应用回归分析填空题和答案

合集下载

第七章回归与相关分析练习及答案

第七章回归与相关分析练习及答案

第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。

2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。

3.相关系数的取值X围是。

4.完全相关即是关系,其相关系数为。

5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。

6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。

7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。

8.回归方程y=a+bx中的参数a是,b是。

在统计中估计待定参数的常用方法是。

9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。

10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。

11.用来说明回归方程代表性大小的统计分析指标是。

12.判断一条回归直线与样本观测值拟合程度好坏的指标是。

二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。

回归分析练习试题和参考答案解析

回归分析练习试题和参考答案解析

1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

α=)。

(5)检验回归方程线性关系的显著性(0.05(6)如果某地区的人均GDP为5000元,预测其人均消费水平。

(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:系数a模型非标准化系数标准系数t Sig.相关性B标准误差试用版零阶偏部分1(常量).003人均GDP.309.008.998.000.998.998.998 a. 因变量: 人均消费水平有很强的线性关系。

(3)回归方程:734.6930.309y x=+系数a模型非标准化系数标准系数t Sig.相关性回归系数的含义:人均GDP没增加1元,人均消费增加元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型非标准化系数标准化系数t显著性B标准误Beta1(常量)人均GDP(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1.998a.996.996a. 预测变量: (常量), 人均GDP。

人均GDP对人均消费的影响达到%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

模型摘要模型R R 方调整的 R 方估计的标准差1.998(a)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F检验:Anova b模型平方和df均方F Sig.1回归.6801.680.000a 残差5总计.7146a. 预测变量: (常量), 人均GDP。

数学课后训练:回归分析的基本思想及其初步应用

数学课后训练:回归分析的基本思想及其初步应用

课后训练一、选择题1.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了100次和150次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()A.l1和l2有交点(s,t)B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合2.下列四个命题中正确的是( )①在线性回归模型中,e是bx+a预报真实值y的随机误差,它是一个观测的量;②残差平方和越小的模型,拟合的效果越好;③用R2来刻画回归方程,R2越小,拟合的效果越好;④在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,若带状区域宽度越窄,说明拟合精度越高,回归方程的预报精度越高.A.①③B.②④C.①④D.②③3.已知x,y取值如下表:若x,y y=0.95x+a,则a=( )A.0.325 B.2。

6C.2。

2 D.04.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,( )A .y =2x -2B .12xy ⎛⎫= ⎪⎝⎭C .y =log 2xD .y =12(x 2-1)5.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0。

5.如果今年该地区财政收入10亿元,年支出预计不会超过( )A .10亿B .9亿C .10.5亿D .9.5亿6.某产品的广告费用x 与销售额y 的统计数据如下表:y bx a =+b 费用为6万元时销售额为( )A .63.6万元B .65。

5万元C .67.7万元D .72.0万元 二、填空题7.在研究身高和体重的关系时,求得R 2≈______,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”,所以身高对体重的效应比随机误差的效应大得多.8.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:小李这5的方法,预测小李该月6号打6小时篮球的投篮命中率为__________.三、解答题9.恩格尔系数=食物支出金支出金额总额×100%.在我国,据恩格尔系数判定生活发展阶段的标准为:贫困:>60%,温饱:50%~60%,小康:40%~50%,富裕:<40%.据国家统计局统计显示,随着中国经济的不断发展,城镇居民家庭恩格尔系数不断下降,居民消费已从温饱型向享受型、发展型转变.如下表:(2)预报2013年的恩格尔系数;(3)求R2;(4)作出残差图.10.关于x与y有以下数据:已知x与y 6.5b ,(1)求y与x的线性回归方程;(2)现有第二个线性模型:y=7x+17,且R2=0。

应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

第一章回归分析概述1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

机器学习与人工智能(回归分析)习题与答案

机器学习与人工智能(回归分析)习题与答案

一、填空题1.回归分析的首要问题是()。

正确答案:估计回归系数2.分段多项式回归的回归系数发生的临界点称为()。

正确答案:结点3.自然样条是添加了()的样条回归:回归函数在边界区域是线性的。

正确答案:边界约束4.做样条回归时,如果结点个数过(),样条的回归曲线将非常曲折;反之,将过于平坦。

正确答案:多5.在光滑样条回归的目标函数中,()的作用是使得回归函数尽可能拟合训练数据。

正确答案:损失函数二、判断题1.线性假设是指自变量xj的变化对因变量y的影响与其他自变量的的取值无关。

正确答案:×解析:线性假设是指无论自变量取xj取何值,它变化一个单位所引起的因变量的变化大小是恒定的,加性假设是指自变量xj的变化对因变量y的影响与其他自变量的的取值无关2.“回归函数在边界区域是线性的”。

这个附加约束使自然样条在边界处产生更稳定的估计。

正确答案:√3.在N-W方法中,核函数的带宽h越小,估计的回归函数曲线越光滑,h越大,估计的回归函数曲线波动越大。

正确答案:×解析:在N-W方法中,核函数的带宽h越大,估计的回归函数曲线越光滑,h越小,估计的回归函数曲线波动越大。

4.广义加性模型在保持其他自变量不变的情形下可以分析每个自变量对因变量的单独效应。

正确答案:√5.回归函数刻画了平均意义下因变量与自变量的相依关系。

正确答案:√6.回归分析的研究对象是具有相关关系的变量。

正确答案:√三、单选题1.已知变量x与y正相关,且由观测数据算得x的样本平均值为3,y的样本平均值为3.5,则由该观测数据算得的线性回归方程可能是( )。

A.y=0.4x+2.3B.y=2x-2.4C.y=-2x+9.5D.y=-0.3x+4.4正确答案:A2.在两个变量的回归分析中,作散点图是为了( )。

A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数正确答案:C3.下列两个变量之间的关系,( )是函数关系。

第七章回归与相关分析练习及答案

第七章回归与相关分析练习及答案

第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。

2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。

3.相关系数的取值范围是。

4.完全相关即是关系,其相关系数为。

5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。

6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。

7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。

8.回归方程y=a+bx中的参数a是,b是。

在统计中估计待定参数的常用方法是。

9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。

10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。

11.用来说明回归方程代表性大小的统计分析指标是。

12.判断一条回归直线与样本观测值拟合程度好坏的指标是。

二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值范围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。

《应用回归分析》课后题答案解析

《应用回归分析》课后题答案解析

(8) t
1
2
/ Lxx
1
Lxx
2
其中
1 n2
n i1
ei 2
1 n2
n i1
( yi
2
yi )
0.0036 1297860 8.542 0.04801
t /2 1.895
t 8.542 t /2
接受原假设 H 0: 1 0, 认为 1 显著不为 0,因变量 y 对自变量 x 的一元线性回归成立。
( yi
2
yi )
1 n-2
n i=1
( yi
( 0 1
2
x))
=
1 3
( 10-(-1+71))2 (10-(-1+7 (20-(-1+7 4))2 (40-(-1+7
2))2 (20-(-1+7 5))2
3))2
1 16 9 0 49 36
3
110 / 3
1
330 6.1
《应用回归分析》部分课后习题答案
第一章 回归分析概述
变量间统计关系和函数关系的区别是什么 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量 唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另 外一个变量的确定关系。
回归分析与相关分析的联系与区别是什么 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。区别有 a. 在回归分析中,变量 y 称为因变量,处在被解释的特殊地位。在相关分析中,变 量 x 和变量 y 处于平等的地位,即研究变量 y 与变量 x 的密切程度与研究变量 x 与变量 y 的密切程度是一回事。b.相关分析中所涉及的变量 y 与变量 x 全是随机 变量。而在回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量也可以 是非随机的确定变量。C.相关分析的研究主要是为了刻画两类变量间线性相关的 密切程度。而回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归 方程进行预测和控制。

回归分析试题答案

回归分析试题答案

诚信应考 考出水平 考出风格浙江大学城市学院2011 — 2012 学年第一学期期末考试卷《 回归分析 》开课单位: 计算分院 ;考试形式:开卷(A4纸一张);考试时间:2011年01月6日; 所需时间: 120 分钟一.计算题(10分。

)1,考虑过原点的线性回归模型1,1,2,...,i i i y x i n βε=+=误差1,...,n εε仍满足基本假定。

求1β的最小二乘估计。

并求出1β 的期望和方差,写出1β的分布。

1221111111121,1,2,...,ˆ()()2()0ˆi i i nni i i i i i ni i i i ni ii nii y x i n Q y yy x Qy x x x yxβεββββ======+==-=-∂=--=∂=∑∑∑∑∑解:第1页共 6 页二. 证明题(本大题共2小题,每小题7分,共14分。

)1,证明:(1)22()1var()[1]i i xxx x e n L σ-=--(2)2211ˆˆ()2n i ii y y n σ==--∑是2σ的无偏估计。

011111122ˆˆˆ()()1()()1var()var[()()]()1var()var((()))()12cov[,(())](1(i i i i i nn i i j j jj j xx ni i i j j j xx ni i j j j xx ni i j j j xxe y y y x x x x y y x x y n L x x e y x x y n L x x y x x y n L x x y x x y n L x n ββσσ======-=----=----=-+--=++---+-=++∑∑∑∑∑解(1):222122222221212211)()1())2()()()11(12()]()1[1]1ˆˆ(2)()(())21ˆ[()]2()111var()[1]2212n i i j j xx xxi i xx xxi xx ni i i ni i i n n i i i i xx x x x x x L n L x x x x n L n L x x n L E E y y n E y y n x x e n n n L n σσσσσ=====----+--=++-+-=--=--=---==----=-∑∑∑∑∑22(11)n σσ--=三.填空题.(每空2分,共46分)1.为了研究家庭收入和家庭消费的关系,通过调查得到数据如下:6.22893,29.12349,43008,97.29,5422=====∑∑∑xy yxy x1)用最小二乘估计求出线性回归方程的参数估计值0ˆβ= 。

回归分析的初步应用(人教A版)(含答案)

回归分析的初步应用(人教A版)(含答案)

回归分析的初步应用(人教A版)一、单选题(共7道,每道14分)1.下列结论:①函数关系是一种确定性关系;②相关关系是一种非确定关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.其中正确的是( )A.①②B.①②③C.①②④D.①②③④答案:C解题思路:试题难度:三颗星知识点:回归分析的初步应用2.在回归分析中,残差图中纵坐标为( )A.残差B.样本编号C. D.答案:A解题思路:试题难度:三颗星知识点:回归分析的初步应用3.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( )A.总偏差平方和B.残差平方和C.回归平方和D.相关指数答案:B解题思路:试题难度:三颗星知识点:回归分析的初步应用4.给出下列结论:①在回归分析中,可用指数系数的值判断模型的拟合效果,越大,模型的拟合效果越好;②在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;③在回归分析中,可用相关系数的值判断模型的拟合效果,越大,模型的拟合效果越好;④在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域内,说明这样的模型比较适合,带状区域的宽度越窄,说明模型的拟合精度越高.其中正确的共有( )A.1个B.2个C.3个D.4个答案:B解题思路:试题难度:三颗星知识点:回归分析的初步应用5.下列四个命题:①将一组数据中的每个数据都加上同一个常数,方差不变;②已知回归方程,则当变量增加一个单位时,平均减少5个单位;③将一组数据中的每个数据都加上一个常数,均值不变;④在回归分析中,我们常用来反映拟合效果,越大,残差平方和就越小,拟合的效果就越好.其中错误的共有( )A.0个B.1个C.2个D.3个答案:B解题思路:试题难度:三颗星知识点:回归分析的初步应用6.为了研究两个变量之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为,已知两个人在试验中发现,变量的观测数据的平均值都是,变量的观测数据的平均值都是,那么下列说法正确的是( )A.必定平行B.必定重合C.有交点D.相交,但交点不一定是答案:C解题思路:试题难度:三颗星知识点:回归分析的初步应用7.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为.若在这些样本点中任取一点,则它在回归直线左下方的概率为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:回归分析的初步应用。

应用回归分析试题

应用回归分析试题

应用回归分析试题(一)一、选择题1. 两个变量与x的回归模型中,通常用2R来刻画回归的效果,则正确的叙述是( D )A. 2R越小,残差平方和越小B. 2R越大,残差平方和越大C. 2R与残差平方和无关D. 2R越小,残差平方和越大2.下面给出了4个残差图,哪个图形表示误差序列是自相关的(B)(A) (B)(C)(D)3.在对两个变量x,y进行线性回归分析时,有下列步骤:i ,…,①对所求出的回归直线方程作出解释; ②收集数据(i x,i y),1,2n;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量,x y具有线性相关结论,则在下列操作中正确的是( D )A.①②⑤③④ B.③②④⑤①C.②④③①⑤ D.②⑤④③①4.下列说法中正确的是(B )A.任何两个变量都具有相关关系B.人的知识与其年龄具有相关关系C.散点图中的各点是分散的没有规律 D.根据散点图求得的回归直线方程都是有意义的5. 下面的各图中,散点图与相关系数r不符合的是(B )二、填空题1. OLSE估计量的性质线性、无偏、最小方差。

2. 学习回归分析的目的是对实际问题进行预测和控制。

3. 检验统计量t 值与P 值的关系是P(|t |>|t 值|)=P 值,P 值越小,|t 值| 越大 ,回归方程越显著。

4. 在一元线性回归中,SST 自由度为n-1, SSE 自由度为n-2, SSR 自由度为1。

5. 在多元线性回归中,样本决定系数2R = 1SSR SSESSTSST =-。

三、叙述题1. 叙述一元线性回归模型中回归方程系数的求解过程及结果(OLSE 法)答案:定义离差平方和2^1)()(i ni i y y Q ∑=-=β最小二乘思想找出参数10,ββ的估计值^1^0,ββ。

使得离差平方和最小,使^1^0,ββ满足下述条件:∑∑==--=-=ni i i ni i i x y x y Q 1210,121^^010)(min ),(),(1ββββββββ根据微分中值定理可得:0)(2|0)(2|^11^01^11^11^00^00=---=∂∂=---=∂∂∑∑====i i n i i i n i i x x y Qx y Qββββββββββ求解正规方程组得到:⎪⎪⎪⎩⎪⎪⎪⎨⎧---=-=∑∑=-=----n i i n i i i x x y y x x xy 121^11^^0)())((βββ 令 --=-=--==--=--=-=-=∑∑∑∑y x n y x y y x x L xn x x x L ni i i i ni i xy ni ini i xx 1121212)()()(则一元线性回归模型中回归方程系数可表示为⎪⎪⎩⎪⎪⎨⎧=-=--xx xy L L x y ^1^1^0βββ2. 叙述多元线性回归模型的基本假设 答案:假设1.解释变量12,,,K X X X L 是非随机的 假设(i ε)=0;假设(i ε)=2σ,i =1,2,……ncov(,i j εε)=0,i j ≠, ,i j =1,2,……n; 假设4.解释变量12,,,K X X X L 线性无关;假设5.2(0,)i N εσ:3. 回归模型中随机误差项ε的意义是什么?答案:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与12,,px x x L 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

回归分析练习题及参考答案

回归分析练习题及参考答案

1 下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:地区人均GDP/元人均消费水平/元北京辽宁上海江西河南贵州陕西 224601122634547485154442662454973264490115462396220816082035求:(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(0.05α=)。

(6)如果某地区的人均GDP为5000元,预测其人均消费水平。

(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(4)模型汇总模型R R 方调整 R 方标准估计的误差1 .998a.996 .996 247.303a. 预测变量: (常量), 人均GDP。

人均GDP对人均消费的影响达到99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

应用回归分析试题(二)

应用回归分析试题(二)

应用回归分析试题(二)一、选择题1.对两个变量X和y进行线性回归分析时,有以下步骤:yii?2,1,①对所求出的回归直线方程作出解释;②收集数据(xi、),…,N③ 找出线性回归方程;④ 寻找未知参数;⑤ 根据收集的数据进行绘制散点图。

根据可行性要求,如果可以得出变量X和y具有线性相关性的结论,则以下操作中正确的变量为(d)a.①②⑤③④b.③②④⑤①c.②④③①⑤d.②⑤④③①2.下列说法中正确的是(b)a.任何两个变量都具有相关关系b.人的知识与其年龄具有相关关系c.散点图中的各点是分散的没有规律d、从散点图得到的回归线性方程是有意义的3.下面的各图中,散点图与相关系数r不符合的是(b)4.一位母亲记录了她3到9岁儿子的身高,并建立了身高和年龄之间的关系7.19x?73.93,归直线方程为y据此可以预测这个孩子10岁时的身高,正确的说法是(d)a.身高一定是145.83cmb.身高超过146.00cmc.身高低于145.00cmd.身高在145.83cm左右5.在画两个变量的散点图时,下面哪个叙述是正确的(b)(a)预报变量在x 轴上,解释变量在y轴上(b)解释变量在x轴上,预报变量在y轴上(c)可以选择两个变量中任意一个变量在x轴上(d)可以选择两个变量中任意一个变量二、填空题m21。

y变量是否存在m个可能的回归方程?1.2.h是帽子矩阵,则tr(h)=p+1。

3.回归分析可分为单变量和多变量。

4.回归模型的一般形式为y??0 1x1??2x2pxp5.冠状病毒(e)??2(I?H)(E是多元回归的残差矩阵)。

3、叙事问题1.引起异常值消除的方法(至少5个)?答案:异常值消除方法:(1)重新核实数据;(2)重新测量数据;(3)删除或重新观测异常值数据;(4)增加必要的自变量;(5)增加观测数据,适当扩大自变量的取值范围;(6)采用加权线性回归;(7)采用非线性回归模型;2.自相关引起的问题?答案:(1)参数的估计值不再具有最小方差线性无偏性;(2)均方差(mse)可能严重低估误差项的方差;(3) T值容易被高估,常用的F检验和T检验均失败;(4)当存在序列相关性时,?还无偏估计,但在任何特定样本中;?可能会被严重扭曲?也就是说,最小二乘估计对采样波动变得非常敏感;(5)如果不加处理的运用普通最小二乘估计模型参数,用此模型进行预测和结构分析会带来较大的方差甚至错误的解释。

回归分析练习题及参考答案

回归分析练习题及参考答案

求:(1)人均GDP 作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(0.05α=)。

(6)如果某地区的人均GDP 为5000元,预测其人均消费水平。

(7)求人均GDP 为5000元时,人均消费水平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%人均GDP对人均消费的影响达到99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

模型摘要模型R R 方调整的R 方估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), 人均GDP(元)。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F 检验:回归系数的检验:t 检验注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型 非标准化系数标准化系数t 显著性B 标准误 Beta1(常量) 734.693 139.540 5.2650.003 人均GDP (元)0.3090.0080.99836.4920.000a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的人均GDP 为5000元,预测其人均消费水平为 734.6930.30950002278.693y =+⨯=(元)。

应用回归分析简答题及答案

应用回归分析简答题及答案

应用回归分析简答题及答案应用回归分析简答题及答案4.为什么要对回归模型进行检验?答:当模型的未知参数估计出来后,就初步建立了一个回归模型。

建立回归模型的目的是应用他来研究经济问题,但如果马上就用这个模型去做预测、控制和分析,显然是不够慎重的。

因为这个模型是否真正揭示了被解释变量与解释变量之间的关系,必须通过对模型的检验才能决定。

5.讨论样本容量n与自变量个数p的关系,他们对模型的参数估计有何影响?答:在多元线性回归模型中,样本容量n与自变量个数p的关系是:n>p。

如果n<=p对模型的参数估计会带来严重的影响。

因为:(1 )在多元线性回归模型中,有p+1个待估参数B,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。

(2)解释变量X是确定性变量,要求rank(X)=p+1<="">X是一个满秩矩阵7.如何正确理解回归方程显著性检验拒绝Ho,接受Ho ?答:(1)一般情况下,当Ho : B仁0被接受时,表明y的取值倾向不随x的值按线性关系变化,这种状况的原因可能是变量y与x之间的相关关系不显著,也可能虽然变量y与x之间的相关关系显著,但这种相关关系不是线性的而是非线性的。

(2)当Ho : B仁0被拒绝时,没有其他信息,只能认为因变量y 对自变量x是有效的,但并没有说明回归的有效程度,不能断言y与x 之间就一定是线性相关关系,而不是曲线关系或其他的关系。

8■—个回归方程的复相关系数R=0.99,样本决定系数RA2=0.9801,我们能断定这个回归方程就很理想吗?答:1.在样本容量较少,变两个数较大时,决定系数的值容易接近1,而此时可能F检验或者关于回归系数的t检验,所建立的回归方程都没能通过。

2.样本决定系数和复相关系数接近1只能说明Y 与自变量X1,X2,…,Xp整体上的线性关系成立,而不能判断回归方程和每个自变量都是显著的,还需进行F检验和t检验3.在应用过程中发现,在样本量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得R A2增大,因此增加解释变量个数引起的R A2的增大与拟合好坏无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用回归分析:填空(1) 回归分析是处理变量间_______关系的一种数理统计方法,若变量间具有线性关系,则称相应的回归分析为____________;若变量间不具有线性关系,就称相应的回归分析为___________________。

(2) 现代统计学中研究统计关系的两个重要分支是_________和_____________。

(3) 回归模型的建立是基于回归变量的样本统计数据,常用的样本数据分为___ ___________________和______________________。

(4) 回归模型通常应用于______________________、____________________和_____________________等方面。

(5) 最小二乘法的基本特点是使回归值与_________________________平方和为最小,最小二乘法的理论依据是___________________________。

(6) 多元线性回归模型εβ+=X Y ,回归参数β的最小二乘估计为 βˆ=_________________________。

(7) 设线性回归模型参数向量β(p+1维)的最小二乘估计为βˆ,c 为p+1维常数向量,则______________是____________的最小方差线性无偏估计。

(8) 在线性回归分析中,最小二乘估计的性质有______________; _____ _____________和____________________等。

(9) 多元线性回归模型n i x x y i ip p i i ,,2,1,110 =++++=εβββ,误差项()n i i ,,2,1, =ε需满足的markov Gauss -假设为:(a):________________________________________;(b):________________________________________;(c):_________________________________________。

(10) 对回归方程做显著性检验时,可以用P 值代替检验统计量值,作出拒绝或接受原假设的决定:当P_______α时,接受0H ;当P________α时,拒绝0H 。

(11) 在p 元线性回归中,确定随机变量y 与自变量12,,,p x x x 间是否有线性关系,通常要进行________检验,检验的方法有(a)_______________________,(b)_______________________________,(c)______________________________。

(12) 对线性回归方程作F 检验,是____________________________作检验;t 检验是对________________________________作检验。

(13) 在多元线性回归中,当2(,)n y N σ~X βI 时,则ˆ~β____________________; 2/SSE σ~_______________________。

(14) 残差具有性质:a) ()i E e =__________;b) ()i Var e =__________________;c) 并满足约束条件:1n i i e ==∑___________,1ni i i x e ==∑_____________。

(15) 在线性回归中,回归系数i β的置信度为1α-的置信区间为_______________________________。

(16) 设*X 是经中心化标准化的设计矩阵,则样本相关(系数)矩阵r 可由*X 表示为r =_____________________________。

(17) 在多元线性回归中,样本决定系数2R =_______________________。

(18) 前进法,后退法还有_______________________是建立回归模型时变量选择的常用方法,并且这最后一种方法吸取了前两种方法的优点。

(19)多重共线性诊断的方法主要有:1)_______________________________;2)___________________________;3)______________________________。

(20) 为了消除多重共线性对回归模型的不良影响,通常采用的方法有:______________________________; _____________________________和___________________________________。

(21) 多元线性回归模型=+Y X βε,设W 为权矩阵,则加权最小二乘估计可表达为ˆWβ=________________________________。

(22) 在多元线性回归模型中,通常取权函数为某个自变量的幂函数,在12,,,p x x x 这p 个自变量中,应取____________________________________构造权函数。

(23) 设X 为线性回归模型的设计矩阵,012p λλλλ≤≤≤≤是T X X 的特征根,则其条件数i k =_______________。

(24) 设X 为线性回归模型的设计矩阵,当解释变量间存在多重(复)共线性时,T X X 的行列式_________________,T X X 的特征根___________________。

(填小到或大到什么程度)(25) ______________和___________法是处理自相关问题的两种简单的方法。

(26) 在线性回归模型中,设s r 是i x 和i e 的等级(秩)相关系数,/2(2)t t n α=~-,则当t _________________时认为存在显著的异方差性,当t ________________时认为不存在显著的异方差性。

(27) 检验线性回归模型中随机误差是否存在自相关现象的DW 检验统计量和自相关系数ˆρ的关系式为______________________;DW 的取值范围是_________________。

(28) 建立回归模型时,选择解释变量的基本指导思想是___________________。

(29) 在多元线性回归中,可以用标准化残差和学生化残差判断异常值的存在,_______________的相应观测值被判定为关于x 的异常值;______________的相应观测值被判定为关于y 的异常值。

(30) 在线性回归模型中设2j R 是解释变量j x 对其余1-p 个解释变量的复决定系数,则方差扩大因子j VIF 与2j R 的关系为____________________。

(31) 回归诊断中,诊断异常值的一个粗略标准是:当库克距离_____________时,认为不是异常值点;当库克距离______________时,认为是异常值点。

(32) 在逐步回归中,为避免引入、剔除自变量的循环过程产生“死循环”,要求引入自变量的显著性水平α进________剔除自变量的显著性水平α出。

(33) 已知曲线回归模型中的回归函数()01x f x b b =,则可通过令______~_____,~==x y 将其线性化。

(34) 已知曲线回归模型中的回归函数()()x b b x f 10ex p +=,则可通过令____________~_,__________~==x y 将其线性化。

(35)已知曲线回归模型中的回归函数()10b x b x f =,则可通过____________~_,__________~==x y 将其线性化。

(36)已知曲线回归模型中的回归函数()()x b b x f 10ex p =,则可通过令______~_____,~==x y 将其线性化。

(37) 已知曲线回归模型中的回归函数()x b b x f ln 10+=,则可通过令____________~_,__________~==x y 将其线性化。

(38) 已知曲线回归模型中的回归函数()2210x b x b b x f ++=,则可通过令____________~__,__________~_,__________~21===x x y 将其线性化。

(39) 在含有定性自变量的回归模型中,一个定性变量有k 类可能的取值时,需要引入_____________个_______________自变量。

(40) 在非线性回归中,_________________________不再成立,定义非线性回归的复决定系数为________________________________________。

填空题答案(1)相关关系、线性回归分析、非线性回归分析(2)回归分析、相关分析(3)横截面数据、时间序列数据(4)变量的因素分析、预测、控制(5)实际观测值的离差、函数的极值理论(6)1()-''X X X y (7)ˆβc 、βc (8)无偏性、线性性、最小方差性(9)误差项的数学期望为0,即()0E =ε ;同方差性,即2()D σ=εI ;误差项间彼此互不相关,即(,)0,i j Cov i j εε=≠(10)>、≤(11)假设、回归方程的整体性F 检验、回归系数的t 检验、拟合优度检验(12)关于y 对所有自变量12,,p x x x 整体的线性回归效果是否显著、y 对每一个自变量的线性回归效果是否显著(即每一个回归系数)(13)21(,())σ-'N βX X 、2(1)χ--n p (14)a) 0;b) 2221()11()σ=⎡⎤⎢⎥-⎢⎥--⎢⎥-⎢⎥⎣⎦∑i n i i x x n x x ;c)0、0 (15)()//ˆˆ,ααββ-+i i t t ,其中ii c 是矩阵1()-'X X 的主对角线元素 (16)()**'X X(17)21==-SSR SSE R SST SST,其中SST 是总平方和,SSR 是回归平方和,SSE 是残差平方和(18)逐步回归法(19)方差扩大因子法、特征根判定法、直观判定法(20)剔除一些不重要的解释变量;增大样本容量;回归系数的有偏估计:岭回归法、主成分法、偏最小二乘法等(21) 1()-''X WX X Wy ,其中W 是权向量(22) 与普通残差的等级相关系数最大的自变量(231,,λ= m i p 为最大特征根(24)近似为0;至少有一个近似为0(25)差分法和迭代法(26)/2(2)α>-t t n ;/2(2)α≤-t t n(27)ˆ2(1)ρ≈-DW ,04≤≤DW (28)少而精(29)3>i ZRE ;()3>i SRE(30)211=-i iVIF R ,其中2i R 是i x 对其他自变量的复决定系数 (31)0.5<i D ;1>i D(32)引入自变量的显著性水平小于剔除自变量的显著性水平,即进出αα<(33)ln ()f x ,x(34)ln ()f x ,1x(35)ln ()f x ,ln x(36)ln ()f x ,x(37)()f x ,ln x(38)()f x ,x ,2x(39)1-k ;虚拟自变量(40)平方和分解式=+SST SSR SSE ;21=-SSE R SST。

相关文档
最新文档