小升初六年级奥数题及答案-20道题(中等难度)

合集下载

小升初六年级奥数题及答案-20道题(中等难度)

小升初六年级奥数题及答案-20道题(中等难度)

小升初六年级奥数题及答案-20道题(中等难度)〔题-001〕抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子,请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

〔题-002〕牛吃草;〔中等难度〕一只船发现漏水时,已经进了一些水,水匀速进入船内,如果10人淘水,3小时淘完;如5人淘水8小时淘完,如果要求2小时淘完,要安排多少人淘水?〔题-003〕奇偶性应用;〔中等难度〕桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”,请说明;无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

〔题-004〕整除问题;〔中等难度〕用一个自然数去除另一个整数,商40,余数是16,被除数、除数、商数与余数的和是933,求被除数和除数各是多少?〔题-005〕填数字;〔中等难度〕请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.〔题-006〕灌水问题;〔中等难度〕公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.〔题-007〕浓度问题;〔中等难度〕瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?〔题-008〕水和牛奶;〔中等难度〕一个卖牛奶的人告诉两个小学生;这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?〔题-009〕巧算;〔中等难度〕计算;〔题-010〕队形;〔中等难度〕做少年广播体操时,某年级的学生站成一个实心方阵时〔正方形队列〕时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人,问;原有多少人?〔题-011〕计算;〔中等难度〕一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-〔3+1〕=2不是11的倍数,所以1234不是11的倍数,问;用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?〔题-012〕分数;〔中等难度〕某学校的若干学生在一次数学考试中所得分数之和是8250分,第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数,问;至少有几个学生的得分不低于60分?〔题-013〕四位数;〔中等难度〕某个四位数有如下特点;①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数,〔题-014〕行程;〔中等难度〕王强骑自行车上班,以均匀速度行驶,他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?〔题-015〕跑步;〔中等难度〕狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

六年级能学的奥数题及答案

六年级能学的奥数题及答案

六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。

六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。

以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。

请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。

由于每次拿球后都放回,第二次拿到红球的概率也是3/5。

两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。

题目2:一个数字钟的时针和分针在12点整重合。

请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。

因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。

每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。

题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。

答案:设原来的长方形宽为x厘米,那么长就是2x厘米。

原来的面积是x * 2x = 2x^2平方厘米。

增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。

根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。

解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。

题目4:一个数字序列如下:2, 4, 7, 11, ...。

这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。

根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。

小学六年级奥数试题及答案解析(中高难度)

小学六年级奥数试题及答案解析(中高难度)

小学六年级中高难度奥数题及答案解析(1)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【答案解析】当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角成的直角拐角..补充人后,扩大的方阵每边上有扩大的方阵每边上有((10+15+110+15+1))÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人.题2:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”只同时“翻转”..请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【答案解析】要使一只杯子口朝下,必须经过奇数次要使一只杯子口朝下,必须经过奇数次""翻转翻转".".".要使要使9只杯子口全朝下,必须经过9个奇数之和次之和次""翻转翻转".".".即即"翻转翻转""的总次数为奇数但是,按规定每次翻转6只杯子,无论经过多少次"翻转翻转"",翻转的总次数只能是偶数次,翻转的总次数只能是偶数次..因此无论经过多少次因此无论经过多少次""翻转翻转"",都不能使9只杯子全部口朝下。

∴被除数口朝下。

∴被除数=21=21=21××40+16=85640+16=856。

答:被除数是856856,除数是,除数是2121。

小学六年级奥数题 小升初 及答案

小学六年级奥数题 小升初 及答案

小学六年级奥数题小升初及答案1、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案:原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人答:育才小学共有学生800人。

2、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?答案:泥土路用了x小时,柏油路用了(8-x)小时。

40x+(8-x)60=420X=3所以3×40=120(千米)答:泥土路长120千米。

3、学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。

现在田径组有女生多少人?解:设原来田径队男女生一共x人1/3x+6= 4/9(x+6)x=3030×1/3+6=16答:女生16人。

4、学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。

三个年级段各分得多少本图书?解:设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本x+2x+3x-120=840x=160高年级段为:160×2=320(本),中年级段为:160×3-120=360(本)答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本。

5、小华有连环画本数是小明6倍,如果两人各再买2本,那么小华所有本数是小明4倍,两人原来各有连环画多少本?解:设小明原来有x本书4(x+2)=6x+2x=36×3=18 (本)答:小明有3本,小华有18本。

奥数题20道

奥数题20道

奥数题20道【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【题-013】四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

小升初最难的奥数题

小升初最难的奥数题

小升初最难的奥数题一、题目列举1. 工程问题类有一项工程,甲单独做需要10天完成,乙单独做需要15天完成。

现在甲先做了3天,剩下的工程由甲乙合作完成,问还需要多少天?这题分值可以占20分。

解题思路就是把这项工程的工作量看作单位“1”,甲的工作效率就是1÷10 = 1/10,乙的工作效率是1÷15 = 1/15。

甲先做3天,完成的工作量是1/10×3 = 3/10,剩下的工作量是1 - 3/10 = 7/10。

甲乙合作的工作效率是1/10+1/15 = 1/6,那么剩下工程需要的时间就是7/10÷1/6 = 4.2天。

2. 行程问题类甲乙两车分别从A、B两地同时出发,相向而行。

甲车速度是每小时60千米,乙车速度是每小时40千米,两车相遇后继续前行,甲车到达B地后立即返回,乙车到达A地后也立即返回,第二次相遇时距离A地80千米,求A、B两地的距离。

这题分值可以是20分。

设A、B两地距离为x千米。

第一次相遇时,甲乙两车行驶的时间相同,所以路程比等于速度比,即甲行驶的路程:乙行驶的路程= 60:40 = 3:2,那么第一次相遇时甲行驶了3/5x千米,乙行驶了2/5x千米。

第二次相遇时,甲乙两车一共行驶了3x千米,甲行驶了2x - 80千米,乙行驶了x+80千米,根据时间相同路程比等于速度比,可列出方程(2x - 80):(x + 80)=3:2,解得x = 200千米。

3. 数论问题类一个数除以5余3,除以6余4,除以7余5,这个数最小是多少?这题分值15分。

这个数加上2就能被5、6、7整除。

5、6、7的最小公倍数是5×6×7 = 210,所以这个数最小是210 - 2 = 208。

4. 几何问题类有一个直角三角形,两条直角边分别是6厘米和8厘米,求这个三角形外接圆的半径。

这题分值15分。

直角三角形外接圆的半径等于斜边的一半。

根据勾股定理,斜边的长度是√(6²+8²)=10厘米,所以外接圆半径是5厘米。

小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。

解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。

解得x = -24。

2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。

解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。

解得x = 60。

3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。

解:设长方形的长为x厘米,宽为y厘米。

根据题意可得方程组:x - y = 4;2x + 2y = 32。

解得x = 10,y = 6。

所以长方形的长为10厘米,宽为6厘米。

4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。

解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。

解得x = 12。

5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。

解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。

将已知的三边长代入公式即可求得三角形的面积。

6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。

解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。

解得x = 10。

7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。

解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。

解得x = 4。

所以原来正方形的边长为4厘米。

8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。

六年级奥数题及答案:分数(中等难度)_题型归纳

六年级奥数题及答案:分数(中等难度)_题型归纳

六年级奥数题及答案:分数(中等难度)_题型归纳
分数:(中等难度)
某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?
分数答案:
除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).
为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3(30+31++59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.
如果得60分至79分的有60人,共占分数3(60+61+ + 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.。

小升初六年级奥数题-20道题(中等难度)

小升初六年级奥数题-20道题(中等难度)

小升初六年级奥数题及答案20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

六年级下册小升初奥数综合测试卷(含解析)

六年级下册小升初奥数综合测试卷(含解析)

六年级下册小升初奥数综合测试卷(含解析)一、选择题(每题4分,共20分)1.一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是()立方分米。

A. 8.4B. 9.66C. 10.08D. 11.342.一个五位数恰好等于它各位数字和的2007倍,则这个五位数是()。

A. 10035B. 20070C. 30105D. 401403.在一只口袋里装着2个红球,3个黄球和4个黑球。

从口袋中任取一个球,这个球是红球的概率是()。

A. 1/9B. 2/9C. 1/3D. 2/34.甲、乙两车分别从A、B两地出发相向而行,甲车先行三小时后乙车从B地出发,乙车出发5小时后两车还相距15千米。

甲车每小时行48千米,乙车每小时行50千米。

求A、B两地间相距多少千米?A. 360B. 400C. 420D. 4505.一个圆柱体的体积是50.24立方厘米,底面半径是2厘米。

将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米?A. 25.12B. 50.24C. 75.36D. 100.48二、填空题(每题5分,共20分)1.已知一个正方体的棱长是6厘米,则它的体积是________立方厘米。

2.一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米。

今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放入容器中。

求这时容器的水深是________厘米。

3.一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数是________。

4.将自然数按从小到大的顺序排列成螺旋形,2处拐一个弯,在3处拐第二个弯,在5处拐第三个弯,问拐第20个弯的地方是________。

三、解答题(每题10分,共60分)1.一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。

六年级数学中高难度奥数试题(含解析)(1)

六年级数学中高难度奥数试题(含解析)(1)

1 小学六年级中高难度奥数题及答案解析(1)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

的年龄根据学生自身特点而定。

2121世纪小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(高等难度)六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?【答案解析】解答:设获奖人数为x,则所以x=111x=111(人)(人)题2:(中等难度)"迎春杯迎春杯""数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖..甲说:甲说:""如果我能获奖,那么乙也能获奖奖,那么乙也能获奖."."."乙说:乙说:乙说:""如果我能获奖,那么丙也能获奖如果我能获奖,那么丙也能获奖."."."丙说:丙说:丙说:""如果丁没获奖,那么我也不能获奖么我也不能获奖."."."实际上,他们之中只有一个人没有获奖实际上,他们之中只有一个人没有获奖实际上,他们之中只有一个人没有获奖..并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是那么没能获奖的同学是_________。

【答案解析】首先根据丙说的话可以推知,丁必能获奖首先根据丙说的话可以推知,丁必能获奖..否则,假设丁没获奖,那么丙也没获奖,这与否则,假设丁没获奖,那么丙也没获奖,这与""他们之中只有一个人没有获奖他们之中只有一个人没有获奖""矛盾。

其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能个人全都能获奖,不可能..因此,只有甲没有获奖。

小学六年级奥数试题及答案解析(中高难度)

小学六年级奥数试题及答案解析(中高难度)

小学六年级中高难度奥数题及答案解析( 1)“奥数”是奥林匹克数学竞赛的简称。

学习奥数可以锻炼思维,是大有好处的。

学习奥数的年龄根据学生自身特点而定。

小学频道在这里精选了一些典型的小学六年级中高难度的奥数试题,并附有答案解析,大家来做做看吧!题1:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10 人,如果站成一个每边多1人的实心方阵,则还缺少15人. 问:原有多少人?【答案解析】当扩大方阵时,需补充10+15 人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角. 补充人后,扩大的方阵每边上有(10+15+1)÷ 2=13人. 因此扩大方阵共有13 ×13=169 人,去掉15 人,就是原来的人数169-15=154 人.题2:(中等难度)桌上有9 只杯子,全部口朝上,每次将其中6 只同时“翻转” . 请说明:无论经过多少次这样的“翻转”,都不能使9 只杯子全部口朝下。

【答案解析】要使一只杯子口朝下,必须经过奇数次"翻转". 要使9只杯子口全朝下,必须经过9 个奇数之和次"翻转". 即"翻转"的总次数为奇数. 但是,按规定每次翻转6只杯子,无论经过多少次"翻转" ,翻转的总次数只能是偶数次.因此无论经过多少次"翻转" ,都不能使9 只杯子全部口朝下。

∴被除数=21× 40+16=856。

答:被除数是856,除数是21。

题3:(高等难度)在圆周上有1987 个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝. 最后统计有1987 次染红,1987 次染蓝. 求证至少有一珠子被染上过红、蓝两种颜色。

【答案解析】假设没有一个珠子被染上过红、蓝两种颜色,即所有珠子都是两次染同色. 设第一次染m个珠子为红色,第二次必然还仅染这m个珠子为红色. 则染红色次数为2m 次。

六年级奥数题及答案:灌水问题(中等难度)

六年级奥数题及答案:灌水问题(中等难度)

六年级奥数题及答案:灌水问题(中等难度)
六年级奥数题及答案:灌水问题(中等难度)灌水问题:(中等难度)
公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.
灌水问题答案:
如第一周小李按甲、乙、丙、甲、乙、丙的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意.
如第一周小李按甲、乙、丙、甲、乙、丙的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管。

六年级奥数题及答案:水和牛奶(中等难度)

六年级奥数题及答案:水和牛奶(中等难度)

水和牛奶:(中等难度)
一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?
水和牛奶答案:。

小升初经典奥数题20道

小升初经典奥数题20道

2021/10/10
20
【题-018】自然数和:(中等难度) 在整数中,有用2个以上的连续自然数的和来表达一个整数的 方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自 然数的和来表达它的方法.
2021/10/10
21
【题-019】准确值:(中等难度)
2021/10/10
22
【题-020】巧求整数部分题目:(中等难度) (第六届小数报决赛)A 8.8 8.98 8.998 8.9998 8.99998,
2021/10/10
11
【题-009】 巧算:(中等难度) 计算:
2021/10/10
12
【题-010】队形:(中等难度) 做少年广播体操时,某年级的学生站成一个实心方阵时(正方 形队列)时,还多10人,如果站成一个每边多1人的实心方阵, 则还缺少15人.问:原有多少人?
2021/10/10
13
2021/10/10
9
【题-007】 浓度问题:(中等难度) 瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100 克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已 知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精 溶液的浓度是百分之几?
2021/10/10
10
【题-008】水和牛奶:(中等难度) 一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶 里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把 A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的 液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进 B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体, 而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶, 而在结束时,每个桶里又有多少水和牛奶?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初六年级奥数题及答案-20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子,请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草;(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内,如果10人淘水,3小时淘完;如5人淘水8小时淘完,如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用;(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”,请说明;无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题;(中等难度)用一个自然数去除另一个整数,商40,余数是16,被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字;(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题;(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题;(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶;(中等难度)一个卖牛奶的人告诉两个小学生;这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算;(中等难度)计算;【题-010】队形;(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人,问;原有多少人?【题-011】计算;(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数,问;用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数;(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分,第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数,问;至少有几个学生的得分不低于60分?【题-013】四位数;(中等难度)某个四位数有如下特点;①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数,【题-014】行程;(中等难度)王强骑自行车上班,以均匀速度行驶,他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步;(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

问;狗再跑多远,马可以追上它?【题-016】排队;(中等难度)有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()【题-017】分数方程;(中等难度)若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。

再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问;一共有多少只盒子?【题-018】自然数和;(中等难度)在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9;9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法,【题-019】准确值;(中等难度)【题-020】巧求整数部分题目;(中等难度)(第六届小数报决赛)A 8,8 8,98 8,998 8,9998 8,99998,A的整数部分是______ ___,【题目答案】【题-001解答】抽屉原理首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有;3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉,把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果,把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉,由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的【题-002解答】牛吃草这类问题,都有它共同的特点,即总水量随漏水的延长而增加,所以总水量是个变量,而单位时间内漏进船的水的增长量是不变的,船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量,对于这个问题我们换一个角度进行分析。

如果设每个人每小时的淘水量为"1个单位",则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30,船内原有水量与8小时漏水量之和为1×5×8=40。

每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。

船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量,3小时漏进水量相当于3×2=6人1小时淘水量,所以船内原有水量为30-(2×3)=24。

如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。

从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量,有了这两个量,问题就容易解决了。

【题-003解答】奇偶性应用要使一只杯子口朝下,必须经过奇数次"翻转",要使9只杯子口全朝下,必须经过9个奇数之和次"翻转",即"翻转"的总次数为奇数,但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次,因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。

∴被除数=21×40+16=856。

答;被除数是856,除数是21。

【题-004解答】整除问题∵被除数=除数×商+余数,即被除数=除数×40+16。

由题意可知;被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。

答;被除数是856,除数是21【题-005解答】填数字;解此类数独题的关键在于观察那些位置较特殊的方格(对角线上的或者所在行、列空格比较少的),选作突破口.本题可以选择两条对角线上的方格为突破口,因为它们同时涉及三条线,所受的限制最严,所能填的数的空间也就最小.副对角线上面已经填了2,3,8,6四个数,剩下1,4,5和7,这是突破口.观察这四个格,发现左下角的格所在的行已经有5,所在的列已经有1和 4,所以只能填7.然后,第六行第三列的格所在的行已经有5,所在的列已经有4,所以只能填1.第四行第五列的格所在的行和列都已经有5,所以只能填4,剩下右上角填5.再看主对角线,已经填了1和2,依次观察剩余的6个方格,发现第四行第四列的方格只能填7,因为第四行和第四列已经有了5,4,6,8,3.再看第五行第五列,已经有了4,8,3,5,所以只能填6.此时似乎无法继续填主对角线的格子,但是,可观察空格较少的行列,例如第四列已经填了5个数,只剩下1,2,5,则很明显第六格填2,第八格填1,第三格填5.此时可以填主对角线的格子了,第三行第三列填8,第二行第二列填3,第六行第六列填4,第七行第七列填5.继续依次分析空格较少的行和列(例如依次第五列、第三行、第八行、第二列……),可得出结果如下图.【题-006解答】灌水问题;如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意.如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾.所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.【题-007解答】浓度问题【题-008解答】水和牛奶【题-009解答】巧算;本题的重点在于计算括号内的算式;.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.法一;观察可知5=2+3,7=3+4,……即每一项的分子都等于分母中前两个乘数的和,所以【题-010解答】队形当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角,补充人后,扩大的方阵每边上有(10+15+1)÷2=13人,因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人【题-011解答】计算答案;用1.2.3.4.5组成不含重复数字的六位数,,它能被11整除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有;a1+a3+a5-a2-a4-a6=11k (*)也就是;a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)15=0+1+2+3+4+5=11k+2(a2+a4+a6)(**)由此看出k只能是奇数由(*)式看出,0≤k<2 ,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2,但是在0、1、2、3、4、5中任何三个数之和也不等于2,可见k≠1,因此(*)不成立,对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数,根据上述分析知;用0、1、2、3、4、5不能组成不包含重复数字的能被11整除的六位数,【题-012解答】分数;(中等难度)除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分;8250-(88+85+80)=7997(分),为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分,如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人,但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58),因此,加上前三名,不低于60分的人数至少为61人,【题-013解答】四位数;(中等难度)四位数答案;因为该数加1之后是15的倍数,也是5的倍数,所以d=4或d=9,因为该数减去3是38的倍数,可见原数是奇数,因此d≠4,只能是d=9,这表明m=27、37、47;32、42、52,(因为38m的尾数为6)又因为38m+3=15k-1(m、k是正整数)所以38m+4=15k,由于38m的个位数是6,所以5|(38m+4),因此38m+4=15k等价于3|(38m+4),即3除m余1,因此可知m=37,m=52,所求的四位数是1409,1979,【题-014解答】行程答案;汽车间隔距离是相等的,列出等式为;(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出;汽车速度=自行车速度的2倍,汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟),【题-015解答】跑步;(中等难度)根据"马跑4步的距离狗跑7步",可以设马每步长为7x米,则狗每步长为4x米。

相关文档
最新文档