福建省福州市罗源三中2018-2019学年度第二学期第一次月考数学试卷PDF版无答案
罗源县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
罗源县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )2. 函数1ln(1)y x=-的定义域为( ) A . (,0]-∞ B .(0,1) C .(1,)+∞ D .(,0)(1,)-∞+∞3. 命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >04. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β 5.若椭圆+=1的离心率e=,则m 的值为( )A .1B.或C.D .3或6. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=7. 若,x y ∈R ,且1,,230.x y x x y ≥⎧⎪≥⎨⎪-+≥⎩则y z x =的最小值等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .3B .2C .1D .128. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.9. 若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是( )A .a >0B .﹣1<a <0C .a >1D .0<a <110.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .11.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点12.若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )A .∀x ∈R ,2x 2﹣1<0B .∀x ∈R ,2x 2﹣1≤0C .∃x ∈R ,2x 2﹣1≤0D .∃x ∈R ,2x 2﹣1>0二、填空题13.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .16.如图,在矩形ABCD 中,AB =,点Q 为线段CD (含端点)上一个动点,且DQ QC λ=,BQ 交AC 于P ,且AP PC μ=,若AC BP ⊥,则λμ-= .CDQ17.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .18.的展开式中的系数为 (用数字作答).三、解答题19.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .20.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D (2,0).(1)求该椭圆的标准方程; (2)设点,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.21.已知f (x )是定义在[﹣1,1]上的奇函数,f (1)=1,且若∀a 、b ∈[﹣1,1],a+b ≠0,恒有>0,(1)证明:函数f (x )在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x ∈[﹣1,1]及∀a ∈[﹣1,1],不等式f (x )≤m 2﹣2am+1恒成立,求实数m 的取值范围.22.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.23.设点P的坐标为(x﹣3,y﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.24.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.罗源县第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM=2sin x2,PB =2OM =2OA ·cos ∠AOM =2cos x2,∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,故选B. 2. 【答案】B 【解析】∵110x ->,∴10x x ->,∴10x x-<,∴01x <<. 3. 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x >0,使得x 2﹣x <0,故选:C .【点评】本题主要考查含有量词的命题 的否定,比较基础.4. 【答案】C【解析】解:对于A ,若 m ∥α,n ∥α,则 m 与n 相交、平行或者异面;故A 错误; 对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误;对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.5. 【答案】D【解析】解:当椭圆+=1的焦点在x 轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y 轴上时,a=,b=,c=由e=,得=,即m=.故选D【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x 轴和y 轴进行分类讨论.6. 【答案】D 【解析】考点:直线的方程. 7. 【答案】B 8. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a ba b ab++≤≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.9. 【答案】A【解析】解:∵函数f (x )=﹣a (x ﹣x 3)的递减区间为(,)∴f ′(x )≤0,x ∈(,)恒成立即:﹣a (1﹣3x 2)≤0,,x ∈(,)恒成立∵1﹣3x 2≥0成立∴a >0 故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.10.【答案】A 【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确; 中间的棱在侧视图中表现为一条对角线,故C 不正确; 而对角线的方向应该从左上到右下,故B 不正确故A 选项正确. 故选:A . 【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.11.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1≠x2时,直线的斜率存在,且有,又x2﹣a为无理数,而为有理数,所以只能是,且y2﹣y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C.故选:C.【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.12.【答案】C【解析】解:命题p:∀x∈R,2x2﹣1>0,则其否命题为:∃x∈R,2x2﹣1≤0,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;二、填空题13.【答案】(﹣4,0].【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.14.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.15.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).16.【答案】1【解析】以A为原点建立直角坐标系,如图:设AB =1AD =,B,C .直线AC的方程为y x =, 直线BP 的方程为3y =+,直线DC 的方程为1y =, 由13y y =⎧⎪⎨=+⎪⎩,得Q,由3y x y ⎧=⎪⎨⎪=+⎩,得3)4P ,∴DQ =,QC DQ ==DQ QC λ=,得2λ=.由AP PC μ=,得331))])444μμ=-=,∴3μ=,1λμ-=-.17.【答案】 9+4 .【解析】解:∵函数f (x )=x 2+x ﹣b+只有一个零点,∴△=a ﹣4(﹣b+)=0,∴a+4b=1,∵a ,b 为正实数,∴+=(+)(a+4b)=9++≥9+2=9+4当且仅当=,即a=b 时取等号, ∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.18.【答案】20【解析】【知识点】二项式定理与性质 【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:三、解答题19.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.20.【答案】【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.21.【答案】【解析】解:(1)证明:任取x1、x2∈[﹣1,1],且x1<x2,则f(x1)﹣f(x2)=f(x1)+f(﹣x2)∵>0,即>0,∵x1﹣x2<0,∴f(x1)﹣f(x2)<0.则f(x)是[﹣1,1]上的增函数;(2)由于f(x)是[﹣1,1]上的增函数,不等式即为﹣1≤x+<≤1,解得﹣≤x<﹣1,即解集为[﹣,﹣1);(3)要使f(x)≤m2﹣2am+1对所有的x∈[﹣1,1],a∈[﹣1,1]恒成立,只须f(x)max≤m2﹣2am+1,即1≤m2﹣2am+1对任意的a∈[﹣1,1]恒成立,亦即m2﹣2am≥0对任意的a∈[﹣1,1]恒成立.令g(a)=﹣2ma+m2,只须,解得m≤﹣2或m≥2或m=0,即为所求.22.【答案】【解析】解:(1)f(1)=1+k=2;∴k=1,,定义域为{x∈R|x≠0};(2)为增函数;证明:设x1>x2>1,则:==;∵x1>x2>1;∴x1﹣x2>0,,;∴f(x1)>f(x2);∴f(x)在(1,+∞)上为增函数.23.【答案】【解析】解:(1)由已知得,基本事件(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣1,﹣1),(﹣1,0),(﹣1,1),(0,﹣1),(0,0)(0,1)共9种…4(分)设“点P在第二象限”为事件A,事件A有(﹣2,1),(﹣1,1)共2种则P(A)=…6(分)(2)设“点P在第三象限”为事件B,则事件B满足…8(分)∴,作出不等式组对应的平面区域如图:则P(B)==…12(分)24.【答案】【解析】解:(1)证明:如图,连接AE,∵AB是⊙O的直径,AC,DE均为⊙O的切线,∴∠AEC=∠AEB=90°,∠DAE=∠DEA=∠B,∴DA=DE.∠C=90°-∠B=90°-∠DEA=∠DEC,∴DC=DE,∴CD=DA.(2)∵CA是⊙O的切线,AB是直径,∴∠CAB=90°,由勾股定理得CA2=CB2-AB2,又CA2=CE×CB,CE=1,AB=2,∴1·CB=CB2-2,即CB2-CB-2=0,解得CB=2,∴CA2=1×2=2,∴CA= 2.由(1)知DE=12CA=2 2,所以DE的长为22.。
罗源县第三中学2018-2019学年高三上学期11月月考数学试卷含答案
罗源县第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .32. 如图甲所示, 三棱锥 的高 ,分别在P ABC -8,3,30PO AC BC ACB ===∠=o,M N BC和上,且,图乙的四个图象大致描绘了三棱锥的体积与PO (),203CM x PN x x ==∈(,N AMC -y 的变化关系,其中正确的是()A .B . C. D .1111]3. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=()A .6B .9C .36D .724. 已知,若存在,使得,则的()(2)(0)x b g x ax a e a x =-->0(1,)x ∈+∞00()'()0g x g x +=b a取值范围是()A .B .C. D .(1,)-+∞(1,0)-(2,)-+∞(2,0)-5. 方程表示的曲线是( )1x -=A .一个圆 B . 两个半圆C .两个圆D .半圆6. 已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( )A .1B .2C .3D .7. 设复数z 满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i8. 设函数,则使得的自变量的取值范围为( )()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩()1f x ≥A . B .(][],20,10-∞-U (][],20,1-∞-U C . D .(][],21,10-∞-U [][]2,01,10-U 9. 已知椭圆C :+y 2=1,点M 1,M 2…,M 5为其长轴AB 的6等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为( )A .﹣B .﹣C .D .﹣班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.411.已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( )A .0.1B .0.2C .0.4D .0.612.已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )A .﹣3B .3C .﹣1D .1二、填空题13.设集合 ,满足{}{}22|27150,|0A x x x B x x ax b =+-<=++≤,,求实数__________.A B =∅I {}|52A B x x =-<≤U a =14.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .15.已知数列的前项和为,且满足,(其中,则 .}{n a n n S 11a =-12n n a S +=*)n ∈N n S =16.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .17.已知函数f (x )=,若f (f (0))=4a ,则实数a= .18.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.三、解答题19.已知等差数列{a n },满足a 3=7,a 5+a 7=26.(Ⅰ)求数列{a n }的通项a n ;(Ⅱ)令b n =(n ∈N *),求数列{b n }的前n 项和S n .20.(本小题满分12分)某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生N 数有21人.(1)求总人数和分数在110-115分的人数;N (2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;13(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.y 数学888311792108100112物理949110896104101106已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理y 成绩大约是多少?附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分11(,)u v 22(,)u v (,)n n u v v u αβ=+别为:,.^121()()niii nii u u v v u u β==--=-∑∑^^a v u β=-21.设函数f (x )=ae x (x+1)(其中e=2.71828…),g (x )=x 2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f (x ),g (x )的解析式;(Ⅱ)求函数f (x )在[t ,t+1](t >﹣3)上的最小值;(Ⅲ)若对∀x ≥﹣2,kf (x )≥g (x )恒成立,求实数k 的取值范围. 22.已知函数f(x)=lnx的反函数为g(x).(Ⅰ)若直线l:y=k1x是函数y=f(﹣x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:l⊥m;(Ⅱ)设a,b∈R,且a≠b,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由.23.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.24.设函数f(x)=lnx﹣ax+﹣1.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)当a=时,求函数f(x)的单调区间;(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣,若对于∀x1∈[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.罗源县第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:由等差数列的性质可得:S15==15a8=45,则a8=3.故选:D.2.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.3.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.4.【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).5. 【答案】A 【解析】试题分析:由方程,两边平方得,即,所1x -=221x -=22(1)(1)1x y -++=以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.6. 【答案】D【解析】解:∵复数z 满足zi=1﹣i ,(i 为虚数单位),∴z==﹣i ﹣1,∴|z|==.故选:D .【点评】本题考查了复数的化简与运算问题,是基础题目. 7. 【答案】A【解析】解:∵复数z 满足z (1﹣i )=2i ,∴z==﹣1+i故选A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.8.【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 9.【答案】B【解析】解:如图所示,由椭圆的性质可得==﹣=﹣.由椭圆的对称性可得,,∴=﹣,同理可得===﹣.∴直线AP1,AP2,…,AP10这10条直线的斜率乘积==﹣.故选:B.【点评】本题考查了椭圆的性质可得=﹣及椭圆的对称性,考查了推理能力和计算能力,属于难题.10.【答案】A【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,∵P(﹣3≤ξ≤﹣1)=∴∴P(ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.11.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.12.【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax+y,得y=﹣ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.若a>0,则目标函数的斜率k=﹣a<0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.若a<0,则目标函数的斜率k=﹣a>0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.综上a=1.故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z 的几何意义是解决本题的关键.注意要对a 进行分类讨论. 二、填空题13.【答案】7,32a b =-=【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.14.【答案】 2 .【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4,即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题. 15.【答案】13n --【解析】∵,∴,12n n a S +=12n n n S S S +-=∴∴,.13n n S S +=11133n n n S S --=⋅=16.【答案】 .【解析】解:∵sin α+cos α=,<α<,∴sin 2α+2sin αcos α+cos 2α=,∴2sin αcos α=﹣1=,且sin α>cos α,∴sin α﹣cos α===.故答案为:.17.【答案】 2 .【解析】解:∵f (0)=2,∴f (f (0))=f (2)=4+2a=4a ,所以a=2故答案为:2. 18.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C 的渐近线方程是:故答案为:,三、解答题19.【答案】【解析】解:(Ⅰ)设{a n }的首项为a 1,公差为d ,∵a 5+a 7=26∴a 6=13,,∴a n =a 3+(n ﹣3)d=2n+1;(Ⅱ)由(1)可知,∴.20.【答案】(1),;(2);(3).60N =6n =815P =115【解析】试题解析:(1)分数在100-110内的学生的频率为,所以该班总人数为,1(0.040.03)50.35P =+⨯=21600.35N ==分数在110-115内的学生的频率为,分数在110-11521(0.010.040.050.040.030.01)50.1P =-+++++⨯=内的人数.600.16n =⨯=(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为,女生为,从61234,,,A A A A 12,B B 名学生中选出3人的基本事件为:,,,,,,,12(,)A A 13(,)A A 14(,)A A 11(,)A B 12(,)A B 23(,)A A 24(,)A A ,,,,,,,共15个.21(,)A B 22(,)A B 34(,)A A 31(,)A B 32(,)A B 41(,)A B 42(,)A B 12(,)B B 其中恰 好含有一名女生的基本事件为,,,,,,11(,)A B 12(,)A B 22(,)A B 21(,)A B 31(,)A B 32(,)A B ,,共8个,所以所求的概率为.41(,)A B 42(,)A B 815P =(3);12171788121001007x --+-++=+=;69844161001007y --+-+++=+=由于与之间具有线性相关关系,根据回归系数公式得到y ,,^4970.5994b ==^1000.510050a =-⨯=∴线性回归方程为,0.550y x =+∴当时,.1130x =115y =考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,一定要将题目中所给数据与公式中的相对应,再进一步求解.在求解过程中,由$,a b $,,a b c 于的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为$,a b$常数项为这与一次函数的习惯表示不同.,b )21.【答案】【解析】解:(Ⅰ) f'(x )=ae x (x+2),g'(x )=2x+b ﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由题意,两函数在x=0处有相同的切线.∴f'(0)=2a ,g'(0)=b ,∴2a=b ,f (0)=a=g (0)=2,∴a=2,b=4,∴f (x )=2e x (x+1),g (x )=x 2+4x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ) f'(x )=2e x (x+2),由f'(x )>0得x >﹣2,由f'(x )<0得x <﹣2,∴f (x )在(﹣2,+∞)单调递增,在(﹣∞,﹣2)单调递减.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵t >﹣3,∴t+1>﹣2①当﹣3<t <﹣2时,f (x )在[t ,﹣2]单调递减,[﹣2,t+1]单调递增,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当t ≥﹣2时,f (x )在[t ,t+1]单调递增,∴;∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)令F (x )=kf (x )﹣g (x )=2ke x (x+1)﹣x 2﹣4x ﹣2,由题意当x ≥﹣2,F (x )min ≥0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵∀x ≥﹣2,kf (x )≥g (x )恒成立,∴F (0)=2k ﹣2≥0,∴k ≥1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣F'(x )=2ke x (x+1)+2ke x ﹣2x ﹣4=2(x+2)(ke x ﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵x ≥﹣2,由F'(x )>0得,∴;由F'(x )<0得∴F (x )在单调递减,在单调递增﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①当,即k >e 2时,F (x )在[﹣2,+∞)单调递增,,不满足F (x )min ≥0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当,即k=e 2时,由①知,,满足F (x )min ≥0.﹣﹣﹣﹣﹣﹣﹣③当,即1≤k <e 2时,F (x )在单调递减,在单调递增,满足F (x )min ≥0.综上所述,满足题意的k 的取值范围为[1,e 2].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查导数的几何意义,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.22.【答案】【解析】解:(Ⅰ)∵函数f (x )=lnx 的反函数为g (x ).∴g(x)=e x.,f(﹣x)=ln(﹣x),则函数的导数g′(x)=e x,f′(x)=,(x<0),设直线m与g(x)相切与点(x1,),则切线斜率k2==,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(﹣x2)),则切线斜率k1==,则x2=﹣e,k1=﹣,故k2k1=﹣×e=﹣1,则l⊥m.(Ⅱ)不妨设a>b,∵P﹣R=g()﹣=﹣=﹣<0,∴P<R,∵P﹣Q=g()﹣=﹣==,令φ(x)=2x﹣e x+e﹣x,则φ′(x)=2﹣e x﹣e﹣x<0,则φ(x)在(0,+∞)上为减函数,故φ(x)<φ(0)=0,取x=,则a﹣b﹣+<0,∴P<Q,⇔==1﹣令t(x)=﹣1+,则t′(x)=﹣=≥0,则t(x)在(0,+∞)上单调递增,故t(x)>t(0)=0,取x=a﹣b,则﹣1+>0,∴R>Q,综上,P<Q<R,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.23.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b2+64>0,∴﹣2<b<2x1+x2=﹣b,x1x2=∴|BD|==,设d为点A到直线y=x+b的距离,∴d=∴△ABD面积S=≤=当且仅当b=±2时,△ABD的面积最大,最大值为…(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k1==2﹣,k2==﹣2此时k1+k2=0,猜想λ=1时成立.证明如下:k1+k2=+=2+m=2﹣2=0当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.24.【答案】【解析】解:函数f(x)的定义域为(0,+∞),(2分)(Ⅰ)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,,∴f′(1)=0,∴f(x)在x=1处的切线方程为y=﹣2(5分)(Ⅱ)=(6分)令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,∴函数f(x)在[1,2]上的最小值为f(1)=(9分)若对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值(*)(10分)又,x∈[0,1]①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾②当0≤b≤1时,,由及0≤b≤1得,③当b>1时,g(x)在[0,1]上为减函数,,此时b>1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.。
福建省罗源县第一中学高三第二次月考数学(理)试题.pdf
完卷时间:120分钟 满 分:150分 第I卷(选择题 共60分) 一.选择题:本大题共12小题,每小题5分,共60分. 1. 在复平面内,复数对应的点的坐标为 B. C. D. 2. 不等式的解集为,的定义域为,则( ) A. B. C. D. 3.命题“”为真命题的一个充分不必要条件是( ) A. B. C. D. 4.已知向量=(1,2),=(1,0),=(3,4).若为实数,,则=( ) A. B. C.1 D.2 5. 将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为A. B. C. D. 6.过点(0,1)且与曲线在点(3,2)处的切线垂直的直线的方程为( ) A. B.C. D. 7.已知变量满足约束条件,则的最大值为 A.12B.11C.3D. 在中,是的中点,,点在上,且满足,则的值为 ) A. B. C. D. 9.函数的大致图象为( ) A B C D 10. 已知偶函数的周期为2,且当时,,如果在区间内,函数(且)有个不同的零点,则的取值范围是( ) A. B. C. D. 11.设,,若直线与圆相切,则的取值范围是 A.B. C.D. 已知函数.规定:给定一个实数,赋值,若≤244,则继续赋值,…,以此类推,若≤244,则,否则停止赋值,如果得到称为赋值了n次.已知赋值k次后该过程停止,则的取值范围是A.B. C.D. 13.计算定积分 . 14.已知,则=. 15. 圆C过坐标原点,圆心在轴的正半轴上.若圆C被直线截得的弦长为,则圆C的方程是 . 16. 已知函数在上的图像是连续不断的,且对任意,(其中),都有成立,是的导函数,现给出如下命题:①在区间内必有极大值;②在区间上单调递增;③必定存在唯一的,使得;④导函数在区间上单调递减.其中真命题的序号是 . 三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在锐角中,角,,所对的边分别为,,.向量,,且. (Ⅰ)求角的大小; (Ⅱ)若面积为,,求的值. 18.(本小题满分12分) 已知数列的前n项和为,且满足 (I)求证是等比数列,并求; (II)设,求数列的前n项和为. 19.(本小题满分12分) 已知函数 的部分图像如图所示. (Ⅰ)求函数的解析式; (Ⅱ)求函数的单调递增区间. 20.(本小题满分12分)[来 在中,已知. (1)求证:(2)若求A的值. .(本小题满分1 分) 工厂生产某种产品,次品率 p 与日产量 x(万件)间的关系为:(c 为常数,且0<c<6).已知每生产1件合格产品盈利3元,每出现1件次品亏损元. (1)将日盈利额 y(万元)表示为日产量 x(万件)的函数; (2)为使日盈利额最大,日产量应为多少万件?(注:次品率=)(本小题满分1分) . (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 参考答案 高考学习网: 高考学习网:。
福州市三中2018-2019学年高二上学期第二次月考试卷数学.doc
优选高中模拟试卷福州市三中 2018-2019 学年高二上学期第二次月考试卷数学 班级 __________姓名 __________分数 __________一、选择题1.在地区内随意取一点P (x , y ),则 x 2+y 2< 1 的概率是() A .0B .C .D .2.以下图,网格纸表示边长为1 的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为 () A .4B .8C .12D .20【命题企图】本题考察三视图、几何体的体积等基础知识,意在考察空间想象能力和基本运算能力. 3.设 0< a < 1,实数 x ,y 知足,则 y 对于 x 的函数的图象形状大概是() A .B .C .D .4R 上的函数 f ( x) ,对随意 m n ,均有 mf ( m) nf ( n) mf (n) nf (m) 0 建立,则称 . 假如对定义在 函数 f ( x) 为“ H 函数” .给出以下函数:① f ( x)ln2 x 5 ;② f ( x)x 3 4x 3;③ f (x)2 2 x 2(sin x cosx) ;④ln | x |, x 0H 函数”的个数为(f ( x)x.此中函数是“)0, 0A .1B . 2C . 3D . 4【命题企图】 本题考察学生的知识迁徙能力, 对函数的单一性定义能从不一样角度来刻画,对于较复杂函数也要第1页,共16页有益用导数研究函数单一性的能力,因为是给定信息题,所以本题灵巧性强,难度大. 5. 把“二进制 ”数 101101(2) 化为 “ 八进制 ” 数是( )A .40( 8)B . 45(8)C . 50(8)D . 55(8)6. 与命题 “若 x ∈A ,则 y?A ”等价的命题是( )A .若 x? A ,则 y? AB .若 y? A ,则 x ∈AC .若 x?A ,则 y ∈AD .若 y ∈A ,则 x? A7. 已知条件 p : |x+1|≤2,条件 q : x ≤a ,且 p 是 q 的充分不用要条件,则 a 的取值范围是()A .a ≥1B . a ≤1C . a ≥﹣ 1D . a ≤﹣38. 若 f ( x)f ( x 2), (x2)2 x ,(x则 f (1) 的值为()2)A . 81C . 21B .D .829. 高考邻近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球竞赛.由于喜好者众多,高三学生队队员指定由5 班的 6 人、 16 班的 8 人、33 班的 10 人按分层抽样组成一个12 人的篮球队.首发要求每个班起码1 人,至多2 人,则首发方案数为()A .720B . 270C . 390D . 30010.已知会合 A={x|1 ≤x ≤3} , B={x|0 < x < a} ,若 A ? B ,则实数 a 的范围是( )A .[3, +∞)B .( 3, +∞)C . [﹣ ∞, 3]D . [﹣ ∞, 3)11.冶炼某种金属能够用旧设施和改造后的新设施, 为了查验用这两种设施生产的产品中所含杂质的关系, 调查结果以下表所示.杂质高 杂质低 旧设施 37 121 新设施22202依据以上数据,则( )A .含杂质的高低与设施改造相关B .含杂质的高低与设施改造没关C .设施能否改造决定含杂质的高低D .以上答案都不对12.某几何体的三视图以下图,则该几何体的表面积为() A .8+2B . 8+8C . 12+4D .16+4第2页,共16页二、填空题13.在△ABC 中,点 D 在边 AB 上, CD ⊥ BC , AC=5, CD=5 ,BD=2AD ,则 AD 的长为. 14.设双曲线﹣ =1,F ,F 是其两个焦点,点 M 在双曲线上.若 ∠F MF =90°,则 △F MF 2的面积121 2 1是.15.已知实数x , y 知足,则目标函数z=x ﹣ 3y 的最大值为 16.设函数f ( x ) =若 f[f ( a ) ],则 a 的取值范围是.17.若不等式组表示的平面地区是一个锐角三角形,则k 的取值范围是. 18.设平面向量a i i1,2,3,,知足a i 1 且a 1a 20 ,则a 1a 2, a 1a 2a 3的最大 值为.【命题企图】本题考察平面向量数目积等基础知识,意在考察运算求解能力.三、解答题19.(本小题满分12 分)某商场销售一种蔬菜,依据过去状况,获得每日销售量的频次散布直方图以下:频次 组距a0.025 0.02 0.015 0.005O 5060708090100销售量 /千克(Ⅰ)求频次散布直方图中的a 的值,并预计每日销售量的中位数;第3页,共16页(Ⅱ)这类蔬菜每日进货当日一定销售,不然只好作为垃圾办理.每售出1千克蔬菜赢利4 元,未售出的蔬菜,每千克损失2 元.假定同一组中的每个数据可用该组区间的中点值取代,预计当商场每日的进货量为75 千克时赢利的均匀值.20.(本题满分 12 分)在长方体ABCD A1B1C1D1中, AA1 AD a ,E是棱CD上的一点,P是棱 AA1 上的一点 .( 1)求证:AD1 平面 A1B1 D ;( 2)求证:B1E AD1;( 3)若E是棱CD的中点,P是棱AA1的中点,求证:DP // 平面B1AE.2221.已知圆 C:( x﹣ 1) +y =9 内有一点P( 2, 2),过点 P 作直线 l 交圆 C 于 A , B 两点.第4页,共16页(1)当 l 经过圆心 C 时,求直线 l 的方程;(2)当弦 AB 被点 P 均分时,求直线 l 的方程.22.(本题满分 12 分)设向量a (sin x, 3(sin x cos x)) ,b (cosx,sin x cosx) ,x R,记函数2f ( x) a b .( 1)求函数f ( x)的单一递加区间;( 2)在锐角ABC中,角A, B, C的对边分别为a,b, c .若 f ( A) 12 ,求ABC面积的最大值., a223.已知函数f( x)=log a( 1﹣ x) +log a(x+3 ),此中0< a< 1.(1)求函数 f ( x)的定义域;(2)若函数 f ( x)的最小值为﹣ 4,求 a 的值.24.已知△ ABC 的极点 A ( 3,1), B(﹣ 1,3) C( 2,﹣ 1)求:( 1) AB 边上的中线所在的直线方程;第5页,共16页( 2) AC 边上的高 BH 所在的直线方程.第6页,共16页福州市三中 2018-2019 学年高二上学期第二次月考试卷数学(参照答案)一、选择题1.【答案】 C【分析】解:依据题意,如图,设O( 0,0)、 A ( 1, 0)、 B( 1, 1)、 C(0, 1),剖析可得地区表示的地区为以正方形OABC 的内部及界限,其面积为1;x2+y 2< 1 表示圆心在原点,半径为1 的圆,在正方形OABC 的内部的面积为=,由几何概型的计算公式,可得点P(x, y)知足 x2+y 2< 1 的概率是=;应选 C.【评论】本题考察几何概型的计算,解题的重点是将不等式(组)转变为平面直角坐标系下的图形的面积,从而由其公式计算.2.【答案】 C【分析】由三视图可知该几何体是四棱锥,且底面为长6 ,宽2的矩形,高为3,所以此四棱锥体积为112312,应选C.33.【答案】 A【分析】解: 0<a< 1,实数 x, y 知足,即y=,故函数y 为偶函数,它的图象对于y轴对称,在( 0,+∞)上单一递加,且函数的图象经过点(0, 1),应选: A.【评论】本题主要指数式与对数式的互化,函数的奇偶性、单一性以及特别点,属于中档题.第7页,共16页4.【答案】B第5.【答案】 D【分析】解:∵101101(2)=1× 25+0+1 ×23+1× 22+0+1 ×20 =45(10).再利用“除 8 取余法”可得: 45(10)=55(8).故答案选D .6.【答案】 D【分析】解:由命题和其逆否命题等价,所以依据原命题写出其逆否命题即可.与命题“若 x∈A ,则 y? A ”等价的命题是若y∈A ,则 x? A .应选 D.7.【答案】 A【分析】解:由 |x+1|≤2 得﹣ 3≤x≤1,即 p:﹣ 3≤x≤1,若 p 是 q 的充分不用要条件,则 a≥1,应选: A.【评论】本题主要考察充分条件和必需条件的判断,比较基础.8.【答案】 B第8页,共16页【分析】试题剖析: f 1 f 3 2 3 1 ,应选 B。
罗源县第三中学校2018-2019学年高二上学期第二次月考试卷数学
第 6 页,共 17 页
精选高中模拟试卷
罗源县第三中学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】A 【解析】
1 根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于 2 2 3 2 2 3 8 3 2. 【答案】 C
2 2 2
=0.648.
( x 3) 2 ( y 4) 2 4 x 2 y 2 ,化简得 6 x 8 y 21 0 ,即点 P 的轨迹方程,故选 D,
第 8 页,共 17 页
精选高中模拟试卷
9. 【答案】C 【解析】解:根据茎叶图中的数据,得; 甲得分的众数为 a=85, 乙得分的中位数是 b=85; 所以 a=b. 故选:C. 10.【答案】A 【解析】解:由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3 解方程可得,a1=2,d=1 ∴a1a6=2×7=14 故选:A 【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题 11.【答案】C 【解析】解:如图所示,△BCD 是圆内接等边三角形, 过直径 BE 上任一点作垂直于直径的弦,设大圆的半径为 2,则等边三角形 BCD 的内切圆的半径为 1, 显然当弦为 CD 时就是△BCD 的边长, 要使弦长大于 CD 的长,就必须使圆心 O 到弦的距离小于|OF|, 记事件 A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内}, 由几何概型概率公式得 P(A)= ,
第 7 页,共 17 页
精选高中模拟试卷
∴几何体的体积 V=V 正方体+ 故选:A.
=13+ × ×π×12×1=1+
罗源县第三中学2018-2019学年高二上学期第二次月考试卷数学
罗源县第三中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若,,且,则λ与μ的值分别为( )A .B .5,2C .D .﹣5,﹣22. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 3. 若如图程序执行的结果是10,则输入的x 的值是( )A .0B .10C .﹣10D .10或﹣104. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π5. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .136. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.3127. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是( )A .B .C .D .08. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .9. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .7 10.已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .211.设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<12.设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .2二、填空题13.已知x 是400和1600的等差中项,则x= .14.已知正四棱锥O ABCD -的体积为2 则该正四棱锥的外接球的半径为_________15.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 16.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号)17.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .18.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g(x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .三、解答题19.(本小题满分13分)如图,已知椭圆C :22221(0)x y a b a b +=>>C 的左顶点T 为圆心作圆T :222(2)x y r ++=(0r >),设圆T 与椭圆C 交于点M 、N .[_](1)求椭圆C 的方程;(2)求TM TN ⋅的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M 、N 的任意一点,且直线MP ,NP 分别与x 轴交于点R S 、(O 为坐标 原点),求证:OR OS ⋅为定值.【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.20.已知矩阵A =,向量=.求向量,使得A 2=.21.已知曲线C1的参数方程为曲线C2的极坐标方程为ρ=2cos(θ﹣),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(1)求曲线C2的直角坐标方程;(2)求曲线C2上的动点M到直线C1的距离的最大值.22.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.23.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=﹣.(1)求椭圆E的方程;(2)已知椭圆E : +=1(a >b >0)上点N (x 0,y 0)处切线方程为+=1,若P是直线x=2上任意一点,从P 向椭圆E 作切线,切点分别为C 、D ,求证直线CD 恒过定点,并求出该定点坐标.24.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,3PA =,1AB =,求三棱锥A QCD -的体积.罗源县第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:由,得.又,,∴,解得.故选:A .【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.2. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.3. 【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x <0,时﹣x=10,解得:x=﹣10 当x ≥0,时x=10,解得:x=10 故选:D .4. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 5. 【答案】A【解析】解:∵x+x ﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.6.【答案】A【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.7.【答案】A【解析】解:取AB的中点C,连接OC,,则AC=,OA=1∴sin =sin∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A.8.【答案】B【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.9.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.10.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.11.【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 12.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z 取得最大值10.二、填空题13.【答案】 1000 .【解析】解:∵x 是400和1600的等差中项,∴x==1000.故答案为:1000.14.【答案】118【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴截面的图形可知:22211(2)8R R R =-+∴= 15.【答案】[]1,1- 【解析】考点:函数的定义域.16.【答案】 ③⑤【解析】解:①函数y=|x|,(x ∈R )与函数,(x ≥0)的定义域不同,它们不表示同一个函数;错;②奇函数y=,它的图象不通过直角坐标系的原点;故②错;③函数y=3(x ﹣1)2的图象可由y=3x 2的图象向右平移1个单位得到;正确; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域由0≤2x ≤2,⇒0≤x ≤1, 它的定义域为:[0,1];故错;⑤设函数f (x )是在区间[a .b]上图象连续的函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根.故正确; 故答案为:③⑤17.【答案】4π 【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式111sin ,,(),2224abc ab C ah a b c r R++. 18.【答案】 1 .【解析】解:∵x 为实数,[x]表示不超过x 的最大整数, ∴如图,当x ∈[0,1)时,画出函数f (x )=x ﹣[x]的图象,再左右扩展知f (x )为周期函数. 结合图象得到函数f (x )=x ﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.三、解答题19.【答案】【解析】(1)依题意,得2a =,c e a ==1,322=-==∴c a b c ;故椭圆C 的方程为2214x y += . (3分)(3)设),(00y x P 由题意知:01x x ≠,01y y ≠±.直线MP 的方程为),(010100x x x x y y y y ---=-令0=y 得101001y y y x y x x R --=,同理:101001y y y x y x x S ++=,∴212021202021y y y x y x x x S R --=⋅. (10分)又点P M ,在椭圆上,故)1(4),1(421212020y x y x -=-=,∴4)(4)1(4)1(421202120212021202021=--=----=y y y y y y y y y y x x S R ,4R S R S OR OS x x x x ∴⋅=⋅==,【答案】=【解析】A =.设=.由A 2=,得,从而,所以=21.【答案】【解析】解:(Ⅰ),…即ρ2=2(ρcos θ+ρsin θ), ∴x 2+y 2﹣2x ﹣2y=0,故C 2的直角坐标方程为(x ﹣1)2+(y ﹣1)2=2.…(Ⅱ)∵曲线C 1的参数方程为,∴C 1的直角坐标方程为,由(Ⅰ)知曲线C 2是以(1,1)为圆心的圆, 且圆心到直线C 1的距离,… ∴动点M 到曲线C 1的距离的最大值为.…【点评】本题考查曲线的直角坐标方程的求法,考查点到曲线的距离的最大值的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.22.【答案】【解析】解:(Ⅰ)由频率分布直方图,得:10×(0.005+0.01+0.025+a+0.01)=1,解得a=0.03.(Ⅱ)由频率分布直方图得到平均分:=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.23.【答案】【解析】(1)解:设A(﹣a,0),B(a,0),M(m,n),则+=1,即n2=b2•,由k1k2=﹣,即•=﹣,即有=﹣,即为a2=2b2,又c2=a2﹣b2=1,解得a2=2,b2=1.即有椭圆E的方程为+y2=1;(2)证明:设点P (2,t ),切点C (x 1,y 1),D (x 2,y 2),则两切线方程PC ,PD 分别为:+y 1y=1,+y 2y=1,由于P 点在切线PC ,PD 上,故P (2,t )满足+y 1y=1,+y 2y=1,得:x 1+y 1t=1,x 2+y 2t=1,故C (x 1,y 1),D (x 2,y 2)均满足方程x+ty=1, 即x+ty=1为CD 的直线方程. 令y=0,则x=1, 故CD 过定点(1,0).【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.24.【答案】(1)证明见解析;(2)18. 【解析】试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,12MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .(2)由已知条件得1AC AD CD ===,所以4ACD S ∆=, 所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=.考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式.。
福建省罗源第一中学2018_2019学年高二数学3月月考试题
福建省罗源第一中学2018-2019学年高二数学3月月考试题完卷时间: 120 分钟满分: 150 分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.1、一物体的运动方程为s=+2t(t>1),其中s的单位是米,t的单位是秒,那么物体在2秒末的瞬时速度是()A.米/秒B.米/秒C.米/秒D.米/秒2、=()A.B.C.D.3、函数y=的单调递增区间为()A.[0,1] B.(∞,1] C.[1,+∞) D.(0,+∞)4、由曲线所围成的封闭图形的面积S=()A. B. C.D.5、曲线在M处的切线垂直于直线,则M点的坐标为()A. B. C.和 D.和6、若函数f(x)=e x(cos x﹣a)在区间上单调递减,则实数a的取值范围是()A. B.(1,+∞)C.[1,+∞)D.7、设函数是函数的导函数,的图象如图所示,则的图象最有可能的是()8、已知曲线的切线过原点,则此切线的斜率为()A.e B.﹣e C.D.﹣9、已知函数在上有两个零点,则常数的取值范围为()A. B.C. D.10、若函数的图象总在直线的上方,则实数a的取值范围是()A.(﹣∞,1)B.(0,+∞)C.(1,+∞) D.(﹣∞,0)11、函数g(x)是奇函数f(x)(x∈R)的导函数,f(2)=0,当x>0时,xg(x)﹣f(x)<0,则使得f(x)<0成立的x的取值范围是()A.(﹣∞,﹣2)∪(0,2)B.(0,2)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣2,0)D.(﹣2,0)∪(2,+∞)12、已知函数满足,当时,.若函数在区间上有三个不同的零点,则实数的取值范围是()A. B. C. D.二、填空题:本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置.13、若函数,则_______.14、已知函数在上是增函数,则实数a的取值范围是_____.15、设P是函数图象上的动点,则点P到直线的距离的最小值为_____.16、已知函数,记,,…,且,对于下列命题:①函数存在平行于轴的切线;②;③;④.其中正确的命题序号是____________(写出所有满足题目条件的序号).三、解答题:(本大题6小题,共70分。
福建省罗源第一中学2018-2019学年高一3月月考数学试题
2018---2019学年度第二学期罗源一中3月份月考高中 一 年 数学 科试卷考试日期: 3 月 22 日 完卷时间: 120 分钟 满 分: 150 分一、选择题(每小题5分,共60分)1、数列1,-3,5,-7,9,…的一个通项公式为 ( )A 12-=n a nB )21()1(n a n n --=C )12()1(--=n a n n D)12()1(+-=n a n n2.已知{}n a 是等比数列,41252==a a ,,则公比q =( )A .21-B .2-C .2D .213.若∆ABC 中,sinA:sinB:sinC=2:3:4,那么cosC=( )A. 14-B. 14C. 23- D. 234.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是(A .1B .2C .2±D .45.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则等于( )A. 5B. 6C. 7D.8 6.在ABC ∆中,根据下列条件解三角形,其中有两个解的是( )A. b=10, A=450, C=600B. a=6, c=5, B=600C. a=7, b=5, A=600D. a=14, b=16, A=4507.在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++8.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 9.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值为( ) A. 3 B. 23C. 23或3D. 310.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且132+=n nT S n n ,则55b a ( ) A32 B 149 C 3120 D 9711.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,则20072008a a +的值是( )A 18B 19C 20D 2112.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++=( ) A.(1)2n n + B.2(1)n n + C.21nn + D.2(1)n n +二、填空题:(本大题共4小题,每小题5分,共20分)13.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 14. 已知数列{a n }的前n 项和是21n S n n =++, 则数列的通项a n =__ 15.在△ABC 中,已知AB=4,AC=7,BC 边的中线72AD =,那么BC= 16.在等比数列}{n a 中,已知对于任意*∈N n ,有1221-=+++n n a a a ,则=+++22221n a a a ________.三、解答题(17题10分,18~21每题12分,共70分)17.(本小题满分10分)在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c18.(本小题满分12分)等比数列{}n a 的前n 项和为Sn 中, 72=S ,916=S ,求4S .19. (本小题满分12分)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △,求a b ,;(Ⅱ)若sin 2sin B A =,求ABC △的面积.20.(12分)已知{}n a 是等差数列,其中1425,16a a ==(1)求{}n a 的通项;(2)求n a a a a ++++ 321的值。
罗源县三中2018-2019学年高二上学期第二次月考试卷数学
罗源县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°2. 函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞) C .(﹣9,+∞) D .(﹣∞,﹣9)3. 已知命题p :“∀x ∈R ,e x >0”,命题q :“∃x 0∈R ,x 0﹣2>x 02”,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(¬q )是真命题D .命题p ∨(¬q )是假命题4. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦5. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④6. 已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )A .1B .C .2D .47. 已知双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的渐近线方程是( )A .y=±xB .y=±C .xy=±2xD .y=±x8. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π9. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A .34B .C .42D .32 10.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMCE -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化11.函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( )A .[2,)+∞B .[]2,4C .(,2]-∞D .[]0,2 12.已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)二、填空题13.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .14.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .15.函数f (x )=(x >3)的最小值为 .16.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.17.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .18.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.三、解答题19.已知命题p :“存在实数a ,使直线x+ay ﹣2=0与圆x 2+y 2=1有公共点”,命题q :“存在实数a ,使点(a ,1)在椭圆内部”,若命题“p 且¬q ”是真命题,求实数a 的取值范围.20.(本小题满分12分) 已知函数21()x f x x +=,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭(N n *∈). (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21.已知函数f (x )=|2x+1|+|2x ﹣3|. (Ⅰ)求不等式f (x )≤6的解集;(Ⅱ)若关于x 的不等式f (x )﹣log 2(a 2﹣3a )>2恒成立,求实数a 的取值范围.22.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.23.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)﹣f()<2.24.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.罗源县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a<b,∴A<B,∴A=45°,∴C=180°﹣A﹣B=75°,故选:D.2.【答案】B【解析】解:原函数是由t=x2与y=()t﹣9复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=()t﹣9其定义域上为减函数,∴f(x)=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,∴函数ff(x)=()x2﹣9的单调递减区间是(0,+∞).故选:B.【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.3.【答案】C【解析】解:命题p:“∀x∈R,e x>0”,是真命题,命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,即:+<0,显然是假命题,∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,故选:C.【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.4.【答案】C[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .5. 【答案】 D【解析】解:要使这些曲线上存在点P 满足|MP|=|NP|,需曲线与MN 的垂直平分线相交.MN 的中点坐标为(﹣,0),MN 斜率为=∴MN 的垂直平分线为y=﹣2(x+),∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y 得9x 2﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y 得7x 2﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有交点,故选D6. 【答案】A【解析】解:∵向量=(1,n ),=(﹣1,n ﹣2),且与共线. ∴1×(n ﹣2)=﹣1×n ,解之得n=1 故选:A7. 【答案】A【解析】解:抛物线y 2=8x 的焦点(2,0),双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,c=2,双曲线C 过点P (﹣2,0),可得a=2,所以b=2.双曲线C 的渐近线方程是y=±x .故选:A .【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.8. 【答案】A考点:三角函数的图象性质.9.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.10.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.11.【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.考点:二次函数图象与性质.12.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.二、填空题13.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a 2+b 2=c 2=144,又双曲线的一条渐近线方程是y=x ,所以=,解得a 2=36,b 2=108, 所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c 和a 2的值,是解题的关键.14.【答案】 (1,2) .【解析】解:∵f (x )=log a x (其中a 为常数且a >0,a ≠1)满足f (2)>f (3), ∴0<a <1,x >0,若f (2x ﹣1)<f (2﹣x ),则,解得:1<x <2, 故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.15.【答案】 12 .【解析】解:因为x >3,所以f (x )>0由题意知:=﹣令t=∈(0,),h (t )==t ﹣3t 2因为 h (t )=t ﹣3t 2的对称轴x=,开口朝上知函数h (t )在(0,)上单调递增,(,)单调递减;故h (t )∈(0,]由h (t )=⇒f (x )=≥12故答案为:1216.【答案】()2245f x x x =-+【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+. 考点:函数的解析式.17.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B , ∴B ⊆A ,则有a+1≤1或a ≥3, 解得:a ≤0或a ≥3, 故答案为:a ≤0或a ≥3.18.【答案】 【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且5,,6AB VA h AC ===,所以三棱锥的体积为115652032V h h =⨯⨯⨯==,解得4h =.考点:几何体的三视图与体积.三、解答题19.【答案】【解析】解:∵直线x+ay ﹣2=0与圆x 2+y 2=1有公共点∴≤1⇒a 2≥1,即a ≥1或a ≤﹣1,命题p 为真命题时,a ≥1或a ≤﹣1;∵点(a ,1)在椭圆内部,∴,命题q 为真命题时,﹣2<a <2,由复合命题真值表知:若命题“p 且¬q ”是真命题,则命题p ,¬q 都是真命题 即p 真q假,则⇒a ≥2或a ≤﹣2.故所求a 的取值范围为(﹣∞,﹣2]∪[2,+∞).20.【答案】【解析】(1)∵211()2x f x x x +==+,∴11()2n n na f a a +==+. 即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,∴1()(22)(1)22n n a a n n nS n n ++===+, ∴1111(1)1n S n n n n ==-++. (8分) ∴1231111n n T S S S S =++++11111111()()()()1223341n n =-+-+-++-+ 111n=-+1n n =+.(12分) 21.【答案】【解析】解:(Ⅰ)原不等式等价于或或,解得:<x ≤2或﹣≤x ≤或﹣1≤x<﹣, ∴不等式f (x )≤6的解集为{x|﹣1≤x≤2}. (Ⅱ)不等式f (x )﹣>2恒成立⇔+2<f (x )=|2x+1|+|2x ﹣3|恒成立⇔+2<f (x )min 恒成立,∵|2x+1|+|2x ﹣3|≥|(2x+1)﹣(2x ﹣3)|=4,∴f(x)的最小值为4,∴+2<4,即,解得:﹣1<a<0或3<a<4.∴实数a的取值范围为(﹣1,0)∪(3,4).22.【答案】【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),则线段A′A的中点B(,),由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,解①②做成的方程组可得:m=﹣,n=,故点A′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.23.【答案】【解析】解:(1)在f()=f(x)﹣f(y)中,令x=y=1,则有f(1)=f(1)﹣f(1),∴f(1)=0;(2)∵f(6)=1,∴2=1+1=f(6)+f(6),∴不等式f(x+3)﹣f()<2等价为不等式f(x+3)﹣f()<f(6)+f(6),∴f(3x+9)﹣f(6)<f(6),即f()<f(6),∵f(x)是(0,+∞)上的增函数,∴,解得﹣3<x<9,即不等式的解集为(﹣3,9).24.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f(x)=令(k∈Z)即:所以:函数f(x)在[0,π]上的单调区间为:(Ⅱ)因为x0∈(π,2π),则:2x0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.。
罗源县三中2018-2019学年上学期高二数学12月月考试题含解析
罗源县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________ 一、选择题1.已知命题p:∃x∈R,cosx≥a,下列a的取值能使“¬p”是真命题的是()A.﹣1 B.0 C.1 D.22.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内3.圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则圆锥的体积()A.缩小到原来的一半B.扩大到原来的倍C.不变D.缩小到原来的16则几何体的体积为()34意在考查学生空间想象能力和计算能已知向量==与共线.则n等于()双曲线:的渐近线方程和离心率分别是()D.)4 D.3:1:28. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .1999. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件10.若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2}C .{﹣1,2}D .{﹣1,0,2}11.设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n12.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱二、填空题13.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .14.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .15.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
福建罗源第一中学18-19学度高一下第二次抽考-数学
福建罗源第一中学18-19学度高一下第二次抽考-数学完卷时间: 120 分钟 满 分: 150 分 【一】选择题〔共12小题,每题5分〕A.终边相同的角都相等B.钝角比第三象限角小C.第一象限角基本上锐角D.锐角基本上第一象限角2.假设角︒600的终边上有一点()a ,4-,那么a 的值是〔〕. A.34- B.34± C.3D.34. A.3cos5πB.3cos5π-C.3cos5π± D.2cos 5π4.以下函数中,最小正周期为π,且图象关于直线3x π=对称的是〔〕.A.)62sin(+=x yB.sin()26x y π=+C.sin(2)6y x π=-D.sin(2)3y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,那么ω,ϕ能够取的一组值是〔〕.A.,24ωϕππ== B.,36ωϕππ== C.5,44ωϕππ== D.,44ωϕππ==6.要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=的图象〔〕.A.向左平移4π个单位B.向右平移4π个单位C.向左平移8π个单位D.向右平移8π个单位7.设tan()2απ+=,那么sin()cos()sin()cos()αααα-π+π-=π+-π+〔〕.A.3B.13C.1D.1- 8.A 为三角形ABC 的一个内角,假设12sin cos 25A A +=,那么那个三角形的形状为〔〕. A.锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形9.定义在R 上的函数)(x f 既是偶函数又是周期函数,假设)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,那么5()3f π的值为〔〕.A.21-B.23C.23-D.2110.函数y =的定义域是(〕.A.2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B.2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C.22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦ D.222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦11.函数2sin(2)6y x π=-〔[0,]x ∈π〕的单调递增区间是〔〕. A.[0,]3π B.7[,]1212ππ C.5[,]36ππ D.5[,]6ππ12.设a 为常数,且1>a ,02x ≤≤π,那么函数1sin 2cos )(2-+=x a x x f 的最大值为〔〕.A.12+aB.12-aC.12--aD.2a【二】填空题〔共4小题,每题4分〕13.在扇形中,半径为8,弧长为12,那么圆心角是弧度,扇形面积是.14、α是第三象限角,且4cos(85)5α+=,那么sin(95)α-=.15.方程x x lg sin =的解的个数为__________.16、以下命题中正确的选项是________、(写出所有正确命题的序号)①存在α满足sin α+cos α=32;②y =cos(7π2-3x )是奇函数;③y =4sin(2x +5π4)的一个对称中心是(-9π8,0);④y =sin(2x -π4)的图象可由y =sin2x 的图象向右平移π4个单位得到、【三】解答题〔共6小题,17-21题每题12分,22题14分〕 17、(1)假设α是第三角限角,化简ααααsin 1sin 1sin 1sin 1+---+(2)假设3tan =α,求αααcos sin 3cos 2-的值; 18、函数f (x )=A sin(ωx +φ)的图象如下图、(1)求最小正周期T ;(2)求使f(x)取最小值的x 的取值集合、 (3)求f(x)的单调递增区间; 19.(本小题总分值12分)1tan ,tan αα是关于x 的方程2230x kx k -+-=的两个实根,且732απ<<π, 求ααsin cos +的值.20、在ABC △中,sin(2)cos()2A B 3ππ-=-)A =π-B . (1)求cos A 的值;(2)求A 、B 、C 的值. 21.如图,某大风车的半径为2m ,每12s 旋转一周,它的最低点O 离地面0.5米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019第二学期罗源三中九年级数学试卷第一次月考
一、选择题(本题共10小题,每小题4分,共40分)
1.下列各数中,比-2的相反数大的是( ) A.3 B.-4 C.2 D.17-
2.一个水分子的直径约为0.0000000004m ,用科学记数法表示为( )
A.9104-⨯
B. 10104-⨯
C. 9104.0-⨯
D. 111040-⨯
3.下列几何体均是由完全相同的小正方形搭成的,其中左视图面积最小的是( )
4.如图所示,在数轴上有7个点,依次为A. B. C. D. E. F. G ,且线段AB=BC=CD=DE=EF=FG ,A 点表示的数为−6,G 点表示的数为9.则点F 点表示的数是( )
A.3
B.7.5
C.6
D.6.5
5.下列各式中,运算正确的是( )
A.()53222=
B.()222
y x y x -=- C. xy y x 532=+ D. 2222n n n -=--
7.如图,边长相等的正方形、正六边形有一边重合,连结正方形的顶点
A 和正六边形的顶点
B 得到∠1,则∠1的度数为( )
A.65°
B.70°
C.75°
D.80°
8.如图,平行四边形ABCD 的三个顶点B ,C ,D 都在⊙O 上,边AD 交⊙O 于点E ,连接BD ,BE ,已知AB=3,BC=BD=6,则DE 的长为() A.4 B.5 C.29 D. 313
O A
B C D
E ·
9.有一组数据:2,2,5,5,8,8,m ,这组数据的平均数和众数都是n ,则m+n=( )
A.7
B.10
C.11
D.13
10. 如图,若函数y=kx 的图像与正方形ABCD 有公共点,其中B (1,1)、D (2,2),则k 的值可能是( )
A.2
B.3
C.4
D.5
二、填空题(本题共6小题,每小题4分,共24分)
11.计算.()=-+-222 。
12.如图,直线AB ∥CD,AE 平分∠CAB.AE 与CD 相交于点E ,∠ACD=50∘,则∠BAE 的度数是()
A.50∘
B.65∘
C.70∘
D.130∘
13.如果将多项式k x x x +--1323因式分解,有一个因式为x+1,那
么k 值为 。
14. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
15.如图,把一个长方形纸片ABCD 沿EF 折叠后,点D ,C 分别落在点G ,H 处,若∠BFH=52°,则∠EFC= .
16.如图,等边△ABC 边长为2,AD ⊥BC 垂足为D ,M 为AD 上一动点,把线段BM 绕点B 顺时针旋转60°,得线段BN ,连结DN ,则DN 的最小值为 。
A B C D N M
17.(8分)先化简,再求值:x
x x x x 232522-+÷⎪⎭⎫ ⎝⎛
--+,其中13+=x 18.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC 和DEF (顶点均是网格线的交点)。
(1)画出将△ABC 绕点A 逆时针旋转90°后得到的△AB ′C ′;
(2)将△AB ′C ′与△DEF 是关于某直线成轴对称还是关于某个点成中心对称?若关于某直线成轴对称,请你画出对称轴;若关于某个点成中心对称,请画出对称中心。
19.(8分)在菱形ACED 的周长为16,过点C 作CB ⊥CD 与点C ,交DA 的延长线于点B ,求AB 的长。
20.某校兴趣小组为了解“手机支付”这一支付方式的试用情况,利用周末到所在时区随机抽取了200位消费者进行了问卷调查,并将结果绘制成了如下两幅不完整的统计图。
根据以上信息解答下列问题:
(1)求在调查的消费者中,经常使用“手机支付”的人数,并补全条形统计图。
(2)在扇形统计图中,“中年人”所在扇形圆心角度数为 。
(3)已知该市市区约有100万消费者,请你估计该市市区经常使用“手机支付”的中年人有多少?
21.(9分)已知正比例函数x k y 11=与反比例函数x k y 22=
的图像交于点A 、B 两点。
(1)当点A 的坐标为(-2,-2
3)时,求1k 、2k 的值。
并直接写出21y y >时x 的取值范围。
(2)设A 、B 两点的坐标分别为),(11n m ,)
,(22n m ,求证:212212k n m n m -=+
22.(9分)如图,点A 为⊙O 外一点,AO 交⊙O 于点B ,AC 为⊙O 的切线,C 为切点,CD ⊥OA 于点D ,连接CB.
(1)求证:CB 平分∠ACD ;
(2)如果AB=5,BD=3,求⊙O 的半径.
23.(10分)某菜农用780元购进某种蔬菜200千克,如果直接批发给菜商,每千克售价a 元,如果拉到市场销售,每千克售价b 元(b >a ),已知该蔬菜在市场上平均每天可售出20千克,且该菜农每天还需支付15元其它费用,假设该蔬菜能全部售完.
(1)当a=4.5,b=6时,该菜农批发给菜商和在市场销售获得的销售额分别是多少元?
(2)设1W 和2W 分别表示该菜农批发给菜商和市场销售的利润,用含a ,b 的式子分别表示出1W 和2W ;
(3)若b=a+k (0<k <2),试根据k 的取值范围,讨论选择哪种出售方式较好.
24.(12分)正方形ABCD 与矩形AECF 按如图(1)所示的方式叠放在一起,已知AD=a ,AE=b ,CE=3AE.
(1)求证:b a 5=;
(2)如图(2),剪去矩形AECF 的一部分,得到矩形GHCF (不为正方形),并使边GH 的延长线经过点D ,连接AG 、BH ;
①求CH 的长(用含b 的式子表示);
②试判断△BCH 的形状,并说明理由.
25.(14分)若两个二次函数的图像与x 轴的交点重合,则称这两个二次函数互为同根二次函数。
若这两个二次函数图像的开口方向也相同,则成为同向同根二次函数,反之成为异向同根二次函数。
(1)已知二次函数432-+=x x y
①写出它的图像的开口方向、对称轴及顶点坐标;
②请分别写出它的一个同向同根二次根式和一个异向同根二次根式。
(2)已知二次函数()()n x m x a y --=1和二次函数()()n x m x b y --=2,0<m <n ,b <0,且它们互为异向同根二次函数。
设二次函数()()n x m x a y --=1的图像顶点为D ,与x 轴分别交于A 、B (点A 在点B 左侧),二次函数()()n x m x b y --=2的图像顶点为C 。
①若△ADB 为等腰三角形,求实数A 的值。
(用含m 、n 的式子表示);
②若△CAD 是以CD 为斜边的直角三角形,求ab 的值。
(用含m 、n 的式子表示)。