x>0),∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0,即f′(e)=0,有﹣=0,得k=e;(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h′(x)=﹣﹣1≤00在(0,+∞)上恒成立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒成立,∴k≥(对k=,h′(x)=0仅在x=时成立),故k的取值范围是[,+∞);(Ⅲ)由题可得k=e,因为M∩P≠∅,所以f(x)<在[e,3]上有解,即∃x∈[e,3],使f(x)<成立,即∃x∈[e,3],使m>xlnx+e成立,所以m>(xlnx+e)min,令g(x)=xlnx+e,g′(x)=1+lnx>0,所以g(x)在[e,3]上单调递增,g(x)min=g(e)=2e,所以m>2e.。
2019年高三上学期10月月考数学试卷(文科)含解析
2019年高三上学期10月月考数学试卷(文科)含解析一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,集合A={x|x≤﹣2或x≥3},B={x|x<﹣1或x>4},那么集合(∁UA)∩B等于()A.{x|﹣2≤x<4} B.{x|﹣2<x<3}C.{x|﹣2<x<﹣1} D.{x|﹣2<x<﹣1或3<x<4}2.已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题3.在等差数列{an }中,首项a1=0,公差d≠0,若am=a1+a2+…+a9,则m的值为()A.37 B.36 C.20 D.194.若点P在曲线y=x3﹣3x2+(3﹣)x+上移动,经过点P的切线的倾斜角为α,则角α的取值范围是()A.[0,)B.[0,)∪[,π)C.[,π)D.[0,)∪(,]5.i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.36.已知m、n为两条不同的直线α、β为两个不同的平面,给出下列四个命题①若m⊂α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若m⊥α,m⊥β,则α∥β;④若m∥α,n∥α,则m∥n.其中真命题的序号是()A.①②B.③④C.①④D.②③7.已知函数f(x)满足:4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R)且,则fA. B. C. D.8.在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M 满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二、填空题:(本大题共6小题;每小题5分,共30分.)9.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=.10.已知等差数列{a n}的前n项和为S n,若a3=4,S3=3,则公差d=.11.若cosxcosy+sinxsiny=,则cos(2x﹣2y)=.12.已知函数若直线y=m与函数f(x)的图象只有一个交点,则实数m的取值范围是.13.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,20,则输出的a=.14.已知A、B为函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b,λ∈[0,1],又已知向量=λ+(1﹣λ),若不等式||≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数f(x)=x﹣在[1,2]上“k阶线性近似”,则实数k的取值范围为.三、解答题:(本大题6小题,共80分.解答写出文字说明,证明过程或演算步骤.)15.已知数列{a n}的前n项和S n=n﹣5a n﹣85,(Ⅰ)求{a n}的通项公式;(Ⅱ)令b n=log+log+…+log,求数列{}的前n项和T n.16.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.17.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)等比数列{b n}满足:b1=a1,b2=a2﹣1,若数列c n=a n•b n,求数列{c n}的前n项和S n.18.在△ABC中,2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4,b=5,求在方向上的投影.19.已知函数f(x)=x3﹣bx+c(b,c∈R)(Ⅰ)若函数f(x)在点(1,f(1))处的切线方程为y=2x+1,求b,c的值;(Ⅱ)若b=1,函数f(x)在区间(0,2)内有唯一零点,求c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|≤,求b的取值范围.20.对于一组向量,,,…,(n∈N*),令=+++…+,如果存在(p∈{1,2,3,…,n},使得||≥|﹣|,那么称是该向量组的“h向量”.(1)设=(n,x+n)(n∈N*),若是向量组,,的“h向量”,求实数x的取值范围;(2)若=(()n﹣1•(﹣1)n(n∈N*),向量组,,,…,是否存在“h向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“h向量”,其中=(sinx,cosx),=(2cosx,2sinx).设在平面直角坐标系中有一点列Q1.Q2,Q3,…,Q n满足:Q1为坐标原点,Q2为的位置向量的终点,且Q2k+1与Q2k关于点Q1对称,Q2k+2与Q2k+1(k∈N*)关于点Q2对称,求||的最小值.参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,集合A={x|x≤﹣2或x≥3},B={x|x<﹣1或x>4},那么集合(∁U A)∩B等于()A.{x|﹣2≤x<4}B.{x|﹣2<x<3}C.{x|﹣2<x<﹣1}D.{x|﹣2<x<﹣1或3<x<4}【考点】交、并、补集的混合运算.【分析】求出集合A的补集,从而求出其和B的交集即可.【解答】解:集合A={x|x≤﹣2或x≥3},∴∁U A={x|﹣2<x<3},B={x|x<﹣1或x>4},∴(∁U A)∩B={x|﹣2<x<﹣1},故选:C.2.已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题【考点】全称命题;复合命题的真假.【分析】先判断出命题p与q的真假,再由复合命题真假性的判断法则,即可得到正确结论.【解答】解:由于x=10时,x﹣2=8,lgx=lg10=1,故命题p为真命题,令x=0,则x2=0,故命题q为假命题,依据复合命题真假性的判断法则,得到命题p∨q是真命题,命题p∧q是假命题,¬q是真命题,进而得到命题p∧(¬q)是真命题,命题p∨(¬q)是真命题.故答案为C.3.在等差数列{a n}中,首项a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为()A.37 B.36 C.20 D.19【考点】数列的求和;等差数列.【分析】利用等差数列的通项公式可得a m=0+(m﹣1)d,利用等差数列前9项和的性质可得a1+a2+…+a9=9a5=36d,二式相等即可求得m的值.【解答】解:∵{a n}为等差数列,首项a1=0,a m=a1+a2+…+a9,∴0+(m﹣1)d=9a5=36d,又公差d≠0,∴m=37,故选A.4.若点P在曲线y=x3﹣3x2+(3﹣)x+上移动,经过点P的切线的倾斜角为α,则角α的取值范围是()A.[0,)B.[0,)∪[,π)C.[,π)D.[0,)∪(,]【考点】导数的几何意义;直线的倾斜角.【分析】先求出函数的导数y′的解析式,通过导数的解析式确定导数的取值范围,再根据函数的导数就是函数在此点的切线的斜率,来求出倾斜角的取值范围.【解答】解:∵函数的导数y′=3x2﹣6x+3﹣=3(x﹣1)2﹣≥﹣,∴tanα≥﹣,又0≤α<π,∴0≤α<或≤α<π,故选B.5.i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.3【考点】复数的基本概念;复数代数形式的乘除运算.【分析】利用复数的乘法求出复数z,然后求解结果即可.【解答】解:复数z满足zi=﹣1+i,可得z===1+i.复数z的实部与虚部的和是:1+1=2.故选:C.6.已知m、n为两条不同的直线α、β为两个不同的平面,给出下列四个命题①若m⊂α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若m⊥α,m⊥β,则α∥β;④若m∥α,n∥α,则m∥n.其中真命题的序号是()A.①②B.③④C.①④D.②③【考点】平面的基本性质及推论.【分析】m⊂α,n∥α,则m∥n或m与n是异面直线;若m⊥α,则m垂直于α中所有的直线,n∥α,则n平行于α中的一条直线l,故m⊥l,m⊥n;若m⊥α,m⊥β,则α∥β;m∥α,n∥α,则m∥n,或m,n相交,或m,n异面.【解答】解:m⊂α,n∥α,则m∥n或m与n是异面直线,故①不正确;若m⊥α,则m垂直于α中所有的直线,n∥α,则n平行于α中的一条直线l,∴m⊥l,故m⊥n.故②正确;若m⊥α,m⊥β,则α∥β.这是直线和平面垂直的一个性质定理,故③成立;m∥α,n∥α,则m∥n,或m,n相交,或m,n异面.故④不正确,综上可知②③正确,故答案为:②③.7.已知函数f(x)满足:4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R)且,则fA. B. C. D.【考点】抽象函数及其应用.【分析】由,令y=1代入题中等式得f(x)=f(x+1)+f(x﹣1),由此证出f(x+6)=f(x),可得函数f(x)是周期T=6的周期函数.令y=0代入题中等式解出f(0)=,再令x=y=1代入解出f(2)=﹣,同理得到f(4)=﹣.从而算出f=f(4)=﹣.【解答】解:∵,∴令y=1,得4f(x)f(1)=f(x+1)+f(x﹣1),即f(x)=f(x+1)+f(x﹣1),即f(x+1)=f(x)﹣f(x﹣1)…①用x+1替换x,得f(x+2)=f(x+1)﹣f(x),…②①+②得:f(x+2)=﹣f(x﹣1),再用x+1替换x,得f(x+3)=﹣f(x).∴f(x+6)=f[(x+3)+3]=﹣f(x+3)=﹣[﹣f(x)]=f(x),函数f(x)是周期T=6的周期函数.因此,f=f(4).∵4f(x)f(y)=f(x+y)+f(x﹣y)∴令y=0,得4f(x)f(0)=2f(x),可得f(0)=.在4f(x)f(y)=f(x+y)+f(x﹣y)中令x=y=1,得4f2(1)=f(2)+f(0),∴4×=f(2)+,解之得f(2)=﹣同理在4f(x)f(y)=f(x+y)+f(x﹣y)中令x=y=2,解得f(4)=﹣.∴f=﹣.故选:A8.在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M 满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0【考点】平面向量数量积的运算;进行简单的合情推理.【分析】利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.【解答】解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为(++)•(++)的最小值、最大值,∴m<0,M<0故选D.二、填空题:(本大题共6小题;每小题5分,共30分.)9.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.【考点】复数的基本概念.【分析】根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.【解答】解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.10.已知等差数列{a n}的前n项和为S n,若a3=4,S3=3,则公差d=3.【考点】等差数列的前n项和.【分析】由等差数列的性质可得S3=3a2=3,解得a2的值,由公差的定义可得.【解答】解:由等差数列的性质可得S3===3,解得a2=1,故公差d=a3﹣a2=4﹣1=3故答案为:311.若cosxcosy+sinxsiny=,则cos(2x﹣2y)=﹣.【考点】两角和与差的余弦函数;二倍角的余弦.【分析】已知等式左边利用两角和与差的余弦函数公式化简,求出cos(x﹣y)的值,所求式子利用二倍角的余弦函数公式化简后,将cos(x﹣y)的值代入计算即可求出值.【解答】解:∵cosxcosy+sinxsiny=cos(x﹣y)=,∴cos(2x﹣2y)=cos2(x﹣y)=2cos2(x﹣y)﹣1=﹣.故答案为:﹣.12.已知函数若直线y=m与函数f(x)的图象只有一个交点,则实数m的取值范围是m≥2或m=0.【考点】分段函数的应用.【分析】作出函数f(x)的图象,判断函数的单调性和取值范围,利用数形结合进行判断即可.【解答】解:作出函数f(x)的图象如图,则当x<1时,f(x)∈(0,2),当x≥1时,f(x)≥0,则若直线y=m与函数f(x)的图象只有一个交点,则m≥2或m=0,故答案为:m≥2或m=013.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,20,则输出的a=2.【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当a=14,b=20时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=14,b=6,当a=14,b=6时,满足a≠b,且满足a>b,执行a=a﹣b后,a=8,b=6,当a=8,b=6时,满足a≠b,且满足a>b,执行a=a﹣b后,a=2,b=6,当a=2,b=6时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=2,b=4,当a=2,b=4时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=2,b=2,当a=2,b=2时,不满足a≠b,故输出的a值为2,故答案为:214.已知A、B为函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b,λ∈[0,1],又已知向量=λ+(1﹣λ),若不等式||≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数f(x)=x﹣在[1,2]上“k阶线性近似”,则实数k的取值范围为.【考点】平面向量的综合题.【分析】先得出M、N横坐标相等,再将恒成立问题转化为求函数的最值问题.【解答】解:由题意,M、N横坐标相等,恒成立,即,由N在AB线段上,得A(1,0),B(2,),∴直线AB方程为y=(x﹣1)∴=y1﹣y2=﹣(x﹣1)=﹣(+)≤(当且仅当x=时,取等号)∵x∈[1,2],∴x=时,∴故答案为:三、解答题:(本大题6小题,共80分.解答写出文字说明,证明过程或演算步骤.)15.已知数列{a n}的前n项和S n=n﹣5a n﹣85,(Ⅰ)求{a n}的通项公式;(Ⅱ)令b n=log+log+…+log,求数列{}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)利用S n=n﹣5a n﹣85,S n+1=(n+1)﹣5a n+1﹣85,两式相减得a n+1=1﹣5a n+1+5a n,化为,再利用等比数列的通项公式即可得出.(2)利用对数的运算可得=n,利用等差数列的前n项和公式即可得出b n,再利用“裂项求和”即可得出T n.【解答】解:(Ⅰ)当n=1时,a1=S1=1﹣5a1﹣85,解得a1=﹣14.∵S n=n﹣5a n﹣85,S n+1=(n+1)﹣5a n+1﹣85,∴两式相减得a n+1=1﹣5a n+1+5a n,即,从而{a n﹣1}为等比数列,首项a1﹣1=﹣15,公比为.∴,即.∴{a n}的通项公式为.(Ⅱ)由(Ⅰ)知,∴=n,∴b n=1+2+3+…+n=.∴,∴T n==.16.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.【考点】两角和与差的正弦函数;正弦函数的单调性;正弦定理.【分析】(Ⅰ)利用两角和差的正弦公化简函数的解析式为sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可求得f(x)的单调递增区间.(Ⅱ)由已知,可得sin(2A+)=,求得A=,再利用正弦定理求得b的值,由三角形内角和公式求得C的值,再由S=ab•sinC,运算求得结果.【解答】解:(Ⅰ)=sin2xcos+cos2xsin+cos2x=sin2x+cos2x=(sin2x+cos2x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,函数f(x)的单调递增区间为[kπ﹣,kπ+],k∈z.(Ⅱ)由已知,可得sin(2A+)=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得sinC=,…∴S=ab•sinC==.17.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)等比数列{b n}满足:b1=a1,b2=a2﹣1,若数列c n=a n•b n,求数列{c n}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(Ⅰ)设等差数列{a n}的公差为d,d>0,利用等差数列的通项表示已知,求解出d,a1,结合等差数列的通项即可求解(Ⅱ)由b1=1,b2=2可求,,结合数列的特点,考虑利用错位相减求解数列的和【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则依题设d>0由a2+a7=16.得2a1+7d=16 ①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由a3a6=55得(a1+2d)(a1+5d)=55 ②﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由①得2a1=16﹣7d将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0∴d=2,代入①得a1=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴a n=1+(n﹣1)•2=2n﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)b1=1,b2=2∴∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣两式相减可得:=1+2×﹣(2n﹣1)•2n∴=2n+1﹣3﹣(2n ﹣1)•2n﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣18.在△ABC中,2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4,b=5,求在方向上的投影.【考点】两角和与差的余弦函数;向量数乘的运算及其几何意义;二倍角的正弦;二倍角的余弦;余弦定理.【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c 的大小.【解答】解:(Ⅰ)由可得,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.19.已知函数f(x)=x3﹣bx+c(b,c∈R)(Ⅰ)若函数f(x)在点(1,f(1))处的切线方程为y=2x+1,求b,c的值;(Ⅱ)若b=1,函数f(x)在区间(0,2)内有唯一零点,求c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|≤,求b的取值范围.【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数求闭区间上函数的最值.【分析】(Ⅰ)先求导函数f′(x),根据f′(1)=2可求出b的值,再根据切点既在切线上又在函数图象上可求出c的值;(Ⅱ)先利用导数研究函数的单调性,从而得到f(x)在区间(0,2)内有唯一零点等价于f(1)=0或,解之即可求出c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|等价于f(x)在[﹣1,1]上的最大值与最小值之差M≤,讨论b的取值范围,求出f(x)在[﹣1,1]上的最大值与最小值之差M,建立关系式,解之即可.【解答】解:(Ⅰ)∵f(x)=x3﹣bx+c,∴f′(x)=x2﹣b,∴f′(1)=1﹣b=2,解得b=﹣1,又f(1)=2+1=3,∴﹣b+c=3,解得c=;(Ⅱ)∵b=1,∴f(x)=x3﹣x+c,则f′(x)=x2﹣1,当x∈(0,1)时,f′(x)<0,当x∈(1,2)时,f′(x)>0,∴f(x)在(0,1)上单调递减,在(1,2)上单调递增,又f(0)=c<f(2)=+c,可知f(x)在区间(0,2)内有唯一零点等价于f(1)=0或,解得c=或﹣<c≤0;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|等价于f(x)在[﹣1,1]上的最大值与最小值之差M≤,(ⅰ)当b≤0时,在[﹣1,1]上f′(x)≥0,f(x)在[﹣1,1]上单调递增,由M=f(1)﹣f(﹣1)=﹣2b≤,得b≥﹣,所以﹣≤b≤0,(ⅱ)当b>0时,由f′(x)=0得x=±,由f(x)=f(﹣)得x=2或x=﹣,∴f(2)=f(﹣),同理f(﹣2)=f(),①当>1,即b>1时,M=f(﹣1)﹣f(1)=2b﹣>,与题设矛盾,②当≤1≤2,即≤b≤1时,M=f(﹣2)﹣f()=﹣+2b=≤恒成立,③当2<1,即0<b<时,M=f(1)﹣f(﹣1)=﹣2b≤恒成立,综上所述,b的取值范围为[﹣,1].20.对于一组向量,,,…,(n∈N*),令=+++…+,如果存在(p∈{1,2,3,…,n},使得||≥|﹣|,那么称是该向量组的“h向量”.(1)设=(n,x+n)(n∈N*),若是向量组,,的“h向量”,求实数x的取值范围;(2)若=(()n﹣1•(﹣1)n(n∈N*),向量组,,,…,是否存在“h向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“h 向量”,其中=(sinx ,cosx ),=(2cosx ,2sinx ).设在平面直角坐标系中有一点列Q 1.Q 2,Q 3,…,Q n 满足:Q 1为坐标原点,Q 2为的位置向量的终点,且Q 2k +1与Q 2k 关于点Q 1对称,Q 2k +2与Q 2k +1(k ∈N *)关于点Q 2对称,求||的最小值.【考点】函数的最值及其几何意义.【分析】(1)由“h 向量”的定义可知:丨丨>丨+丨,可得≥,即可求得实数x 的取值范围;(2)由=(1,﹣1),丨丨=,当n 为奇数时, ++…+=(,0)=(﹣()n ﹣1,0),丨++…+丨=<<,同理当n 为偶数时, ++…+=(﹣•()n ﹣1,1),即可求得丨丨>丨++…+丨,因此是向量组,,,…,的“h 向量”;(3)由题意可得:丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,以上各式相加,整理可得:丨丨+丨丨+丨丨=0,设=(u ,v ),由丨丨+丨丨+丨丨=0,得:,根据向量相等可知:(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2),(x 2k +1,y 2k +1)=﹣2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2),可知:Q 2k +1•Q 2k +2=(x 2k +2﹣x 2k +1,y 2k +2﹣y 2k +1)=4k [(x 2,y 2)﹣(x 1,y 1)]=4kQ 1•Q 2,由向量的模长公式即可求得丨Q 1•Q 2丨最小值,即可求得||的最小值. 【解答】解:(1)由题意,得:丨丨>丨+丨,则≥…..2’解得:﹣2≤x ≤0; …..4’(2)是向量组,,,…,的“h 向量”,证明如下:=(1,﹣1),丨丨=,当n 为奇数时, ++…+=(,0)=(﹣()n ﹣1,0),…..6’ ∵0≤﹣()n ﹣1<,故丨++…+丨=<<,…8’即丨丨>丨++…+丨当n 为偶数时, ++…+=(﹣•()n ﹣1,1),故丨++…+丨=<<, 即丨丨>丨++…+丨综合得:是向量组,,,…,的“h 向量”,证明如下:”…..10’(3)由题意,得丨丨>丨+丨,丨丨2>丨+丨2,即(丨丨)2≥(丨+丨)2,即丨丨2>丨丨2+丨丨2+2丨丨•丨丨,同理丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,三式相加并化简,得:0≥丨丨2+丨丨2+丨丨2+2丨丨•丨丨+2丨丨•丨丨+2丨丨•丨丨, 即(丨丨+丨丨+丨丨)2≤0,丨丨丨+丨丨+丨丨丨≤0,∴丨丨+丨丨+丨丨=0,…..13’设=(u ,v ),由丨丨+丨丨+丨丨=0,得:,设Q n (x n ,y n ),则依题意得:, 得(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2k ,y 2k ), 故(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2), (x 2k +1,y 2k +1)=﹣2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2), ∴Q 2k +1•Q 2k +2=(x 2k +2﹣x 2k +1,y 2k +2﹣y 2k +1)=4k [(x 2,y 2)﹣(x 1,y 1)]=4kQ 1•Q 2,…16’ 丨Q 1•Q 2丨2=丨丨2=(﹣sinx ﹣2cosx )2+(﹣cosx ﹣2sinx )2=5+8sinxcosx=5+4sin2x ≥1, 当且仅当x=k π﹣,(k ∈Z )时等号成立, 故||的最小值4024.xx1月2日25425 6351 捑31591 7B67 筧P~+ 39544 9A78 驸#36141 8D2D 购Pq38373 95E5 闥33824 8420 萠•。
A 高三数学10月月考试题 文
四川省眉山一中办学共同体2019届高三数学10月月考试题 文第I 卷(选择题)一、选择题(共60分,每小题5分,每个小题有且仅有一个正确的答案) 1. 已知集合{1,2,3,4,5}A =,{(2)(5)0}B x x x =--<,则A B I =( ) A. {1,2,3,4} B. {3,4} C. {2,3,4} D. {4,5} 2. 复数=-ii2( ) A .i 21- B .i 21+ C .i 21-- D .i 21+- 3.设向量a →,b →满足|+a b →→a b →→-=a b →→⋅=( )A. 1B. 2C. 3D. 54.若角α的终边经过点)54,53(-P ,则cos tan αα⋅的值是( )A .54-B .54C .53-D .535. 已知4213332,3,25a b c ===,则( ) A. c a b << B. a b c <<C. b c a <<D. b a c <<6. 如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( ) A.103 B. 15 C. 110 D.1207. 函数x e x f x3)(+=的零点个数是 ( )A .0B .1C .2D .38. 已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩错误!未找到引用源。
,且()3f a =-,则(6)f a -=( )A. 74-B. 54-C. 34-D.14- 9. 已知()f x 是偶函数,它在[0,)+∞上是减函数,若()(lg )1f x f >,则x 的取值范围 是( ) A .1(,1)10 B .1(,10)10 C .1(0,)(1,)10+∞U D .(0,1)(10,)+∞U 10. 已知侧棱长为2的正四棱锥P —ABCD 的五个顶点都在同一个球面上,且球心O 在底面正方形ABCD 上,则球O 的表面积为( )A. πB. 2πC. 3πD. 4π11. 函数2y ax bx =+与log b ay x =(0,)ab a b ≠≠在同一直角坐标系中的图象可能是( )A B C D 12. 已知可导函数()f x 的导函数为()f x ',()02018f =,若对任意的x R ∈,都有()()f x f x '>,则不等式()2018x f x e <的解集为( )A .(0,+∞)B .21,e ⎛⎫+∞ ⎪⎝⎭C .21,e ⎛⎫-∞ ⎪⎝⎭ D .(-∞,0)第II 卷(非选择题)二、填空题(共20分,每小题5分)13. 若函数'2()ln (1)32f x x f x x =-++,则'(1)f =_________.14. 已知圆O :224x y +=, 则圆O 在点A 处的切线的方程是___________.15. 已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12346f f f f +++⋅⋅⋅+=___________.16. 已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为030.若SAB △的面积为8,则该圆锥的体积为_________.三、解答题(共70分)(17-21为必做题.,22、23为选做题)17. (本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且()sinA bsinB sin a c b C =+-.(1)求A 的大小;(2)若sin 2sin ,B C a ==ABC 的面积.18. (本小题满分12分)在等差数列}{n a 中,42=a ,1574=+a a . (1)求数列}{n a 的通项公式; (2)设n b n a n 222+=-,求9321b b b b +⋯+++的值.19. (本小题满分12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:⑴求40名工人完成生产任务所需时间的中位数m,并根据茎叶图判断哪种生产方式的效率更高?并说明理由;⑵完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m合计第一种生产方式第二种生产方式合计根据列联表能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,()20.0500.0100.0013.8416.63510.828P K kk≥.20.(本小题满分12分)在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,1PA AB==.(1)证明://EF平面DCP;(2)求点F到平面PDC的距离.21. (本小题满分12分)已知函数2()4ln 1()f x x mx m R =-+∈.(1)若函数在点(1,(1))f 处的切线与直线210x y --=平行,求实数m 的值; (2)若对任意[1,]x e ∈,都有()0f x ≤恒成立,求实数m 的取值范围. 选考题:共10分。
2019年四川省乐山市实验中学高三数学文测试题含解析
2019年四川省乐山市实验中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数中,在(﹣1,1)内有零点且单调递增的是()A.y=log2x B.y=2x﹣1 C.y=x2﹣2 D.y=﹣x3参考答案:B【考点】函数零点的判定定理;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】根据解析式判断单调性,再根据零点存在性定理判断即可得出答案.【解答】解:y=log x在(﹣1,1)有没有意义的情况,故A不对,y=x2﹣1在(﹣1,0)单调递减,故C不对,y=﹣x3在(﹣1,1)单调递减,故D不对,故A,C,D都不对,∵y=2x﹣1,单调递增,f(﹣1)<0,f(1)>0,∴在(﹣1,1)内存在零点故选:B【点评】本特纳考查了函数的单调性,零点的判断,函数解析式较简单,属于容易题.2. 执行如图所示的程序框,输出的T=( )A.17 B.29 C.44 D.52参考答案:B考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,n,T的值,当S=12,T=29时满足条件T>2S,退出循环,输出T的值为29.解答:解:模拟执行程序框图,可得S=3,n=1,T=2不满足条件T>2S,S=6,n=2,T=8不满足条件T>2S,S=9,n=3,T=17不满足条件T>2S,S=12,n=4,T=29满足条件T>2S,退出循环,输出T的值为29.故选:B.点评:本题主要考查了循环结构的程序框图,依次写出每次循环得到的S,n,T的值是解题的关键,属于基础题.3. 已知函数f(x)=xlnx﹣ae x(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.B.(0,e)C.D.(﹣∞,e)参考答案:A【考点】利用导数研究函数的极值.【分析】求出函数的导数,问题转化为y=a和g(x)=在(0,+∞)2个交点,根据函数的单调性求出g(x)的范围,从而求出a的范围即可.【解答】解:f′(x)=lnx﹣ae x+1,若函数f(x)=xlnx﹣ae x有两个极值点,则y=a和g(x)=在(0,+∞)有2个交点,g′(x)=,(x>0),令h(x)=﹣lnx﹣1,则h′(x)=﹣﹣<0,h(x)在(0,+∞)递减,而h(1)=0,故x∈(0,1)时,h(x)>0,即g′(x)>0,g(x)递增,x∈(1,+∞)时,h(x)<0,即g′(x)<0,g(x)递减,故g(x)max=g(1)=,而x→0时,g(x)→﹣∞,x→+∞时,g(x)→0,若y=a和g(x)在(0,+∞)有2个交点,只需0<a<,故选:A.4. 如图所示的程序框图,若输入的n是100,则输出的变量S和T的值依次是( )A.2500,2500 B.2550,2550 C.2500,2550D.2550,2500参考答案:D5. 设复数z在复平面上的对应点为,为z的共轭复数,则()A. 是纯虚数B. 是实数C. 是纯虚数D. 是纯虚数参考答案:D【分析】由复数z在复平面上的对应点为,可得,根据为的共轭复数,可得,逐项验证,即可求得答案.【详解】复数z在复平面上的对应点为根据为的共轭复数对于A,,是实数,故A错误;对于B,,是纯虚数,故B错误;对于C,,是实数,故C错误;对于D,,是纯虚数,故D正确.故选:D.【点睛】本题主要考查了复数共轭的定义和复数四则运算法则,考查了分析能力和计算能力,属于基础题.6. 箱子里有3双颜色不同的手套(红蓝黄各1双),有放回地拿出2只,记事件A表示“拿出的手套一只是左手的,一只是右手的,但配不成对”,则事件A的概率为A. B.C. D.参考答案:B7. 在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为A. B. C. D.参考答案:A试题分析:由题意,,即,.考点:双曲线的渐近线与离心率.8. 复数(为虚数单位)的虚部是()A.B.C.D.参考答案:D9. 已知为虚数单位,则复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:C10. 下列命题中,是的充要条件的是()①或;有两个不同的零点;②是偶函数;③;④。
乐山市实验中学2018-2019学年上学期高三数学10月月考试题
【分析】 利用二项展开式的通项公式求出展开式的 xk 的系数, 将 k 的值代入求出各种情况的系数. 【解答】解:(x+2)5 的展开式中 xk 的系数为 C5k25﹣k 当 k﹣1 时,C5k25﹣k=C5124=80, 当 k=2 时,C5k25﹣k=C5223=80, 当 k=3 时,C5k25﹣k=C5322=40, 当 k=4 时,C5k25﹣k=C54×2=10, 当 k=5 时,C5k25﹣k=C55=1, 故展开式中 xk 的系数不可能是 50 故选项为 C 【点评】本题考查利用二项展开式的通项公式求特定项的系数. 8. 【答案】C 【 解 析 】
x y a, 表示的平面区域如图所示,由 z ax y 得 y ax z ,当 0 a 1 x y 1,
第 7 页,共 14 页
考 点:函数的图象与性质. 【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻 辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得
,从而 f x 2 sin 2 x ,再次利用数形结合思想和转化化归思想 3 11 11 可得 x1 ,f x1 , x2 ,f x2 关于直线 x 对称,可得 x1 x2 ,从而 12 6 6 11 . f x1 x2 2 sin 3 3 2
2
x 800 , x 20 ,故选 B. 50 600 600 800
9 8 1 2 ,切点横坐标为 ,函数 y ax x 图象经过点 (2, 0) 时, a , 16 3 2
观察图象可得 a 7. 【答案】 【解析】 二项式定理. 【专题】计算题.
2019年四川省乐山市第一职业高级中学高三数学文月考试卷含解析
2019年四川省乐山市第一职业高级中学高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知i是虚数单位,复数,则复数z在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:C【分析】等式两边同乘,得到,然后得到在复平面对应的点,得到答案.【详解】解:复数,,,则复数在复平面内对应的点位于第三象限.故选:C.【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于简单题.2. 已知函数f(x)= ,若方程f(f(x))﹣=0在实数集范围内无解,则实数k的取值范围是()A.(﹣1,﹣)B.(﹣,)C.[0,+∞)D.(﹣,﹣]参考答案:C【考点】分段函数的应用;根的存在性及根的个数判断.【分析】根据题意可得x<0时,f(x)=>0,即可得到k()x+=0,方程无解,则k≥0,问题得以解决.再讨论x≥0时的情况.【解答】解:当x<0时,f(x)=>0,∴f(f(x))=k()x+2,∴k()x+2﹣=0∴k()x+=0,当k≥0时方程无解,当x≥0时,f(x)=kx+2,若k≥0,则f(x)=kx+2≥2,∴f(f(x))=k(f(x))≥2,∴方程f(f(x))﹣=0,方程无解,综上所述a≥0.故选:C.3. .已知集合A={1,2,3,4},B={5,6},设映射f:A→B使集合B中的元素在A中都有原象,这样的映射个数共有()A.16 B.14 C.15 D.12参考答案:B4. 若,则=1参考答案:C略5. 若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i参考答案:B【考点】复数代数形式的乘除运算.【分析】根据复数的四则运算先求出z,然后根据共轭复数的定义进行求解即可.【解答】解:∵z===1+i,∴=1﹣i,故选:B6. 已知集合,,若,则的取值范围是( )A. B. C. D.参考答案:【知识点】交集的运算.A1C 解析:因为由可知,再根据集合中元素的互异性可得,所以的取值范围是,故选C.【思路点拨】先由集合的交集的概念可知,再根据集合中元素的互异性可得即可。
2019-2020学年四川省乐山市第一中学高三数学文月考试题含解析
2019-2020学年四川省乐山市第一中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 过点且与直线平行的直线方程是A. B.C. D.参考答案:D设所求的平行直线方程为,因为直线过点,所以,即,所以所求直线方程为,选D.2. 平面向量与的夹角为,,则()A.B. C. 4 D. 2参考答案:D略3. 函数是()A. 最小正周期为的偶函数B. 最小正周期为的奇函数C. 最小正周期为的偶函数D. 最小正周期为的奇函数参考答案:B4. 如果复数的实部和虚部互为相反数,那么等于()(A)(B)(C)(D)参考答案:D略5. 已知集合M={},集合N={},则M N=(A){} (B) {} (C) {} (D)参考答案:C略6. 直线l过抛物线C:y2=4x的焦点F交抛物线C于A、B两点,则的取值范围为()A.{1} B.(0,1] C.[1,+∞) D.参考答案:A【考点】抛物线的简单性质.【分析】根据抛物线方程可求得焦点坐标和准线方程,设过F的直线方程,与抛物线方程联立,整理后,设A(x1,y1),B(x2,y2)根据韦达定理可求得x1x2的值,又根据抛物线定义可知|AF|=x1+1,|BF|=x2+1代入答案可得.【解答】解:易知F坐标(1,0)准线方程为x=﹣1.设过F点直线方程为y=k(x﹣1)代入抛物线方程,得 k2(x﹣1)2=4x.化简后为:k2x2﹣(2k2+4)x+k2=0.设A(x1,y1),B(x2,y2),则有x1x2=1,根据抛物线性质可知,|AF|=x1+1,|BF|=x2+1,∴=+==1,故选A.7. 如图在△ABC中,在线段AB上任取一点P,恰好满足的概率是()A.B.C.D.参考答案:D8. “”是“直线与直线互相垂直”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件参考答案:A【知识点】必要条件、充分条件与充要条件的判断.解析:若,则直线x+y=1和直线x﹣y=1互相垂直,是充分条件;若直线与直线互相垂直,则m取任意实数,不是必要条件;故选:A.【思路点拨】根据充分必要条件的定义结合直线垂直的性质,从而得到答案.9. 给定函数①,②,③,④,其中在区间上单调递减的函数序号是A.①②B.②③C.③④D.①④参考答案:B略10. 已知,则“”是“”的A.充分不必要条件B.必要比充分条件C.充要条件D.既不充分又不必要条件参考答案:A由题意可得:后面化简:三种情况,相对于前面来说,是大范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15、设 S,T 是 R 的两个非空子集,如果存在一个从 S 到 T 的函数 y f ( x ) 满足: (i) T f ( x ) x S ; (ii)对任意 x1 , x2 S , 当x1 x2时,恒有f ( x1 ) f ( x2 ), 那么称这两个集合“保序同构” ,现给出以下 3 对集合: ① A N,B N ; ② A x 1 x 3 , B x 8 x 10 ; ③ A x | 0 x 1, B R.
0.3 2、设 a log 3, b 2 , c log 3 sin ,则( ) 6 A、 a b c B、 c a b C、 b a c D、 b c a 1 2 3、已知函数 f ( x ) 为奇函数,且当 x>0 时, f ( x ) x ,,则 f ( 1) ( ) x A 、2 (B)0 (C)1 (D)2
18、 (本小题共 12 分) 在△ABC 中,已知角 A,B,C 对应的边分别是 a,b,c。已知 (1)求角 A 的大小 (2)若△ABC 的面积 S 5 3 , b 5 求 sin B sin C 的值 .
19. (本小题共 12 分) 如图,直三棱柱 ABC A1B1C1 中, D , E 分别是 AB , BB1 的中点, 。 (Ⅰ)证明: BC1 // 平面A1CD ; (Ⅱ)设 AA1 AC CB 2 , AB 2 2 ,求三棱锥 C A1DE 的体积。
非选择题
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 11、已知集合 A、B 均为全集 U {1,2,3,4} 的子集,且 CU ( A B ) 4 , B {1, 2} ,则 A CU B = 12、若命题 P: x R, ax 4 x a 2 x 1 是假命题,则实数 a 的取值 范围是 。
10、已知函数 f x = cos x sin 2 x , 下列结论中正确的是 ( A、 y f x 的图像关于 , 0 中心对称 C、 f x 的最大值为
B、 y f x 的图像关于x
对称 2
3 2
D、 f x 既是奇函数,又是周期函数
第Ⅱ卷
4、若复数 z 满足 (3 4i ) z | 4 3i | ,则 z 的虚部为( A、 4
x)Biblioteka B、 4 5C、4
D、
4 5
) D、 (1,2)
5、函数 f ( x ) e x 2 的零点所在的区间为( A、 ( 2,1) B、 (-1,0) C、 (0,1)
6、将函数 y=sin(2x + )的图像沿 x 轴向左平移 一个可能取值为 A、 ( ) B、
2 2
2
17、 (本小题共 12 分) 已知函数 f ( x ) 2 3 sin( (1) 求 f ( x ) 的最小正周期。 (2) 若将 f ( x ) 的图像向右平移 的最大值和最小值。
x 2
x ) cos( ) sin( x ) 4 2 4 个单位,得到函数 g ( x ) 的图像,求函数 g ( x ) 在区间 0, 上 6
2 2
13、已知 是 ABC 的一个内角,且 sin cos 值为 14、已知 x 0 , x 0
1 2 ,则 sin 2 cos 的 5
2 2 是函数 f ( x ) cos (x ) sin x, ( 0) 的两个相邻的零点, 2 6 7 ,0] ,都有 | f ( x) m | 1 ,则实数 m 的取值范围为 若对 x [ 12
个单位后,得到一个偶函数的图像,则 的 8
C、0 D、
3 4
7. 已知 sin 2 (A)
1 6
2 2 ,则 cos ( ) ( ) 3 4 1 1 (B) (C) 3 2
4
4
(D)
2 3
8、 已知函数 f ( x ) 对任意 x R 都有 f ( x 4) f ( x ) 2 f ( 2) , 若 y f ( x 1) 的图象关于 x 1 对
称,且 f (1) 2 ,则 f ( 2013) ( A、2 B、3
2
) C、4 D、6 )
9、若函数 f ( x ) x ax A、 [ 1,0]
1 1 在 , 是增函数,则 a 的取值范围是( x 2
C、 0,3 D、 3,+ )
B、 [ 1, )
其中, “保序同构”的集合对的序号是_______。 (写出“保序同构”的集合对的序号) 。
三、解答题:本大题共 6 小题,共 75 分。 16、 (本小题共 12 分) 设命题 p :实数 x 满足 x 4ax 3a 0 ,其中 a 0 ;命题 q :实数 x 满足 x 2 x 8 0, 且 p是q 的必要不充分条件,求实数 a 的取值范围.
20、(本小题满分 13 分) 已知函数 f ( x )
四川省乐山市第一中学 2019 届高三上学期十月月考
数学试题(文科)
本试卷共 4 页,满分 150 分,考试时间 120 分钟。
第Ⅰ卷
选择题
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。每小题给出的四个选项中,只有一项是符 合题目要求的。 1.已知集合 A、B,全集 U,给出下列四个命题 ⑴若 A B ,则 A B B ; ⑵若 A B B ,则 A B B ; ⑶若 a ( A C B ) ,则 a A ; 则上述正确命题的个数为( ) A.1 B.2 C.3 ⑷若 a C ( A B ) ,则 a ( A B ) D.4