第七章常微分方程自测题(答案)
常微分方程试题及答案
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
第7章常微分方程单元自测题答案
《高等数学》单元自测题第七章 微分方程一、填空题:1、C x y +=2arcsin 。
2、2tan xe y =。
3、x x xe C e C y 21+=。
二、选择题:BAB三、求解下列微分方程的通解:1、x yy y sin 1cos +=';解:根据可分离变量的方法,可解得方程的通解为()C x y +=+2s i n 1ln .2、xy e dx dy x y +=; 解:令xy u =,可将原方程化为u e x dx du =,根据可分离变量可得 ()x C u ln ln --=, 从而解得通解为()x C x y ln ln --=。
3、()()3222-+=-x y dxdy x ; 解:此方程为一阶线性微分方程,根据公式,可解得方程的通解为 ()()322-+-=x x C y 。
4、x e x y y 22='+'';解:此方程为类型I 的二阶常系数非齐次线性微分方程,可解得方程的通解为)273(221+-++=--x x e e C C y x x 。
5、x x y y sin =-''。
此方程为类型II 的二阶常系数非齐次线性微分方程,可解得方程的通解为 x x x e C e C y x x c o s 21s i n 2121--+=- 四、应用题:1、 已知曲线)(x y y =经过原点,且在原点处的切线与直线062=++y x 平行,而)(x y 满足微分方程052=+'-''y y y ,求该曲线的方程.解: 052=+'-''y y y 的特征方程为:0522=+-r r , 可解得其通解为)2s i n 2c o s (21x C x C e y x +=根据已知条件可得以下初始条件:,00==x y 20-='=x y ,可解得01=C , 12-=C , 从而可得所求曲线方程为:x e y x 2s i n -=.2、 设连续函数()x y 满足方程()()⎰+=xx e dt t y x y 0,求()x y 。
(完整版)高等数学第七章微分方程试题及答案
(完整版)高等数学第七章微分方程试题及答案第七章常微分方程一.变量可分离方程及其推广 1.变量可分离的方程(1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()?+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+??1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式(1)齐次方程=x y f dx dy 令u xy=,则()u f dx du x u dx dy =+= ()c x c xdxu u f du +=+=-??||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()?-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式令()()?-=dxx P ex C y 代入方程求出()x C 则得()()()[]+=??-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。
4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数再按照一阶线性非齐次方程求解。
四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 ()()0=+'+''y x q y x p y (1)二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。
高等数学第七章测试题答案第版
第七章测试题答案一、填空(20分)1、5322x y x y x y x =+'+'''是3阶微分方程;2、与积分方程⎰=xx dx y x f y 0),(等价的微分方程初值问题是⎪⎩⎪⎨⎧=='=0),(0x x y y x f y ; 3、已知微分方程02=+'-''y y y ,则函数x e x y 2=不是(填“是”或“不是”)该微分方程的解;4、设1y 和2y 是二阶齐次线性方程0)()(=+'+''y x q y x p y 的两个特解,21,C C 为任意常数,则2211y C y C y +=一定是该方程的 解(填“通解”或“解”);5、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为:1)1()1(221+-+-=x C x C y ;6、方程054=+'-''y y y 的通解为)sin cos (212x C x C e y x +=.7、微分方程x y y cos 4=+''的特解可设为x B x A y sin cos *+=;8、以221==x x 为特征值的阶数最低的常系数线性齐次微分方程是:044=+'-''y y y ;9、微分方程1+=-''x e y y 的特解*y 形式为:b axe y x +=;10、微分方程044=-'+''-'''y y y y 的通解:x C x C C x 2sin 2cos e 221++。
二、(10分)求x xy y =+'的通解. 解:由一阶线性微分方程的求解公式)(11C xdx e e y x dx x +⎰⎰=⎰-,三、(10分)求解初值问题2)0(,0==+'y xy y .解:0=+'xy y分离变量x x y yd d 1-=, 两边同时积分C x y ln 2ln 2+-=,22e x C y -=, 又由2)0(=y ,得2=C ,故222x e y -=四、(15分)曲线的方程为)(x f y =,已知在曲线上任意点),(y x 处满足x y 6='',且在曲线上的)2,0(-点处的曲线的切线方程为632=-y x ,求此曲线方程。
高等数学微分方程第七章练习题答案
第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。
5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。
8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。
(完整版)常微分方程习题及解答
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
第七章常微分方程练习题(含答案)
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
高等数学第七章微分方程试题及答案汇编
第七章 常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+⎰⎰1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程⎪⎭⎫⎝⎛=x y f dx dy 令u x y =, 则()u f dxdux u dx dy =+= ()c x c xdxu u f du +=+=-⎰⎰||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()⎰-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式 令()()⎰-=dxx P ex C y 代入方程求出()x C 则得()()()[]⎰+=⎰⎰-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。
4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。
四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 ()()0=+'+''y x q y x p y (1) 二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。
常微分方程答案
《常微分方程》测试题 1 答案一、填空题(每空5分)12、 z=34、5、二、计算题(每题10分)1、这是n=2时的伯努利不等式,令z=,算得代入原方程得到,这是线性方程,求得它的通解为z=带回原来的变量y,得到=或者,这就是原方程的解。
此外方程还有解y=0.2、解:积分:故通解为:3、解:齐线性方程的特征方程为,,故通解为不是特征根,所以方程有形如把代回原方程于是原方程通解为4、解三、证明题(每题15分)1、证明:令的第一列为(t)= ,这时(t)==(t)故(t)是一个解。
同样如果以(t)表示第二列,我们有(t)== (t)这样(t)也是一个解。
因此是解矩阵。
又因为det=-t故是基解矩阵。
2、证明:(1),(t- t)是基解矩阵。
(2)由于为方程x=Ax的解矩阵,所以(t)也是x=Ax的解矩阵,而当t= t时,(t)(t)=E, (t- t)=(0)=E. 故由解的存在唯一性定理,得(t)=(t- t)《常微分方程》测试题2 答案一、填空题:(每小题3分,10×3=30分)1. 2. 3 3.4. 充分条件5. 平面6. 无7. 1 8. 9.10. 解组线性无关二. 求下列微分方程的通解:(每小题8分,8×5=40分)1、解:将方程变形为………(2分)令,于是得……(2分)时,,积分得从而…(2分)另外,即也是原方程的解………(2分)2、解:由于……………………(3分)方程为恰当方程,分项组合可得…………(2分)故原方程的通解为……(3分)3、解:齐线性方程的特征方程为特征根…(2分)对于方程,因为不是特征根,故有特解…(3分)代入非齐次方程,可得.所以原方程的解为…(3分)4、解:线性方程的特征方程,故特征根…………………(2分)对于,因为是一重特征根,故有特解,代入,可得……(2分)对于,因为不是特征根,故有特解,代入原方程,可得…(2分)所以原方程的解为…(2分)5、解:当时,方程两边乘以,则方程变为…(2分),即于是有,即……(3分)故原方程的通解为另外也是原方程的解. …(3分)三、解:, ,解的存在区间为…(3分)即令……(4分)又误差估计为:(3分)四、解:方程组的特征方程为特征根为,(2分)对应的特征向量应满足可解得类似对应的特征向量分量为…(3分)原方程组的的基解矩阵为…………………(2分)………(3分)五、证明题:(10分)证明:设,是方程的两个解,则它们在上有定义,其朗斯基行列式为…………………(3分)由已知条件,得…………………(2分)故这两个解是线性相关的.由线性相关定义,存在不全为零的常数,使得,由于,可知.否则,若,则有,而,则,这与,线性相关矛盾.(3分)故(2分)《常微分方程》测试题3答案1.辨别题(1)一阶,非线性(2)一阶,非线性(3)四阶,线性(4)三阶,非线性(5)二阶,非线性(6)一阶,非线性2.填空题(1).(2).(3).(4).3.单选题(1).B (2).C (3).A (4).B (5). A (6). B 7. A 4. 计算题(1).解当时,分离变量得等式两端积分得即通解为(2).解齐次方程的通解为令非齐次方程的特解为代入原方程,确定出原方程的通解为+(3).解由于,所以原方程是全微分方程.取,原方程的通积分为即(4). 令,则,代入原方程,得,当时,分离变量,再积分,得,即:5. 计算题令,则原方程的参数形式为由基本关系式,有积分得得原方程参数形式通解为5.计算题解方程的特征根为,齐次方程的通解为因为不是特征根。
第七章 常微分方程答案
习题7.1—7.3一、判断1.×;2.×;3. √;4.×;5.√;6.×;7.×。
二、选择二、选择题1.D ; 2.A ; 3.A ;4.B ;;5.A ; 6.B ;7.C ; 8.D 。
三、填空1.在横线上填上方程的名称①可分离变量微分方程;②可分离变量微分方程;③齐次方程;④一阶线性微分方程;⑤二阶常系数齐次线性微分方程。
2.3; 3.3; 4.2;5.2Cx y =; 6.C y x =+22;7.22x Cxe y =;四、解答题1.验证函数x x e e C y 23--+⋅=(C 为任意常数)是方程y e dx dy x 32-=-的通解,并求出满足初始条件0|=x y 的特解。
解:略2.求微分方程()()⎩⎨⎧==-++=1|011022x y dy x y dx y x 的通解和特解。
解:C x y =-+2211,1222=+y x 。
3.求微分方程x y x y dx dy tan +=的通解。
解:Cx xy =sin 。
4.求微分方程⎪⎩⎪⎨⎧=+='=2|1x y x y y x y 的特解。
解:()2ln 222+=x x y 。
5.求微分方程x x y dx dy sin =+的通解。
解:()C x x x x y +-=cos sin 1。
习题7.41.求微分方程()()⎪⎩⎪⎨⎧==+--'+=1|0121027x y x y y x 的特解。
解:()()223131132+⎥⎦⎤⎢⎣⎡++=x x y 。
2. 求下列微分方程的通解.解:(1)直接用常数变量法.对应的齐次线性方程为 21dy y dx x =+,通解 2(1)y C x =+ 令非齐次线性方程522(1)1dy y x dx x -=++时,通解为 2()(1)y C x x =+ 代入方程得12()(1)C x x '=+,322()(1)3C x x C =++故所述方程的通解为 3222(1)(1)3y x C x ⎡⎤=+++⎢⎥⎣⎦=7222(1)(1)3x C x +++ (2)此题不是一阶线性方程,但把x 看作未知函数,y 看作自变量,所得微分方程4dx x y dy y+=即31dx x y dy y -= 是一阶线性方程 1()P y y=-,3()Q y y = 113413dy dy y y x e y e dy C y Cy -⎡⎤⎰⎰⎢⎥=+=+⎢⎥⎣⎦⎰ (3)这是一阶线性微分方程,原方程变形为2ln dy y x dx x+=,两边同乘22dx x e x ⎰=得 22()ln d x y x x dx= 积分得223311ln ln 39x y C x xdx C x x x =+=+-⎰ 由1(1)9y =-得0C =⇒11ln 39y x x x =- 3. 求下列微分方程的通解(1)()2ln dy y x y dx x+= (2)22x y xy y '+= 解 (1)用2y 除方程的两边,得211ln dy y y x dx x --+= ()111ln d y y x dx x ---+=令1z y -=,则得一阶线性方程1ln dz z x dx x-=- ()11ln dx dx z e x e dx C -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰ ()21ln 2x x C ⎡⎤=-+⎢⎥⎣⎦用1z y -=代入,得()21ln 12yx x C ⎡⎤-+=⎢⎥⎣⎦ (2)所给方程既属于齐次方程又属于伯努利方程故两种方法以便对照解一 222d y y x y y y d x x x x -⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ 令y u x =,则得2du u x u u dx +=-22du x u u dx =- 112ln 2du dx C x C u u x ==+-⎰⎰()11ln 2ln ln 2u u x C --=+⎡⎤⎣⎦22u Cx u -=,故22y x Cx y -=()22212 =1x y Cx x y Cx-=-, 解二 221x d y x y d xy +=,令1z y =,得21dz x xz dx -+= 211dz z dx x x -=-,通解 112z C x x=+ 22122121x x y C x Cx ==+- 习题 7.5略习题 7.6略习题 7.7略习题 7.8略自测题答案一、判断1.×;2.√;二、填空1.()x C x C e y x sin cos 212+=; 2.()()111221+-+-=x C x C y ;3.()1sin cos 21++=x C x C e y x三、选择1.B ;2.C ;3.A ;4.A ;5.D ;6.D .四、解答1.设x e y =是微分方程()x y x p y x =+'的一个解,求此微分方程满足条件0|2ln ==x y 的特解。
常微分方程练习题及答案(复习题)
常微分方程练习试卷一、填空题。
1. 方程x 3 d 2 x1 0 是阶 (线性、非线性)微分方程 .dt 22.x dyf ( xy) 经变换 _______ ,可以化为变量分离方程.方程y dx3. 微分方程d 3 y y 2 x0 满足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设常系数方程5. 朗斯基行列式yyy ex的一个特解y * (x) e 2 x e x xe x ,则此方程的系数, , .W (t )是函数组x 1(t ), x 2 (t ), , x n (t ) 在 a x b 上线性相关的条件 .6. 方程xydx (2x 2 3y 220)dy 0 的只与 y 有关的积分因子为.7. 已知XA(t) X 的基解矩阵为(t ) 的,则 A(t).8. 方程组x '2 0 x 的基解矩阵为.0 59. 可用变换 将伯努利方程 化为线性方程 .10 . 是满足方程y 2 y 5 y y 1 和初始条件的唯一解 .11. 方程 的待定特解可取 的形式 :12. 三阶常系数齐线性方程y 2 y y 0的特征根是二、 计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线相互垂直 .dy x y 12.求解方程xy.dx33. 求解方程xd 2x( dx )20 。
dt 2dt4 .用比较系数法解方程 ..5 .求方程yy sin x 的通解 . 6 .验证微分方程(cos xsin xxy 2 )dx y(1 x 2 )dy 0 是恰当方程,并求出它的通解 .A 311dX(t) ,求dX7.设24,,试求方程组 A X 的一个基解基解矩阵 A X 满足初始条件 x(0)的解 .1dt dt8. 求方程dy 2x13y2通过点 (1,0) 的第二次近似解.dx9.求( dy )34xy dy8 y20的通解dx dxA 21试求方程组 xAx 的解(t ), (0) 1 ,10. 若14并求 expAt2三、证明题1.若2.设(t ), (t ) 是 X A(t )X 的基解矩阵,求证:存在一个非奇异的常数矩阵 C ,使得(t)(t )C .(x) (x0 , x) 是积分方程x2 y( ) ] d ,y( x) y0[x0 , x [ , ]x0的皮卡逐步逼近函数序列{n ( x)}在[ ,] 上一致收敛所得的解,而(x) 是这积分方程在 [ , ] 上的连续解,试用逐步逼近法证明:在[ , ] 上( x)( x) .3.设都是区间上的连续函数,且是二阶线性方程的一个基本解组.试证明:(i)和都只能有简单零点(即函数值与导函数值不能在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:如果(t ) 是dXAX 满足初始条件(t0)的解,那么 (t ) exp A(t t0 ) dt.答案一 . 填空题。
《常微分方程》练习题库参考答案
《常微分⽅程》练习题库参考答案江苏师范⼤学数学教育专业《常微分⽅程》练习测试题库参考答案⼀、判断说明题1、在线性齐次⽅程通解公式中C 是任意常数⽽在常数变易法中C (x )是x 的可微函数。
将任意常数C 变成可微函数C (x ),期望它解决线性⾮齐次⽅程求解问题,这⼀⽅法成功了,称为常数变易法。
2、因p(x)连续,y(x)= y 0exp(-dx xx p(x))在p(x)连续的区间有意义,⽽exp(-dx xx p(x))>0。
如果y 0=0,推出y(x)=0,如果y(x)≠0,故零解y(x)=0唯⼀。
3、(1)它是常微分⽅程,因为含有未知函数的导数,f,g 为已知函数,y 为⼀元函数,所建⽴的等式是已知关系式。
(2)它是常微分⽅程,理由同上。
(3)它不是常微分⽅程,因y 是未知函数,y(y(y(x)))也是未知的,所建⽴的等式不是已知关系式。
4、微分⽅程求解时,都与⼀定的积分运算相联系。
因此,把求解⼀个微分⽅程的过程称为⼀个微分⽅程。
微分⽅程的解⼜称为(⼀个)积分。
5、把微分⽅程的通解⽤初等函数或通过它们的积分来表达的⽅法。
注意如果通解能归结为初等函数的积分表达,但这个积分如果不能⽤初等函数表⽰出来,我们也认为求解了这个微分⽅程,因为这个式⼦⾥没有未知函数的导数或微分。
6、 y `=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中⼀个因式仅含有x,另⼀因式仅含y ,⽽⽅程p(x,y)dx+q(x,y)dy=0是可分离变量⽅程的主要特征,就像f(x,y)⼀样,p,q 分别都能分解成两个因式和乘积。
7、⼆元函数f(x,y)满⾜f(rx,ry)=r mf(x,y),r.>0,则称f(x,y)为m 次齐次函数。
m=0则称它为0次齐次函数。
8、如果f(x,y)是0次齐次函数,则y `=f(x,y)称为齐次⽅程。
如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次⽅程。
常微分方程试题及参考答案
常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤N|x1-x2|,其中0<N<1,证明方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-tf(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。
常微分方程练习题及答案
一、 填空题。
1. 方程23210d xx dt +=是 阶 (线性、非线性)微分方程. 2. 方程()x dyf xy y dx=经变换_______,可以化为变量分离方程 .3. 微分方程3230d yy x dx--=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程x y y y e αβγ'''++=的一个特解*2()x x xy x e e xe =++,则此方程的系数α= ,β= ,γ= .5. 朗斯基行列式()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的条件.6. 方程22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 .7. 已知()X A t X '=的基解矩阵为()t Φ的,则()A t = .8. 方程组20'05⎡⎤=⎢⎥⎣⎦x x 的基解矩阵为 .9.可用变换 将伯努利方程 化为线性方程.10 .是满足方程251y y y y ''''''+++= 和初始条件 的唯一解.11.方程 的待定特解可取 的形式:12. 三阶常系数齐线性方程20y y y '''''-+=的特征根是二、 计算题1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.2.求解方程13dy x y dx x y +-=-+.3. 求解方程222()0d x dxx dt dt+= 。
4.用比较系数法解方程. .5.求方程 sin y y x'=+的通解.6.验证微分方程22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.7.设3124A -⎡⎤=⎢⎥-⎣⎦ , ⎥⎦⎤⎢⎣⎡-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dtdX=满足初始条件η=)0(x 的解.8. 求方程2213dyx y dx=-- 通过点(1,0) 的第二次近似解.9.求 的通解10.若 试求方程组的解(),t ϕ 12(0),ηϕηη⎡⎤==⎢⎥⎣⎦并求expAt三、证明题1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.2. 设),()(0βαϕ≤≤x x x 是积分方程],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx的皮卡逐步逼近函数序列)}({x n ϕ在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ϕψ≡.3. 设 都是区间 上的连续函数, 且 是二阶线性方程的一个基本解组. 试证明:(i) 和 都只能有简单零点(即函数值与导函数值不能在一点同时为零);(ii) 和 没有共同的零点;(iii) 和 没有共同的零点.4.试证:如果)(t ϕ是AX dtdX=满足初始条件ηϕ=)(0t 的解,那么ηϕ)(ex p )(0t t A t -=.答案一.填空题。
常微分方程练习题及答案
常微分方程练习试卷一、23210d x x dt += ()x dy f xy y dx=_______ 3230d y y x dx--=(0)1,(0)2y y '== x y y y e αβγ'''++=*2()x x x y x e e xe =++α=β=γ=()0W t ≡12(),(),,()n x t x t x t L a x b ≤≤22(2320)0xydx x y dy ++-=y()X A t X '=()t Φ()A t =20'05⎡⎤=⎢⎥⎣⎦x x251y y y y ''''''+++=20y y y '''''-+=二、13dy x y dx x y +-=-+ 222()0d x dx x dt dt+=sin y y x '=+22(cos sin )(1)0x x xy dx y x dy -+-=3124A -⎡⎤=⎢⎥-⎣⎦⎥⎦⎤⎢⎣⎡-=11ηX A dt dX =)(t ΦX A dt dX =η=)0(x2213dyx y dx =--(1,0)(),t ϕ12(0),ηϕηη⎡⎤==⎢⎥⎣⎦expAt(),()t t Φψ()X A t X '=C ()()t t C ψ=Φ),()(0βαϕ≤≤x x x],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx )}({x n ϕ],[βα)(x ψ],[βα],[βα)()(x x ϕψ≡)(t ϕAX dt dX=ηϕ=)(0t ηϕ)(ex p )(0t t A t -=u xy =11(()1)du dx u f u x =+3,2,1αβγ=-==-3y 1()()t t -'ΦΦ25 00tAt t e e e ⎡⎤=⎢⎥⎣⎦13dy x y dx x y +-=-+ 10,30x y x y +-=⎧⎨-+=⎩1,2x y =-=1,2,x y ξη=-⎧⎨=+⎩ .d d ηξηξξη+=-z ηξ=2(1)1z dz d z ξξ-=+21arctan ln(1)ln ||2z z C ξ-+=+2arctanln 1y C x -=+ 222()0d x dx x dt dt+= ,直接计算可得,于是原方程化为 ,故有或,积分后得,即,所以 就是原方程的通解,这里为任意常数。
常微分方程练习试卷及答案
常微分方程练习试卷及答案常微分方程练试卷一、填空题。
1.方程d2x/dt2+1=是二阶非线性微分方程。
2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。
3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。
4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。
xn(t)在[a,b]上线性无关的条件。
6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。
8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。
9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。
10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。
11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。
12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章:常微分方程(自测题答案)一、 选择题:1、 一阶线性非齐次微分方程()+()y P x y Q x '=的通解是(C ).(A)()()[()]P x dx P x dx y e Q x e dx C -⎰⎰=+⎰; (B)()()=()P x dx P x dx y e Q x e dx -⎰⎰⎰; (C)()()=[()]P x dxP x dxy e Q x e dx C -⎰⎰+; (D)()=P x dx y ce -⎰.2、 方程xy y '是( A ).(A)齐次方程; (B)一阶线性非齐次方程; (C) 一阶线性齐次方程; (D)可分离变量方程 .3、已知ln x y x =是微分方程'()y x y x y ϕ=+的解,则()x y ϕ的表达式为( A ).(A) 22y x -; (B) 22y x ; (C) 22x y -; (D)22x y .4、 220,(1)2dy dxy x y+==的特解是(B ).(A)22=2x y +; (B)339x y +=;(C)33=1x y +; (D)33133x y +=. 5、 方程=sin y x '''的通解是( A ).(A)21231=cos 2y x C x C x C +++; (B)21231=sin 2y x C x C x C +++;(C)1=cos y x C +; (D)=2sin 2y x . 6、 方程=0y y ''''+的通解是( B ).(A)1sin cos +y x x C =-; (B)123sin cos +y C x C x C =-;(C)1sin cos +y x x C =+; (D)1sin y x C =-.7、 若1y 和2y 是二阶齐次线性方程()()0y P x y Q x y '''++=的两个特解,则1122y C y C y =+(其中12,C C 为任意常数)( B ). (A)是该方程的通解; (B)是该方程的解;(C)不是该方程的解; (D)不一定是该方程的解. 8、求方程2()=0yy y '''-的通解时,可令( B ).(A) y P '=,则 y P '''=; (B) ,y P '=则=dPy P dy'';(C) ,y P '=则=dP y P dx ''; (D) ,y P '=则=dPy P dy'''.9、设线性无关的函数123y y y ,,都是二阶非齐次线性方程 '''()()()y p x y q x y f x ++=的解,12,C C 为任意常数,则该非齐次方程的通解是( D ).(A) 11223y C y C y y =++; (B) 1122123()y C y C y C C y =+-+;(C) 1122123(1)y C y C y C C y =+--- ; (D) 1122123(1)y C y C y C C y =++--. 10、方程32x y y y xe '''-+=的一个特解形式是 ( C ). (A) ()x y ax b e =+; (B); x y ae x = (C) ()x y ax b e x =+; (D) x y ae =. 二、求下列一阶微分方程的通解: 1、ln (ln 1)xy x y ax x '+=+; 2、2(6)20dy y x y dx-+=.;ln c y ax x =+; 232y x cy =+;3、(12)2(1)0x xy yx e dx e dy y ++-=.2x yx ye c +=.三、求下列高阶微分方程的通解:1、y y x '''=+; 2、20y y y ''''''+-=.21212x y C e x x C =--+; 2123x x y C C e C e -=++; 3、123='+''y x y x ; 解 方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x , 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以=)(x P 1d 13d 1d e 1(e C x x xx xx +⎰⎰⎰-)=1ln 3ln d e 1(eC x x x x+⎰-)=13d 1(1C x x x x +⋅⎰)=11(1C x x +-)=x C x121+-, 由此 x y d d =x C x121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++,因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 4、x y y y x 2sin e 842=+'-''.解 对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。
所以设特解为x Ax y )i 22(e +*=,代入原方程,化简得18])i 22([4i 8)i 44(=+++-++Ax Ax A Ax A ,比较同类项系数,得 1i 4=A ,4i i 41-==A . 所以,方程(*)的特解为)2sin 2(cos e 4i 2x i x x y x +-=*=)2sin 2cos i (e 412x x x x --,其虚部即为所求原方程的特解 x x y xP 2cos e 412-=.因此原方程通解为)sin cos (e 212x C x C y x +=x x x2cos e 412-.四、求下列微分方程满足所给初始条件的特解:1.y y x y x y xy d d d d 2+=+ 满足条件20==x y 的特解.解 这是可以分离变量的微分方程,将方程分离变量,有 x x y y y d 11d 12-=-,两边积分,得 =-⎰y y yd 12⎰-x x d 11, 求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .2. )1()(22-''='y y y 满足初始条件21==x y,11-='=x y 的特解.解 方程不显含x ,令 P y =',yP P y d d ='',则方程可化为 )1(d d 22-=y y P P P , 当 0≠P 时 y y P P d 12d -=,于是 21)1(-=y C P . 根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y y d )1(d 2-=-,积分得 211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=五、已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程 .解 设所求曲线方程为 )(x f y =,),(y x P 为其上任一点,则过P 点的曲线的切线方程为 )(x X y y Y -'=-,由假设,当0=X 时 x Y =,从而上式成为11d d -=-y xx y .因此求曲线)(x y y =的问题,转化为求解微分方程的定解问题 ⎪⎩⎪⎨⎧=-=-'=1111x y y xy ,的特解. 由公式 C x x Q y xx P x x P +⎰⎰=⎰-d e )((e d )(d )(,得)d e)1((ed 1d 1C x y xx xx +⎰-⎰=-⎰=Cx x x +-ln ,代入11==x y得1=C ,故所求曲线方程为 )ln 1(x x y -=.六、一质量为m 的质点由静止开始沉入液体,当下沉时,液体的反作用力与下沉速度成正比,求此质点的运动规律.解 设质点的运动规律为)(t x x =.由题意,有⎪⎪⎩⎪⎪⎨⎧==-===,0d d ,0,d d d d 0022t t t x x t x k m g t x m (0>k 为比例系数) 方程变为 g t xm k tx =+d d d d 22, 齐次方程的特征方程为 02=+r m k r , 0)(=+m k r r ,01=r ,mkr -=2. 故原方程所对应的齐次方程的通解为 t mkc C C x -+=e21,因0=λ是特征单根,故可设 at x p =,代入原方程,即得 kmga =, 故t kmgx p =,所以原方程的通解 t mk C C x -+=e21t kmg +, 由初始条件得 221kg m C -=,222kg m C =,因此质点的运动规律为 )e 1()(22t m kkgm t k mg t x ---=..。