高考考前数学120个提醒

合集下载

2024年高考考前指导(考前提醒+心理调整+应试策略+答题技巧)

2024年高考考前指导(考前提醒+心理调整+应试策略+答题技巧)

内容提纲1、考前篇2、考场篇3、答题技巧:(1)单项选择题的答题技巧;(2)多项选择题的答题技巧;(3)填空题的解题技巧;(4)解答题的答题技巧4、七大题型解题策略:(1)数列;(2)解三角形;(3)立体几何(4)概率统计(5)解析几何(6)导数及应用(7)新定义题型1、合理作息、调整状态适当休息、按时学习,调整状态,以最好的状态迎接高考!2、适度温习、保持题感准备好回扣材料、错题好题本、一模以来的高考综合模拟题等相应材料考前再浏览一遍重点题目,作息时间和高考保持一致,学习上做基础题练笔,看以前的错题,不要再做新题、仿真卷、猜题卷等!对新题看看思路,也可做些简单题,免得"手生".考前把一些基本数据、常用公式、重要定理"过过电影"。

再看一眼难记易忘结论、平时考试比较容易出错的地方:如抽样中的平均数、方差公式、几何体的体积面积公式、圆锥曲线和平面向量的二级结论等.3、清单物品、奔赴考场出发前,再次清点用具是否带全(笔、橡皮、作图工具、身份证、准考证等),根据学校的安排,精神放松,心态平静的奔赴考场考场。

到达考场后不要打闹喧哗,按照考场安排,按时进入考场。

1、填涂信息拿到答题卡后一定先认真填涂信息,贴好二维码,注意不要忙中出错影响考试心态,万一出现错误,也不必着急,请示监考老师后,考点会有补救措施。

2、心理调整(1)合理设置考试目标,创设宽松的应考心理,以平常心对待高考。

(2)调节呼吸,不断进行积极的心理暗示。

(3)遇事都往好处想在考试时,要相信自己的水平,相信自己已经复习的很好了,没有什么不会的了。

就算是有不会的,也要告诉自己:“这题我不会,那么大家肯定都不会,我不是一个人。

”就算数学是弱科,你也要知足常乐,把会做的题都做完,把该得的的分都得到就好了。

3、通览试卷刚拿到试卷,一般心情比较紧张。

开考铃响之前不允许答题,利用这5分钟:先从头到尾、正反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查。

高考数学考前100个提醒

高考数学考前100个提醒

回归课本: 高考数学考前提醒一、集合与简易逻辑1、已知集合A 、B ,当A B = ∅时,切记要注意到“极端”情况:∅=A 或∅=B ; 求集合的子集时别忘记∅;φ是任何集合的子集,是任何非空集合的真子集.2、含n 个元素的有限集合的子集个数为n 2,真子集为,12-n其非空子集、非空真子集的个数依次为,12-n .22-n二、函数与导数3、函数的三要素:定义域,值域,对应法则.研究函数的问题一定要注意定义域优先的原则.4、指数式、对数式:m a =1m mnaa -=,01a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,log (0,1,0)b a a N N b a a N =⇔=>≠>,log a N a N =(对数恒等式).要特别注意真数大于零,底数大于零且不等于1,字母底数还需讨论的呀. 对数的换底公式及它的变形,log log ,log log ,log log log n m n n c a a a a a c b nb b b b b a m===. 5、确定函数单调性的方法有定义法、导数法、图像法(x y x y ==,3的图象会画吗?)和特值法(用于小题)等.注意:①. 0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3)(x x f = 在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

6、奇偶性:f(x)是奇函数⇔f(-x)=-f(x);定义域含零的奇函数必定过原点(f(0)=0); 定义域关于原点对称是为奇函数或偶函数的必要而不充分条件。

奇函数在对称的单调区间内有相同的单调性;偶函数则为相反的单调性;注意:既奇又偶的函数有无数个,解析式只有一种y=0 (如()0f x =,只要定义域关于原点对称即可).7、周期性:①函数()f x 满足()()x a f x f +=-,则()f x 是周期为2a 的周期函数;②若1()(0)()f x a a f x +=±≠恒成立,则2T a =; ③满足条件()()f x a f x a +=-的函数的周期2T a =.8、函数的对称性:满足条件()()f a x f a x +=-的函数的图象关于直线x a =对称; 9、函数()y f x =在点0x 处的导数的几何意义是指:曲线()y f x =在点00(,())P x f x 处 切线的斜率,即0()k f x '=,切线方程为()()000y y f x x x '-=-.10、导数应用:⑴在某点的切线只有一条;过某点的切线不一定只有一条;(2)给出函数极大(小)值的条件,一定要既考虑0()0f x '=,又要考虑检验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记!千万别上当噢. 11、导数公式:()ln xxaaa '=,()1log ln x a x a'=()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、数列12、11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩, 注意一定要验证a 1是否包含在a n 中,从而考虑要不要分段.13、等比数列中11n n a a q-=; 当q=1,S n =na 1 ;当q≠1,S n =qq a n --1)1(1=q qa a n --11.14、常用性质:等差数列中:()n m a a n m d =+-;若q p n m +=+,则q p n m a a a a +=+; 等比数列中:n m n m a a q -=; 若q p n m +=+,则q p n m a a a a ⋅=⋅;15、求和常法:公式、分组、裂项相消、错位相减法、倒序相加法.关键是要找准通项结构. 16、求通项常法: (1)已知数列的前n 项和n S ,你现在会求通项n a 了吗?(2)先猜后证; (3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+ ; 叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=----- . 四、三角17、弧长公式||l R α=,扇形面积公式211||22S lR R α==,1弧度57.305718'≈= .18、解斜三角形ABC ∆,易得:A B C π++=,19、诱导公式简记:奇变偶不变.....,.符号看象限......(注意:公式中始.终视..α.为锐角...).20、巧变角(角的拆拼):如()()ααββαββ=+-=-+, 2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等.五、平面向量21、想一想如何求向量的模?a 在b方向上的投影是什么? (是个实数,可正可负可为零!).22、 若→1e 和→2e 是平面一组基底,则该平面任一向量→→→+=2211e e a λλ(21,λλ唯一).特别:=12OA OB λλ+则121λλ+=是三点P 、A 、B 共线的充要条件。

高考前数学100个提醒3

高考前数学100个提醒3

高考前数学100个提醒3三、数列、 26、a n ={),2()1(*11N n n S S n S n n ∈≥-=- 注意验证a 1是否包含在a n 的公式中。

27、)*,2(2)(111中项常数}等差{N n n a a a d a a a n n n n n n ∈≥+=⇔=-⇔-+-?,,,);0()(2=+=⇔+=⇔B A b a Bn Ans b an a n n 的二次常数项为一次2n n -1n 1n 1n a a a (n 2,n N )a }q ();a 0nn a a +-⎧=⋅≥∈⇔⇔=⎨≠⎩{等比定 ?m ;a a 11n =⋅-=⇔⋅=⇔-nn n q m m s q如若{}n a 是等比数列,且3n n S r =+,则r = (答:-1)28、首项正的递减(或首项负的递增)等差数列前n 项和最大(或最小)问题,转化为解不等式)0(0011⎩⎨⎧≥≤⎩⎨⎧≤≥++n n n n a a a a 或,或用二次函数处理;(等比前n 项积?),由此你能求一般数列中的最大或最小项吗?如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。

(答:前13项和最大,最大值为169);(2)若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是(答:4006)29、等差数列中a n =a 1+(n-1)d;S n =dn n na 2)1(1-+=dn n na n2)1(--=2)(1n a a n +等比数列中a n = a 1 q n-1;当q=1,S n =na 1 当q≠1,S n =qq a n--1)1(1=qq a a n --1130.常用性质:等差数列中, a n =a m + (n -m)d, nm a a d n m --=;当m+n=p+q,a m +a n =a p +a q ;等比数列中,a n =a m q n-m; 当m+n=p+q ,a m a n =a p a q ;如(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___(答:512);(2)各项均为正数的等比数列{}n a 中,若569a a ⋅=,则313231l o g l o g l o g a a a +++= (答:10)。

高考数学(理)考前必记的60个知识点含公式推理推论总结及提醒

高考数学(理)考前必记的60个知识点含公式推理推论总结及提醒

高考理科数学考前必记的60个知识点集合(1)集合之间关系的判断方法①A真含于B⇔A⊆B且A≠B,类比于a<b⇔a≤b且a≠b.②A⊆B⇔A真含于B或A=B,类比于a≤b⇔a<b或a=b.③A=B⇔A⊆B且A⊇B,类比于a=b⇔a≤b且a≥b.(2)集合间关系的两个重要结论①A⊆B包含A=B和A B两种情况,两者必居其一,若存在x∈B且x∉A,说明A≠B ,只能是A B.②集合相等的两层含义:若A⊆B且B⊆A,则A=B;若A=B,则A⊆B且B⊆A.[提醒]1任何一个集合是它本身的子集,即A⊆A.2对于集合A,B,C,如果A⊆B且B⊆C,则有A⊆C.3含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.4集合中元素的三大特性:确定性、互异性、无序性.常见关键词及其否定形式关键词等于大于小于是一定是都是至少有一个至多有一个存在否定词不等于不大于不小于不是不一定是不都是一个也没有至少有两个不存在命题(1)四种命题间的相互关系(2)四种命题的真假性原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假[提醒]1两个命题互为逆否命题,它们有相同的真假性.2两个命题为互逆命题或互否命题,它们的真假性没有关系.3在判断一些命题的真假时,如果不容易直接判断,则可以判断其逆否命题的真假.(3)含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所述:命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M非p(x) 充分、必要条件(1)充分条件与必要条件的相关概念①如果p⇒q,那么p是q的充分条件,同时q是p的必要条件.②如果p⇒q,但q⇒/ p,那么p是q的充分不必要条件.③如果p⇒q,且q⇒p,那么p是q的充要条件.④如果q⇒p,且p⇒/ q,那么p是q的必要不充分条件.⑤如果p⇒/ q,且q⇒/ p,那么p是q的既不充分也不必要条件.(2)充分、必要条件与集合的对应关系从逻辑观点看从集合观点看p是q的充分条件(p⇒q)A⊆Bp是q的必要条件(q⇒p)A⊇Bp是q的充分不必要条件(p⇒q,q⇒/ p)A真含于Bp是q的必要不充分条件(q⇒p,p⇒/ q)A真包含Bp是q的充要条件(p⇔q)A=B函数的定义域及相关的6个结论(1)如果f(x)是整式函数,那么函数的定义域是R.(2)如果f(x)是分式函数,那么函数的定义域是使分母不等于0的实数的集合.(3)如果f(x)是偶次根式函数,那么函数的定义域是使被开方数大于或等于0的实数的集合.(4)如果f(x)是对数函数,那么函数的定义域是使真数大于0的实数的集合.(5)如果f(x)是由几个代数式构成的,那么函数的定义域是使各式子都有意义的实数的集合.(6)如果f(x)是从实际问题中得出的函数,则要结合实际情况考虑函数的定义域.函数的值域求函数值域常用的7种方法(1)配方法:二次函数及能通过换元法转化为二次函数的函数类型.(2)判别式法:分子、分母中含有二次项的函数类型,此函数经过变形后可以化为x2A(y)+xB(y)+C(y)=0的形式,再利用判别式加以判断.(3)换元法:无理函数、三角函数(用三角代换)等,如求函数y=2x-3+13-4x的值域.(4)数形结合法:函数和其几何意义相联系的函数类型,如求函数y=3-sin x2-cos x的值域.(5)不等式法:利用几个重要不等式及推论求最值,如a2+b2≥2ab,a+b≥2ab(a,b为正实数).(6)有界性法:一般用于三角函数类型,即利用sin x∈[-1,1],cos x∈[-1,1]等.(7)分离常数法:适用于解析式为分式形式的函数,如求y=x+1x-1的值域.指数函数与对数函数(1)指数函数与对数函数的对比区分表解析式y=a x(a>0且a≠1)y=log a x(a>0且a≠1)定义域R(0,+∞)值域(0,+∞)R图象关系指数函数对数函数奇偶性非奇非偶非奇非偶单调性0<a<1时,在R上是减函数;0<a<1时,在(0,+∞)上是减函数;a>1时,在R上是增函数a>1时,在(0,+∞)上是增函数[提醒]直线x=1与所给指数函数图象的交点的纵坐标即底数,直线y=1与所给对数函数图象的交点的横坐标即底数.(2)比较幂值大小的方法①若指数相同,底数不同,则考虑幂函数.②若指数不同,底数相同,则考虑指数函数.③若指数与底数都不同,则考虑借助中间量,这个中间量的底数与所比较的一个数的底数相同,指数与另一个数的指数相同,那么这个数就介于所比较的两数之间,进而比较大小.(3)常见抽象函数的性质与对应的特殊函数模型的对照表抽象函数的性质特殊函数模型①f(x+y)=f(x)+f(y)(x∈R,y∈R);②f(x-y)=f(x)-f(y)(x∈R,y∈R)正比例函数f(x)=kx(k≠0)①f (x )f (y )=f (x +y )(x ,y ∈R ); ②f (x )f (y )=f (x -y )(x ,y ∈R ,f (y )≠0) 指数函数f (x ) =a x (a >0,a ≠1)①f (xy )=f (x )+f (y )(x >0,y >0);②f (xy)=f (x )-f (y )(x >0,y >0)对数函数f (x )=log a x (a >0,a ≠1)①f (xy )=f (x )f (y )(x ,y ∈R ); ②f (x y )=f (x )f (y )(x ,y ∈R ,y ≠0)幂函数f (x )=x n函数零点的判断方法(1)利用零点存在定理判断法:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0.这个c 也就是方程f (x )=0的根.口诀:函数零点方程根,数形本是同根生,函数零点端点判,图象连续不能忘.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点. 导数(1)基本初等函数的导数公式①(sin x )′=cos x ,(cos x )′=-sin x .②(ln x )′=1x (x >0),(log a x )′=1x ln a(x >0,a >0,且a ≠1).③(e x )′=e x ,(a x )′=a x ln a (a >0,且a ≠1). (2)导数的四则运算法则 ①(u ±v )′=u ′±v ′⇒[f 1(x )+f 2(x )+…+f n (x )]′ =f ′1(x )+f ′2(x )+…+f ′n (x ).②(u v )′=v u ′+v ′u ⇒(c v )′=c ′v +c v ′=c v ′(c 为常数). ③⎝⎛⎭⎫u v ′=v u ′-v ′u v 2(v ≠0).[提醒] 1若两个函数可导,则它们的和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.2利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n -1中n ∈Q *,(cos x )′=-sin x . 3注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.4导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形,即[u (x )±v (x )±…±w (x )]′=u ′(x )±v ′(x )±…±w ′(x ).5一般情况下,[f (x )g (x )]′≠f ′(x )g ′(x ),[f (x )·g (x )]′≠f ′(x )+g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )-g ′(x ).6。

上海高考数学知识点整理(全)

上海高考数学知识点整理(全)

高考临近给你提个醒集合与简易逻辑1.例1.集合R x x y y M ∈==,2,R x x y y N ∈+-==,12,则=N M 例2.集合{}R x x y y x M ∈==,),(2,{}R x x y y x N ∈+-==,1),(2,=N M 例3.集合()(){}R a a M ∈+==λλ,4,32,1,集合()(){}R a a N ∈+==λλ,5,43,2,则=N M2.研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性。

例4.已知集合{},,lg()A x xy xy =,集合{}y x B ,||,0=,且B A =,则=+y x3.集合的性质:① 任何一个集合P 都是它本身的子集,记为P P ⊆。

② 空集是任何集合P 的子集,记为P ⊆∅。

③ 空集是任何非空集合P 的真子集,记为P ≠⊂∅。

注意:若条件为B A ⊆,在讨论的时候不要遗忘了∅=A 的情况。

例5.集合}012|{2=--=x ax x A ,如果∅=+R A ,实数a 的取值范围集合的运算:④ ()()C B A C B A =、()()C B A C B A =; ()()()U U U C AB C A C B =、()()()U U U C A B C A C B =。

⑤ ∅=⇔⊆⇔⊆⇔=⇔=B C A A C B C B A B B A A B A U U U 。

⑥ 对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为:n2、12-n、12-n、22-n。

例6.满足条件{}{}5,4,3,2,12,1⊆⊂≠A 的集合A 共有 个。

4.研究集合之间的关系,当判断不清时,建议通过“具体化...”的思想进行研究。

例7.已知{}N k k x x M ∈+==,12,{}N k k x x N ∈±==,14,则N M _____。

高考数学考前指导 高考临近给考生的100个温馨提醒试题

高考数学考前指导 高考临近给考生的100个温馨提醒试题

2021年高考数学考前指导 高考临近给考生的100个温馨提醒亲爱的高三同学,当你即将迈进考场时,对于以下问题,你是否有清醒的认识?你的数学教师提醒你:1.集合中的元素具有无序性和互异性。

如集合{},2a 隐含条件2a ≠,集合{}|(1)()0x x x a --=不能直接化成{}1,a 。

2.研究集合问题,一定要抓住集合中的代表元素,如:{x y x lg |=}与{x y y lg |=}及{x y y x lg |),(=}三集合并不表示同一集合;再如:设A={直线},B={圆},问A ∩B 中元素有几个?能答复是一个,两个或者没有吗?3 .进展集合的交、并、补运算时,不要忘了集合本身和空集的特殊情况,不要忘了借助于数轴和韦恩图进展求解;假设A B=φ,那么说明集合A 和集合B 没公一共元素,你注意到两种极端情况了吗?A φ=或者B φ=;对于含有n 个元素的有限集合M ,其子集、真子集、和非空真子集的个数分别是2n 、21n -和22n -,你知道吗?A 是B 的子集⇔A ∪B=B ⇔A ∩B=A ⇔A B A B ⊆⇔⊂,假设A B ⊆,你可要注意A φ=的情况。

4.你会用补集的思想解决有关问题吗?C U 〔A ∪B 〕=〔C U A 〕∩〔C U B 〕,C U 〔A ∩B 〕=〔C U A 〕∪〔C U B 〕,这种思想在计算概率时也经常用到:()()P A B P A B =+,()()P A B P A B +=5. 求不等式〔方程〕的解集,或者求定义域时,你按要求写成集合形式了吗?6.研究一个函数的图象或者性质时,你首先考虑函数的定义域了吗?7 .求一个函数的解析式或者一个函数的反函数时,你注明了该函数的定义域了吗?⑴求反函数的步骤掌握了吗?〔①先求函数的定义域和值域;②反解x 1()f y -=,③互换y x ,,得1()y f x -=,一定要注明定义域;原函数与反函数有两个“穿插关系〞:自变量与因变量、定义域与值域原函数)(x f y =在区间[a a ,-]上单调递增,那么一定存在反函数,且反函数也是单调递增;但一个函数存在反函数,此函数不一定单调,这样的函数是什么?如分段函数1(0)()(0)x x f x x x +≥⎧=⎨<⎩注意1()()f a b f b a -=⇔=,1[()]f f x x -=,1[()]f f x x -=, 但11[()][()]f f x f f x --=不一定成立,为什么?⑵ 函数(1)y f x =+的反函数是1()1y f x -=-,而不是1(1)y f x -=+8 .求一个函数的反函数时,你是按照“先求反函数,后求值〞这条原那么解题的吗?例如:11)(+-=x x x f ,求)1(1x f -;再如:函数(1)y f x =+,求1(1)f x -+,一般是先求出()f x ,后求1()f x -,再用代入法求出1(1)f x -+。

高考之前--数学考前3提醒100

高考之前--数学考前3提醒100
ab ; 2
7、小范围推大范围.
ab c , ④ f a x f b x c f x 有对称中心 2 2 三、三角比与三角函数
1、简单三角方程注意三角对称和周期导致的多解. 2、锐角三角形充要条件是任意的两个内角和大于直角.
3、三角形中的最小内角的范围是 0, ,最大内角的范围是 , . 3 3
sin cos ,sin cos ,sin cos 三个式子的正负,开方时往往只取其一.
10、 f x A sin x ( A 0, 0 )为奇函数的充要条件 k k Z ;为偶函数的充 要条件是 k
a1 an q 求和,可避免对项数讨论. 1 q
9、使用累加法、累乘法、退位相减法都必须验证 n 1 的情况,数列通项公式的最终结果要 注意是否分段. 10、题中出现 1 ,一般做奇偶分类讨论,注意最小的奇数与最小的偶数.
n
11、关注分段求和问题与周期数列问题. 六、矩阵与行列式 1、行列式在解二元(三元)一次方程组中的应用,考前关注下,有唯一解,无解,无穷多 解的充要条件. 2、区别余子式,代数余子式,关注增广矩阵在解方程组中的应用. 3、注意矩阵的乘法,加法与减法运算的法则. 七、圆锥曲线 1、看到以 AB 为直径的圆过 M 点,锁定 AM BM ,再利用向量解决,实施坐标运算. 2、 直线过定点问题, 本质上是构造出直线系方程, 多数条件下先设直线方程为 y kx b , 然后找出 b f k ,最后结合直线系方程,得出定点坐标. 3、动圆圆心求轨迹常结合圆锥曲线定义求解,无需设坐标求方程. 4、注意直线点斜式的局限性,解题时要注意补充讨论. 5、直线方程注意两种设法(斜率存在: y kx b ,斜率不存在且不为 0: x ny b ) 6、圆锥曲线问题中,若弦过焦点且涉及到线段和与差的最值,往往可用定义转化(椭圆双 曲线是到一个焦点的距离转化为到另外一个焦点的距离,抛物线是到焦点的距离与到准 线的距离相互转化) ,定义解决不了的,考虑二次函数解决. 7、椭圆、双曲线中焦点三角形的面积公式要熟记(一个是正切,一个是余切,公式中的角 是焦点对短轴张角的一半). 8、涉及到直线与圆锥曲线有两个不同交点时,圆锥曲线与直线关系联立,一定先算△ 0 .

高中数学高考核心考点提醒选修1-1 第一章 常用逻辑用语

高中数学高考核心考点提醒选修1-1 第一章  常用逻辑用语

高中数学高考核心考点提醒选修1-1 第一章常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体. ,x A x A∈∉。

元素特点:互异性、无序性、确定性。

关系子集x A x B A B∈⇒∈⇔⊆A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n 真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。

四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。

互为逆否的命题等价。

逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。

必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。

类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。

类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。

类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。

存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。

一、命题及其关系1.四种命题的相互关系:(既否条件又否结论)(先逆再否)(互换条件与结论)2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性,即原命题与逆否命题等价,逆命题与否命题等价。

高考数学考前100个提醒

高考数学考前100个提醒

高中数学辅导回归课本:高考数学考前100 个提醒高三三轮复习资料一、集合与简易逻辑1、区分集合中元素的形式,如x | y lg x,y | y ln x,( x, y) | y kx b.解题时要利用数形结合思想尽可能地借助数轴、直角坐标系或韦恩图2、已知集合A、 B,当 A B时,切记要注意到“极端”情况:A 等工具;或 B;求集合的子集时别忘记;是任何集合的子集,是任何非空集合的真子集.3、含n 个元素的有限集合的子集个数为 2 n0C n1C n C2nnC n,真子集为2n1,其非空子集、非空真子集的个数依次为 2 n1, 2 n 2.4、反演律( 摩根律) :C u( A B ) C u A C u B , C u ( A B ) C u A C u B.容斥原理:card( A B ) =card ( A) + card( B)- card( A B ) .5、A∩ B=A A∪ B=B A B C U B C U A A∩ C U B=C U A∪ B=U.6、补集思想常运用于解决否定型或正面较复杂的有关问题7、原命题 :p q ;逆命题:q p ;否命题:(正难则反p)。

q ;逆否命题:q p ;要注意利用“互为逆否的两个命题是等价的”来解题.8、若p q 且 q9、注意命题pp ,则p是q的充分非必要条件(或q 的否定与它的否命题的区别:q 是p 的必要非充分条件);命题的否定只否定结论;否命题是条件和结论都否定.命题p q 的否定是p q ;否命题是p q .10、要熟记真值表噢!常见结论的否定形式如下:原结论否定是不是都是不都是大于不大于小于不小于对所有 x ,成立存在某x,不成立对任何 x ,不成立存在某x,成立原结论至少有一个至多有一个至少有 n 个至多有 n 个p 或 qp 且 q否定一个也没有至少有两个至多有 n至少有 np 且qp 或q1 个1 个二、函数与导数11、函数f :A B 是特殊的对应关系.特殊在定义域 A 和值域 B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y轴垂线的公共点可能没有 ,也可能有任意个.函数的三要素:定义域 ,值域 , 对应法则.研究函数的问题一定要注意定义域优先的原则.12、一次函数 : y kx b , k0 ,R; k0 , R. (k≠0), b=0时是奇函数;依据单调性 , 利用一次函数在区间上的保号性可解决求一类参数的范围问题 .二次函数:①三种形式 :一般式 f ( x )2bx c ( a0) (轴-b/2a,顶点?); b=0为偶函ax数 ; 顶点式f ( x )2k ( a0) (轴 ?); 零点式f( x ) a ( x x1 )( x x2 )( a 0) ;a ( x h )②区间最值 : 配方后一看开口方向, 二讨论对称轴与区间的相对位置关系;③实根分布 : 先画图再研究△ >0、轴与区间关系、区间端点函数值符号;反比例函数 : y c( x0) 平移y bcx 的对称中心为 (a, b) .x amn m m1013、指数式、对数式:n na ,a,,,log1,,am110a a lg 51a log a lg 2a nlog e x lnbN log a N b ( a0, a1, N0) ,log a NN (对数恒等式). x , a a要特别注意真数大于零,底数大于零且不等于1,字母底数还需讨论的呀 .对数的换底公式及它的变形,log a b log c b na m bnnlog a b . log c, log a n b log a b , logma14、你知道函数y x ba0, b0吗?该函数在 (,ab ] 或 [ab ,) 上单调a x递增;在 [ab , 0)或 (0,ab] 上单调递减,求导易证,这可是一个应用广泛的函数!对号函数 y x a是奇函数 ,a0时,在区间(,0), (0 ,)上为增函数; xa 0时 , 在 (0 , a ],[ a , 0) 递减,在 (, a ],[ a ,)递增.要熟悉其图像噢.15、确定函数单调性的方法有定义法、导数法、图像法和特值法( 用于小题 ) 等.注意:①.f( x )0 能推出 f ( x ) 为增函数,但反之不一定。

高考数学考前复习注意事项

高考数学考前复习注意事项

高考数学考前复习注意事项高考数学考前复习注意事项1、要有针对性地做题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题。

2、要循序渐进,由易到难,要对做过了典型题目有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做能起到事半功倍的效果。

3、是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。

4、独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不轻易问人,不要一遇到不会的东西就马上去问别人,自己不动脑子,专门依赖别人,而是要自己先认真地思考一下,依靠自己的努力克服其中的某些困难,经过很大的努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。

学会提出问题,提出问题往往比解决问题更难,而且也更重要。

高考复习数学的建议这是一门非常讲究临场战略的学科。

而在上考场之前,更重要的是夯实基础,以不变应万变。

大家刚入高中时可能会觉得数学的函数什么的比较抽象,大脑的接受速度没有那么快。

实际上完全不需要担心,数学知识的内化过程是:总从开始看到新概念的不明觉厉到剥去外壳抓住本质后的心安理得。

最重要的是,去明白为什么,理解得慢也没关系,只要不断的思考,然后辅以相应的练习去开拓思路,对于这个知识点的脑回路痕迹就会加深,真正做到得心应手。

还有一点,就是要仔仔细细看清楚题目,都会做但是数字搞错了,或者做到后面忘了题目是什么,没有把要求的东西回答出来,就相当于前功尽弃。

高考数学的解题方法有哪些审题要认真仔细高考数学中解题最重要的环节是审题。

审题的第一步是读题,这是获取信息量和思考的过程。

读题要慢,一边读一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

有些考生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。

所以,在高考数学的实际解题时,应特别注意,审题要认真仔细。

高考数学100个提醒(3)

高考数学100个提醒(3)

56、b a b a b a +≤±≤-(何时取等?);|a|≥a ;|a|≥-a57、证法:①比较法:差比:作差--变形(分解或通分配方)--定号.另:商比②综合法--由因导果;③分析法--执果索因;④反证法--正难则反。

⑤放缩法方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1(⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅;2)1()1(++<+n n n n ⑷利用常用结论: Ⅰ、k k k k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k(程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) ⑥换元法:常用的换元有三角换元和代数换元。

如:已知222a y x =+,可设θθsin ,cos a y a x ==;已知122≤+y x ,可设θθsin ,cos r y r x ==(10≤≤r ); 已知12222=+by a x ,可设θθsin ,cos b y a x ==; 已知12222=-by a x ,可设θθtan ,sec b y a x ==; ⑦最值法,如:a>f max (x),则a>f(x)恒成立.58、解绝对值不等式:①几何法(图像法)②定义法(零点分段法);③两边平方④公式法:|f(x)|>g(x)⇔ ;|f(x)|<g(x) ⇔ 。

59、分式、高次不等式:通分因式分解后用根轴法(穿线法).注意偶次式与奇次式符号.奇穿偶回如(1)解不等式32(3)(1)(2)0x x x +-+≥。

(答:{|13x x x ≥≤-或或2}x =-);(2)解不等式2()1ax x a R ax >∈-(答:0a =时,{|x 0}x <;0a >时,1{|x x a>或0}x <;0a <时,1{|0}x x a<<或0}x <) 七、立几60. 位置和符号①空间两直线:平行、相交、异面;判定异面直线用定义或反证法②直线与平面: a ∥α、a ∩α=A (a ⊄α) 、a ⊂α③平面与平面:α∥β、α∩β=a61. 常用定理:①线面平行ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂;αββα////a a ⇒⎭⎬⎫⊂;ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥ ②线线平行:b a b a a ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα;b a b a //⇒⎭⎬⎫⊥⊥αα;b a b a ////⇒⎪⎭⎪⎬⎫=⋂=⋂γβγαβα;b c c a b a //////⇒⎭⎬⎫ ③面面平行:βαββαα////,//,⇒⎪⎭⎪⎬⎫=⋂⊂⊂b a O b a b a ;βαβα//⇒⎭⎬⎫⊥⊥a a ;γαβγβα//////⇒⎭⎬⎫ ④线线垂直:b a b a ⊥⇒⎭⎬⎫⊂⊥αα;所成角900;PA a AO a a PO ⊥⇒⎪⎭⎪⎬⎫⊥⊂⊥αα(三垂线);逆定理? ⑤线面垂直:ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⋂⊂⊂l b l a l O b a b a ,,;βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥a l a a l ,;βαβα⊥⇒⎭⎬⎫⊥a a //;αα⊥⇒⎭⎬⎫⊥b a b a // ⑥面面垂直:二面角900; βααβ⊥⇒⎭⎬⎫⊥⊂a a ;βααβ⊥⇒⎭⎬⎫⊥a a // 62. 求空间角①异面直线所成角θ的求法:(1)范围:(0,]2πθ∈;(2)求法:平移以及补形法、向量法。

高考考前数学120个提醒

高考考前数学120个提醒

高考考前数学120个提醒一、集合与逻辑1、(Ⅰ)区分集合中元素的形式:如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如(1)设集合{|3}M x y x ==+,集合N ={}2|1,y y x x M =+∈,则M N = ___(答:[1,)+∞);(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈ ,{|(2,3)(4,5)N a a λ==+ ,}R λ∈,则=N M _____(答:)}2,2{(--)(Ⅱ)(1)M ={}R a x ax y a 的定义域为)lg(2+-=,求M ;(2)N ={}R a x ax y a 的值域为)lg(2+-=。

解:(1)02>+-a x ax 在R x ∈恒成立,①当0=a 时,0>-x 在R x ∈不恒成立;②当0≠a 时,则⎩⎨⎧<->04102a a ⇒⎪⎩⎪⎨⎧>-<>21210a a a 或⇒21>a ∴M =⎪⎭⎫ ⎝⎛+∞,21;(2)a x ax +-2能取遍所有的正实数。

①当0=a 时,x -R ∈;②当0≠a 时,则⎩⎨⎧≥->04102a a ⇒⎪⎩⎪⎨⎧≤≤->21210a a ⇒210≤<a 。

∴N =⎥⎦⎤⎢⎣⎡21,0。

2、条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。

如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

(答:a ≤0)3、(1)}|{B x A x x B A ∈∈=且 ;}|{B x A x x B A ∈∈=或 C U A={x|x ∈U 但x ∉A};B A ⊆⇔若x ∈A 则x ∈B ;真子集怎定义?含n 个元素的集合的子集个数为2n ,真子集个数为2n -1,非空真子集个数为2n -2;如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。

高考数学100个提醒(精编版)

高考数学100个提醒(精编版)

高考数学100个提醒—— 知识、方法与例题一、集合与逻辑1、区分集合中元素的形式:如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如(1)设集合{|3}M x y x ==+,集合N ={}2|1,y y x x M =+∈,则MN =___(答:[1,)+∞);(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____(答:)}2,2{(--)2、条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

(答:a ≤0) 3、}|{B x A x x B A ∈∈=且 ;}|{B x A x x B A ∈∈=或C U A={x|x ∈U 但x ∉A};B x A x B A ∈∈⇔⊆则;真子集怎定义?含n 个元素的集合的子集个数为2n ,真子集个数为2n -1;如满足{1,2}{1,2,3,4M ⊂⊆≠集合M 有______个。

(答:7)4、C U (A ∩B)=C U A ∪C U B; C U (A ∪B)=C U A ∩C U B;card(A ∪B)=?5、A ∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A ∩C U B=∅⇔C U A ∪B=U6、补集思想常运用于解决否定型或正面较复杂的有关问题。

如已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。

(答:3(3,)2-) 7、原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两个命题是等价的.如:“βαsin sin ≠”是“βα≠”的 条件。

高考数学考前冲刺方法与技巧

高考数学考前冲刺方法与技巧

高考数学考前冲刺方法与技巧高考到了最后的冲刺阶段了,对于很多高三的学生来说这个时间段的考前备考复习是十分重要的,那么关于高考数学考前冲刺方法主要有哪些呢?下面是小编给大家整理的高考数学考前冲刺_高考数学考前冲刺方法与技巧,欢迎大家借鉴与参考,希望对大家有所帮助。

高考数学考前冲刺指导(一)了解课程标准,熟读考试大纲,紧扣考试说明高考(课程)命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求。

(二)关注近年新课标高考试题,为高三复习指明方向重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。

例如:三视图、茎叶图、定积分、正态分布、统计案例等。

立足基础,强调通性通法,增大覆盖面。

从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。

突出新课程理念,关注应用,倡导“学以致用”。

新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。

加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。

有意训练每年高考试题中都出现的高频考点。

(三)给高考考生的建议1.再次回归课本。

题在书外,但理都在书中。

对高考试卷进行分析就不难发现,许多题目都能在课本上找到“影子”,不少高考题就是将课本题目进行引申、拓宽和变化。

通过看课本系统梳理高中数学知识,巩固高中数学基本概念。

看课本,有三个建议,一是打乱顺序按模块阅读,二是要注意里面的小字和旁白以及后面的“阅读与思考”,三是对于基础较弱的学生,可把书后典型习题再做一遍。

2.利用好错题本(或者积累本)。

要把自己常犯的错或易忽略的内容在高考之前彻底解决,给自己积极的心理暗示。

高考前数学100个提醒8

高考前数学100个提醒8

高考前数学100个提醒8八、解几70.倾斜角α∈[0,π],α=900斜率不存在;斜率k=tan α=1212x x y y --71.直线方程:点斜式 y-y 1=k(x-x 1);斜截式y=kx+b; 一般式:Ax+By+C=0 两点式:121121x x x x y y y y --=--;截距式:1=+b y a x (a ≠0;b ≠0);求直线方程时要防止由于零截距和无斜率造成丢解,直线Ax+By+C=0的方向向量为a =(A,-B) 72.两直线平行和垂直①若斜率存在l 1:y=k 1x+b 1,l 2:y=k 2x+b 2则l 1∥l 2⇔k 1∥k 2,b 1≠b 2;l 1⊥l 2⇔k 1k 2=-1②若l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0,则l 1⊥l 2⇔A 1A 2+B 1B 2=0; ③若A 1、A 2、B 1、B 2都不为零l 1∥l 2⇔212121C C B B A A ≠=;④l 1∥l 2则化为同x 、y 系数后距离d=2221||BA C C +-73.l 1到l 2的角tan θ=12121k k k k +-;夹角tan θ=|12121k k k k +-|;点线距d=2200||BA C By Ax+++;74.圆:标准方程(x -a)2+(y -b)2=r 2;一般方程:x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F>0) 参数方程:⎩⎨⎧+=+=θθsin r b y cos r a x ;直径式方程(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=075.若(x 0-a)2+(y 0-b)2<r 2(=r 2,>r 2),则 P(x 0,y 0)在圆(x-a)2+(y-b)2=r 2内(上、外)76.直线与圆关系,常化为线心距与半径关系,如:用垂径定理,构造Rt △解决弦长问题,又:d>r ⇔相离;d=r ⇔相切;d<r ⇔相交.77.圆与圆关系,常化为圆心距与两圆半径间关系.设圆心距为d,两圆半径分别为r,R,则d>r+R ⇔两圆相离;d =r+R ⇔两圆相外切;|R -r|<d<r+R ⇔两圆相交;d =|R -r|⇔两圆相内切;d<|R -r|⇔两圆内含;d=0,同心圆。

高考数学考前100个温馨提醒

高考数学考前100个温馨提醒

高考数学考前100个温馨提醒(知识、方法与易错题) 高三数学理一、集合与逻辑1、区分集合中元素的形式:如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集(1)设集合{|3}M x y x ==+,集合N ={}2|1,y y x x M =+∈,则MN =___;(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _ 2、条件为B A ⊆,在讨论的时候不要遗忘了A =∅的情况如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

3、含n 个元素的集合的子集个数为2n,真子集个数为21n-;非空真子集的个数为22n-; 如:满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个. 4、()()()()card AB card A card A card A B =+-;5、A∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A∩C U B=∅⇔C U A ∪B=U ;6、补集思想常运用于解决否定型或正面较复杂的有关问题.如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围.7、原命题:p q ⇒;逆命题:q p ⇒;否命题:p q ⌝⇒⌝;逆否命题:q p ⌝⇒⌝; 互为逆否的两个命题是等价的.注意:命题p q ⇒的否定与它的否命题的区别:命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝如:“若a 和b 都是偶数,则b a +是偶数”的命题“p 或q ”的否定是 _________________ ,“p 且q”的否定是_______________ 熟悉逻辑推理,条件关系,集合关系的互相转化. 如:“βαsin sin ≠”是“βα≠”的 条件 8、若p q ⇒且q p ≠;则 p 是q 的___________条件二、函数与导数9、指数式、对数式: 如:2log1()2的值为________. (答:164) 10、二次函数①解析式三种形式:一般式f (x )=ax 2+bx +c (a ≠0)(对称轴?顶点?当b=0时为偶函数);顶点式f (x )=2()a x h k -+;零点式12()()()f x a x x x x =--(轴?);②区间最值:配方后一看开口方向,二讨论对称轴与区间的相对位置关系; 如:若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b =③实根分布:先画图再研究△>0、轴与区间关系、区间端点函数值符号; 11、反比例函数:(0)c y c x=≠平移 12、双勾函数x ax y +=(0)a > :13、单调性①定义法;②导数法;如:已知函数3()f x x ax =-在区间[1,)+∞上是增函数,则a 的取值范围是___..如:已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围。

考场攻略:沉着应对高考数学难题的十个方法_答题技巧

考场攻略:沉着应对高考数学难题的十个方法_答题技巧

考场攻略:沉着应对高考数学难题的十个方法_答题技巧一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生"旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2. 先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

2024年高考数学教材知识一遍过(课本内容回顾+知识清单+易错易混点+考前提醒)

2024年高考数学教材知识一遍过(课本内容回顾+知识清单+易错易混点+考前提醒)

决战2024年高考考前必过知识清单教材知识一遍过一、集合与逻辑1、区分集合中元素的形式:如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如:(1)设集合{|3}M x y x ==+,集合N={}2|1,y y x x M =+∈,则M N = ___(答:[1,)+∞(2)集合{}342+-==x x y x M ,集合⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-∈+==3,6,cos 3sin ππx x x y y N M N =(答:}1{)2、条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况如:(1)若非空集合}5312/{-≤≤+=a x a x A ,}0)22)(3/({≤--=x x x B ,则使得B A A ⋂⊆成立的a 的集合是______(答:96≤≤a )(2)集合M=},04/{2<++a x x x N =},02/{2>--x x x 若N M ⊆,则实数a 的取值范围为___________(答:3≥a )(3)}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

(答:a≤0)3、}|{B x A x x B A ∈∈=且 ;}|{B x A x x B A ∈∈=或 C U A={x|x∈U 但x ∉A};B x A x B A ∈∈⇔⊆则;真子集怎定义?如:含n 个元素的集合的子集个数为2n,真子集个数为2n -1;如:满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。

(答:7)4、C U (A∩B)=C U A∪C U B;C U (A∪B)=C U A∩C U B;5、A∩B=A ⇔A∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A∩C U B=∅⇔C U A∪B=U6、补集思想常运用于解决否定型或正面较复杂的有关问题。

高考数学考前复习实用方法

高考数学考前复习实用方法

高考数学考前复习实用方法高考数学的复习要遵守胆大心细原则,既要全面,又要深入,那么复习数学有什么方法呢?下面是作者为大家整理的关于高考数学考前复习实用方法,期望对您有所帮助!高考数学复习方法建议一、大处着眼,仔细领会两个成功公式1.科学大师爱因斯坦的著名公式是V=X+Y+Z(V-成功;X-刻苦的精神;Y-科学的方法;Z-少说空话)。

2.成功=目标+计划+方法+行动。

学习好数学要有刻苦拼搏的精神,要有明确的奋斗目标加上切实可行的计划和措施方法,要天天见行动,苦干实干抓落实。

要站在整体的高度,重新认识自己所学,整体掌控所学的数学知识和方法及运用。

二、做到对知识和能力要求心中有数,自身优势和不足心中有数1.高考主干知识八大块①函数;②数列;③平面向量;④不等式(解与证);⑤解析几何;⑥立体几何;⑦概率﹑统计;⑧导数及运用。

要做到块块清楚,不足之处如何补偿有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识。

2.掌控四大数学思想方法明确驾驭数学知识的理性思维方法,其集中体现在四大数学思想方法上。

四大数学思想方法是:①函数与方程的思想②数型结合思想③分类讨论思想④化归或转化的思想3.学习好数学要抓住四个三①内容上要充分领会三个方面:理论、方法、思维;②解题上要抓好三个字:数,式,形;③浏览、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);④学习中要驾驭好三条线:知识(结构)是明线(要清楚);方法(能力)是暗线(要领会、要提炼);思维(训练)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。

)三、光阴似箭,要争分夺秒6个月的时间很短,但对考生来讲犹如万里长征。

要有艰辛的思想准备,很多成功考生的体会告知我们,“信心和毅力比什么都重要”。

那些肯于用自己的脑袋学习,既有刻苦精神,又讲求科学方法的同学,在学习的道路上一定会有长足的进步。

干货-【考前叮咛】6之4-备战2023高考数学考前必备4(二级结论)_removed

干货-【考前叮咛】6之4-备战2023高考数学考前必备4(二级结论)_removed

备战2023高考数学考前必备4——二级结论1:子集的个数问题若一个集合A 含有n (n *∈N )个元素,则集合A 有2n 个子集,有()21n -个真子集,有()21n-个非空子集,有()22n-个非空真子集.理解:A 的子集有2n 个,从每个元素的取舍来理解,例如每个元素都有两种选择,则n 个元素共有2n 种选择,该结论需要掌握并会灵活应用.对解决有关集合的个数问题,可以直接利用这些公式进行计算.计算时要分清这个集合的元素是从哪里来的,有哪些,即若可供选择的元素有个,就转化为求这个元素集合的子集问题.另外要注意子集、真子集、子集、非空真子集之间的联系有区别.2:子集、交集、并集、补集之间的关系()()I I A B A A B B A B A C BA B I =⇔=⇔⊆⇔=∅⇔= ð(其中I 为全集).(1)当=A B 时,显然成立;(2)当A B Ö时,venn 图如图所示,结论正确.这个结论通过集合的交、并、补运算与集合的包含关系的转换解决问题.3.均值不等式链222++1122+a b a b ab a b ≤≤≤(>0,>0a b ,当且仅当=a b 时取等号)4.两个经典超越不等式(1)对数形式:1+ln (>0)x x x ≥,当且仅当=1x 时,等号成立.(2)指数形式:+1()x e x x R ≥∈,当且仅当=0x 时,等号成立.进一步可得到一组不等式链:>+1>>1+ln x e x x x (0x >且1x ≠)上述两个经典不等式的原型是来自于泰勒级数:()2+1=1+++++2!!+1!n xxn x x e e x x n n θ ,()()()23+1+1ln 1+=-+-+-1+23+1n n n x x x x x o x n ,截取片段:()()()+1R , ln 1+>-1x e x x x x x ≥∈≤,当且仅当=0x 时,等号成立;进而:()ln -1>0x x x ≤,当且仅当=1x 时,等号成立.1.奇函数的最值性质已知函数f(x)是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D 上有最值,则f(x)max+f(x)min=0,且若0∈D ,则f(0)=0.2.函数周期性问题【结论阐述】已知函数f(x)是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D 上有最值,则f(x)max+f(x)min=0,且若0∈D ,则f(0)=0.已知定义在R 上的函数f(x),若对任意x ∈R ,总存在非零常数T ,使得f(x+T)=f(x),则称f(x)是周期函数,T 为其一个周期.除周期函数的定义外,还有一些常见的与周期函数有关的结论如下:(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(2)如果f (x +a )=()1f x (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(4)如果f (x )=f (x +a )+f (x -a )(a ≠0),那么f (x )是周期函数,其中的一个周期T =6a .3.不同底的指数函数图像变化规律当底数大于1时,底数越大指数函数的图像越靠近y 轴;当底数大于0且小于1时,底数越小,指数函数的图像越靠近y 轴.即如图1所示的指数函数图像中,底数的大小关系为:01c d b a <<<<<,即图1中由y 轴右侧观察,图像从下至上,指数函数的底数依次增大.图14.不同底的对数函数图像变化规律当底数大于0且小于1时,底数越小,对数函数的图像越靠近x 轴;当底数大于1时,底数越大,对数函数的图像越靠近x 轴.即如图2所示的对数函数图像中,底数的大小关系为:01b a d c <<<<<,即图2中,在x 轴上侧观察,图像从左向右,对数函数的底数依次增大.图25.方程()x f x k +=的根为1x ,方程()1x f x k -+=的根若函数=()y f x 是定义在非空数集D 上的单调函数,则存在反函数1()y f x -=.特别地,x y a =与log a y x =(0a >且1a ≠)互为反函数.在同一直角坐标系内,两函数互为反函数图像关于=y x 对称,即()()00,x f x 与()()00,f x x 分别在函数()=y f x 与反函数()1y f x -=的图像上.若方程()x f x k +=的根为1x ,方程()1x f x k -+=的根为2x ,则12x x k +=.1.降幂扩角公式【结论阐述】()()221cos =1+cos2,21sin =1cos2.2ααα-α⎧⎪⎪⎨⎪⎪⎩2.升幂缩角公式【结论阐述】221+cos2=2cos ,1cos2=2sin .αα-αα⎧⎨⎩3.万能公式【结论阐述】①22tan2sin =1+tan 2ααα;②221tan 2cos =1+tan 2α-αα;③22tan2tan 1tan 2ααα=-.3.正切恒等式tan tan tan tan tan tan ++=A B C A B C若△为斜三角形,则有tan tan tan tan tan tan ++=A B C A B C (正切恒等式).4.射影定理在ABC 中,cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+.1.等差数列的性质设n S 为等差数列{}n a 的前n 项和,则有如下性质:项的性质在等差数列中,等距离取出若干项也构成一个等差数列,即2,,,n n m n m a a a ++ 为等差数列,公差为md从第二项起每一项是它前一项与后一项的等差中项,也是与它等间距的两项的等差中项:()()1122,2n n n n n k n k a a a n a a a n k -+-+=+≥=+>两和式项数相同,下标和相等,则两式和相等:即若m n r s +=+,则m n r s a a a a +=+;若,m n p r s t ++=++则m n p r s ta a a a a a ++=++若{}{},n n a b 为项数相同的等差数列,则{}n n ka lb ±仍为等差数列(,k l 为常数)等差数列的图像是直线上一列均匀分布的孤立点(当0d ≠时,()1n a dn a d =+-是n的一次函数)和的性质①232,,,n n n n n S S S S S -- 也成等差数列,公差为2n d②当0d ≠时,2122n d d S n a n ⎛⎫=+- ⎪⎝⎭是n 的二次函数③n S n ⎧⎫⎨⎬⎩⎭是等差数列③n 为奇数时,121,,1n n S n S S a S na S n +--===+奇奇中偶偶;n 为偶数时,212,=2nna S nS S d S a +-=奇奇偶偶④若{}{},n n a b 为项数相同的等差数列,且前n 项和分别为n S 与,n T 则()()2121212121,21n m m n m m m m m S a S a b T b n T -----==-(处理方法分别设221122,n n S A n B n T A n B n=+=+)单调性在等差数列中,等距离取出若干项也构成一个等差数列,即2,,,n n m n m a a a ++ 为等差数列,公差为md2.等比数列的性质设n S 为等比数列{}n a 的前n 项和,则有如下性质:项的性质在等比数列中,等距离取出若干项也构成一个等比列,即2,,,n n m n m a a a ++ 为等比数列,公比为.mq 从第二项起每一项是它前一项与后一项的等比数列,也是与它等间距的两项的等比中项.两积式项数相同,下标和相等,则两式积相等:即若,m n r s +=+则m n r s a a a a =;若,m n p r s t ++=++则m n p r s ta a a a a a =若{}{},n n a b 为项数相同的等比数列,则①{}log c n a (其中0,n a c >为常数)为等差数列;②{}{}{}{}{}{}1,,,,,,,kn n n n nnmnnn n a ka a b a a a a a b ⎧⎫⎧⎫⎨⎬⎨⎬⎩⎭⎩⎭(其中0,n a k >为常数)为等比数列.等比数列的图像是一列分布的孤立点(当0q ≠时,nn a Aq =是n 的指数型函数)1212221223,,k k k k k k k A a a a B a a a C a a a ++++=== ,则,,A B C 成等比数列和①若{}n a 是1q ≠-的等比数列,则数列232,,,n n n n n S S S S S -- 也成等比数列(其中n 为常数);的性质1q =-且n 为偶数时,数列232,,,nn n n n S S S S S -- 是常数列{}0,它不是等比数列;②m n m n m n n m S S q S S q S +=+=+;③在等比数列{}n a 中,当项数为偶数2n 时,S qS =奇偶;项数为奇数21n -时,1S a qS =+奇偶单调性①1q =时,数列{}n a 是常数列,如数列2,2,2,2, ;②0q <时,数列{}n a 是摆动数列,如数列1,2,4,8,16,-- ;③10,01a q ><<时,数列{}n a 是递减数列,如数列1111,,,,248 ;④10,1a q >>时,数列{}n a 是递增数列,如数列1,2,4,8, ;⑤10,01a q <<<时,数列{}n a 是递增数列,如数列1111,,,,248---- ;⑥10,1a q <>时,数列{}n a 是递减数列,如数列1,2,4,8,---- .1.极化恒等式(1)极化恒等式:()()2214⎡⎤⋅=+--⎣⎦a b a b a b ;(2)极化恒等式平行四边形型:在平行四边形ABCD 中,()2214AB AD AC BD ⋅=- ,即向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14;(3)极化恒等式三角形模型:在ABC 中,M 为边BC 中点,则;2214AB AC AM BC ⋅=- .说明:(1)三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决;(2)记忆规律:向量的数量积等于第三边的中线长与第三边长的一半的平方差.2.三角形“四心”向量形式的充要条件设O 为ABC ∆所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为ABC ∆的外心()()()02sin aOA OB OC OA OB AB OB OC BC OA OC AC A⇔===⇔+⋅=+⋅=+⋅= .(如图1)(2)如图2,O 为ABC ∆的重心⇔OA OB OC ++=0 .(3)如图2,O 为ABC ∆的垂心⇔OA OB OB OC OC OA ⋅=⋅=⋅.(4)如图3,O 为ABC ∆的内心sin sin sin aOA bOB cOC A OA B OB C OC ⇔++=⇔⋅+⋅+⋅=00.说明:三角形“四心”——重心,垂心,内心,外心(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等.3.奔驰定理奔驰定理:设O 是ABC ∆内一点,BOC ∆,AOC ∆,AOB ∆的面积分别记作A S ,B S ,C S 则0A B C S OA S OB S OC ⋅+⋅+⋅= .说明:本定理图形酷似奔驰的车标而得名.奔驰定理在三角形四心中的具体形式:①O 是ABC ∆的重心⇔::1:1:1A B C S S S =⇔0OA OB OC ++=.②O 是ABC ∆的内心⇔::::A B C S S S a b c =⇔0aOA bOB cOC ++=.③O 是ABC ∆的外心::sin 2:sin 2:sin 2sin 2sin 2sin 20A B C S S S A B C A OA B OB C OC ⇔=⇔⋅+⋅+⋅=.④O 是ABC ∆的垂心⇔::tan :tan :tan A B CS S S A B C =⇔tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=.奔驰定理是三角形四心向量式的完美统一.立体几何1.三余弦定理与三正弦定理三余弦定理(又称最小角定理):如图①,AB 是平面的一条斜线,BC 是平面内的一条直线,OA ⊥平面π于O ,OC BC ⊥于C ,则cos =cos cos ABC OBC OBA ∠∠⋅∠,即斜线与平面内一条直线夹角γ的余弦值等于斜线与平面所成角α的余弦值乘以射影与平面内直线夹角β的余弦值:cos =cos cos γα⋅β;说明:为方便记忆,我们约定γ为线线角,α为线面角,β为射影角,则由三余弦定理可得线面角是最小的线线角,即平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成角中的最小者.三正弦定理(又称最大角定理):如图②,设二面角--AB θδ的平面角为α,AC ⊂平面θ,CO ⊥平面δ,OB AB ⊥,设=,=CAB CAO ∠β∠γ,则sin =sin sin γα⋅β.说明:为方便记忆,我们约定α为二面角,β为线棱角,γ为线面角,则由三正弦定理可得二面角是最大的线面角,即对于一个锐二面角,在其中一个半平面内的任一条直线与另一个半平面所成的线面角的最大值等于该二面角的平面角.2.多面体的外接球和内切球类型一球的内切问题(等体积法)例如:如图①,在四棱锥P ABCD -中,内切球为球O ,求球半径.方法如下:------=++++P ABCD O ABCD O PBC O PCD O PAD O PABV V V V V V即:-11111=++++33333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r ⋅⋅⋅⋅⋅,可求出.类型二球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD ,AD=BC ,AC=BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥-P ABC 中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2=sin ar A);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则==OP OA R ,利用公式22211=+OA O A OO 可计算出球半径R .4.双面定球心法(两次单面定球心)如图:在三棱锥-P ABC 中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ;②选定面PAB ∆,定PAB ∆外接圆圆心2O ;③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .解析几何1.焦点三角形的面积公式1.椭圆中焦点三角形面积公式在椭圆22221x y a b+=(0a b >>)中,1F ,2F 分别为左、右焦点,P 为椭圆上一点,12F PF θ∠=,12PF F ∆的面积记为12ΔPF F S ,则:①12Δ121=||||=||2PF F p p S F F y c y ;②12Δ121=|||||sin 2PF F S PF PF θ;③122Δ=tan 2PF F S b θ,其中12=F PF θ∠.2.双曲线中焦点三角形面积公式在双曲线22221x y a b-=(0a >,0b >)中,1F ,2F 分别为左、右焦点,P 为双曲线上一点,12F PF θ∠=,12PF F ∆的面积记为12ΔPF F S ,则:①12Δ121=||||=||2PF F p p S F F y c y ;②12Δ121=|||||sin 2PF F S PF PF θ;③122Δ=tan 2PF F b S θ.注意:在求圆锥曲线中焦点三角形面积时,根据题意选择适合的公式,注意结合圆锥曲线的定义,余弦定理,基本不等式等综合应用.2.圆锥曲线的切线问题1.过圆C :222()+()=x a y b R --上一点00(,)P x y 的切线方程为200()()+()()=x a x a y b y b R ----.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y y a b +=.3.已知点00(,)M x y ,抛物线C :2=2(0)y px p ≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线.(2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.3.圆锥曲线的中点弦问题1.在椭圆C :22221(0)x y a b a b+=>>中(特别提醒此题结论适用焦点在x 轴上椭圆):(1)如图①所示,若直线(0)y kx k =≠与椭圆C 交于A ,B 两点,过A ,B 两点作椭圆的切线l ,l ',有l //l ',设其斜率为0k ,则202=bk k a-.(2)如图②所示,若直线(0)y kx k =≠与椭圆C 交于A ,B 两点,P 为椭圆上异于A ,B 的点,若直线PA ,PB 的斜率存在,且分别为1k ,2k ,则2122=b k k a -.(3)如图③所示,若直线=+(0,0)y kx b k m ≠≠与椭圆C 交于A ,B 两点,P 为弦AB 的中点,设直线PO 的斜率为0k ,则202=b k k a-.2.在双曲线C :22221(0,0)x y a b a b -=>>中,类比上述结论有(特别提醒此题结论):(1)202=b k k a ;(2)2122b k k a =;(3)202=b k k a.3.在抛物线C :22(0)y px p =>中类比1(3)的结论有00=(0)pk y y ≠.4:圆锥曲线中的定值问题1.在椭圆中:已知椭圆22221(0)x y a b a b+=>>,定点00(,)P x y (000x y ≠)在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y .2.在双曲线C :22221(0,0)x y a b a b-=>>中,定点00(,)P x y (000x y ≠)在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y -.3.在抛物线C :22(0)y px p =>,定点00(,)P x y (000x y ≠)在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率0=AB p k y -.5.圆锥曲线中的定点问题若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)对于椭圆22221x y a b+=(0a b >>)上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222()(,0)+a b aa b-.同理,当以AB 为直径的圆过左顶点(,0)a -时,直线AB l 过定点2222()(,0)+a b a a b --.(2)对于双曲线22221(0,0)x y a b a b-=>>上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222(+)(,0)a b a a b -.同理,对于左顶点(,0)a -,则定点为2222(+)(,0)a b a a b --.(3)对于抛物线22(0)y px p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则弦AB 所在直线过点(2,0)p .同理,抛物线22(0)x py p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则直线AB 过定点(0,2)p .6.圆锥曲线中的定直线问题1.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y y a b +=上;2.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y y a b +=上;3.已知抛物线22y px =(>0)p ,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足||||=.||||AP AQ PB QB则点Q 在定直线00()y y p x x =+上.7.抛物线的焦点弦长公式不妨设抛物线方程为()220y px p =>,如图1,准线2p x =-与x 轴相交于点P ,过焦点,02p F ⎛⎫⎪⎝⎭的直线l 与抛物线相交于()()1122,,,A x y B x y 两点,O 为原点,α为AB 与对称轴正向所成的角,则有如下的焦点弦长公式:21212122212=1+-,=1+-,=++,=sin pAB k x x AB y y AB x x p AB k α.8.抛物线中的三类直线与圆相切问题不妨设抛物线方程为()220y px p =>,如图1,准线2p x =-与x 轴相交于点P ,过焦点,02p F ⎛⎫⎪⎝⎭的直线l 与抛物线相交于()()1122,,,A x y B x y 两点,O 为原点,α为AB 与对称轴正向所成的角,AB 的中点为C ,又作111,,AA l BB l CC l ⊥⊥⊥,垂足分别为111,,A B C ,则有如下结论(图2):图1图2图3①以AB 为直径的圆M 与准线相切;②以AF 为直径的圆C 与y 轴相切;③以BF 为直径的圆D 与y 轴相切;④分别以,,AB AF BF 为直径的圆之间的关系:圆C 与圆D 外切;圆C 与圆D 既与y 轴相切,又与圆M 相内切.结合圆的几何性质易得有关直线垂直关系的结论,如图3有,①以AB 为直径的圆的圆心在准线上的射影1M 与,A B 两点的连线互相垂直,即11M A M B ⊥;②以AF 为直径的圆的圆心在y 轴上的射影1C 与,A F 两点的连线互相垂直,即11C A C F ⊥;③以BF 为直径的圆的圆心在y 轴上的射影1D 与,B F 两点的连线互相垂直,即11D B D F ⊥;④以11A B 为直径的圆必过原点,即11A F B F ⊥;⑤1M F AB ⊥.排列组合及二项式定理1:排列组合中的分组与分配①“非均匀分组”是指将所有元素分成元素个数彼此不相等的组,使用分步组合法;②“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组.不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是均匀的,都有A mm 种顺序不同的分法只能算一种分法;③对于非均匀编号分组采用分步先组合后排列法,部分均匀编号分组采用分组法;④平均分堆问题倍缩法采用缩倍法、除倍法、倍除法、除序法、去除重复法);⑤有序分配问题逐分法采用分步法);⑥全员分配问题采用先组后排法;⑦名额分配问题采用隔板法(或元素相同分配问题隔板法、无差别物品分配问题隔板法);⑧限制条件分配问题采用分类法.2、三项展开式中的特定项(系数)问题的处理方法:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形;(3)也可以按照推导二项式定理的方法解决问题.二、几个多项式积的展开式中的特定项(系数)问题的处理方法:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.3.二项式系数和的性质若()2012...nn n ax b a a x a x a x +=++++,则设()()nf x ax b =+,有:()00a f =;②()0121n a a a a f ++++=L ;③()()012311nn a a a a a f -+-++-=-L ;④()()0246112f f a a a a +-++++=;⑤()()1357112f f a a a a --++++= .【应用场景】函数及其性质1.条件概率计算条件概率有两种方法.(1)定义法:利用定义()()()P AB P B A P A =;(2)压缩事件空间法:若()n A 表示试验中事件A 包含的基本事件的个数,则()()()n AB P B A n A =.【应用场景】(1)注意:利用定义求条件概率时,事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清()P AB 的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数()n A ,再在事件A 发生的条件下求事件B 包含的基本事件数,即()n AB ,2.常见分布的数学期望和方差典型分布数字特征两点分布:()0,1X ,成功概率为p二项分布:(),X B n p 超几何分布:(),,X H n M N 数学期望()E X p =()E X np=()nME X N=方差()()1D X p p =-()()1D X np p =-()()()()21nM N n N M D X N N --=-3.二项分布概率的最值下图是不同参数的二项分布的图象图1.不同参数下的二项分布的图象从图1中可以看出,对于固定的n 及p ,当k 增加时,概率()P X k =先是单调递增到最大值,随后单调减少.可以证明,一般的二项分布也具有这一性质,且:(1)当()1n p +不为整数时,概率()P X k =在()1k n p ⎡⎤=+⎣⎦时达到最大值;(2)当()1n p +为整数时,概率()P X k =在()1k n p =+和()11k n p =+-同时达到最大值.注:[]x 为取整函数,即为不超过x 的最大整数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考考前数学120个提醒一、集合与逻辑1、(Ⅰ)区分集合中元素的形式:如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如(1)设集合{|3}M x y x ==+,集合N ={}2|1,y y x x M =+∈,则M N =___(答:[1,)+∞);(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____(答:)}2,2{(--)(Ⅱ)(1)M ={}R a x ax y a 的定义域为)lg(2+-=,求M ;(2)N ={}R a x ax y a 的值域为)lg(2+-=。

解:(1)02>+-a x ax 在R x ∈恒成立,①当0=a 时,0>-x 在R x ∈不恒成立;②当0≠a 时,则⎩⎨⎧<->04102a a ⇒⎪⎩⎪⎨⎧>-<>21210a a a 或⇒21>a ∴M =⎪⎭⎫ ⎝⎛+∞,21;(2)a x ax +-2能取遍所有的正实数。

①当0=a 时,x -R ∈;②当0≠a 时,则⎩⎨⎧≥->04102a a ⇒⎪⎩⎪⎨⎧≤≤->21210a a ⇒210≤<a 。

∴N =⎥⎦⎤⎢⎣⎡21,0。

2、条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。

如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

(答:a ≤0)3、(1)}|{B x A x x B A ∈∈=且 ;}|{B x A x x B A ∈∈=或 C U A={x|x ∈U 但x ∉A};B A ⊆⇔若x ∈A 则x ∈B ;真子集怎定义?含n 个元素的集合的子集个数为2n ,真子集个数为2n -1,非空真子集个数为2n -2;如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。

(答:7)(2)从集合{}n a a a a A ,,,,321⋅⋅⋅=到集合{}m b b b b B ,,,,321⋅⋅⋅=的映射有nm 个。

(3)C U (A ∩B)=C U A ∪C U B ;C U (A ∪B)=C U A ∩C U B;card(A ∪B)=?(4)A ∩B=A ⇔A ∪B=B ⇔A ⊆B ⇔C U B ⊆C U A ⇔A ∩C U B=∅⇔C U A ∪B=U (5)补集思想常运用于解决否定型或正面较复杂的有关问题。

如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。

(答:3(3,)2-) 4、充要条件与命题:(1)充要条件:①充分条件:若p q ⇒,则p 是q 充分条件。

②必要条件:若q p ⇒,则p 是q 必要条件。

③充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件。

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。

(2)四种命题:①原命题:p q ⇒;②逆命题:q p ⇒;③否命题:p q ⌝⇒⌝;④逆否命题:q p ⌝⇒⌝;互为逆否的两个命题是等价的。

如:“βαsin sin ≠”是“βα≠”的 条件。

(答:充分非必要条件)(3)若p q ⇒且q p ≠;则p 是q 的充分非必要条件(或q 是p 的必要非充分条件);(4)注意命题p q ⇒的否定与它的否命题的区别:① 命题p q ⇒的否定是p q ⇒⌝;②否命题是p q ⌝⇒⌝;③命题“p 或q ”的否定是“┐P 且┐Q ”;④“p 且q ”的否定是“┐P 或┐Q ”。

(5)注意:如 “若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数”;否定是“若a 和b 都是偶数,则b a +是奇数”。

二、函数与导数5、指数式、对数式:(1)mn a =1mn m na a -=,(以上0,,a m n N *>∈,且1n >)。

01a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,(2)b N N a a b =⇔=log (0>a ,1≠a ,0>N );(3)()N M MN a a a log log log +=;(4)N M N M a a alog log log -=; (5)log log m n a a n b b m =;(6)对数恒等式:log a N a N =;(7)对数的换底公式:log log log m a m N N a=。

如2log 1()2的值为___(答:164) 6、一次函数:y=ax+b(a ≠0) b=0时奇函数;7、二次函数:①三种形式:一般式f(x)=ax 2+bx+c(轴-b/2a,a ≠0,顶点?);顶点式f(x)=a(x-h)2+k ,h ,k =?;零点式f(x)=a(x-x 1)(x-x 2)(0≠a )(轴?);b=0偶函数;②区间最值:配方后一看开口方向,二讨论对称轴与区间的相对位置关系; 如:若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2)③实根分布:先画图再研究△>0、轴与区间关系、区间端点函数值符号;8、反比例函数:)0x (x c y ≠=平移⇒b x c a y -+=(中心为(b,a)) 9、对勾函数xa x y +=是奇函数,上为增函数,,在区间时)0(),0(,0∞+-∞<a 递减,在时)0,[],0(,0a a a -> ,递增,在),a [],a (+∞--∞10、单调性:(Ⅰ)定义法:设1x 、2x ∈[]b a ,,1x ≠2x ,那么[]1212()()()0x x f x f x -->⇔0)()(2121>--x x x f x f ⇔)(x f 在[]b a ,上是增函数; []1212()()()0x x f x f x --<⇔0)()(2121<--x x x f x f ⇔)(x f 在[]b a ,上是减函数。

(Ⅱ)导数法:设函数)(x f y =在某个区间内可导,如果0)(≥'x f ,则)(x f 为增函数;如果0)(≤'x f ,则)(x f 为减函数。

如:已知函数3()f x x ax =-在区间[1,)+∞上是增函数,则a 的取值范围是____(答:(,3]-∞);注意:(1) 0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

(2)函数单调性与奇偶性的逆用了吗?(①比较大小;②解不等式;③求参数范围).如已知奇函数)(x f 是定义在)2,2(-上的减函数,若0)12()1(>-+-m f m f ,求实数m 的取值范围。

(答:1223m -<<)(3)复合函数由同增异减判定;(4)图像判定;(5)作用:比大小,解证不等式。

如函数()212log 2y x x =-+的单调递增区间是________(答:(1,2))。

11、奇偶性:(1)定义:f(x)是偶函数⇔f(-x)=f(x)=f(|x|);f(x)是奇函数⇔f(-x)=-f(x);定义域含零的奇函数过原点(f(0)=0);定义域关于原点对称是为奇函数或偶函数的必要而不充分的条件。

(2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.(3)多项式函数110()n n n n P x a x a x a --=+++的奇偶性:()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零;()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零。

12、周期性:(Ⅰ)类比“三角函数图像”得:(1)若()y f x =图像有两条对称轴,()x a x b a b ==≠,则()y f x =必是周期函数,且一周期为2||T a b =-;(2)若()y f x =图像有两个对称中心(,0),(,0)()A a B b a b ≠,则()y f x =是周期函数,且一周期为2||T a b =-;(3)如果函数()y f x =的图像有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且一周期为4||T a b =-;如:已知定义在R 上的函数()f x 是以2为周期的奇函数,则方程()0f x =在[2,2]-上至少有__________个实数根(答:5)。

(Ⅱ)由周期函数的定义“函数()f x 满足()()x a f x f +=(0)a >,则()f x 是周期为a 的周期函数”得:(1)函数()f x 满足()()x a f x f +=-,则()f x 是周期为2a 的周期函数;(2)若)(1)(x f a x f =+(0≠a ,0)(≠x f )恒成立,则2T a =;(3)若)(1)(x f a x f -=+(0≠a ,0)(≠x f )恒成立,则2T a =。

(4)21)()(2x f x f -+=)(a x f +()(x f []1,0∈)恒成立,则2T a =。

(5))(11)(a x f x f +-=(0)(≠x f )恒成立,则a T 3=。

(6))()()(a x f x f a x f +-=+,则a T 6=。

(7))(21x x f +=)()(1)()(2121x f x f x f x f ∙-+,且1)(=a f (1)()(21≠∙x f x f ,<021x x -a 2<),则a T 4=。

如:①设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)(,则)5.47(f 等于_____(答:5.0-);②定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[3,2]--上是减函数,若,αβ是锐角三角形的两个内角,则(sin ),(cos )f f αβ的大小关系为_________(答:(sin )(cos )f f αβ>);13、常见的图象变换:(1)函数()a x f y +=的图象是把函数()x f y =的图象沿x 轴向左)0(>a 或向右)0(<a 平移a 个单位得到的。

相关文档
最新文档