1.3三角函数的图像与性质

合集下载

三角函数的图像及性质

三角函数的图像及性质

三角函数的图像及性质三角函数是数学中重要的一类函数,它们在几何、物理、工程等领域中都有广泛的应用。

本文将探讨三角函数的图像及其性质,包括正弦函数、余弦函数和正切函数。

正弦函数(Sine Function)正弦函数是三角函数中最基本的函数之一,表示为sin(x),其中x为自变量,表示角度。

正弦函数的图像是一条连续的曲线,其值在-1到1之间变化。

当自变量x为0时,正弦函数的值为0,而当自变量为90度或π/2时,正弦函数的值达到最大值1。

正弦函数的图像是一条周期性的波形曲线,每个周期的长度为360度或2π。

在图像上,正弦函数的曲线在自变量为0、180度、360度等处穿过x轴,并在自变量为90度、270度等处达到最大值或最小值。

余弦函数(Cosine Function)余弦函数是三角函数中另一个重要的函数,表示为cos(x)。

余弦函数的图像也是一条连续的曲线,其值同样在-1到1之间变化。

当自变量x为0时,余弦函数的值为1,而当自变量为90度或π/2时,余弦函数的值为0。

余弦函数的图像也是一条周期性的波形曲线,每个周期的长度同样为360度或2π。

在图像上,余弦函数的曲线在自变量为90度、270度等处穿过x轴,并在自变量为0、180度、360度等处达到最大值或最小值。

正切函数(Tangent Function)正切函数是三角函数中最复杂的函数,表示为tan(x)。

正切函数的图像是一条连续的曲线,其值可以取任意实数。

正切函数的图像在自变量为0度时,函数值为0,而在自变量为90度或π/2时,正切函数的值趋近于无穷大。

正切函数的图像也是周期性的,每个周期的长度为180度或π。

在图像上,正切函数的曲线在自变量为0度、180度、360度等处穿过x轴,并在自变量为45度、225度等处达到最大值或最小值。

三角函数的性质除了图像外,三角函数还具有一些重要的性质。

1. 周期性:正弦函数、余弦函数和正切函数都是周期性的,周期分别为360度或2π、360度或2π、180度或π。

三角函数的图像与性质

三角函数的图像与性质

三角函数的图像与性质三角函数是数学中的重要概念,它们在几何、物理、工程等领域都有广泛的应用。

本文将探讨三角函数的图像与性质,并通过图像展示它们的特点。

一、正弦函数(sine function)正弦函数是最基本的三角函数之一,常用符号为sin(x)。

它的图像是一条连续的曲线,表现出周期性的波动。

正弦函数的性质如下:1. 周期性:正弦函数的周期为2π,即在每个2π的区间内,函数的值会重复。

2. 对称性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。

这意味着它的图像关于原点对称。

3. 取值范围:正弦函数的值域在[-1, 1]之间,即函数的值不会超过这个范围。

二、余弦函数(cosine function)余弦函数是另一个常见的三角函数,常用符号为cos(x)。

它的图像也是一条连续的曲线,与正弦函数的图像非常相似。

余弦函数的性质如下:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。

2. 对称性:余弦函数是偶函数,即满足cos(-x)=cos(x)。

这意味着它的图像关于y轴对称。

3. 取值范围:余弦函数的值域也在[-1, 1]之间,与正弦函数相同。

三、正切函数(tangent function)正切函数是三角函数中的另一个重要概念,常用符号为tan(x)。

正切函数的图像也是一条连续的曲线,但与正弦和余弦函数有所不同。

正切函数的性质如下:1. 周期性:正切函数的周期为π,即在每个π的区间内,函数的值会重复。

2. 奇点:正切函数在π/2和-π/2处有奇点,即函数在这些点上无定义。

3. 取值范围:正切函数的值域为整个实数轴,即它可以取到任意的实数值。

四、其他三角函数除了正弦、余弦和正切函数,还有许多衍生的三角函数,如余切函数、正割函数和余割函数等。

它们的图像和性质与前面介绍的三角函数类似,只是在计算和应用中有一些特殊的情况。

五、图像展示为了更好地理解三角函数的图像与性质,下面是一些图像展示:(插入正弦函数、余弦函数和正切函数的图像)从图中可以清楚地看出正弦函数和余弦函数的周期性和对称性,以及正切函数的特殊性。

高中数学 第一章 基本初等函数(II)1.3 三角函数的图象与性质 1.3.2 余弦函数、正切函数的

高中数学 第一章 基本初等函数(II)1.3 三角函数的图象与性质 1.3.2 余弦函数、正切函数的

1.3.2 余弦函数、正切函数的图象与性质第一课时 余弦函数的图象与性质1.余弦函数的图象(1)把正弦曲线向左平移π2个单位就可以得到余弦函数的图象.余弦函数y =cos x 的图象叫做余弦曲线.(2)余弦曲线.除了上述的平移法得到余弦曲线,还可以用:①描点法:按照列表,描点,连线顺序可作出余弦函数图象的方法.②五点法:观察余弦函数的图象可以看出,(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1)这五点描出后,余弦函数y =cos x ,x ∈[0,2π]的图象的形状就基本上确定了.【自主测试1】画出函数y =-cos x ,x ∈[0,2π]的简图.分析:运用五点作图法,首先要找出起关键作用的五个点,然后描点连线. 解:列表:ω>0)的周期为T =2πω.今后,可以使用这个公式直接求这类函数的周期.【自主测试2-1】函数y =2cos x +1的最大值和最小值分别是( ) A .2,-2 B .3,-1 C .1,-1 D .2,-1 答案:B【自主测试2-2】已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R ),下列结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=sin ⎝⎛⎭⎪⎫x -π2=-cos x (x ∈R ),f (-x )=f (x ),∴函数f (x )是偶函数. 答案:D正弦函数与余弦函数的图象和性质的区别与联系(4)sin x +cos x =1题型一 用“五点法”作函数y =A cos(ωx +φ)的图象 【例题1】用“五点法”画出函数y =2cos 2x 的简图.分析:先找出此函数图象上的五个关键点,画出其在一个周期上的函数图象,再进行扩展得到在整个定义域内的简图.解:因为y =2cos 2x 的周期T =2π2=π,所以先在区间[0,π]上按五个关键点列表如下.然后把y =2cos 2x 在[0,π]上的图象向左、右平移,每次平移π个单位长度,则得到y =2cos 2x 在R 上的简图如下.反思在用“五点法”画出函数y =A cos(ωx +φ)的图象时,所取的五点应由ωx +φ=0,π2,π,3π2,2π来确定,而不是令x =0,π2,π,3π2,2π.题型二 三角函数的图象变换【例题2】函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象平移得到,若使平移的距离最短,则应( )A .向左平移π8个单位长度B .向右平移7π8个单位长度C .向左平移π4个单位长度D .向右平移π8个单位长度解析:y =cos ⎝ ⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π4 =sin ⎝ ⎛⎭⎪⎫3π4-2x =-sin ⎝⎛⎭⎪⎫2x -3π4 =sin ⎝ ⎛⎭⎪⎫2x -3π4+π=sin ⎝ ⎛⎭⎪⎫2x +π4 =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8,故函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象向右平移π8个单位长度得到.故选D .答案:D反思一定要注意看清变换的顺序,即看清是以哪个函数图象作为基准. 题型三 函数的定义域问题【例题3】求函数y =36-x 2+lg cos x 的定义域.分析:首先根据函数解析式列出使函数有意义的条件不等式组,然后分别求解,最后求交集即可.解:要使函数有意义,只需⎩⎪⎨⎪⎧36-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-6≤x ≤6,2k π-π2<x <2k π+π2k ∈Z .利用数轴求解,如图所示:所以函数的定义域为⎣⎢⎡⎭⎪⎫-6,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,6. 反思利用数轴或者单位圆取解集的交集或并集非常简捷、清晰,但要注意区间的开闭情况.题型四 余弦函数的最值或值域【例题4】(1)求函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π3,2π3的值域;(2)求函数y =2+cos x2-cos x的最值;(3)求函数y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3的值域.分析:(1)结合y =cos x 的图象在区间⎣⎢⎡⎦⎥⎤-π3,2π3上先增后减即可求解;(2)利用|cos x |≤1这一性质;(3)利用配方法,结合二次函数的性质求解.解:(1)∵y =cos x 在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增,在区间⎣⎢⎡⎦⎥⎤0,2π3上单调递减,∴y ma x =cos 0=1,y min =cos 2π3=-12,∴y =cos x 的值域为⎣⎢⎡⎦⎥⎤-12,1. (2)由y =2+cos x 2-cos x ,求得cos x =2y -1y +1.∵|cos x |≤1,∴⎪⎪⎪⎪⎪⎪2y -1y +1≤1,∴[2(y -1)]2≤(y +1)2.解得13≤y ≤3,∴y ma x =3,y min =13.(3)y =3cos 2x -4cos x +1=3⎝⎛⎭⎪⎫cos x -232-13,∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,∴cos x ∈⎣⎢⎡⎦⎥⎤-12,12, 从而当cos x =-12,即x =2π3时,y ma x =154.当cos x =12,即x =π3时,y min =-14.∴函数y =3cos 2x -4cos x +1的值域为⎣⎢⎡⎦⎥⎤-14,154.反思求函数的最值的方法有以下几种:(1)直接法.根据函数值域的定义,由自变量的取值范围求出函数值的取值范围. (2)利用函数的单调性.(3)利用函数的图象,转化为求函数图象上最高点和最低点的纵坐标的问题.(4)利用换元法,转化为一次函数、二次函数、指数函数、对数函数等基本初等函数问题.题型五 余弦函数图象的应用【例题5】求函数y =cos ⎝⎛⎭⎪⎫2x +π4的对称中心、对称轴方程、单调递减区间和最小正周期.分析:利用整体换元,设t =2x +π4,则问题转化为考查函数y =cos t 的相关性质.解:设t =2x +π4,则函数y =cos t 的图象如图所示.令t =k π(k ∈Z ),则2x +π4=k π(k ∈Z ).故x =k ·π2-π8(k ∈Z )即为所求的对称轴方程.令t =k π+π2(k ∈Z ),则2x +π4=k π+π2(k ∈Z ),则x =k ·π2+π8(k ∈Z ).故⎝ ⎛⎭⎪⎫k ·π2+π8,0(k ∈Z )即为所求的对称中心.当t ∈[2k π,2k π+π](k ∈Z )时,2x +π4∈[2k π,2k π+π](k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). ∵cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π4+2π=cos ⎣⎢⎡⎦⎥⎤2x +π+π4, ∴最小正周期T =π.反思整体换元思想是解决较复杂三角函数问题常用的一种方法,它能将问题化归为对基本三角函数的考查.〖互动探究〗若将本例中的函数改为“y =⎪⎪⎪⎪⎪⎪cos ⎝⎛⎭⎪⎫2x +π4”呢? 解:设t =2x +π4,则问题转化为考查函数y =|cos t |,如图所示:解答过程同例题,可得无对称中心.令t =k ·π2(k ∈Z ),则2x +π4=k ·π2(k ∈Z ),∴对称轴为x =k ·π4-π8(k ∈Z );令t ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ), ∴2x +π4∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8故其单调递减区间为⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8(k ∈Z ).最小正周期T =π2.反思(1)若三角函数式子中带绝对值号,则通常通过观察图象得到周期和单调区间. (2)正弦函数y =sin x 和余弦函数y =cos x 取绝对值后,周期缩为原来的一半,即 ①y =|sin x |的周期为π; ②y =|cos x |的周期为π.1.下列说法不正确的是( )A .正弦函数、余弦函数的定义域是R ,值域是[-1,1]B .余弦函数当且仅当x =2k π(k ∈Z )时取得最大值1,当且仅当x =(2k +1)π(k ∈Z )时取得最小值-1C .正弦函数在每个区间⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z )上都是减函数 D .余弦函数在每个区间[2k π-π,2k π](k ∈Z )上都是减函数 答案:D2.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝ ⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin ⎝ ⎛⎭⎪⎫x +π2 D .y =cos ⎝⎛⎭⎪⎫x +π2答案:A3.(2012·重庆期末)把函数y =cos ⎝⎛⎭⎪⎫2x +π3图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到图象的解析式为( )A .y =cos ⎝ ⎛⎭⎪⎫x +π6B .y =cos ⎝ ⎛⎭⎪⎫x +π3C .y =cos ⎝ ⎛⎭⎪⎫4x +2π3D .y =cos ⎝⎛⎭⎪⎫4x +π3 答案:D4.若函数y =a cos x +b 的最小值为-12,最大值为32,则a =__________,b =__________.解析:由于y ma x =32,y min =-12,且-1≤cos x ≤1,则当a >0时,有⎩⎪⎨⎪⎧a +b =32,-a +b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.当a <0时,有⎩⎪⎨⎪⎧-a +b =32,a +b =-12,解得⎩⎪⎨⎪⎧a =-1,b =12.综上,a =±1,b =12.答案:±1 125.函数y =|cos x |的单调增区间为________,单调减区间为________,最小正周期为________.解析:函数y =|cos x |的图象,如图所示.由图可知它的最小正周期为π.又因为在一个周期⎣⎢⎡⎦⎥⎤-π2,π2上,函数的增区间是⎣⎢⎡⎦⎥⎤-π2,0,减区间是⎣⎢⎡⎦⎥⎤0,π2.而函数的周期是k π(k ∈Z ),因此函数y =|cos x |的增区间是⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ),减区间是⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) ⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) π 6.函数f (x )的定义域为[0,1],则f (cos x )的定义域是__________.解析:由已知0≤cos x ≤1,得2k π-π2≤x ≤2k π+π2(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ) 7.已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π4,x ∈R . (1)用“五点法”画出函数f (x )在长度为一个周期的闭区间上的简图; (2)求函数f (x )的最大值,并求出取得最大值时自变量x 的取值集合; (3)求函数f (x )的单调增区间. 解:(1)列表:(2)当2x -π4=2k π(k ∈Z ),即x =k π+π8(k ∈Z )时,y ma x =3,此时x 取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π8,k ∈Z. (3)当2k π-π≤2x -π4≤2k π(k ∈Z )时,k π-3π8≤x ≤k π+π8,k ∈Z ,故函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).。

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。

(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。

正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。

4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。

理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。

5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。

初三三角函数的图像与性质

初三三角函数的图像与性质

初三三角函数的图像与性质三角函数是初中数学中重要的概念之一,它在数学、物理、工程等领域中有广泛的应用。

理解三角函数的图像与性质对于解题和应用都具有重要意义。

本文将从图像的周期性、对称性以及性质的变化等方面进行探讨。

1. 正弦函数的图像与性质正弦函数表示为y = sinx,其中x为自变量,y为函数值。

正弦函数的图像是一条连续的波浪线,其特点如下:1.1 周期性正弦函数具有周期性,即在一个周期内,函数值会以波浪形态无限次重复。

它的一个周期为2π,所以正弦函数的图像在0到2π之间会完成一个完整的波浪。

1.2 对称性正弦函数具有轴对称性,即y = sinx在关于原点对称。

这意味着当自变量x的值变为负数时,函数值不变,即sin(-x) = -sinx。

1.3 取值范围正弦函数的取值范围在-1到1之间,即-1 ≤ sinx ≤ 1。

当自变量x为0、π、2π等整数倍的π时,正弦函数取得最大值1或最小值-1。

2. 余弦函数的图像与性质余弦函数表示为y = cosx,其图像与正弦函数有相似之处,但也有一些不同的特点:2.1 周期性余弦函数同样具有周期性,其一个周期也为2π,因此在0到2π之间会完成一个波浪的周期。

与正弦函数不同的是,余弦函数在自变量取得奇数个π倍数时,图像会经过坐标轴。

2.2 对称性余弦函数也具有轴对称性,即y = cosx在关于y轴对称。

这意味着当自变量x的值变为负数时,函数值仍然相等,即cos(-x) = cosx。

2.3 取值范围余弦函数的取值范围也在-1到1之间,即-1 ≤ cosx ≤ 1。

当自变量x 为0、π/2、π等奇数个π倍数时,余弦函数取得最大值1或最小值-1。

3. 正切函数的图像与性质正切函数表示为y = tanx,其图像和性质与正弦函数和余弦函数有明显的不同:3.1 周期性正切函数具有周期性,其一个周期为π,即tan(x+π) = tanx。

在0到π之间,正切函数会呈现一种连续且无穷增大或无穷减小的趋势。

高中数学第一章三角函数1.3三角函数的图象和性质1.3.3函数y=Asin(ωx+φ)的图象课件苏教

高中数学第一章三角函数1.3三角函数的图象和性质1.3.3函数y=Asin(ωx+φ)的图象课件苏教
第二十三页,共42页。
中的第三点和第五点),有
π3ω+φ=π,
ω=2.
56πω+φ=2π,解得φ=π3.
∴y=3sin(2x+π3).
法三:(图象变换法)
由 T=π,点(-π6,0),A=3 可知图象由 y=3sin 2x 向左
平移π6个单位长度而得,所以有 y=3sin 2(x+π6),
即 y=3sin(2x+π3),且 ω=2,φ=π3.
2
第八页,共42页。
2.(2014·高考江苏卷)已知函数 y=cos x 与 y=sin(2x+ φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则 φ 的
π 值是____6____. 解析:利用函数 y=cos x 与 y=sin(2x+φ)(0≤φ<π)的交点横 坐标,列方程求解.
由题意,得 sin2×π3+φ=cos π3,因为 0≤φ<π,所以 φ=π6.
2.已知函数 y=Asin(ωx+φ),ω>0,且|φ|<π2的图象的一段 如图所示,求此函数的解析式.
第二十七页,共42页。
解:由图易知 A= 2,T2=|10-2|=8,所以 T=16. 又因为 T=|2ωπ|,ω>0,所以 ω=π8. 因为点(2, 2)在图象上,所以 y= 2sin(π8×2+φ)= 2, 所以 sin(π4+φ)=1,所以π4+φ=2kπ+π2(k∈Z), 又|φ|<π2,所以 φ=π4,所以 y= 2sin(π8x+π4).
第十五页,共42页。
法二:①把 y=sin x 的图象上所有点的横坐标伸长到原来 的 2 倍(纵坐标不变),得到 y=sin12x 的图象; ②把 y=sin12x 图象上所有的点向右平移π2个单位长度,得到 y=sin12(x-π2)=sin(12x-π4)的图象; ③把 y=sin(12x-π4)的图象上所有点的纵坐标伸长到原来的 3 倍(横坐标不变),就得到 y=3sin(12x-π4)的图象.

三角函数的图像和性质

三角函数的图像和性质
π ωx+ 4
(ω>0)的最小正周期为π,则函数 ( π B.关于直线x= 对称 8 π D.关于点8 ,0对称 )
π 2π 解析:∵f(x)=sin ωx+4 的最小正周期为π,∴ ω =π,ω=2, π π π 3π ∴f(x)=sin 2x+4 .当x= 时,2x+ = ,∴A、C错误;当x 4 4 4
[即时应用] 求函数 y=cos x+sin
2
π x|x|≤ 4的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
2.求三角函数单调区间的 2 种方法 (1)代换法: 就是将比较复杂的三角函数含自变量的代 数式整体当作一个角 u(或 t),利用基本三角函数的单调性 列不等式求解. (2)图象法:画出三角函数的正、余弦曲线,结合图象 求它的单调区间.
[演练冲关] π 1.最小正周期为π且图象关于直线x= 对称的函数是( 3
π π B,因为sin2×3-6 =sin
π =1,所以选B. 2
答案:B
2.函数
π y=cos4-2x的单调减区间为____________. π π y=cos4-2x=cos2x-4 得
解析:由
π 2kπ≤2x- ≤2kπ+π(k∈Z), 4 π 5π 解得 kπ+ ≤x≤kπ+ (k∈Z). 8 8
π π π π 3 在 3,2 上单调递减知, = ,∴ω= . 2ω 3 2

三角函数的定义、图像和性质

三角函数的定义、图像和性质
0 3
极值点:函数 在其周期内取 得最大值和最 小值的点,即 最值点的横坐 标
0 4
诱导公式
三角函数的诱导 公式是三角函数 性质的重要组成 部分,它可以帮 助我们简化复杂 的三角函数计算。
添加标题
诱导公式包括正 弦、余弦和正切 的诱导公式,它 们可以通过三角 函数的周期性和 对称性推导出来。
添加标题
奇偶性
奇函数:满足f(-x)=-f(x) 的函数
偶函数:满足f(-x)=f(x) 的函数
奇偶性的判断方法:根据 定义来判断
奇偶性在三角函数中的应 用:判断函数的图像对称

最值和零点
最大值和最小 值:三角函数 在其周期内可 以达到的最大 和最小值
0 1
零点:函数值 为零的点,即 解方程的根
0 2
周期性:三角 函数图像呈现 周期性变化, 每个周期内存 在一个最大值 和一个最小值
利用诱导公式, 我们可以将任意 角的三角函数转 化为锐角或0到 360度之间的角的 三角函数,从而
简化计算。
添加标题
诱导公式在三角 函数的图像和性 质中有着广泛的 应用,可以帮助 我们更好地理解 三角函数的性质
和图像。
添加标题
THANK YOU
汇报人:XX
三角函数的定义、 图像和性质
汇报人:XX
目录
01 三 角 函 数 的 定 义 02 三 角 函 数 的 图 像 03 三 角 函 数 的 性 质
01
三角函数的定义
正弦函数
定义:正弦函数是三角函数的一种,定义为y=sinx,x∈R。 图像:正弦函数的图像是一个周期函数,形状类似于波浪。 性质:正弦函数具有一些重要的性质,如奇偶性、周期性、单调性等。

常见三角函数图像及性质

常见三角函数图像及性质

常见三角函数图像及性质三角函数在数学中具有重要的作用,主要有正弦函数、余弦函数和正切函数。

这些三角函数的图像及性质对理解三角函数在不同角度下的变化规律至关重要。

1. 正弦函数(Sine Function)正弦函数可以表示为 $y = \\sin(x)$,其中x表示自变量(角度),x表示函数值。

正弦函数的图像是一条波浪形状的曲线,在 $[-\\pi, \\pi]$ 区间内,正弦函数的图像在原点(0,0)处达到最大值1和最小值−1,且图像在x轴上对称。

正弦函数的主要性质包括:•周期性:正弦函数的周期是 $2\\pi$,即 $f(x+2\\pi) = f(x)$。

•奇函数:正弦函数是奇函数,即x(−x)=−x(x)。

•范围:正弦函数的值域为[−1,1]。

•正负性:在第一和第二象限,正弦函数为正;在第三和第四象限,正弦函数为负。

2. 余弦函数(Cosine Function)余弦函数可以表示为 $y = \\cos(x)$,余弦函数的图像是一条类似正弦函数的波浪形状曲线,不过余弦函数的图像在x轴上下移了 $\\frac{\\pi}{2}$。

余弦函数的性质包括:•周期性:余弦函数的周期也是 $2\\pi$,即$f(x+2\\pi) = f(x)$。

•偶函数:余弦函数是偶函数,即x(−x)=x(x)。

•范围:余弦函数的值域为[−1,1]。

•正负性:在第一和第四象限,余弦函数为正;在第二和第三象限,余弦函数为负。

3. 正切函数(Tangent Function)正切函数可以表示为 $y = \\tan(x)$,正切函数的图像是一条周期性的曲线,其在某些角度处会出现无穷大的值。

正切函数的图像在 $x=k\\pi + \\frac{\\pi}{2}$ 时,即 $x =\\frac{\\pi}{2}, \\frac{3\\pi}{2}, \\frac{5\\pi}{2}$ 等,会出现垂直渐近线。

正切函数的性质包括:•周期性:正切函数的周期是 $\\pi$,即 $f(x+\\pi) = f(x)$。

三角函数的性质和图像

三角函数的性质和图像

三角函数的性质和图像
三角函数的性质与其连续变化的图像形状之间息息相关,为我们解释物理世界中复杂物理关系提供了重要依据。

五个小标题,相关内容
三角函数的性质和图形
1、定义
三角函数是用变量对正n角形的三种角度和相应角的大小而表达的关系式,主要包括正弦函数sinH,余弦函数 cosH和正切函数 tanH。

2、几何性质:
三角函数在几何中有一些性质,例如正弦函数SinH,余弦函数CosH 和正切函数tanH全部符合三角形的特性,其中的SinH和CosH的图像是三角形的内切圆,而tanH的图像是三角形的外切圆。

3、参数性质:
任意线性变换,三角函数的图像也被重新变换,只要保持原来变量关
系,图像也保持类型不变。

4、增减性质:
在某种范围内,正弦函数SinH和余弦函数CosH都是增函数,正切函数TanH是减函数。

5、图像特点:
三角函数的图像大体上是正弦曲线,在Π/2位置有拐点,有半波长形状,在此基础上可以通过变换做出不同的图形。

初三数学三角函数的图像与性质

初三数学三角函数的图像与性质

初三数学三角函数的图像与性质三角函数是初中数学中的重要知识点,它包括正弦函数、余弦函数和正切函数。

本文将介绍三角函数的图像与性质,帮助读者深入理解这一内容。

一、正弦函数的图像与性质正弦函数的函数图像呈现出一种特殊的波动形状,其性质主要包括以下几个方面:1. 周期性:正弦函数的图像以原点为对称轴,形状在[-π/2, π/2]区间内完成一次波动,因此正弦函数的周期是2π。

2. 奇偶性:正弦函数是奇函数,即f(-x) = -f(x),这意味着将正弦函数沿y轴对称后,图像不变。

3. 幅值:正弦函数的幅值表示最高点与最低点的差值,即图像的峰值。

正弦函数的幅值为1。

4. 上下偏移:正弦函数的整体图像可以向上或向下平移,这取决于函数中y的常数值。

例如,f(x) + a可以将图像上移a个单位。

二、余弦函数的图像与性质余弦函数与正弦函数非常相似,但它们的图像形状有一定的差异,其主要性质如下:1. 周期性:余弦函数的图像以最高点为对称轴,形状在0到2π区间内完成一次波动,因此余弦函数的周期也是2π。

2. 奇偶性:余弦函数是偶函数,即f(-x) = f(x),这意味着将余弦函数沿y轴对称后,图像不变。

3. 幅值:余弦函数的幅值与正弦函数相同,都为1。

4. 上下偏移:余弦函数的整体图像可以向上或向下平移,这取决于函数中y的常数值。

例如,f(x) + a可以将图像上移a个单位。

三、正切函数的图像与性质正切函数的图像形状不同于正弦函数和余弦函数,它的性质如下:1. 周期性:正切函数的图像是由无数个波峰和波谷组成的,没有固定的周期。

2. 奇偶性:正切函数是奇函数,即f(-x) = -f(x),这意味着将正切函数沿y轴对称后,图像不变。

3. 垂直渐近线:正切函数的图像有两条垂直渐近线,分别为x = (2n+1)π/2和x = nπ,其中n为整数。

4. 上下偏移:正切函数的整体图像可以向上或向下平移,这取决于函数中y的常数值。

例如,f(x) + a可以将图像上移a个单位。

三角函数图像和性质

三角函数图像和性质

三角之:三角函数的图像和性质 2011.07.21一. 基础知识1. 正弦函数,余弦函数,正切函数的图像及其相关性质(1)图像:yx O-π2π2πy tg x =(2)相关性质:对称轴,对称中心,周期性,奇偶性,单调区间。

()y x k k k Z =-+⎡⎣⎢⎤⎦⎥∈s i n的增区间为,2222ππππ ()减区间为,22232k k k Z ππππ++⎡⎣⎢⎤⎦⎥∈ ()()图象的对称点为,,对称轴为k x k k Z πππ02=+∈,周期T=π2[]()y x k k k Z =+∈c o s的增区间为,22πππ []()减区间为,222k k k Z ππππ++∈ ()图象的对称点为,,对称轴为k x k k Z πππ+⎛⎝⎫⎭⎪=∈20周期T=π2y x k k k Z =-+⎛⎝⎫⎭⎪∈t a n 的增区间为,ππππ22,对称点为()0,2πk ,周期T=π2 .函数)sin(Φ+=x A y ω的图像和性质 ()cos(Φ+=x A y ω)()振幅,周期12||||A T =πω()若,则为对称轴。

f x A x x 00=±=(即:对称轴经过图像的最高点或最低点且和y 轴平行)若,0)(0=x f 则()0,0x 为对称点。

(即:函数图像和x 轴交点的坐标)二.基础题型1.函数图像的变换:(掌握住变换规律) 例1:如何由x y sin =的图像得到)32sin(31π+=x y 的图像思考::如何由)32sin(31π+=x y 的图像得到x y sin =的图像例2:如何由x y sin =的图像得到)421cos(2π+-=x y 的图像2.求函数)sin(Φ+=x A y ω的单调区间,对称轴,对称中心, 例3:求函数)62sin(π-=x y 的单调区间,对称轴,对称中心。

思考:求函数)62sin(π--=x y 的单调区间,对称轴,对称中心。

三角函数的图像与性质详解

三角函数的图像与性质详解

三角函数的图像与性质详解在数学领域中,三角函数是一组常见且重要的函数。

它们不仅具有许多实际应用,同时也有着丰富的图像特性和数学性质。

本文将详细介绍三角函数的图像和性质,以帮助读者更好地理解和应用这些函数。

一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,用符号sin表示。

正弦函数的图像是一个连续的波形,具有以下性质:1. 周期性:正弦函数的图像在一个周期内重复。

正弦函数的周期由2π决定。

2. 对称性:正弦函数的图像关于y轴对称,即f(x) = -f(-x)。

3. 范围:正弦函数的值在[-1, 1]的范围内变化。

二、余弦函数的图像与性质余弦函数是另一个常见的三角函数,用符号cos表示。

余弦函数的图像也是一个连续的波形,具有以下性质:1. 周期性:余弦函数的图像也在一个周期内重复。

余弦函数的周期同样由2π决定。

2. 对称性:余弦函数的图像关于y轴对称,即f(x) = f(-x)。

3. 范围:余弦函数的值同样在[-1, 1]的范围内变化。

三、正切函数的图像与性质正切函数是三角函数中的另一个重要成员,用符号tan表示。

正切函数的图像具有以下性质:1. 周期性:正切函数的图像在每个π的倍数处出现垂直渐近线。

因此,正切函数没有固定的周期。

2. 对称性:正切函数的图像关于原点对称,即f(x) = -f(-x)。

3. 范围:正切函数在定义域内可以取任何实数值。

四、其他三角函数除了正弦、余弦和正切函数之外,还有许多与三角函数相关的函数,例如反正弦、反余弦和反正切函数。

这些函数的图像和性质相对复杂,超出了本文的范围。

感兴趣的读者可以进一步学习和了解这些函数的性质。

综上所述,三角函数是数学中常见而重要的函数。

它们的图像和性质有助于我们理解和应用这些函数。

通过研究三角函数的性质,我们可以更好地解决与周期性和周期性相关的问题,例如波动、震动和周期性运动。

希望本文的内容能够对读者在学习和应用三角函数时有所帮助。

高考数学三角函数的图像与性质

高考数学三角函数的图像与性质
(2)函数f(x)=sin x-cos x+sin xcos x,x∈[0,π],则f(x)的值域为 .
课堂考点探究
[-1,1]
[思路点拨]设t=sin x-cos x,先将原函数化为关于t的二次函数,注意t的取值范围,再求值域;[解析]设t=sin x-cos x,-1≤t≤,则t2=sin2x+cos2x-2sin xcos x,即sin xcos x=,所以原函数等价于y=-+t+=-(t-1)2+1.当t=1时,ymax=1;当t=-1时,ymin=-1.所以函数f(x)的值域为[-1,1].
D
(2)函数y=lg(2sin x+1)的定义域为( )A. B.C. D.
课堂考点探究
[思路点拨] 根据对数函数的定义域可得2sin x+1>0,求解即可;[解析]由2sin x+1>0,得sin x>-,即2kπ-<x<2kπ+,k∈Z,∴函数y=lg(2sin x+1)的定义域为.故选D.
D
B
[总结反思](1)对于函数f(x)=Asin(ωx+φ),其图像的对称轴一定经过函数图像的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x=x0或点(x0,0)是否是函数图像的对称轴或对称中心时,可通过检验f(x0)的值进行判断.(2)函数f(x)=Asin(ωx+φ)的图像的对称性与最小正周期T之间有如下结论:①若函数图像的相邻两条对称轴分别为直线x=a与直线x=b,则最小正周期T=2|b-a|; ②若函数图像相邻的两个对称中心分别为点(a,0)与点(b,0),则最小正周期T=2|b-a|;③若函数图像相邻的对称中心与对称轴分别为点(a,0)与直线x=b,则最小正周期T=4|b-a|.

三角函数的图像与性质

三角函数的图像与性质

第三节 三角函数的图像与性质[最新考纲] 1.能画出y =sin x ,y =cos x ,y =tan x 的图像,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图像与x轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图像的五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0), ⎛⎭⎪⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]图像的五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦函数、余弦函数、正切函数的图像与性质 函数 y =sin x y =cos x y =tan x图像定义域 R R ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z值域[-1,1][-1,1]R1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.2.正切曲线相邻两对称中心之间的距离是半个周期.3.对于函数y =Asin(ωx+φ),其对称轴一定经过图像的最高点或最低点,对称中心的横坐标一定是函数的零点.一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y =sin x 的图像关于点(k π,0)(k ∈Z )中心对称. ( ) (2)正切函数y =tan x 在定义域内是增函数. ( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1. ( ) (4)y =sin |x |与y =|sin x |都是周期函数.( )二、教材改编1.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z2.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是________. 3.y =sin ⎝⎛⎭⎪⎫2x -π4的单调减区间是________.4.y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________. ⊙考点1 三角函数的定义域和值域1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x ,cos x ,sin x cos x 或sin x ±cos x 换成t ,转化为二次函数求解.1.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠π6 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π12 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π6k ∈ZD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π6k ∈Z2.(2019·全国卷Ⅰ)函数f (x )=sin ⎝⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.4.函数y =sin x -cos x +sin x cos x 的值域为________. 求解三角函数的值域(最值)常见的几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin 3x +b sin 2x +c sin x +d ,类似于(2)进行换元,然后用导数法求最值. ⊙考点2 三角函数的单调性(1)形如y =A sin(ωx +φ)的函数的单调性问题,一般是将ωx +φ看成一个整体,再结合图像利用y =sin x 的单调性求解.(2)如果函数中自变量的系数为负值,要根据诱导公式把自变量系数化为正值,再确定其单调性.求三角函数的单调性(1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)(2019·大连模拟)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.根据函数的单调性求参数(1)(2019·西安模拟)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A .(0,2]B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,34 D.⎣⎢⎡⎦⎥⎤12,54 (2)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ] 是减函数,则a 的最大值是( )A.π4B.π2C.3π4D .π已知单调区间求参数范围的三种方法 子集法求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解反子集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期性法由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解1.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,3上单调递增,在区间⎣⎢⎡⎦⎥⎤3,2上单调递减,则ω=________.2.函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调减区间为________.⊙考点3 三角函数的周期性、奇偶性、对称性求解三角函数y =sin(ωx +φ)(ω>0)的周期性、奇偶性、对称性问题,其实质都是根据y =sin x 的对应性质,利用整体代换的思想求解.三角函数的周期性(1)(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |(2)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.公式莫忘绝对值,对称抓住“心”与“轴” (1)公式法求周期①函数f (x )=A sin(ωx +φ)的周期T =2π|ω|;②函数f (x )=A cos(ωx +φ)的周期T =2π|ω|;③函数f (x )=A tan(ωx +φ)的周期T =π|ω|.(2)对称性求周期①两对称轴距离的最小值等于T2;②两对称中心距离的最小值等于T2;③对称中心到对称轴距离的最小值等于T4.(3)特征点法求周期①两个最大值点之差的最小值等于T ; ②两个最小值点之差的最小值等于T ; ③最大值点与最小值点之差的最小值等于T2.特征点法求周期实质上就是由图像的对称性求周期,因为最值点与函数图像的对称轴相对应.(说明:此处的T 均为最小正周期)三角函数的奇偶性已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π). (1)若f (x )为偶函数,则φ=________; (2)若f (x )为奇函数,则φ=________.若f (x )=A sin(ωx +φ)(A ,ω≠0),则①f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );②f (x )为奇函数的充要条件是φ=k π(k ∈Z ).三角函数的对称性(1)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图像( )A .关于点⎝ ⎛⎭⎪⎫π3,0对称B .关于点⎝⎛⎭⎪⎫5π3,0对称C .关于直线x =π3对称D .关于直线x =5π3对称(2)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图像关于直线x =π3对称,则φ的值为________.三角函数图像的对称轴和对称中心的求解方法若求f (x )=A sin(ωx +φ)(ω≠0)图像的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)(ω≠0)图像的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .1.设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图像关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减 2.(2019·成都模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且任意x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图像的一个对称中心坐标是( )A.⎝ ⎛⎭⎪⎫-2π3,0 B.⎝ ⎛⎭⎪⎫-π3,0C.⎝ ⎛⎭⎪⎫2π3,0D.⎝⎛⎭⎪⎫5π3,0[过关题组练]1.函数y =|cos x |的一个单调增区间是( ) A .[-π2,π2]B .[0,π]C .[π,3π2]D .[3π2,2π]2.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎝⎛⎦⎥⎤π2,πC.⎣⎢⎡⎭⎪⎫π,3π2 D .⎝⎛⎦⎥⎤3π2,2π3.函数f (x )=12cos 2x +3sin x cos x .则下列表述正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫-π3,-π6上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π6,π3上单调递增C .f (x )在⎝ ⎛⎭⎪⎫-π6,0上单调递减D .f (x )在⎝⎛⎭⎪⎫0,π6上单调递增4.已知函数f (x )=cos 2x +sin 2⎝ ⎛⎭⎪⎫x +π6,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .f (x )的最大值为12D .f (x )的最小值为-125. 已知函数f (x )=(x -a )k,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( )A .当k =1,a =2时,f (sin A )<f (cosB ) B .当k =1,a =2时,f (cos A )>f (sin B )C .当k =2,a =1时,f (sin A )>f (cos B )D .当k =2,a =1时,f (cos A )>f (sin B )6. (2020·无锡期末)在函数①y =cos|2x |;②y =|cos 2x |;③y =cos ⎝ ⎛⎭⎪⎫2x +π6;④y =tan 2x 中,最小正周期为π的所有函数的序号为 .7. 已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .8. 已知函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=2,f (β)=2,且|α-β|的最小值是π2,则正数ω的值为( )A .1B .2C .3D .49. 已知函数f (x )=2cos 2⎝ ⎛⎭⎪⎫x -π6+2sin ⎝ ⎛⎭⎪⎫x -π4·sin ⎝ ⎛⎭⎪⎫x +π4.求函数f (x )的最小正周期和图象的对称中心.10. 已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. (1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32.(1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.。

三角函数和三角变换的初步了解

三角函数和三角变换的初步了解

三角函数和三角变换的初步了解一、三角函数1.1 定义:三角函数是用来描述直角三角形各个边与角度之间关系的函数。

1.2 基本三角函数:(1)正弦函数(sin):正弦函数是直角三角形中对边与斜边的比值,即sinθ = 对边/斜边。

(2)余弦函数(cos):余弦函数是直角三角形中邻边与斜边的比值,即cosθ = 邻边/斜边。

(3)正切函数(tan):正切函数是直角三角形中对边与邻边的比值,即tanθ = 对边/邻边。

(4)余切函数(cot):余切函数是直角三角形中邻边与对边的比值,即cotθ = 邻边/对边。

(5)正割函数(sec):正割函数是直角三角形中斜边与邻边的比值,即secθ = 斜边/邻边。

(6)余割函数(csc):余割函数是直角三角形中斜边与对边的比值,即cscθ = 斜边/对边。

1.3 三角函数的性质:(1)周期性:三角函数具有周期性,周期为360°或2π。

(2)奇偶性:正弦函数、余弦函数和正切函数为奇函数,余切函数、余割函数为偶函数。

(3)对称性:正弦函数、余弦函数、正切函数关于y轴对称,余切函数、余割函数关于x轴对称。

二、三角变换2.1 三角函数的基本变换:(1)和差变换:两个角的和(差)的三角函数可以通过两个角的三角函数的和(差)来表示。

(2)倍角公式:一个角的倍数的三角函数可以通过该角的三角函数的加减来表示。

(3)半角公式:一个角的半倍的三角函数可以通过该角的三角函数的平方根来表示。

2.2 三角函数的图像和性质:(1)正弦函数:图像为波浪线,性质有:周期性、奇偶性、对称性等。

(2)余弦函数:图像为水平线,性质有:周期性、奇偶性、对称性等。

(3)正切函数:图像为斜线,性质有:周期性、奇偶性、对称性等。

3.1 三角函数在实际生活中的应用:(1)测量学:利用三角函数测量物体的高度、距离等。

(2)工程学:利用三角函数计算结构的稳定性、角度等。

(3)物理学:利用三角函数描述波动、振动等现象。

三角函数的图像与性质

三角函数的图像与性质

三角函数的图像与性质三角函数是数学中常见的一类函数,包括正弦函数、余弦函数、正切函数等等。

它们在数学和物理学等领域中具有重要的应用和性质。

本文将讨论三角函数的图像与性质,并通过图像展示它们的特点。

一、正弦函数(sine function)正弦函数是最基本的三角函数之一,由于其周期性的特点,在图像上呈现出波浪形状。

在单位圆上,正弦函数的图像可以用来表示角度和弧度的关系。

正弦函数的图像可以通过以下步骤绘制出来:1. 将横轴分成一定的单位,例如每个单位代表30°或π/6。

2. 在每个单位上确定正弦函数的值,即纵坐标的位置。

3. 将所有的点依次连接起来,得到正弦函数的图像。

正弦函数的图像具有以下性质:1. 周期性:正弦函数的一个周期是360°或2π。

在一个周期中,正弦函数的值从最小值到最大值再返回最小值。

2. 对称性:正弦函数是奇函数,其图像关于原点对称。

即f(x) = -f(-x)。

3. 幅值:正弦函数的幅值为1,即图像的振幅为1。

4. 位置:正弦函数的图像在(x, f(x))的点上经过零点。

二、余弦函数(cosine function)余弦函数是另一个重要的三角函数,其图像也呈现出波浪形状,但与正弦函数有一定的相位差。

余弦函数在数学中的应用广泛,例如表示交流电信号的变化。

余弦函数的图像可以通过类似于正弦函数的步骤绘制出来。

余弦函数的图像具有以下性质:1. 周期性:余弦函数的一个周期也是360°或2π。

在一个周期中,余弦函数的值从最大值到最小值再返回最大值。

2. 对称性:余弦函数是偶函数,其图像关于y轴对称。

即f(x) = f(-x)。

3. 幅值:余弦函数的幅值也为1,即图像的振幅为1。

4. 位置:余弦函数的图像在(x, f(x))的点上经过最大值。

三、正切函数(tangent function)正切函数是三角函数中最特殊的一个,其图像呈现出一系列的尖峰和波谷。

正切函数在解决直角三角形问题时经常使用,也在物理学中广泛应用。

高考数学一轮总复习三角函数与向量考点难点解析与实践提升

高考数学一轮总复习三角函数与向量考点难点解析与实践提升

高考数学一轮总复习三角函数与向量考点难点解析与实践提升在高考数学中,三角函数与向量是一项重要的考点,也是比较难理解和应用的部分。

本文将对三角函数与向量的考点难点进行解析,并提出实践提升的方法。

一、三角函数的难点解析1.1 反函数和反三角函数在解析几何中,反函数和反三角函数是较为容易混淆的概念。

反函数指的是将原函数的自变量与因变量互换得到的新函数,而反三角函数指的是将三角函数的值作为自变量,求出满足该三角函数值的角度。

需要注意的是,反函数和反三角函数之间是不同的概念,常常容易混淆。

解决这个问题的方法是要熟练掌握反函数和反三角函数的定义和性质,并通过大量的练习题来加深理解和应用。

1.2 三角恒等式和三角方程三角恒等式和三角方程也是考试中的难点。

三角恒等式指的是在三角函数中成立的等式,常常需要用到三角函数的基本关系和性质来推导。

而三角方程则是指包含了三角函数的方程,它们的解需要考生灵活运用三角函数的定义和性质,将方程转化为三角函数的等式,再进行求解。

对于这两个难点,考生需要多加练习,善于运用基本的三角函数关系和性质来解决。

1.3 三角函数的图像性质三角函数的图像性质也是考试中的一个难点,尤其是正弦函数、余弦函数和正切函数的变换和平移。

考生需要熟悉各个三角函数的基本图像,并理解变换和平移对图像的影响。

同时,要注意分析题目中所涉及的角度范围,确定函数图像的周期性和对称性。

二、向量的难点解析2.1 向量的基本概念和性质向量是高考数学中一个关键的概念,它有着严格的定义和性质。

考生首先要熟悉向量的基本概念,包括向量的模、方向和共线性等;其次,要掌握向量的加法和减法规则,以及数量积和向量积的计算方法。

对于这些基本概念和性质,考生要进行大量的记忆和练习,以确保在考试中准确无误地应用。

2.2 向量的共线与垂直向量的共线与垂直是高考常见的考点难点。

共线性的判定常用数量积来进行,考生需要掌握数量积与向量共线的关系。

而垂直性的判定则常用向量积来进行,考生需要熟练掌握向量积的计算方法并能运用到垂直性的判定中。

三角函数的图像及性质

三角函数的图像及性质
(3)求函数 y A sin(x ) B 的单调区间的步骤: ①用诱导公式将 化为正数; ②当 A 0, 0 时,由 2x 2k

2
(k z ) 解得 x 的区间即为函数的单调

2
x 2k
2
解法:反函数法、几何法
a sin x b cos x c 型 d sin x e cos x f
3 .热点探索 三角函数的图象和性质是高考命题的一个热点.高考中主要考查正弦、余弦、正切型函 数的图象和性质 ,以对称性、单调性、周期性和图象的变换等为重点,突出数形结合等数 学思想的考查.难度以容易题、中档题为主.
三角函数的图像及性质 一、 【精要知识点击】
1.函数 y A sin(x ) B 的图象 (1)熟练掌握五点法作图象 (2)根据图象确定解析式的方法 (3)熟练掌握图象变换规则 (4)图象的对称性 ①函数 y A sin(x ) B 与 y A cos(x ) B 的对称轴经过它们的最值点.
2 或 2 3
法二:
f ( x) 是偶函数 k

2
(k Z ) 0

2
f ( x) sin(x

2
) cos x
f ( x) 的图象关于点 M (
f ( x) 在区间 [0, ] 上是单调函数 用五点法作出 f ( x) cosx 的图象

2
] 上是单调函数,不进行讨论,故对 ≥
10 不能排除. 3
cos sin x cos sin x 对任意 x 都成立,且 0 ,所以得 cos 0
2 3 3 3 f ( x) 的图象关于点 M ( , 0) 对称 得取得 f ( x) f ( x) 得 x 0 得 4 4 4 3 3 3 f ( )= f ( ) ∴ f( )0 4 4 4 3 3 3 3 ) = cos ∵ f ( ) = sin( ∴ cos =0 4 4 4 4 2 3 2 k (k 0,1,2,3, ) (2k 1)( k 0,1,2,3, ) 又 0 ,得 4 2 3 2 2 f ( x) sin( x ) 在[0, ]上是减函数 当 k 0 时, 2 3 3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1-1.3.2正弦、余弦函数的图象教学目的:知识目标:(1)利用单位圆中的三角函数线作出Rx x y ∈=,sin 的图象,明确图象的形状;(2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象;(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法; (2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习工作精神;教学重点:用单位圆中的正弦线作正弦函数的图象;教学难点:作余弦函数的图象,周期性;授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。

2. 正、余弦函数定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离r (02222>+=+=y x yx r )则比值r y叫做α的正弦 记作: r y =αsin 比值rx叫做α的余弦 记作: rx =αcos 3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲解新课:1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.(1)函数y=sinx 的图象第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象用几何法作余弦函数的图象,可以用“反射法”将角x 的余弦线“竖立”[把坐标轴向下平移,过1O 作与x 轴的正半轴成4π角的直线,又过余弦线1O A 的终点A 作x 轴的垂线,它与前面所作的直线交于A ′,那么1O A 与AA ′长度相等且方向同时为正,我们就把余弦线1O A “竖立”起来成为AA ′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x 轴上相应的点x 重合,则终点就是余弦函数图象上的点.]也可以用“旋转法”把角 的余弦线“竖立”(把角x 的余弦线O 1M 按逆时针方向旋转2π到O 1M 1位置,则O 1M 1与O 1M 长度相等,方向相同.)根据诱导公式cos sin()2x x π=+,还可以把正弦函数x=sinx 的图象向左平移2π单位即得余弦函数y=cosx 的图象. (课件第三页“平移曲线” )正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是: (0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.优点是方便,缺点是精确度不高,熟练后尚可以 3、讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2) y=|sinx |, (3)y=sin |x |探究1.如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到(1)y =1+sinx ,x∈〔0,2π〕的图象; (2)y=sin(x- π/3)的图象?小结:函数值加减,图像上下移动;自变量加减,图像左右移动。

探究2.如何利用y=cos x ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y =-cosx ,x∈〔0,2π〕的图象? 小结:这两个图像关于X 轴对称。

探究3.如何利用y=cos x ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y =2-cosx ,x∈〔0,2π〕的图象?小结:先作 y=cos x 图象关于x 轴对称的图形,得到 y =-cosx 的图象,再将y =-cosx 的图象向上平移2个单位,得到 y =2-cosx 的图象。

探究4.不用作图,你能判断函数y=sin( x - 3π/2 )和y=cosx 的图象有何关系吗?请在同一坐标系中画出它们的简图,以验证你的猜想。

小结:sin( x - 3π/2 )= sin[( x - 3π/2 ) +2 π] =sin(x+π/2)=cosx ,这两个函数相等,图象重合。

例2 用五点法作函数2cos(),[0,2]3y x x ππ=+∈的简图.例3 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x 的集合:1(1)sin ;2x ≥ 15(2)cos ,(0).22x x π≤<<小结:1.正弦、余弦曲线 几何画法和五点法2.注意与诱导公式,三角函数线的知识的联系 补充:1.分别用单位圆中的三角函数线和五点法作出y=sinx 的图象 2.分别在[-4π,4π]内作出y=sinx 和y=cosx 的图象 3.用五点法作出y=cosx,x ∈[0,2π]的图象1.3.1-1.3.2正弦、余弦函数的性质教学目的:知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义,理解三角函数的奇、偶性和单调性;能力目标:掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期,掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。

德育目标:让学生自己根据函数图像而导出周期性,领会从特殊推广到一般的数学思想,体会三角函数图像所蕴涵的和谐美,激发学生学数学的兴趣。

教学重点:正、余弦函数的周期性、奇偶性和单调性教学难点:正、余弦函数周期性、奇偶性和单调性的理解与应用授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:(一)定义域:正弦函数和余弦函数的定义域均为R (二)值域:正弦函数和余弦函数的值域均为[-1,1] (三)周期性一、复习引入:1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……(2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?2.观察正(余)弦函数的图象总结规律:正弦函数()sin f x x =性质如下:(观察图象) 1︒正弦函数的图象是有规律不断重复出现的;2︒规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3︒这个规律由诱导公式sin(2k π+x)=sinx 可以说明 结论:象这样一种函数叫做周期函数。

文字语言:正弦函数值按照一定的规律不断重复地取得; 符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。

余弦函数也具有同样的性质,这种性质我们就称之为周期性。

二、讲解新课:1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。

问题:(1)对于函数sin y x =,x R ∈有2sin()sin 636πππ+=,能否说23π是它的周期?(2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠)(3)若函数()f x 的周期为T ,则kT ,*k Z ∈也是()f x 的周期吗?为什么? (是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+ )2、说明:1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界;2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)) 3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期) y=sinx, y=cosx 的最小正周期为2π (一般称为周期)从图象上可以看出sin y x =,x R ∈;cos y x =,x R ∈的最小正周期为2π;判断:是不是所有的周期函数都有最小正周期? (()f x c =没有最小正周期)3、例题讲解例1 求下列三角函数的周期: ①x y cos 3= ②x y 2sin =(3)12sin()26y x π=-,x R ∈.解:(1)∵3cos(2)3cos x x π+=,– – π2π2π- 2π5ππ- 2π- 5π- Ox y 1 1-∴自变量x 只要并且至少要增加到2x π+,函数3cos y x =,x R ∈的值才能重复出现,所以,函数3cos y x =,x R ∈的周期是2π. (2)∵sin(22)sin 2()sin 2x x x ππ+=+=,∴自变量x 只要并且至少要增加到x π+,函数sin 2y x =,x R ∈的值才能重复出现, 所以,函数sin 2y x =,x R ∈的周期是π.(3)∵1112sin(2)2sin[()]2sin()262626x x x πππππ-+=+-=-, ∴自变量x 只要并且至少要增加到x π+,函数sin 2y x =,x R ∈的值才能重复出现, 所以,函数sin 2y x =,x R ∈的周期是π. 说明:(1)一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈(其中,,A ωϕ 为常数,且0A ≠,0ω>)的周期2T πω=; (2)若0ω<,例如:①3cos()y x =-,x R ∈;②sin(2)y x =-,x R ∈; ③12sin()26y x π=--,x R ∈.则这三个函数的周期又是什么? 一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈的周期2||T πω= 例2先化简,再求函数的周期 ①x x y cos sin +=②x x x x y 22sin sin cos 32cos -+= ③证明函数|cos ||sin |)(x x x f +=的一个周期为2π,并求函数的值域; 例3 求下列三角函数的周期: 1︒ y=sin(x+3π) 2︒ y=cos2x 3︒ y=3sin(2x +5π)解:1︒ 令z= x+3π而 sin(2π+z)=sinz 即:f (2π+z)=f (z) f [(x+2)π+3π]=f (x+3π) ∴周期T=2π 2︒令z=2x ∴f (x )=cos2x=cosz=cos(z+2π)=cos(2x+2π)=cos[2(x+π)]即:f (x +π)=f (x ) ∴T=π 3︒令z=2x +5π 则:f (x )=3sinz=3sin(z+2π)=3sin(2x +5π+2π) =3sin(524ππ++x )=f (x +4π) ∴T=4π 小结:形如y=Asin(ωx+φ) (A,ω,φ为常数,A ≠0, x ∈R) 周期T=ωπ2y=Acos(ωx+φ)也可同法求之例4 求下列函数的周期: 1︒y=sin(2x+4π)+2cos(3x-6π) 2︒ y=|sinx| 3︒ y=23sinxcosx+2cos 2x-1 解:1︒ y 1=sin(2x+4π) 最小正周期T 1=πy 2=2cos(3x-6π) 最小正周期 T 2=32π ∴T 为T 1 ,T 2的最小公倍数2π ∴T=2π2︒注意小结这两种类型的解题规律3︒ y=3sin2x+cos2x ∴T=π三、巩固与练习1. y=2cos(34π+x )-3sin(4π-x )2. y=-cos(3x+2π)+sin(4x-3π) 3. y=|sin(2x+6π)| 4. y=cos2θsin 2θ+1-2sin 22θ(四)奇偶性请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么? (1)余弦函数的图形当自变量取一对相反数时,函数y 取同一值。

相关文档
最新文档