华师大版九年级数学下册期中复习试题.docx

合集下载

华师大版九年级下册数学期中考试题(附答案)

华师大版九年级下册数学期中考试题(附答案)

华师大版九年级下册数学期中考试题(附答案)学校:___________姓名:___________班级:___________考号:___________ 评卷人得分一、选择题(题型注释)1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.c<0C.3是方程ax2+bx+c=0的一个根 D.当x<1时,y随x的增大而减小2.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧 (4) 圆是轴对称图形,任何一条直径都是对称轴A.0个 B.1个 C.2个 D.3个3.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是()A、R=2rB、R=4rC、R=3rD、R=3r4.顺次连接圆内两条相交直径的4个端点,围成的四边形一定是().A.梯形 B.菱形 C.矩形 D.正方形5.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是( ).A.2cm B.3cm C.4cm D.4cm6.绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A. 4mB. 5mC. 6mD. 8m7题图7.如图,在半径为5cm的圆中,圆心0到弦AB的距离为3cm,则弦AB的长为( )A.4cmB.6cmC.8cmD.10cm8.已知圆锥的底面半径为4cm ,母线长为5cm ,则这个圆锥的侧面积是( )A .20 cmB .20πcm 2C .40πcm 2D .40cm 29.已知二次函数y=ax ²+bx+c(a ≠0)的图像如图所示,则下列结论中正确的是( )A.a >0B.3是方程ax ²+bx+c=0的一个根C.a+b+c=0D.当x <1时,y 随x 的增大而减小10.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是的中点,则下列结论不成立的是( ) 11题图A .OC//AEB .EC=BC C .∠DAE=∠ABED .AC ⊥OE11.在等腰直角三角形ABC 中,AB=AC=4,点O 为BC 的中点,以O 为圆心作⊙O 交BC 于点M 、N ,⊙O 与AB 、AC 相切,切点分别为D 、E ,则⊙O 的半径和∠MND 的度数分别为 3,30° C.3,22.5° D.2,30°评卷人得分 二、填空题100 cm ,截面如图5,若管内污水的面宽AB=60 cm ,则污水的最大深度为_____ cm.14题图13.抛物线y =x 2+2x +m ﹣1与x 轴有两个不同的交点,则m 的取值范围是 ______ 14.如图,已知⊙O 的直径AB =3cm ,C 为⊙O 上的一点,sin A =25,则BC =______ cm . 15.函数y =−x 2−4x +6的最大值是____________.16.函数y =(k −12)x 2k 2+k+1是二次函数,则k =_________; ______. 评卷人 得分 三、计算题40天内完成工程.现有A 、B 两个工程队有意承包这项工程,已知B 工程队单独完成此项工程的时间是A 工程队单独完成此项工程的时间的2倍,若A 、B 两工程队合作只需10天完成.(1)求出A 、B 两个工程队单独完成此项工程各需多少天;(2)若A 工程队每天的工程费用是4.5万元,B 工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少,并计算出最少工程费用. 评卷人得分 四、解答题19.某商场购进一批L 型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件,根据市场调研,若每件降价1元,则每天销售数量比原来多3件.现商场决定对L 型服装开展降价促销活动,每件降价x 元(x 为正整数).在促销期间,商场要想每天获得最大销售毛利润,每件应降价多少元?每天最大销售毛利润为多少?(注:每件服装销售毛利润是指每件服装的销售价与进货价的差)20.已知二次函数图像的顶点坐标为(1,—1),且经过原点(0,0),求该函数的解析式。

华师大版九年级下册数学期中考试试题含答案

华师大版九年级下册数学期中考试试题含答案

华师大版九年级下册数学期中考试试卷一、选择题(每小题3分,共30分)1.抛物线y =(x +1)2-2的对称轴是直线( ) A .x =-1 B .x =1 C .x =2 D .x =-22.如图,在圆的内接四边形ABCD 中,∠ABC =120°,则四边形ABCD 的外角∠ADE 的度数是( )A .130°B .120°C .110°D .100°第2题图 第3题图 第5题图 第6题图3.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C =40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15° 4.二次函数y =ax 2+bx -1(a ≠0)的图象经过点(1,-3),则代数式1+a +b 的值为( ) A .-3 B .-1 C .2 D .55.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BE B.BC ︵=BD ︵C .△BOC 是等边三角形D .四边形ODBC 是菱形6.如图,在⊙O 中,AB 是直径,BC 是弦,点P 是BC ︵上任意一点.若AB =5,BC =3,则AP 的长不可能为( )A .3B .4 C.92D .57.“关于x 的函数y =(1-m )x 2+2x +1的图象与x 轴至少有一个交点”是真命题,则m 的值不可以是( )A .m =1B .m =0C .m =-1D .m =2 8如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A.⎝⎛⎭⎫π2-1cm 2B.⎝⎛⎭⎫π2+1cm 2 C .1cm 2 D.π2cm 29.加工爆米花时,爆开且不煳的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt -2(a ,b 是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可得到最佳加工时间为( )A .3.75分钟B .4.00分钟C .4.15分钟D .4.25分钟第9题图 第10题图10.如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径长等于( )A .5B .6C .2 5D .3 2 二、填空题(每小题3分,共24分)11.抛物线y =x 2-2x +3的顶点坐标是________.12.如图,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为________.第12题图 第15题图 第16题图13.圆锥的底面半径是1,母线长是4,则它的侧面展开图的圆心角是________.14.已知函数y =x 2+2(a +2)x +a 2的图象与x 轴有两个交点,且都在x 轴的负半轴上,则a 的取值范围是________.15.如图,小李推铅球,如果铅球运行时离地面的高度y (米)关于水平距离x (米)的函数解析式为y =-18x 2+12x +32,那么铅球运动过程中最高点离地面的距离为________米.16.如图,⊙O 的内接正五边形ABCDE 的对角线AD 与BE 相交于点G ,AE =2,则EG 的长是________.17.如图,圆O 的直径AB 为13cm ,弦AC 为5cm ,∠ACB 的平分线交圆O 于点D ,则CD 的长是________cm.第17题图 第18题图18.如图,抛物线y =ax 2+bx +c 的对称轴是直线x =-1,且过点⎝⎛⎭⎫12,0,有下列结论:①abc >0;②a -2b +4c =0;③25a -10b +4c =0;④3b +2c >0;⑤a -b ≥m (am -b ).其中正确的结论是________(填序号).三、解答题(共66分)19.(6分)已知二次函数y =x 2-6x +8.(1)将y =x 2-6x +8化成y =a (x -h )2+k 的形式;(2)当0≤x ≤4时,y 的最小值是________,最大值是________;(3)当y <0时,根据函数草图直接写出x 的取值范围.20.(6分)如图,已知CD 是⊙O 的直径,弦AB ⊥CD ,垂足为点M ,点P 是AB ︵上一点,且∠BPC =60°.试判断△ABC 的形状,并说明你的理由.21.(8分)如图,在⊙O 中,点C 为弧AB 的中点,∠ACB =120°. (1)求∠AOC 的度数;(2)若点C 到弦AB 的距离为2,求弦AB 的长.22.(8分)已知抛物线y =x 2-x +m .(1)m 为何值时,抛物线的顶点在x 轴上方?(2)如果抛物线与y 轴交于点A ,过点A 作AB ∥x 轴交抛物线于另一点B ,当S △AOB =4时,求m 的值.23.(8分)如图,AB 是⊙O 的弦,OP ⊥OA 交AB 于点P ,过点B 的直线交OP 的延长线于点C ,且CP =CB .(1)求证:BC是⊙O的切线;(2)若⊙O的半径为5,OP=1,求BC的长.24.(8分)如图,正方形ABCD的边长为4cm,以BC为直径作圆,再过A点作圆的切线,交DC于E,切点为F.(1)求△ADE的面积;(2)求BF的长.25.(10分)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?26.(12分)如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x 轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.参考答案与解析1.A 2.B 3.B 4.B 5.B 6.A 7.C 8.A 9.A10.C 解析:如图,过点D 作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB =20,面积为320,∴AB ·DH =320,∴DH =16.在Rt △ADH 中,AH =AD 2-DH 2=12,∴HB =AB -AH =8,在Rt △BDH 中,BD =DH 2+BH 2=8 5.设⊙O 与AB 相切于F ,连接OF .∵⊙O 与AB ,AD 都相切,∴AO 平分∠DAB .∵AD =AB ,∴AE ⊥BD .∵∠OAF +∠ABE =90°,∠ABE +∠BDH =90°,∴∠OAF =∠BDH .∵∠AFO=∠DHB =90°,∴△AOF ∽△DBH ,∴OA BD =OF BH ,∴1085=OF8,∴OF =25,故选C.11.(1,2) 12.3 13.90° 14.a >-1且a ≠0 15.216.5-1 解析:在⊙O 的内接正五边形ABCDE 中,设EG =x ,易知∠AEB =∠ABE =∠EAG =36°,∠BAG =∠AGB =72°,∴BG =AB =AE =2,EB =x +2.∵∠AEG =∠AEB ,∠EAG =∠EBA ,∴△AEG ∽△BEA ,∴AE 2=EG ·EB ,∴22=x (x +2),解得x =-1+5或-1-5(负值舍去),∴EG =5-1.17.1722 解析:如图,作DF ⊥CA ,垂足F 在CA 的延长线上,作DG ⊥CB 于点G ,连接DA ,DB .∵CD 平分∠ACB ,∴∠ACD =∠BCD ,AD ︵=BD ︵,∴DF =DG ,∴DA =DB .∵∠AFD =∠BGD =90°,易证Rt △AFD ≌Rt △BGD ,Rt △CDF ≌Rt △CDG (HL),∴AF =BG ,CF =CG .∵AB 是直径,∴∠ACB =90°.∵AC =5cm ,AB =13cm ,∴BC =AB 2-AC 2=12cm ,∴5+AF =12-AF ,∴AF =72cm ,∴CF =172cm ,∵CD 平分∠ACB ,∴∠ACD =45°,∴△CDF 是等腰直角三角形,∴CD =1722cm.18.①③⑤ 解析:由抛物线的开口向下可得a <0,根据抛物线的对称轴在y 轴左边可得a ,b 同号,∴b <0,根据抛物线与y 轴的交点在正半轴可得c >0,∴abc >0,∴①正确;∵直线x =-1是抛物线y =ax 2+bx +c (a ≠0)的对称轴,∴-b2a =-1,可得b =2a ,∴a-2b +4c =a -4a +4c =-3a +4c .∵a <0,c >0,∴-3a >0,∴-3a +4c >0,即a -2b +4c>0,∴②错误;∵抛物线y =ax 2+bx +c 的对称轴是直线x =-1,且过点⎝⎛⎭⎫12,0,∴抛物线与x 轴的另一个交点的坐标为⎝⎛⎭⎫-52,0.∴当x =-52时,y =0,即⎝⎛⎭⎫-522a -52b +c =0,整理得25a -10b +4c =0,∴③正确;∵当x =1时,y =a +b +c <0.又∵b =2a ,∴12b +b +c<0,即3b +2c <0,∴④错误;∵x =-1时,函数值最大,∴a -b +c ≥m 2a -mb +c ,∴a -b ≥m (am -b ),∴⑤正确.故答案为①③⑤.19.解:(1)y =(x -3)2-1.(2分) (2)-1(3分) 8(4分) (3)2<x <4.(6分)20.解:△ABC 是等边三角形.(1分)理由如下:∵CD 是⊙O 的直径,AB ⊥CD ,∴AC ︵=BC ︵,∴AC =BC .(5分)又∵∠A =∠P =60°,∴△ABC 是等边三角形.(6分)21.解:(1)∵CA ︵=CB ︵,∴CA =CB .又∵∠ACB =120°,∴∠B =30°,∴∠AOC =2∠B =60°.(3分)(2)设OC 交AB 于点E .由题意得OC ⊥AB ,∴CE =2,AE =BE .(5分)在Rt △BCE 中,∠B =30°,tan B =CE BE ,∴BE =CE tan30°=2×33=23,∴AB =2BE =4 3.(8分)22.解:(1)y =x 2-x +m =⎝⎛⎭⎫x -122+m -14,∴抛物线的顶点坐标为⎝⎛⎭⎫12,m -14.(2分)当m -14>0,即m >14时,抛物线的顶点在x 轴上方.(4分)(2)∵抛物线y =x 2-x +m 与y 轴交于点A ,∴点A 的坐标为(0,m ),∴OA =|m |.∵AB ∥x 轴,点B 在抛物线y =x 2-x +m 上,∴x 2-x +m =m ,∴x 2-x =0,即x (x -1)=0,解得x 1=0,x 2=1,∴点B 的坐标为(1,m ),∴AB =1.(6分)∵S △AOB =12AB ·OA ,即4=12×1×|m |,∴m =±8.(8分)23.(1)证明:连接OB .∵OP ⊥OA ,∴∠AOP =90°,∴∠A +∠APO =90°.(1分)∵CP =CB ,∴∠CBP =∠CPB .又∵∠CPB =∠APO ,∴∠APO =∠CBP .(3分)∵OA =OB ,∴∠A =∠OBA ,∴∠OBC =∠CBP +∠OBA =∠APO +∠A =90°,∴OB ⊥BC ,∴BC 是⊙O 的切线.(4分)(2)解:设BC =x ,则PC =x .在Rt △OBC 中,OB =5,OC =CP +OP =x +1.(6分)∵OB 2+BC 2=OC 2,∴(5)2+x 2=(x +1)2,解得x =2,即BC 的长为2.(8分)24.解:(1)由题中条件可知EC =EF ,AF =AB =4.设EC =EF =x ,则DE =4-x ,AE =4+x .(2分)在Rt △ADE 中,AD 2+DE 2=AE 2,即42+(4-x )2=(4+x )2,解得x =1,∴DE =3.∴S △ADE =12·AD ·DE =6.(4分)(2)连接OA 交BF 于G ,易知OA ⊥BF ,∴BF =2BG .在Rt △ABO 中,AO =42+22=2 5.(6分)由面积法可得12BG ·AO =12AB ·BO ,即25BG =8,∴BG =455,∴BF =855.(8分)25.解:(1)y =⎩⎪⎨⎪⎧300x -200x =100x (0≤x ≤10),[300-3(x -10)-200]x =-3x 2+130x (10<x ≤43).(4分)(2)当0≤x ≤10时,y =100x .当x =10时,y 有最大值1000;(6分)当10<x ≤43时,y =-3x 2+130x =-3(x -2123)2+140813.当x =2123时,y 取得最大值.∵x 为整数,根据抛物线的对称性得x =22时,y 有最大值1408.(9分)∵1408>1000,∴顾客一次性购买22件时,该网店从中获利最多.(10分)26.解:(1)设抛物线的解析式为y =a (x -4)2-1.(1分)∵抛物线经过点A (0,3),∴3=a (0-4)2-1,∴a =14.∴抛物线的解析式为y =14(x -4)2-1=14x 2-2x +3.(3分)(2)相交.(4分)证明如下:如图,设直线BD 与⊙C 相切于点E ,连接CE ,则CE ⊥BD .(5分)当14(x -4)2-1=0时,x 1=2,x 2=6.∴点B ,C 的坐标分别为B (2,0),C (6,0),对称轴为直线x =4.∴OB =2,AB =22+32=13,BC =4.(6分)∵AB ⊥BD ,∴∠OBA +∠EBC=90°.又∠ABO +∠BAO =90°,∴∠BAO =∠EBC ,∴△AOB ∽△BEC ,∴AB BC =OB CE ,即134=2CE ,解得CE =81313.(7分)∵点C 到对称轴l 的距离为6-4=2,又∵81313>2,∴抛物线的对称轴l 与⊙C 相交.(8分)(3)如图,过点P 作平行于y 轴的直线交AC 于点Q ,可求出直线AC 的解析式为y =-12x +3.(9分)设P 点的坐标为(m ,14m 2-2m +3),则Q 点的坐标为(m ,-12m +3),∴PQ =-12m +3-(14m 2-2m +3)=-14m 2+32m .(10分)∵S △PAC =S △PAQ +S △PCQ =12×⎝⎛⎭⎫-14m 2+32m ×6=-34(m -3)2+274.∵点P 在抛物线上,且位于A ,C 之间,∴0<m <6,∴当m =3时,△PAC 的面积最大为274,此时P 点的坐标为⎝⎛⎭⎫3,-34.(12分)。

(华师大版)初中数学九年级下册 期中测试 (含答案)

(华师大版)初中数学九年级下册 期中测试 (含答案)

期中测试一、选择题1.环境监测中PM2.5是大气压中直径小于或等于0.000 002 5米的颗粒物,将数据0.000 002 5用科学记数法表示为( ) A.50.2510-⨯B.62.510-⨯C.52.510-⨯D.72510-⨯2.下列运算正确的是( ) A.347a a a +=B.34722a a a ⋅=C.()34728a a =D.824a a a ÷=) A.4B.4±C.2D.2±4.如图,直线123l l l ∥∥,点A 、B 、C 分别在直线1l 、2l 、3l 上,若172∠=︒,248∠=︒,则ABC ∠=( )A.24°B.120°C.96°D.132°5.下列图形中既是轴对称图形,又是中心对称图形的是( )A. B.C. D.6.九年级一班数学老师对全班学生在模拟考试中A 卷成绩进行统计后,制成如下的统计表:则该班学生A 卷成绩的众数和中位数分别是( ) A.82分,82分B.82分,83分C.80分,82分D.82分,84分7.巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为( ) A.45250x +=B.()245150x +=C.()250145x -=D.()451250x +=8.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A.24012020x x -=4- B.24012020x x -=4+ C.12024020x x -=4-D.12024020x x -=4+9.如图,ABC △绕点A 顺时针旋转80°得到AEF △,若100B ∠=︒,50F ∠=︒,则α∠的度数是( )A.40°B.50°C.60°D.70°10.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (3-,0),对称轴为直线1x =-,给出四个结论: ①0c >; ②若点B (32-,1y )、C 252y -(,)为函数图象上的两点,则12y y <; ③20a b -=;④2404ac b a-<,其中,正确结论的个数是( )A.1B.2C.3D.4二、填空题(共5小题,每小题4分,满分20分)11.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为________。

华东师大版九年级数学下册期中考试及答案【新版】

华东师大版九年级数学下册期中考试及答案【新版】

华东师大版九年级数学下册期中考试及答案【新版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-=()A.2019 B.-2019 C.12019D.12019-2.若实数m、n满足402nm-+=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根6.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.2 2 C.2+2 D.27.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .8.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:3244a a a -+=__________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 2+1.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、A6、B7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2(2)a a -;3、24、10.5、6、 1三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.。

华东师大版九年级数学下册期中试卷(参考答案)

华东师大版九年级数学下册期中试卷(参考答案)

华东师大版九年级数学下册期中试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣3的相反数是( )A .13-B .13C .3-D .32.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .22﹣2C .22+2D .227.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________. 2.分解因式:2ab a -=_______.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、B5、A6、B7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、a (b +1)(b ﹣1).3、24、425、6、三、解答题(本大题共6小题,共72分)1、4x =2、11x +,13. 3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1),P 2352,),P 3(2,2),P 4(52-12-). 4、(1)2(2)略5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过55 12;(3)3册的学生的概率为。

华东师大版九年级数学下册期中试卷及答案【A4版】

华东师大版九年级数学下册期中试卷及答案【A4版】

华东师大版九年级数学下册期中试卷及答案【A4版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .22﹣2C .22+2D .227.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78° 10.已知0ab <,一次函数y ax b =-与反比例函数ay x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2﹣|18|+(﹣12)﹣3=_____.2.分解因式:2ab a-=_______.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加__________m.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:24 1x-+1=11xx-+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m2+1.3.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、B6、B7、C8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-72、a (b +1)(b ﹣1).3、30°或150°.4、-45、360°.6、49三、解答题(本大题共6小题,共72分)1、无解.2、11m m +-,原式=.3、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为2π﹣2. 5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.。

华东师大版九年级数学下册期中考试卷及答案【完整版】

华东师大版九年级数学下册期中考试卷及答案【完整版】

华东师大版九年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是()A.8B.13C.18D.92.若实数m、n满足402nm-+=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2106.定义运算:21m n mn mn=--☆.例如2:42424217=⨯-⨯-=☆.则方程10x=☆的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33 9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.因式分解:x3﹣4x=_______.3.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是__________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m2+1.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、A7、B8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x+2)(x ﹣2)3、k <44、10.5、x=26、49三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)3。

华师大版九年级数学下册期中复习试题

华师大版九年级数学下册期中复习试题

期中复习试题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.二次函数y =-2(x -1)2+3的图象的顶点坐标( A ) A .(1,3) B .(-1,3) C .(1,-3) D .(-1,-3)2.下列二次函数中,图象以直线x =2为对称轴,且经过(0,1)的是( C ) A .y =(x -2)2+1 B .y =(x +2)2+1 C .y =(x -2)2-3 D .y =(x +2)2-3 3.把抛物线y =(x +1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( D )A .y =(x +2)2+1B .y =(x +2)2-2C .y =x 2+2D .y =x 2-24.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连结AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°4.某厂设计制作了一种新型礼炮,这种礼炮的升空高度h(米)与飞行时间t(秒)的关系式是h =-52t 2+20t +1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( B )A .3秒B .4秒C .5秒D .6秒 5.如图,二次函数y =x 2+bx +c的图象过点B(0,-2),它与反比例函数y =-8x(x<0)的图象交于点A(m ,4),则这个二次函数的关系式为( A )A .y =x 2-x -2B .y =x 2-x +2C .y =x 2+x -2D .y =x 2+x +2,第5题图)6.)已知二次函数y =(x -h)2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( B )A .1或-5B .-1或5C .1或-3D .1或38.如图是二次函数y =ax 2+bx +c(a ≠0)图象的一部分,对称轴为x =12,且经过点(2,0),有下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(0,y 1),(1,y 2)是抛物线上的两点,则y 1=y 2.上述说法正确的是( A )A .①②④B .③④C .①③④D .①②9.)如图,⊙O 是△ABC 的外接圆,∠B =60°,⊙O 的半径为4,则AC 的长等于( A )A .43 B .63 C .23 D .810.已知二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表:且方程ax 2+bx +c =0的两根分别为x 1,x 2(x 1<x 2),下面说法错误的是( C ) A .x =-2,y =5 B .1<x 2<2C .当x 1<x <x 2时,y >0D .当x =12时,y 有最小值二、填空题(每小题4分,共24分)11.(2016·宿迁)若二次函数y =ax 2-2ax +c 的图象经过点(-1,0),则方程ax 2-2ax +c =0的解为__x 1=-1,x 2=3__.12.二次函数y =x 2-(12-k)x +12,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,则k 的值是__10__.第15题图) ,第16题图)13.若关于x的函数y=kx2+2x-1的图象与x轴仅有一个公共点,则实数k的值为__0或-1__.14.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图,⊙O与矩形ABCD 的边BC,AD分别相切和相交(E,F是交点).已知EF=CD=8,则⊙O的半径为__5__.15.如图,某大桥有一段抛物线形的拱梁,抛物线所对应的函数关系式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需__36__秒.。

【华东师大版】九年级数学下期中试题含答案

【华东师大版】九年级数学下期中试题含答案

一、选择题1.如图,在平行四边形ABCD 中,:2:1AE BE =,F 是AD 的中点,射线EF 与AC 交于点G ,与CD 的延长线交于点P ,则AG GC 的值为( ).A .5:8B .3:8C .3:5D .2:52.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:43.如图,一次函数y =﹣2x +10的图象与反比例函数y =k x(k >0)的图象相交于A 、B 两点(A 在B 的右侧),直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D ,若52BC BD =,则△ABC 的面积为( )A .12B .10C .9D .84.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .165.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m ==,连接,AD BE 交于点F ,则AF AD的值为( )A .1m n -B .1m m n +-C .1n m n +-D .1n m - 6.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .457.下列函数中,y 随x 的增大而减少的是( )A .1y x =-B .2y x =-C .()30y x x =->D .4y x=()0x < 8.与点()2,3-在同一反比例函数图象上的点是( ) A .()1.5,4- B .()1,6-- C .()6,1D .()2,3-- 9.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<10.已知反比例函数y=21k x+的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 11.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1- B .()1,3-- C .()1,3 D .()3,112.函数y =x +m 与m y x=(m ≠0)在同一坐标系内的图象可以是( ) A . B .C .D .二、填空题13.如图,已知菱形ABCD 的边长为4,点E 、F 分别是AB 、AD 上的点,若BE =AF =1,∠BAD =120°,GF EG=_____.14.如图,在△ABO 的顶点A 在函数k y x=(x >0)的图像上∠ABO=90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为________.15.如图,ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的______.16.若25x y =,则x y y+=____________. 17.如果反比例函数2k y x-=的图像在第二、四象限内,那么k 的取值范围是______. 18.如图,已知双曲线()0k y x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.19.如图,一次函数1y kx b =+的图象与反比例函数24y x=的图象交于A (1,m ),B (4,n )两点.则不等式40kx b x +-≥的解集为______.20.如图,平面直角坐标系中,等腰Rt ABC ∆的顶点.A B 分别在x 轴、y 轴的正半轴, 90,ABC =∠CA x ⊥轴, 点C 在函数()0k y x x=>的图象上.若2,AB =则k 的值为_____.三、解答题21.如图,在ABC 中,点D 、E 分别在AB 、AC 上,//DE BC ,若4AE =,2DB =,2AD CE =,求AD 的长.22.如图,已知ABC 和点A '.(1)以点A '为顶点求作A B C ''',使A B C ABC '''∽,4A B C ABC SS '''=;(尺规作图,保留作图痕迹,不写作法) (2)设D 、E 、F 分别是ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的A B C '''三边A B ''、B C ''、A C ''的中点,求证:DEF D E F '''∽.23.已知y 是x 的反比例函数,且当x =4时,1y =-.(1)求y 与x 之间的函数解析式;(2)求当132x -≤≤-时,y 的取值范围. 24.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,他们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标.(2)求点(x ,y )在函数y =8x图象上的概率. 25.如图,已知A (−4,2),B (n ,−4)是一次函数y kx b =+的图象与反比例函数m y x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式0m kx b x+->的解集(请直接写出答案).26.如图,已知△ABC 中,BC =10,BC 边上的高AH =8,四边形DEFG 为内接矩形. (1)当矩形DEFG 是正方形时,求正方形的边长.(2)设EF =x ,矩形DEFG 的面积为S ,求S 关于x 的函数关系式,当x 为何值时S 有最大值,并求出最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AE GC CP=的值. 【详解】∵四边形ABCD 是平行四边形,∴//AB PC ,AB CD =,∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =,∴AFE △≌△()DFP AAS ,∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =,∴3AB CD k ==,5PC k =,∵//AE BC , ∴2255AG AE k GC CP k ===, 故选:D .【点睛】 本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.2.B解析:B【分析】由题意可得DN=NM=MB ,据此可得DF :BE=DN :NB=1:2,再根据BE :DC=BM :MD=1:2,AB=DC ,故可得出DF :FC 的值.【详解】解:由题意可得DN=NM=MB ,AB//CD ,AB//BC∴△DFN ∽△BEN ,△DMC ∽△BME ,∴DF :BE=DN :NB=1:2,BE :DC=BM :MD=1:2,又∵AB=DC ,∴DF :AB=1:4,∴DF :FC=1:3故选:B .【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用. 3.B解析:B过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BMBC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABC S.【详解】 过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN ,∴BMD CND ∽,又52BC BD = ∴23BM BD CN CD ==, 设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭. ∵点A ,B 在直线AB 上,∴2210223103k x x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩ ∴解得:112x k =⎧⎨=⎩, ∴点()3,4A ,点()2,6B 、点()3,4C --.设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩, 解得:22m n =⎧⎨=⎩, ∴直线BC 解析式为22y x =+,∴点()0,2D ,∵点F 是直线AB 与y 轴的交点,∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△又∵:2:5ABD ABC S S =△△, ∴55S 41022ABC ABD S ==⨯=, 故选:B .【点睛】 本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.4.D解析:D【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴∠BAC=∠ADB=45°,∵把△ABC 绕点A 逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA ,∴△AEF ∽△DEA ,∴AE EF DE AE=, ∴EF•ED=AE 2,∵AE=4, ∴EF•ED 的值为16,故选:D .【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.5.C解析:C【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答.【详解】解:过D作DG∥AC交BE于G,则△BDG∽△BCE,∴DG BDCE BC=,∵1BD BCn=,∴1DG BDCE BC n==,∵1AE ACm=,∴1mCE ACm-=,∴DG=11mCE ACn mn-⋅=∵DG∥AC,∴△DGF∽△AEF,∴111mACDF DG mmnAF AE nACm--===,∴1AD m nAF n+-=,即1AF nAD m n=+-,故选:C.【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.6.B解析:B【分析】如图,证明△ABE∽△ACD,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE ∽△ACD , ∴AB BEAC CD= ∵AB=10m ,BE=1.6m ,CD=9.6m∴10 1.6=9.6AC ∴AC=60m∴BC=AC-AB=60-10=50m 故选:B . 【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键.7.D解析:D 【分析】根据反比例函数ky x=中k>0, 在每个象限内,y 随着x 的增大而减小;k<0,在每个象限内,y 随着x 的增大而增大求解. 【详解】-1<0,在每个象限内,y 随着x 的增大而增大,故A 选项错误; -2<0,在每个象限内,y 随着x 的增大而增大,故B 选项错误; -3<0且x >0,y 随着x 的增大而增大,故C 选项错误; 4>0且x <0,y 随着x 的增大而减小,故D 选项正确; 故选D . 【点睛】本题考查反比例函数的性质,解题的关键是掌握反比例函数的性质.8.A解析:A 【分析】根据在同一反比例函数图象上的点的横纵坐标之积相等即可解答. 【详解】 解:∵点()2,3- ∴k=2×(-3)=-6∴只有A 选项:-1.5×4=-6.【点睛】本题考查了反比例函数图像的性质,掌握同一反比例函数图象上的点的横纵坐标之积相等是解答本题的关键.9.B解析:B 【分析】先根据反比例函数2y x=-的系数20-<判断出函数图象在二、四象限,在每个象限内,y 随x 的增大而增大,再根据120x x <<,30x >,判断出1y 、2y 、3y 的大小.【详解】 解:反比例函数2y x=-中,20k =-<, ∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵120x x <<,30x > 30y ,210y y >>,∴312y y y <<, 故选:B . 【点睛】本题考查了二次函数图象上点的坐标特征.用到的知识点为:k 0<时,反比例函数ky x=图象的分支在二、四象限,在第四象限的函数值总小于在第二象限的函数值;在同一象限内,y 随x 的增大而增大. 10.A解析:A 【分析】先判断出k 2+1是正数,再根据反比例函数图象的性质,比例系数k >0时,函数图象位于第一三象限,在每一个象限内y 随x 的增大而减小判断出y 1、y 2、y 3的大小关系,然后即可选取答案. 【详解】 解:∵k 2≥0, ∴k 2+1≥1,是正数,∴反比例函数y =21k x+的图象位于第一三象限,且在每一个象限内y 随x 的增大而减小,∵(2,y 1),(3,y 2),(﹣1,y 3)都在反比例函数图象上, ∴0<y 2<y 1,y 3<0, ∴y 1>y 2>y 3.【点睛】本题考查了反比例函数图象的性质,对于反比例函数y =kx(k ≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内,本题先判断出比例系数k 2+1是正数是解题的关键.11.A解析:A 【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在. 【详解】∵点()1,3M -在双曲线ky x=上, ∴133k =-⨯=-, ∵3(1)3⨯-=-, ∴点(3,-1)在该双曲线上, ∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上, 故选:A. 【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.12.B解析:B 【分析】先根据一次函数的性质判断出m 取值,再根据反比例函数的性质判断出m 的取值,二者一致的即为正确答案. 【详解】A .由函数y =x +m 的图象可知m <0,由函数y mx=的图象可知m >0,相矛盾,故错误; B .由函数y =x +m 的图象可知m >0,由函数y mx=的图象可知m >0,正确; C .由函数y =x +m 的图象可知m >0,由函数y mx=的图象可知m <0,相矛盾,故错误; D .由函数y =x +m 的图象可知m =0,由函数y mx=的图象可知m <0,相矛盾,故错误. 故选:B . 【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题.二、填空题13.【分析】过点E 作EM ∥BC 交AC 下点M 点根据菱形的性质可得△AEM 是等边三角形则EM=AE=3由AF ∥EM 对应线段成比例即可得结论【详解】解:过点E 作EM ∥BC 交AC 于点M ∵四边形ABCD 是菱形∴A解析:13【分析】过点E 作EM ∥BC 交AC 下点M 点,根据菱形的性质可得△AEM 是等边三角形,则EM=AE=3,由AF ∥EM ,对应线段成比例即可得结论. 【详解】解:过点E 作EM ∥BC 交AC 于点M ,∵四边形ABCD 是菱形, ∴AB =4,AD ∥BC ,∴∠AEM =∠B =60°,∠AME =∠ACB =60°, ∴△AEM 是等边三角形,则EM =AE =3, ∵AF ∥EM , ∴13GF AF GE EM ==, 故答案为:13. 【点睛】本题考查了平行线分线段成比例,菱形的性质,熟练运用菱形的性质、等边三角形性质是解题的关键.14.【分析】易证△ANQ ∽△AMP ∽△AOB 由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积进而可求出△AOB 的面积则k 的值也可求出【详解】∵NQ ∥MP ∥OB ∴△ANQ ∽△AMP ∽△AOB 解析:18【分析】易证△ANQ ∽△AMP ∽△AOB ,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积,进而可求出△AOB 的面积,则k 的值也可求出. 【详解】∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB , ∵M 、N 是OA 的三等分点, ∴11,23AN AN AM AO ==, ∴14ANQ AMPS S=, ∵四边形MNQP 的面积为3, ∴314ANQ ANQSS=+, ∴S △ANQ =1, ∵2119AOB AN SAO ⎛⎫== ⎪⎝⎭, ∴S △AOB =9, ∴k =2S △AOB =18, 故答案为:18. 【点睛】本题考查了相似三角形的判定和性质以及反比例函数k 的几何意义,正确的求出S △ANQ =1是解题的关键.15.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC=解析:13【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可. 【详解】解:∵AB 被截成三等分, ∴△AEH ∽△AFG ∽△ABC ,∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9, S △AEH :S △ABC =1:9,∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13.故答案为:13.【点睛】本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.16.【分析】由根据比例的性质即可求得的值【详解】解:∵∴=故答案为:【点睛】此题考查了比例的性质此题比较简单注意熟记比例变形解析:75【分析】由25xy=,根据比例的性质,即可求得x yy+的值.【详解】解:∵25 xy=∴x yy+=2+57=55.故答案为:75.【点睛】此题考查了比例的性质,此题比较简单,注意熟记比例变形.17.k<2【分析】由反比例函数的图象位于第二四象限得出k-2<0即可得出结果【详解】解:∵反比例函数的图象位于第二四象限∴k-2<0∴k<2故答案为:k<2【点睛】本题考查了反比例函数的图象以及性质;熟解析:k<2.【分析】由反比例函数的图象位于第二、四象限,得出k-2<0,即可得出结果.【详解】解:∵反比例函数的图象位于第二、四象限,∴k-2<0,∴k<2,故答案为:k<2.【点睛】本题考查了反比例函数的图象以及性质;熟练掌握反比例函数的图象和性质,并能进行推理论证是解决问题的关键.18.3【分析】设表示点B坐标再根据四边形OEBF的面积为3列出方程从而求出k的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E的坐标得到其他点的坐标准确掌握反比例函数k值的解析:3 【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值. 【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k kk ∴=--,解得3k =,故答案为:3. 【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.19.【分析】将不等式变形为根据AB 两点的横坐标和图象直观得出一次函数值大于或等于反比例函数值时自变量的取值范围即为不等式的解集【详解】解:由则实际上就是一次函数的值大于或等于反比例函数值时自变量x 的取值解析:0x <,14x ≤≤ 【分析】将不等式变形为4kx b x+≥,根据A 、B 两点的横坐标和图象,直观得出一次函数值大于或等于反比例函数值时自变量的取值范围,即为不等式的解集. 【详解】解:由40kx b x+-≥,则4kx b x +≥实际上就是一次函数的值大于或等于反比例函数值时自变量x 的取值范围, 根据图象可得,其解集有两部分,即:0x <,14x ≤≤. 故答案为:0x <,14x ≤≤. 【点睛】本题考查反比例函数、一次函数的图象和性质,利用数形结合思想,通过图象直接得出一次函数的值大于或等于反比例函数值时自变量x 的取值范围是解题关键.20.4【分析】根据等腰三角形的性质和勾股定理求出AC 的值根据等面积法求出OA 的值OA 和AC 分别是点C 的横纵坐标又点C 在反比例函数图像上即可得出答案【详解】∵△ABC 为等腰直角三角形AB=2∴BC=2解得解析:4 【分析】根据等腰三角形的性质和勾股定理求出AC 的值,根据等面积法求出OA 的值,OA 和AC 分别是点C 的横纵坐标,又点C 在反比例函数图像上,即可得出答案. 【详解】∵△ABC 为等腰直角三角形,AB=2 ∴BC=2,AC ==1122BC AB OA AC ⨯⨯=⨯⨯112222OA ⨯⨯=⨯⨯解得:∴点C的坐标为又点C 在反比例函数图像上∴4k == 故答案为4. 【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C 的横坐标.三、解答题21.AD =4 【分析】 设AD =x ,则12CE x =,根据平行线分线段成比例定理可得关于x 的方程,解方程即可求出答案. 【详解】 解:∵DE ∥BC , ∴AD AEDB EC=, 设AD =x ,则12CE x =, ∴4122x x =,解得:x =4或﹣4(舍去), 即AD =4. 【点睛】本题考查了平行线分线段成比例定理和简单的一元二次方程的解法,熟练掌握上述知识、灵活应用方程思想是解题的关键. 22.(1)见解析;(2)见解析.【分析】(1)分别作A'B'=2AB、A'C'=2AC、B'C'=2BC得△A'B'C'即为所求.(2)根据中位线定理易得DE=12AC,DF=12BC,EF=12AB,D'E'=12A'C'=AC、D'F'=12 B'C'=BC、E'F'=12A'B'=AB,于是''2''''DD E D F E FDE F EF===,故可证△DEF∽△D'E'F'.【详解】解:(1)如图1,①作线段A'B'=2AB;②分别以A'、B'为圆心,以2AC、2BC为半径作弧,两弧交于点C';③连接A'C'、 B'C'得△A'B'C'.△A'B'C'即为所求.证明:∵A'B'=2AB、A'C'=2AC、B'C'=2BC,∴''2''''AB AA B A C B CC BC===,∴△ABC∽△A′B′C′,∴2()4A B CABCS A BS AB'''''∆∆==.(2)证明:如图2,∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE= 12AC,DF=12BC,EF=12AB,∵D'、E'、F'分别是A B C'''三边A B''、B C''、A C''的中点,∴D'E'=12A'C'=AC、D'F'=12B'C'=BC、E'F'=12A'B'=AB,∴''2''''DD E D F E FDE F EF===,∴△DEF∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.23.(1)4yx=-;(2)4y83≤≤.【分析】(1)利用待定系数法确定反比例函数的解析式即可;(2)根据自变量的取值范围确定函数值的取值范围即可.【详解】解:(1)设反比例函数的解析式为kyx =,∵当x=4,y=-1,∴k=-1×4=-4,∴反比例函数的解析式为4yx=-;(2)当x=-3时,43y=,当x=-12时,y=8,∴当-3≤x≤-12时,y的取值范围是43≤y≤8.【点睛】本题考查了反比例函数的性质,求得反比例函数的解析式是解答本题的关键.24.(1)列表如下;(2)16.【分析】(1)先列表格展示所有12种等可能的结果数,然后写出12个点的坐标;(2)根据反比例函数图象上点的坐标特征可判断有两个点在函数8yx=图象上,然后根据概率公式求解.【详解】解:(1)列表得:1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3);(2)(2)因为2×4=8,4×2=8,所以点(2,4)和(4,2)在函数8y x =图象上,即点(x ,y )在函数8y x =图象上的点有两个,所以点(x ,y )在函数8y x =图象上的概率=21126=. 【点睛】本题考查了列表法与树状图法,反比例函数上点的坐标特征.利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 的结果数目m ,然后根据概率公式求解. 25.(1)8y x=-;2y x =--;(2)C (-2,0);6;(3)0<x <2或x <-4. 【分析】 (1)根据A (-4,2)在反比例函数m y x=的图象上求出m 的值,根据题意求出n 的值,再运用待定系数法求出一次函数的解析式; (2)求出y=-x-2与x 轴的交点C 的坐标,根据△AOB 的面积=△AOC 的面积+△COB 的面积求出△AOB 的面积;(3)观察图象得到答案.【详解】(1)∵A (-4,2)在m y x =上, ∴m=-8.∴反比例函数的解析式为8y x =-. ∵B (n ,﹣4)在8y x=-上, ∴n=2. ∴B (2,-4). ∵y=kx+b 经过A (﹣4,2),B (2,﹣4),4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩ ∴一次函数的解析式为2y x =--.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=-2.∴点C (-2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =112224622⨯⨯+⨯⨯= (3)不等式0m kx b x+-<的解集为0<x <2或x <-4.【点睛】本题考查的是一次函数与反比例函数的交点和待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.26.(1)409;(2)()254204S x=--+,当x=4时,S有最大值20【分析】(1)GF∥BC得△AGF∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解;(2)根据相似三角形的性质求出GF=10−54x,求出矩形的面积,运用二次函数性质解决问题.【详解】(1)设HK=y,则AK=AH﹣KH=AH﹣EF=8﹣y,∵四边形DEFG为矩形,∴GF∥BC,∴△AGF∽△ABC,∴AK:AH=GF:BC,∵当矩形DEFG是正方形时,GF=KH=y,∴(8﹣y):8=y:10,解得:y=409;(2)设EF=x,则KH=x.∴AK=AH﹣EF=8﹣x,由(1)可知:8108GF x-=,解得:GF=10﹣54 x,∴s=GF•EF=(10﹣54x)x=﹣54(x﹣4)2+20,∴当x=4时S有最大值,并求出最大值20.【点睛】本题考查了相似三角形的性质,二次函数的最值,矩形的性质的应用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.。

华东师大版九年级数学下册期中考试及答案【全面】

华东师大版九年级数学下册期中考试及答案【全面】

华东师大版九年级数学下册期中考试及答案【全面】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣53.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.已知整式25 2x x-的值为6,则整式2x2-5x+6的值为()A.9 B.12 C.18 D.245.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形6.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.22﹣2 C.22+2 D.227.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 9.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm 10.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.分解因式:x3﹣16x=_____________.3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x +2≤ax +c 的解为__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,33AE 的长.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、C5、B6、B7、D8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+4)(x–4).3、24、425、x≤1.6、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=32、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)略(2)64、河宽为17米5、(1)50、30%.(2)补图见解析;(3)35.。

华东师大版九年级数学下册期中测试卷(汇总)

华东师大版九年级数学下册期中测试卷(汇总)

华东师大版九年级数学下册期中测试卷(汇总)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.434.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2106.一个等腰三角形的两条边长分别是方程27100x x-+=的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或97.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.=,D是AB边上一点(点D与A,3.如图,在ABC中,ACB90∠=,AC BCB不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.1()求证:ACD≌BCE;()当AD BF2∠的度数.=时,求BEF4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、C5、B6、A7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、2x(x﹣1)(x﹣2).3、20204、55、360°.6、 1三、解答题(本大题共6小题,共72分)1、4x=2、(1)k﹥34;(2)k=2.3、()1略;()2BEF67.5∠=.4、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为2π﹣2.5、(1)50;(2)见解析;(3)16.。

华东师大版九年级数学下册期中考试题及完整答案

华东师大版九年级数学下册期中考试题及完整答案

华东师大版九年级数学下册期中考试题及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.分解因式:3244a a a -+=__________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x -+=--2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,点A ,B ,C 都在抛物线y=ax 2﹣2amx+am 2+2m ﹣5(其中﹣14<a <0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、B6、B7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2(2)a a -;3、k <44、425、6、2.5×10-6三、解答题(本大题共6小题,共72分)1、1x =2、3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)3。

华东师大版九年级数学下册期中考试题(含答案)

华东师大版九年级数学下册期中考试题(含答案)

华东师大版九年级数学下册期中考试题(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是()A.2 B.12C.﹣2 D.122.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣253.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.304.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 9.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.因式分解:a3-ab2=____________.3.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、A6、B7、D8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)12、a (a+b )(a ﹣b )3、24、10.5、6、 1三、解答题(本大题共6小题,共72分)1、4x =2、3x3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.。

华东师大版九年级数学下册期中测试卷及答案一

华东师大版九年级数学下册期中测试卷及答案一

华东师大版九年级数学下册期中测试卷及答案一班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2的大小,正确的是( )A .2<<B .2<<C 2<<D 2<<2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.已知,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠10.如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.因式分解:a 3-ab 2=____________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=+.3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、D5、B6、B7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、a(a+b)(a﹣b)3、20204、425、6、24三、解答题(本大题共6小题,共72分)1、x=32.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)3。

华东师大版九年级数学下册期中考试卷(完美版)

华东师大版九年级数学下册期中考试卷(完美版)

华东师大版九年级数学下册期中考试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是()A.8B.13C.18D.92.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x -+=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE . 1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x(x﹣1)(x﹣2).3、24、425、360°.6、2.5×10-6三、解答题(本大题共6小题,共72分)1、1x=2、3、()1略;()2BEF67.5∠=.4、河宽为17米5、(1)34;(2)125。

华东师大版九年级数学下册期中试卷附答案

华东师大版九年级数学下册期中试卷附答案

华东师大版九年级数学下册期中试卷附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.因式分解:x 3﹣4x=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次0次1次2次3次4次及以上数人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、C5、B6、D7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)12、x (x+2)(x ﹣2)3、0或14、125.5、5.6、9三、解答题(本大题共6小题,共72分)1、4x =2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、河宽为17米5、()117、20;()22次、2次;()372;()4120人.。

【华东师大版】初三数学下期中试卷(带答案)

【华东师大版】初三数学下期中试卷(带答案)

一、选择题1.下列各组线段能成比例的是( )A .1.5cm ,2.5cm , 3.5cm ,4.5cmB .1cm ,2cm ,3cm ,4cmC .3cm , 6cm , 4cm , 8cmD .2cm ,10cm ,5cm ,15cm 2.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .353.如图,在Rt ABC 中,90,ACB AC BC ∠==,点D 、E 在AB 边上,45DCE ∠=,若3,4AD BE ==,则ABC ∣的面积为( )A .20B .24C .32D .364.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个B .3个C .2个D .1个 5.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( )A .72︒B .63︒C .45︒D .不能确定 6.如图,要使ABC ACD ∆∆,需补充的条件不能是( )A .ADC ACB ∠=∠B .ABC ACD ∠=∠ C .AD AC AC AB = D .AD BC AC DC ⋅=⋅7.如图,过反比例函数()0k y x x =>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .5 8.将函数 6y x =的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( )A .61y x =+B .61y x =-C .61y x =+D .61y x =- 9.(2017广东省卷)如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()220k y k x=≠相交于A B 、两点,已知点A 的坐标为()1,2,则点B 的坐标为( )A .()1,2--B .()2,1--C .()1,1--D .()2,2-- 10.如图,已知正比例函数y 1=x 与反比例函数y 2=9x的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =2;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④ 11.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-12.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数k y x =(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0 二、填空题13.如图,将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,如果点A′恰好是△ABC 的重心,A′B′、A′C′分别于BC 交于点M 、N ,那么△A′MN 面积与△ABC 的面积之比是_____.14.如图,在直角三角形ABC 中,90,C AD ︒∠=是BAC ∠的平分线,且35,22CD DB ==,则AB =____.15.如果23a c b d ==,其中20b d +≠,那么22a c b d +=+________. 16.若2a c e b d f===,且4b d f ++=,则a c e ++=_______. 17.若点()()125,,3,A y B y --在反比例函数3y x =的图象上,则12,y y ,的大小关系是_________. 18.在反比例函数y =-2k 1x+图象上有三个点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),若x 1<0<x 2<x 3,则y 1、y 2、y 3的大小关系为_______.(用“<”连接)19.如图,点()11,P x y ,点()22,P x y ,…点(),n n P x y 在函数()90y x x=>的图象上, 112123231,,n n n POA P A A P A A P A A -⋅⋅⋅都是等腰直角三角形,斜边112231,,,n n OA A A A A A A -⋅⋅⋅都在x 轴上(n 是大于或等于2的正数数),则12n y y y ++⋅⋅⋅+=__________.(用含n 的式子表示)20.已知点(,)P a b 为直线2y x =-与双曲线1y x=-的交点,则11b a -的值等于__________. 三、解答题21.如图1,在△ABC 中,AD ⊥BC ,DE ⊥A B ,DF ⊥AC .(1)若AD 2 =BD ·DC , ①求证:∠BAC =90°;②连接EF ,若AB =4,DC =6,求EF .(2)如图2,若AD =4,BD =2,DC =4,求EF .22.已知:如图,在边长为4的菱形ABCD 中,60D ∠=︒,点E 、F 分别在边AB 、AD 上,BE DF =,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:~BEC BCH ∆∆;(2)当E 是边AB 的中点时,试求CH 的长度.23.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .24.已知反比例函数k 1y x-=(k 为常数,k≠1). (1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围. 25.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A (1,a ),B (﹣3,c ),直线y =kx +b 交x 轴、y 轴于C 、D .(1)求m a c +的值; (2)求证:AD =BC ; (3)直接写出不等式0m kx b x -->的解集. 26.在平面直角坐标系xOy 中,函数()20=>y x x 的图象与直线11:(0)2l y x k k =+>交于点A ,与直线2:l x k =交于点B ,直线1l 与2l 交于点C .说明:直线x k =是指经过点(),0k 且平行于y 轴的直线,如直线2x =是指经过点()2,0且平行于y 轴的直线.(1)当点A 的横坐标为1时,求此时k 的值;(2)横、纵坐标都是整数的点叫做整点.记函数()20=>y x x的图象在点A 、B 之间的部分与线段AC ,线段BC 围成的区域(不含边界)为W .①当3k =时,结合函数图象,求区域W 内的整点个数;②若区域W 内只有2个整点,直接写出k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【详解】解:A 、1.5×4.5≠2.5×3.5,故本选项错误;B 、1×4≠2×3,故本选项错误;C 、3×8=4×6,故本选项正确;D ≠,故本选项错误.故选:C .【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.2.C解析:C【分析】 先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】 ∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c , ∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.3.D解析:D【分析】设DE x =,则7AB x =+,然后根据相似三角形的判定及性质以及勾股定理求出x 的值,最后利用直角三角形面积公式求解即可.【详解】设DE x =,则7AB x =+,45DCE CAE DBC ∠=∠=∠=︒,ACE CDE BDC ∴△△△.设,CD a CE b ==,则有以下等式:()::3x b b x =+,()::4x a a x =+,::x a b AC =,整理得()()223,4,b x x a x x x AC ab =+=+⋅=, ()()()22222227342x x x x x a b x AC +++===, 解得5x =,12AB ∴=,AC BC ∴==1362ABC S ∴=⨯=△, 故选:D .【点睛】本题主要考查相似三角形的判定及性质,勾股定理,利用方程的思想是解题的关键. 4.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.5.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒︒,则另一个三角形的第三个内角为180726345︒-︒-︒=︒,因此,另一个三角形的最小内角为45︒,故选:C .【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.6.D解析:D【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例.【详解】∵∠DAC=∠CAB∴当∠ACD=∠ABC 或∠ADC=∠ACB 或AD :AC=AC :AB 时,△ABC ∽△ACD .故选:D【点睛】本题考查相似三角形的判定方法的开放性的题,相似三角形的判定方法:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.7.C解析:C【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值.【详解】解:∵点A 在反比例函数k y x=的图象上,且AB x ⊥轴于点B , ∴设点A 坐标为(,)x y ,即||k xy =, ∵点A 在第一象限,x y ∴、都是正数,1122AOB S OB AB xy ∴=⋅=, 2AOB S =,4k xy ∴==.故选:C .【点睛】本题考查了反比例函数的性质以及反比例函数系数k 的几何意义,解题的关键是找出关于k 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k 的几何意义找出关于k 的含绝对值符号的一元一次方程是关键. 8.B解析:B【分析】由于把双曲线平移,k 值不变,利用“左加右减,上加下减”的规律即可求解.【详解】 解:将函数6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是61y x =-, 故选:B .【点睛】 本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.9.A解析:A【分析】过原点的直线与反比例函数图象的交点关于原点成中心对称,由此可得B 的坐标.【详解】1y k x =与2k y x=相交于A ,B 两点 ∴A 与B 关于原点成中心对称∵(1,2)B ∴(1,2)A --故选择:A .【点睛】熟知反比例函数的对称性是解题的关键.10.C解析:C【分析】先求出AC 两点的坐标,再根据平行四边形的判定定理与函数图象进行解答即可.【详解】解:∵正比例函数y 1=x 与反比例函数y 2=9x 的图象交于A 、C 两点, ∴A (3,3)、C (-3,-3),AB ⊥x 轴,垂足为B ,CD ⊥x 轴,垂足为D ,∴AB=CD ,AB ∥CD ,∴四边形ABCD 是平行四边形.∴S ▱ABCD =3×6=18,故①正确;②∵A (3,3)、C (-3,-3),∴=,故本小题错误;③由图可知,-3≤x<0或x≥3时,y1≥y2,故本小题正确;④当x逐渐增大时,y1随x的增大而增大,在每一象限内y2随x的增大而减小故本小题错误.故选:C.【点睛】本题考查的是反比例函数综合题,涉及到平行四边形的判定、一次函数及反比例函数的特点等知识,难度适中.11.A解析:A【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线解析式进行解答即可.【详解】解:设A(a,b),则B(2a,2b),∵点A在反比例函数12yx=-的图象上,∴ab=−2;∵B点在反比例函数2kyx=的图象上,∴k=2a•2b=4ab=−8.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x1<0<x2,可比较出y1、y2的大小,进而得到答案.【详解】解:由反比例函数kyx=(k<0),可知函数的图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限,y1>0,B(x2,y2)在第四象限,y2<0,∴y2<0<y1,故选:B.【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.二、填空题13.【分析】由重心的性质可得AD =AD 由相似三角形的性质可得△A′MN 面积与△ABC 的面积之比=【详解】解:∵点A′恰好是△ABC 的重心∴AD =AD ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位 解析:19【分析】由重心的性质可得A 'D =13AD ,由相似三角形的性质可得△A ′MN 面积与△ABC 的面积之比=21()9A D AD '=. 【详解】 解:∵点A′恰好是△ABC 的重心,∴A'D =13AD , ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,∴△ABC ∽△A'MN ,∴△A′MN 面积与△ABC 的面积之比=21()9A D AD '=, 故答案为:19. 【点睛】本题考查了相似三角形的判定和性质以及重心的性质,掌握重心的性质是本题的关键. 14.5【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得到根据勾股定理得到根据相似三角形的性质即可得到结论【详解】过作于是的平分线故答案为:【点睛】本题考查了角平分线的性质相似三角形的判定和性质勾股定理正 解析:5【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得到32CD DE ==,根据勾股定理得到BE =2==,根据相似三角形的性质即可得到结论. 【详解】过D 作DE AE ⊥于E ,90,C AD ︒∠=是BAC ∠的平分线32CD DE ∴== 52DB = 4BC BD CD ∴=+=22BE BD DE ∴=-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭90,C DEB B B ︒∠=∠=∠=∠ BDE BAC ∴∆∆ BC BE BD AB ∴= 5224AB∴= 故答案为:5【点睛】本题考查了角平分线的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.15.【分析】根据已知条件得出再根据b+2d≠0即可得出答案【详解】解:∵∴∵b+2d≠0∴;故答案为:【点睛】本题考查了比例的性质熟练掌握比例的性质是解题的关键解析:23 【分析】根据已知条件得出2223a c b d ==,再根据b+2d≠0,即可得出答案. 【详解】 解:∵23a cb d ==,∴2223a cb d ==, ∵b+2d≠0, ∴2223a cb d +=+; 故答案为:23. 【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.16.8【分析】根据等比性质可得答案【详解】由等比性质得所以故答案为:8【点睛】本题考查了比例的性质利用了等比性质解析:8【分析】根据等比性质,可得答案.【详解】2a c e b d f===, 由等比性质,得24a c e a c eb d f ++++==++, 所以8ac e ++=.故答案为:8.【点睛】本题考查了比例的性质,利用了等比性质.17.【分析】根据反比例函数的性质解答【详解】∵反比例函数中∴此函数图象的两个分支分别位于一三象限并且在每一象限内随的增大而减小这两点都在反比例函数的图象上在第三象限故答案为:【点睛】此题考查反比例函数的 解析:21y y <【分析】根据反比例函数的性质解答.【详解】∵反比例函数3y x=中30k =>, ∴此函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小. ()()125,,3,A y B y --这两点都在反比例函数3y x =的图象上,A B ∴、在第三象限,21y y ∴<,故答案为:21y y <.【点睛】此题考查反比例函数的性质:当k>0时,函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小;当k<0时,函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大.18.y2<y3<y1【分析】因为+1>0所以-(+1)<0此函数分布在二四象限在各象限y 随x 的增加而增大即可判断出y2<y3<y1【详解】∵+1>0∴-(+1)<0∴y =-图象在二四象限第二象限y 为正∴解析:y 2<y 3<y 1【分析】因为2k +1>0,所以-(2k +1)<0,此函数分布在二,四象限,在各象限y 随x 的增加而增大,即可判断出y 2<y 3<y 1.【详解】∵2k +1>0,∴-(2k +1)<0,∴y =-2k 1x+, 图象在二,四象限,第二象限y 为正,∴1y 最大,第四象限内y 随x 增大而增大,所以2y 最小,因此y 2<y 3<y 1.故答案为:y 2<y 3<y 1.【点睛】此题考查反比例函数图像和系数k 的关系,会数形结合是本题解题关键,学会利用图像解题.19.【分析】过过点P1作P1E ⊥x 轴于点E 过点P2作P2F ⊥x 轴于点F 过点P3作P3G ⊥x 轴于点G 根据△P1OA1△P2A1A2△P3A2A3都是等腰直角三角形可求出A1A2A3的横坐标从而总结出一般规解析:3n【分析】过过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,,根据△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3都是等腰直角三角形,可求出A 1,A 2,A 3的横坐标,从而总结出一般规律得出点A n 的坐标,再求12n y y y ++⋅⋅⋅+的值即可.【详解】解:过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,∵△P 1OA 1是等腰直角三角形,∴P 1E=OE=A 1E ,设点P 1的坐标为(a,a),(a>0),将点P 1(a,a)代入()90y x x=>,可得a=3, 故点A 1的坐标为(6,0), 设点P 2的纵坐标为b ,则P 2的横坐标为6+b ,将点(b+6,b)代入()90y x x=>,可得b=3,故点A 2的横坐标为同理可以得到A 3的横坐标是A n 的横坐标是,根据等腰三角形的性质得到12n y y y ++⋅⋅⋅+=A n 的横坐标的一半,∴12n y y y ++⋅⋅⋅+=故答案为:【点睛】本题考查了反比例函数的综合应用,涉及了点的坐标的规律变化,解答本题的关键是根据等腰三角形的性质结合反比例函数解析式求出A 1,A 2,A 3的横坐标,从而总结出一般规律,难度较大.20.-2【分析】将点P 分别代入两函数解析式得到:b=a-2b=-进而得到a-b=2ab=-1将其代入求值即可【详解】∵点P (ab )为直线y=x-2与双曲线的交点∴b=a-2b=-∴a-b=2ab=-1∴解析:-2【分析】将点P 分别代入两函数解析式得到:b=a-2,b=-1a ,进而得到a-b=2,ab=-1.将其代入求值即可.【详解】∵点P (a ,b )为直线y=x-2与双曲线1y x=-的交点, ∴b=a-2,b=-1a , ∴a-b=2,ab=-1. ∴11b a -=2-1a b ab -==-2. 故答案是:-2.【点睛】 此题考查反比例函数与一次函数的交点,解题关键是得到a-b=2,ab=-1.三、解答题21.(1)①见解析;②2【分析】 (1)①依据∠ADB =∠CDA =90°,BD AD AD CD=,即可得到△ABD ∽△CAD ,再根据相似三角形的性质,即可得到∠BAC =90°; ②先判定四边形AEDF 是矩形,得出EF =AD ,再根据射影定理可得BD =2,最后根据勾股定理,求得Rt △ABD 中,AD EF =(2)根据勾股定理得到AC =AB =AE AF AC AB =,∠EAF =∠CAB ,即可判定△AEF ∽△ACB ,进而得出=EF AF BC AB ,即可得到EF =5. 【详解】(1)①证明:∵AD ⊥BC ,∴∠ADB =∠CDA =90°.∵AD 2 =BD ·DC , ∴BD AD AD CD=. ∴△ABD ∽ △CAD .∴∠BAD =∠C .又∵∠B +∠BAD =90° ,∴∠B +∠C =90°.∴∠BAC = 90°.②∵DE ⊥AB ,DF ⊥AC ,∠BAC =90°.∴∠EAF =∠AED =∠AFD =90°.∴四边形AEDF 是矩形.∴EF =AD .∵∠BAC =90°,AD ⊥BC ,∴AB 2=BD ⋅BC .∵AB =4,DC =6,即42=BD ⋅(BD +6).解得BD =2.∴Rt △ABD 中,AD∴EF=(2)∵在Rt △ABD 中,AD =4,BD =2,∴AB =∵AD =4,DC =4,DF ⊥AC ,∴AC=.∴AF =12AC = ∵DE ⊥AB ,DF ⊥AC ,AD ⊥BC ,∴AD 2=AE ⋅AB ,AD 2=AF ⋅AC .∴AE ⋅AB =AF ⋅AC . 即AE AF AC AB=. 又∵∠EAF =∠CAB ,∴△AEF ∽△ACB . ∴=EF AF BC AB .∴6EF =.解得EF =5. 【点睛】本题主要考查了相似三角形的判定与性质,解题时注意:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,或依据基本图形对图形进行分解、组合.22.(1)证明见解析;(2)【分析】(1)证明DCF BCE H ∠=∠=∠,即可解决问题;(2)连接AC ,由菱形的性质可得△ABC 和△ADC 是等边三角形,利用等边三角形三线合一的性质可CF ,再利用勾股定理求出HF 即可解决问题.【详解】解:(1)证明:∵四边形ABCD 是菱形∴//CD CB D B CD AB =∠=∠,,∵DF BE =∴(CDF )CBE SAS ∆≅∆∴DCF BCE ∠=∠∵//CD AB∴H DCF ∠=∠∴BCE H ∠=∠∵B B ∠=∠∴BEC BCH ∆∆∽(2)连接AC,如图所示,∵四边形ABCD是菱形∴∠B=∠D=60°,∠DAB=120°,AB=BC=CD=DA=4,∴△ABC和△ADC是等边三角形,∴∠BAC=∠DAC=60°∵E是边AB的中点∴AE=BE=2∴DF=BE=2∴AF=DF=2∴CF⊥AD∴2222=--=CF AC AF4223∵∠DAB=120°,∴∠HAF=60°,∠AHF=30°∴AH=2AF=4∴2222--=AH AF4223∴CH=CF+HF=3233【点睛】本题考查了相似三角形的判定与性质、等边三角形的判定与性质以及勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.见解析.【分析】根据∠AEB=∠ACB(同弧所对的圆周角相等)和AD是△ABC的高,AE是⊙O的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB=∠ACB(同弧所对的圆周角相等),∵AE为直径,∴∠ABE=90°(直径所对的圆周角是直角),又∵AD⊥BC,即∠ADC=90°,∴∠ABE=∠ADC,∴△ABE∽△ADC.【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.24.(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k -=⨯,解得:3k =;(2)因为反比例函数k 1y x-=, 在这个函数图象的每一分支上,y 随x 的增大而减小,所以10k ->,解得:1k >.【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy k =.也考查了反比例函数的性质.25.(1)32m a c =+;(2)见解析;(3)0m kx b x -->的解集为x >3或﹣1<x <0. 【分析】 (1)点A 、B 都在反比例函数y=m x 的图象上,则a=-3c=m ,故m a c +=33c c c --+=32; (2)求出D (0,-2c ),C (-2,0),则AD 2=1+9c 2;BC 2=1+9c 2,即可证明;(3)观察函数图象即可求解.【详解】 解:(1)∵点A 、B 都在反比例函数y =m x 的图象上, ∴a =﹣3c =m , ∴3332m c a c c c -==+-+; (2)将A (1,﹣3c )、B (﹣3,c ),分别代入y =kx +b 得33k b c k b c +=-⎧⎨-+=⎩,解得2k c b c =-⎧⎨=-⎩, ∴y =﹣cx ﹣2c ,令x =0,y =﹣2c ,令y =0,即y =﹣cx ﹣2c =0,解得x =﹣2,∴D (0,﹣2c ),C (﹣2,0),∴AD 2=1+9c 2;BC 2=1+9c 2,∴AD =BC ;(3)∵y =kx ﹣b =﹣cx +2c ,∴点(3,﹣c )、(﹣1,3c )为直线y =kx ﹣b =﹣cx +2c 与双曲线m y x =的交点, ∴0m kx b x -->的解集为x >3或﹣1<x <0. 【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,使用一次函数,体现了方程思想,综合性较强.26.(1)32k;(2)①3,②522k << 【分析】(1)由反比例函数解析式求出A 点的坐标,再把A 点坐标代入一次函数12y x k =+中求得k ;(2)①根据题意作出函数图象便可直接观察得答案;②找出临界点作两直线,进行比较便可得k 的取值范围.【详解】(1)当1x =时,22y x ==, ∴A (1,2),把A (1,2)代入12y x k =+中,得122k =+, 解得:32k =; (2)①当3k =时,则直线1l :132y x =+,直线2l :3x =, 当3x =时,19322y x =+=, ∴C (3,92), 作出图象如图:∴区域W 内的整点个数为3;②如图,当直线1l :12y x k =+过(1,3)点,区域W 内只有2个整点,此时,132k =+,解得52k =, 当直线1l :12y x k =+过(2,3)点,区域W 内只有1个整点, 此时,1322k =⨯+,解得2k =, ∴当522k <<时,区域W 内只有2个整点, 【点睛】 本题考查了反比例函数与一次函数的交点问题,待定系数法,正确画出函数图象,数形结合,是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中复习试题
(时间:120分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.二次函数y =-2(x -1)2+3的图象的顶点坐标( A )
A .(1,3)
B .(-1,3)
C .(1,-3)
D .(-1,-3)
2.下列二次函数中,图象以直线x =2为对称轴,且经过(0,1)的是( C )
A .y =(x -2)2+1
B .y =(x +2)2+1
C .y =(x -2)2-3
D .y =(x +2)2-3
3.把抛物线y =(x +1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( D )
A .y =(x +2)2+1
B .y =(x +2)2-2
C .y =x 2+2
D .y =x 2-2
4.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连结
AE ,∠E =36°,则∠ADC 的度数是( B )
A .44°
B .54°
C .72°
D .53°
4.某厂设计制作了一种新型礼炮,这种礼炮的升空高度h(米)与飞行时间t(秒)的关系式是h =-52
t 2+20t +1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( B )
A .3秒
B .4秒
C .5秒
D .6秒
5.如图,二次函数y =x 2+bx +c 的图象过点B(0,-2),它与反比例函数y =-8x
(x <0)的图象交于点A(m ,4),则这个二次函数的关系式为( A )
A .y =x 2-x -2
B .y =x 2-x +2
C .y =x 2+x -2
D .y =x 2+x +2
,第5题图)
6.)已知二次函数y =(x -h)2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( B )
A .1或-5
B .-1或5
C .1或-3
D .1或3
8.如图是二次函数y =ax 2+bx +c(a ≠0)图象的一部分,对称轴为x =12
,且经过点(2,0),有下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(0,y 1),(1,y 2)是抛物线上的两点,则y 1=y 2.上述说法正确的是( A )
A .①②④
B .③④
C .①③④
D .①②
9.)如图,⊙O 是△ABC 的外接圆,∠B =60°,⊙O 的半径为4,则AC 的长等于( A )
A .4 3
B .6 3
C .2 3
D .8
10.已知二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表:
x -3 -2 -1 0 1 2 3
y 11 1 -1 -1 1 5
且方程ax 2+bx +c 1212)
A .x =-2,y =5
B .1<x 2<2
C .当x 1<x <x 2时,y >0
D .当x =12
时,y 有最小值 二、填空题(每小题4分,共24分)
11.(2016·宿迁)若二次函数y =ax 2-2ax +c 的图象经过点(-1,0),则方程ax 2-2ax +c =0的解为__x 1=-1,x 2=3__.
12.二次函数y =x 2-(12-k)x +12,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,则k 的值是__10__.
第15题图) ,第16题图)
13.若关于x 的函数y =kx 2+2x -1的图象与x 轴仅有一个公共点,则实数k 的值为__0或-1__.
14.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图,⊙O 与矩形ABCD 的边BC ,AD 分别相切和相交(E ,F 是交点).已知EF =CD =8,则⊙O 的半径为__5__.
15.如图,某大桥有一段抛物线形的拱梁,抛物线所对应的函数关系式为y =ax 2+bx ,小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需__36__秒.
16.某商场将进价为30元的台灯以40元售出,平均每月能售出600个,调查表明:这种台灯的售价每上涨1元,其销售量就减少10个.如果商场要想每月的销售利润最多,这种台灯的售价应定为__65__元,这时应进台灯__350__个.
三、解答题(共66分)
17.(8分)已知一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).
(1)求该抛物线的解析式;
(2)求该抛物线的顶点坐标.
解:(1)y =2x 2+2x -4 (2)(-12,-92
)
18.(8分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,且AB =5,tan ∠ADC =43
. (1)求sin ∠BAC 的值;
(2)如果OE ⊥AC ,垂足为E ,求OE 的长.
解:(1)35 (2)32
19.(8分)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点,已知一次函数y =kx +b 的图象经过该二次函数图象上点A(1,0)及点B.
(1)求二次函数与一次函数的表达式;
(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.
解:(1)y =x 2-4x +3,y =x -1 (2)1≤x ≤4
20.(8分)如图,在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,在劣弧AD ︵上取一点E 使∠EBC
=∠DEC ,延长BE 依次交AC 于点G ,交⊙O 于点H ,求证:AC ⊥BH.
解:连结DA ,∵AC 为⊙O 的直径,∴∠ADC =90°,∠DEC =∠DAC ,又∵∠EBC =∠DEC ,∴∠DAC +∠ACD =90°,∴∠EBC +∠ACD =90°,∴∠BGC =90°,∴AC ⊥BH
21.(10分)(2015·嘉兴)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y
与x 满足关系:y =⎩
⎪⎨⎪⎧54x (0≤x ≤5),30x +120 (5≤x ≤15). (1)李明第几天生产的粽子数量为420只?
(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图形来刻画,若李明第x 天创造的利润为w 元,求w 关于x 的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价-成本)
解:(1)设李明第n 天生产的粽子数量为420只,由题意可知30n +120=420,解得n =10.答:第10天生产的粽子数量为420只 (2)由图象得,当0≤x ≤9时,p =4.1;当9≤x ≤15时,设p =kx +b ,把点
(9,4.1),(15,4.7)代入得⎩⎨⎧9k +b =4.1,15k +b =4.1,解得⎩⎨⎧k =0.1,
b =3.2,
∴p =0.1x +3.2,①0≤x ≤5时,w =(6-4.1)×54x =102.6x ,当x =5时,w 最大=513元;②5<x ≤9时,w =(6-4.1)×(30x +120)=57x +228,∵x 是整数,∴当x =9时,w 最大=741元;③9<x ≤15时,w =(6-0.1x -3.2)×(30x +120)=-3x 2+72x +336,∵a =
-3<0,∴当x =-b 2a
=12时,w 最大=768元;综上,当x =12时,w 有最大值,最大值为768 22.(12分)在平面直角坐标系中,抛物线y =-12
x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.
(1)求抛物线的表达式;
(2)在AC 上方的抛物线上有一动点P.①如图1,当点P 运动到某位置时,以AP ,AO 为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P 的坐标;②如图2,过点O ,P 的直线y =kx 交于AC 于点E ,若PE ∶OE =3∶8,求k 的值.
解:(1)抛物线的表达式为y =-12x 2-x +4 (2)①P 点的坐标是(-3,52
);②过P 点作PF ∥OC 交AC 于点
F ,∵PF ∥OC ,∴△PEF ∽△OEC ,∴PE OE =PF OC ,又∵PE OE =38,OC =4,∴PF =32,设P (x ,-12
x 2-x +4),则F (x ,x +4),∴(-12x 2-x +4)-(x +4)=32
,化简得x 2+4x +3=0,解得x 1=-1,x 2=-3,即P 点坐标是(-1,92)或(-3,52),又∵点P 在直线y =kx 上,∴k =-92或k =-56
初中数学试卷
桑水出品。

相关文档
最新文档