大学生高等数学竞赛试题汇总及答案

合集下载

数学竞赛高数试题及答案

数学竞赛高数试题及答案

数学竞赛高数试题及答案试题一:极限的计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

解答:根据洛必达法则,我们可以将原式转换为 \(\lim_{x \to 0} \frac{\cos x}{1}\),由于 \(\cos 0 = 1\),所以极限的值为 1。

试题二:导数的应用问题:若函数 \( f(x) = 3x^2 - 2x + 1 \),求其在 \( x = 1 \) 处的导数值。

解答:首先求导数 \( f'(x) = 6x - 2 \),然后将 \( x = 1 \) 代入得到 \( f'(1) = 6 \times 1 - 2 = 4 \)。

试题三:不定积分的求解问题:求不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

解答:这是一个基本的积分形式,可以直接应用反正切函数的积分公式,得到 \(\int \frac{1}{x^2 + 1} dx = \arctan(x) + C\),其中\( C \) 是积分常数。

试题四:级数的收敛性判断问题:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) 是否收敛。

解答:根据比值测试,我们有 \(\lim_{n \to \infty}\frac{1}{(n+1)^2} / \frac{1}{n^2} = \lim_{n \to \infty}\frac{n^2}{(n+1)^2} = 1\),由于极限值为 1,小于 1,所以级数收敛。

试题五:多元函数的偏导数问题:设函数 \( z = f(x, y) = x^2y + y^3 \),求 \( f \) 关于\( x \) 和 \( y \) 的偏导数。

解答:对 \( x \) 求偏导,保持 \( y \) 为常数,得到 \( f_x =2xy \)。

对 \( y \) 求偏导,保持 \( x \) 为常数,得到 \( f_y = x^2 + 3y^2 \)。

大学生数学知识竞赛题库

 大学生数学知识竞赛题库

大学生数学知识竞赛题库
一、竞赛介绍
该竞赛为大学生数学知识竞赛,旨在提高大学生的数学素养和综合应用能力。

竞赛内容包括数学知识与技能应用、数学模型的建立、分析、解决问题等。

二、竞赛题库
以下为该竞赛的题库示例:
1. 题目一
交换两个变量的值(不使用临时变量)。

示例:
输入: a = 1, b = 2
输出: a = 2, b = 1
2. 题目二
如果当前的月份数字为 m,第一天是星期 w,那么当月的天数
n 是多少?(不考虑闰年)
示例:
输入: m = 3, w = 2
输出: n = 31
3. 题目三
某工程项目需要两年时间完成,项目分为 n 个子任务,需要 m 个人来完成。

假设所有子任务可以分开进行,并且其完成时间不同,存在时间瓶颈。

设计一种算法,使得项目可以在两年内完成,同时
尽可能均衡各个子任务的完成时间。

示例:
输入: n = 5, m = 2, time = [12, 8, 10, 5, 7]
输出: [12, 10], [8, 7], [5]
三、总结
该竞赛题库涵盖了多个数学领域,从基础运算到综合应用均涉及,对于大学生的综合应用能力提高有很好的促进作用。

大学生高等数学竞赛试题汇总及答案

大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。

数学竞赛数学专业试题及答案

数学竞赛数学专业试题及答案

数学竞赛数学专业试题及答案一、选择题(每题5分,共30分)1. 设函数\( f(x) = x^2 + 3x + 2 \),求\( f(-2) \)的值。

A. -1B. 0C. 1D. 22. 已知等差数列\( a_n \)的首项为2,公差为3,求第10项的值。

A. 37B. 38C. 39D. 403. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 求下列无穷数列的和:\( 1 - 1/2 + 1/3 - 1/4 + \ldots \)。

A. 0B. 1C. 2D. 无穷大5. 已知\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。

A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C.\( \frac{3}{5} \) D. \( -\frac{3}{5} \)6. 一个正方体的体积为27,求其表面积。

A. 54B. 108C. 216D. 486二、填空题(每题5分,共20分)7. 若\( a \)和\( b \)是方程\( x^2 - 5x + 6 = 0 \)的两个根,则\( a + b \)的值为________。

8. 根据勾股定理,若直角三角形的两条直角边分别为3和4,则斜边的长度为________。

9. 一个等比数列的首项为2,公比为3,求其第5项的值。

10. 求\( e^{i\pi} \)的值。

三、解答题(每题25分,共50分)11. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + \ldots + n^3 = (1 + 2 + \ldots + n)^2 \)。

12. 已知函数\( g(x) = \sin(x) + \cos(x) \),求\( g(x) \)的最大值。

四、附加题(共30分)13. 考虑一个由正整数构成的数列,其中每个数都是前一个数的两倍加一。

高数竞赛试题集

高数竞赛试题集

高等数学竞赛一、填空题 若 lim sin x (cosx -b) =5,则 a = i 0e X -a 设 f(X)= lim (n 2 "x,贝U f (x)的间断点为 x= ______ . nx +1 曲线y=lnx 上与直线X+y=1垂直的切线方程为 ________________________________ . 已知 f (e X ) =xe 」,且 f(1)= 0,贝u f (X)= ___________ . l x =t 3+3t +1设函数y(x)由参数方程彳 3确定,则曲线y = y(x)向上凸的x 取值[y =t -3t +11. 2.3. 4.5.范围为6.i 2x 设y =arctane X - InV e 2x17.若 X T 0时,(1 -ax2)4 -1xe x 2设 f (x) - {-1与xsinx 是等价无穷小,则a=1 < —2,则2B f(x —1)dx =29. 由定积分的定义知,和式极限lim ^n n 2+k 210. '1 8 dx X J X 2-1 二、单项选 择题 X x -— X T 0 时的无穷小量 a = Lcost 2dt,P = T tan 寸tdt,Y = 11 .把是前一个的高阶无穷小,则正确的排列次序是 【】(A)a ,P ,Y . (B) a ,Y , P . (C) P^J . 12•设函数f(x)连续,且f(0) :>0,则存在6 >0,使得 【 (A) f(x)在(0, 6)内单调增加. (C )对任意的 X 忘(0, 5)有 f(x)>f(0).13 .设 f(X)=|x(1-X)| ,贝U 【<x3 [si nt dt ,使排在后面的】(B ) f(x)在(-■& ,0)内单调减少.(D)对任 意的 X 亡(一6,0)有f(x)>f(0). (A ) (B) (C) (D ) =0是f (X)的极值点,但(0, 0)不是曲线y = f (X)的拐点. =0不是f (X)的极值点,但(0, 0)是曲线y = f(x)的拐点. =0是f (X)的极值点,且(0, 0)是曲 =0不是f (X)的极值点,(0, 0)也不 线y = 是曲线 f ( x)的拐点. y = f (x)的拐点. 14 . lim In 『(1+丄)2(1+2)2|II (1+卫)2等于 ¥ n n n 血X2 n2 (B) Zjxdx . [(c)2J In(1+x)dx .2 2(D)J In2(1 + x)dx15 .函数 (A)(一、| x |sin(x -2)亠 f(X)= --- --- 一在下列哪个区X (X -1)(X -2)21 , 0). (B ) (0 , 1).间内有界.【(C) (1 ,2). (D) (2,3).16.设 f(X)在(+ )内有定义,且lim f(x)=a ,ggJGw 0,则【】高等数学竞赛试卷Y [ 0 ,x=0 (B) X = 0必是g(x)的第二类间断点. (D) g(x)在点X = 0处的连续性与a 的取值有关. 】 (A) X = 0必是 (C) X = 0必是 17 .设f '(X)在[a , b ]上连续,且f "(a) >0, f'(b) v0,则下列结论中错误的是【 X 0 € (a, b),X 0 (a,b), X 0 丘(a,b), X 0 亡(a,b),g(x)的第一类间断点. g(x)的连续点. (A ) (B ) (C )(D ) 18 .设 (A) (B) (C) (D) 至少存在一点 至少存在一点 至少存在一点至少存在一点 使得 使得 使得 使得 f (X 0) > f (a). f (X 0)> f (b). f'(X 0)=O . f (X 0)=0. ,1, X >0 f(x) =40,x =0,F(x) [-1, x <0 点不连续.)内连续,但在X = 0点不可导.)内可导,且满足 F(x) = f(x).)内可导,但不一定满足F'(X)= f (x). F(x)在 X = 0 F(x)在( F(x)在(F(x)在( 三、解答题 1 r< 2 19.求极限ljm —(一 20 •设函数f (X)在(—壬 +再上有定义,在区间[0, 2]上,f(X)= x(x — 4),若对任意的X 都满足 f(X)=kf(X +2),其中k 为常数.(I )写出f (X)在[—2, 0]上的表达式;(n )问k 为何值时,f(x)在x = 0处可导.21 .设f ( X ),g (X )均在[a, b :上连续,证明柯西不等式 2 + COSX f 「b (x)dx h a 2 2 2 4 22 .设 ecacbce ,证明 ln b-ln a 》一f(b-a). e f (x)g(x)dx i 兰 if f 2 g 2(x)dx j X 丄 — e 中e 23曲线y =— ---- --- 与直线x=0, x = t(t> 0)及 y = 0围成一曲 边梯形.该曲边梯形绕x 轴旋转一周得一旋转体,其 体积为V(t),侧面积为S(t),在x=t 处的底面积为F(t).( I )求 V(t) X X24 .设 f (X) , g(x)在[a , b ]上连续,且满足 J f (t)dt > Jg(t)dt ,x a a 的值;(n ) lim -S(^). t -就 F(t) bb[a ,b),J a f(t)dt = J a g(t)dt .证明:[b xf(x)dx < f bxg(x)dx . •a 'a25. 速并停下.现有一质量为9000kg 飞机的速度成正比(比例系数为 表示千米/小时.尾部张开 减速伞,以增大阻 力,使飞机迅速减 经测试,减速伞打开后, 某种飞机在机场降落时,为了减少滑行距离,在触地的 瞬间,飞机的飞机,着陆时的水平 速度为 700km/h. k=6.0x106).问从着陆点算起,飞机滑行的最长距离是多少?飞机所受的总阻力与 注 kg 表示 千克,km/h 一、单项选择题 2 X -ax — b 尸 0 1、若 %+1 (A ) a =1, b =1(B) a=T, b =1 (C) a =1, b =—1 (D)a = —1, b=—1F(x )2、设 F (x )詔 x ,[f(0),(A ) 连续点 (B )3、设常数k A O ,函数 X 工0 c,其中f (x )在X =0处可导且f '(0) H 0X := 0 第一类间断点(C ) 第二类间断点 (D )以上都不X f (X )= In X —一 +k 在(0, xc )内零点的个数为e f (0) =0,贝U X = 0 是 F(X)的 (C) 4、若在[0,1]上有 f ( 0 > g (0=) 0, 4 g) = ab)且 f''X 另,0 g”(x)c0 ,I1 =f (X )dx ,I 2 5、 1 = J o g(x)dx ,I 3 I 1 > l 2> 图形0<a<x<b, 0<y<f(x 绕y 轴旋转所成 的旋转体 bb(A) 由平面 (A) 6、 7、1、 2、 3、 4、 5、 6、 7、1=f ax dx 的大小关系为 j 0 ------------------I 3 ( B ) I 2 > I 3 二 I 1 ( C )V =2兀 J xf(Mdx( B ) V =2和 f ( x) d X C )VP(1,3,4)关于平面 3x + y —2z =0的对称点是_( A ) (5, —1,0) 设D 为 X 2 + y 2<R 2,D 1 是 D 位于第一象限的部分,f (X)连续, 2(A)8JJf(X 2)dcrD 1(B ) 0( C )a 为常数,则级数二、填空题3 l :m tan 2x (1 hm —4—(1X —30 X y r sin(na) 1 1n 2"T n J13 — 12 — 11 的体积为 ___________ b2=兀 Ja f (x)dX (B ) (5,1,0) 则 JJ f (x 2D R R 2Jdxjj(x+ y 2)dy(D)bV " Ja f (x)dx (C ) (-5,-1,0) ( D ) (-5,1,0) + y 2)dcr = _______ (D ) (D )4JJf(x 2 D 1+ y 2)db绝对收敛(B )发散C )条件收敛(D )收敛性与a 的取值有关个。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1Λ=+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分)(1)设22(1)(1)(1),n n x a a a =+++L 其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

大学数学竞赛试题及答案

大学数学竞赛试题及答案

大学数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项不是实数?A. πB. iC. √2D. -1答案:B2. 函数f(x) = x^2 + 3x + 2在区间[-4, -1]上是:A. 单调递增B. 单调递减C. 先减后增D. 先增后减答案:C3. 已知等差数列的首项a1=3,公差d=2,求第10项a10的值。

A. 23B. 27C. 29D. 31答案:A4. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。

A. 相离B. 相切C. 相交D. 内含答案:C5. 已知矩阵A = [[1, 2], [3, 4]],求矩阵A的行列式。

A. 0B. 1C. 7D. 8答案:C6. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2 + 1/3 + 1/4 + ...D. 1 - 1/2 + 1/4 - 1/8 + ...答案:A二、填空题(每题5分,共20分)7. 已知函数g(x) = 2x - 3,求g(4)的值:________。

答案:58. 一个直角三角形的两条直角边分别为3和4,求斜边的长度:________。

答案:59. 求函数f(x) = x^3 - 2x^2 + 3x的极小值点:________。

答案:x = 110. 已知一个球的体积是(4/3)π,求该球的半径:________。

答案:1三、解答题(每题25分,共50分)11. 证明:对于任意实数x,不等式e^x ≥ x + 1始终成立。

证明:略12. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求该函数的极值点。

解:首先求导数f'(x) = 3x^2 - 12x + 11。

令f'(x) = 0,解得x = 1, 3。

通过二阶导数检验,可知x = 1为极大值点,x = 3为极小值点。

大三数学竞赛试题及答案

大三数学竞赛试题及答案

大三数学竞赛试题及答案题目一:极限问题题目描述:求下列极限:\[ \lim_{x \to 0} \frac{\sin x}{x} \]答案:根据洛必达法则,当分子分母同时趋向于0或无穷大时,可以使用洛必达法则。

由于分子和分母都趋向于0,我们可以对分子和分母同时求导数,得到:\[ \lim_{x \to 0} \frac{\cos x}{1} = 1 \]题目二:微分方程问题题目描述:解下列微分方程:\[ y'' - y' - 6y = 0 \]答案:这是一个二阶线性常系数齐次微分方程。

设其特征方程为:\[ r^2 - r - 6 = 0 \]解得特征根为 \( r_1 = 3 \) 和 \( r_2 = -2 \)。

因此,微分方程的通解为:\[ y(x) = C_1 e^{3x} + C_2 e^{-2x} \]题目三:级数问题题目描述:判断级数 \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 的收敛性,并求其和。

答案:这个级数可以通过部分分式分解来化简:\[ \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \]解得 \( A = 1 \) 和 \( B = -1 \),因此:\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \]利用级数的可加性,我们发现这是一个可裂项求和的级数,其和为:\[ S = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots = 1 \]题目四:多元函数微分问题题目描述:设函数 \( f(x, y) = x^2y + y^3 - 3x \),求 \( f \) 在点\( P(1, 1) \) 处的偏导数 \( f_x \) 和 \( f_y \)。

大学数学竞赛试题及答案

大学数学竞赛试题及答案

大学数学竞赛试题及答案一、选择题(每题5分,共30分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),则\( f(x) \)的最小值是:A. 0B. 1C. 2D. 32. 若\( \int_{0}^{1} x dx = \frac{1}{2} \),则\( \int_{0}^{2} x dx \)的值是:A. 1B. 2C. 3D. 43. 设\( A \)为3阶方阵,且\( \det(A) = 2 \),则\( \det(2A) \)的值是:A. 2B. 4C. 8D. 164. 以下哪个选项不是\( \mathbb{R}^3 \)中的向量?A. \( \vec{a} = (1, 2, 3) \)B. \( \vec{b} = (1, 2, 3, 4) \)C. \( \vec{c} = (1, 2) \)D. \( \vec{d} = (1, 2, 3) \)5. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),则\( A \cap B \)的元素个数是:A. 0B. 1C. 2D. 36. 圆的方程为\( x^2 + y^2 - 6x - 8y + 24 = 0 \),圆心坐标是:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)二、填空题(每题5分,共20分)1. 函数\( f(x) = \sin(x) \)在区间\( [0, \pi] \)上的最大值是______。

2. 若\( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \)的值为______。

3. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式\( \det(A) \)的值是______。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(19届)一、试题概述全国大学生数学竞赛是由中国数学会主办的一项面向全国高校本科生的数学竞赛。

自2009年首届竞赛举办以来,已成功举办九届。

竞赛旨在激发大学生对数学的兴趣,提高他们的数学素养和综合能力,同时选拔优秀数学人才。

每届竞赛均设有预赛和决赛两个阶段,预赛为全国范围内的统一考试,决赛则在全国范围内选拔出的优秀选手中进行。

二、竞赛内容全国大学生数学竞赛的试题内容主要包括高等数学、线性代数、概率论与数理统计等基础数学知识。

试题难度适中,既考查参赛选手的基础知识掌握程度,又注重考查他们的综合应用能力和创新思维能力。

三、竞赛特点1. 公平公正:竞赛试题由全国数学教育专家命题,确保试题质量,保证竞赛的公平公正。

2. 注重基础:竞赛试题主要考查参赛选手对基础数学知识的掌握程度,有利于引导大学生重视基础数学学习。

3. 综合应用:试题设计注重考查参赛选手的综合应用能力,培养他们的创新思维和实践能力。

4. 激发兴趣:竞赛通过丰富多样的试题形式,激发大学生对数学的兴趣,培养他们的数学素养。

四、竞赛组织全国大学生数学竞赛由各省、市、自治区数学会负责组织本地区的预赛,中国数学会负责全国范围内的决赛。

竞赛组织工作包括试题命制、竞赛宣传、选手选拔、竞赛监督等环节,确保竞赛的顺利进行。

五、竞赛影响全国大学生数学竞赛自举办以来,受到了广大高校和数学爱好者的广泛关注和热情参与。

竞赛不仅为优秀数学人才提供了展示才华的舞台,也为全国高校数学教育提供了有益的借鉴和启示。

通过竞赛,大学生们不仅提高了自己的数学水平,还结识了许多志同道合的朋友,拓宽了视野,激发了学习热情。

六、竞赛历程自2009年首届全国大学生数学竞赛举办以来,竞赛规模逐年扩大,影响力不断提升。

参赛选手涵盖了全国各大高校的本科生,包括综合性大学、理工科院校、师范院校等。

随着竞赛的普及,越来越多的学生开始关注并参与其中,竞赛逐渐成为衡量高校数学教育水平和学生数学素养的重要标志。

高等数学竞赛试题含答案

高等数学竞赛试题含答案

高等数学竞赛试题一、求由方程032=-+xy y x所确定的函数()x y y =在()+∞,0内的极值,并判断是极大值还是极小值. 解:对032=-+xy y x两边求导得()2230x y y y xy ''+-+=,223y xy y x-'=- 令0y '=得2yx =,代入原方程解得11,84x y ==.()()()()()2111122,,,08484232613x y x y y y y x y x yy y yx '=====''-----''=-.故当18x =时,y 取极大值14.二、设xyyx u -+=1arctan ,求x u ∂∂, 22x u ∂∂.解:()()2211111xy yy x xy xy y x xu-++-⎪⎪⎭⎫ ⎝⎛-++=∂∂=211x+, 22x u ∂∂=()2212x x +-三、计算曲线积分⎰+-=Lyx ydxxdy I224,其中L 是以点(1,0)为中心,R 为半径的圆周,0>R 1≠R ,取逆时针方向.解:()224,yx yy x P +-=, ()224,y x x y x Q +=, 当()()0,0,≠y x 时,()x Qyx x y y P ∂∂=+-=∂∂2222244, 当10<<R 时()D ∉0,0,由格林公式知,0=I .当1>R 时, ()D ∈0,0,作足够小的椭圆曲线⎪⎩⎪⎨⎧==θεθεsin cos 2:y x C ,θ从0到π2.当>ε充分小时,C 取逆时针方向,使D C ⊂,于是由格林公式得0422=+-⎰-+CL yx ydxxdy , 因此⎰+-L y x ydx xdy 224⎰+-=C yx ydxxdy 224 =θεεπd ⎰202221 =π 四、设函数()x f 在()+∞,0内具有连续的导数,且满足()()()422222t dxdy y xfy x t f D+++=⎰⎰,其中D 是由222t y x =+所围成的闭区域,求当x ∈()+∞,0时()x f 的表达式.解:()()22402tf t d r f r rdr t πθ=+⎰⎰=()3404tr f r dr t π+⎰,两边对t 求导得()()3344f t t f t t π'=+,且()00f =,这是一个一阶线性微分方程,解得()()411t f t e ππ=-五、设dx x x a n n⎰=πsin ,求级数∑∞=+⎪⎪⎭⎫⎝⎛-1111n n na a 的和.解:令t n x -=π, 则()dt t t n a n n ⎰-=ππ0sin=n n a dt t n -⎰ππ0sin .sin 2n nn a t dt ππ=⎰2220sin sin 22n n t dt tdt n πππππ===⎰⎰.⎪⎭⎫ ⎝⎛+-=-+1111111n n a a n n π.1n n k S =⎛⎫=-∑=n k =111n ⎫-⎪+⎭, =S 111n n ⎫-=⎪+⎭六、设()f x 在[)+∞,0上连续且单调增加,试证:对任意正数a ,b ,恒有()()()[]⎰⎰⎰-≥ba ba dx x f a dx x fb dx x xf 0021. 解:令()()0xF x x f t dt =⎰,则()()()0xF x f t dt xf x '=+⎰,()()()ba Fb F a F x dx '-=⎰=()()0bx a f t dt xf x dx ⎡⎤+⎢⎥⎣⎦⎰⎰ ()()ba xf x xf x dx ≤⎡+⎤⎣⎦⎰ =()2baxf x dx ⎰,于是()()()()()001122bba axf x dx F b F a b f x dx a f x dx ⎡⎤≥⎡-⎤=-⎣⎦⎢⎥⎣⎦⎰⎰⎰. 七、设()v u ,ϕ具有连续偏导数,由方程()bz y az x --,ϕ=0确定隐函数()y x z z ,=,求yzb x z a ∂∂+∂∂. 解:两边对x 求偏导得1210z z a b x x ϕϕ∂∂⎛⎫⎛⎫''-+-= ⎪ ⎪∂∂⎝⎭⎝⎭g g ,两边对y 求偏导得1210z z ab y y ϕϕ⎛⎫⎛⎫∂∂''-+-= ⎪ ⎪∂∂⎝⎭⎝⎭g g , 112z x a b ϕϕϕ'∂=∂''+,212z x a b ϕϕϕ'∂=∂''+, yz b x z a ∂∂+∂∂=1.八、设nn x n121112----=Λ,判别数列{}n x 的敛散性.解:定义00x =,令1k k k u x x -=-,则1nk n k u x ==∑,当2n ≥时,1n n n u x x -=-=-,()21-==+.1lim 14n n u →∞=,由1n ∞=1n n u ∞=∑收敛,从而{}n x 收敛. 九、设半径为r 的球面∑的球心在球面0∑:()22220xy z R R ++=>上,问当r 为何值时,球面∑在球面0∑内部的那部分面积最大?解:由对称性可设∑的方程为()2222xy z R r ++-=,球面∑被球面0∑所割部分的方程为zR =z x ∂=∂, z x ∂=∂,=球面∑与球面0∑的交线在xoy 平面的投影曲线方程为422224r x y r R +=-,令l =所求曲面面积为()200l DSr d πθρ==⎰⎰,=222r r r R π⎛⎫- ⎪⎝⎭.令()0S r '=得驻点43r R =,容易判断当43rR =时,球面∑在球面0∑内部的那部分面积最大. 十.计算()ds yx y x IL⎰+-+=22221,其中曲线弧L 为:x y x 222=+,0≥y . 解: 22x x y-=, (1) 221xx x y --=',ds ==, (2)将(1)、(2)代入()ds y x y x IL⎰+-+=22221得 dx x x xI 220212-=⎰ =dx x⎰-2212 =4. 十一.计算曲面积分()3322231Ix dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑是曲面221y x z --=被平面0=z 所截出部分的上侧.解:记1∑为xoy 平面上被园221x y +=所围成的部分的下侧,Ω为由∑与0∑围成的空间闭区域.由高斯公式知()()13322222316x dydz y dzdx z dxdy x y z dv ∑∑Ω+++-=++⎰⎰⎰⎰⎰Ò =()221126r d dr z r rdz πθ-+⎰⎰⎰=()()122320112112r r r r dr π⎡⎤-+-⎢⎥⎣⎦⎰ =2π.()221332122313x y x dydz y dzdx z dxdy dxdy ∑+≤++-=--⎰⎰⎰⎰=3π23I πππ=-=-。

大学生数学竞赛试题

大学生数学竞赛试题

大学生数学竞赛试题一、选择题(每题4分,共20分)1. 若函数\( f(x) = x^2 + 3x + 2 \),求\( f(-2) \)的值。

A. 1B. 2C. 3D. 42. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),\( a_{n+1} = 2a_n + 1 \),求\( a_3 \)的值。

A. 5B. 7C. 9D. 113. 若\( \int_{0}^{1} x^2 dx \)的值是?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. \( 1 \)4. 圆的方程为\( (x-1)^2 + (y-2)^2 = 9 \),求圆心到直线\( x + 2y - 5 = 0 \)的距离。

A. 1B. 2C. 3D. 45. 已知\( \sin(\alpha + \beta) = \frac{3}{5} \),\( \cos(\alpha + \beta) = -\frac{4}{5} \),且\( \alpha \)为钝角,求\( \sin\alpha \)的值。

A. \( \frac{3}{5} \)B. \( -\frac{3}{5} \)C. \( \frac{4}{5} \)D. \( -\frac{4}{5} \)二、填空题(每题5分,共20分)6. 求\( e^x \)的\( n \)阶导数。

\( \frac{d^n}{dx^n} e^x = \) __________。

7. 若\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x\to 0} \frac{\sin 2x}{x} \)的值为 __________。

8. 已知\( \frac{1}{a} + \frac{1}{b} = \frac{1}{2} \),\( a >0 \),\( b > 0 \),求\( a + b \)的值。

大学数学竞赛试题及答案

大学数学竞赛试题及答案

大学数学竞赛试题参考答案一、填空:(本题15分,每空3分。

请将最终结果填在相应的横线上面。

) 1.=+++-++∞→xx x x x sin 114lim22x 3 。

2.设函数)(x y y =由方程xyy x arctan22e =+所确定,则曲线)(x y y =在点)0,1(处的法线方程为01=-+y x 。

3.设函数)(x f 连续,则=-⎰xt t x tf x 022d )(d d )(2x xf 。

4.设函数f 和g 都可微,()x,xy f u =,()xy x g v +=,则=∂∂⋅∂∂xv x u ()g yf f y '⎪⎭⎫ ⎝⎛'+'+211 。

5.=-+⎰-21212d 1arcsin sin x x xx x π631-。

二、选择题:(本题15分,每小题3分。

每个小题的四个选项中仅有一个是正确的,把你认为“正确选项”前的字母填在括号内。

选对得分;选错、不选或选出的答案多于一个,不得分。

)1. 函数)(x f 在闭区间[1,2]上具有二阶导数,0)2()1(==f f ,f(x)x x F 2)1()(-=,则)(x F ''在开区间(1,2)内 ( B ) (A ) 没有零点; (B )至少有一个零点;(C ) 恰有两个零点; (D )有且仅有一个零点。

2. 设函数)(x f 与)(x g 在开区间(a ,b )内可导,考虑如下的两个命题, ⑴ 若)()(x g x f >,则)()(x g x f '>'; ⑵ 若)()(x g x f '>',则)()(x g x f >。

则( A )(A )两个命题均不正确; (B )两个命题均正确;(C )命题⑴正确,命题⑵不正确; (D )命题⑴不正确,命题⑵正确。

3. 设常数0>δ,在开区间()δδ,-内,恒有0)(,)(2>''≤x f x x f ,记⎰-=δδx x f I d )(,则( C )(A ) I < 0; (B ) I = 0; (C ) I > 0; (D ) I 非零,且其符号不确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x D d d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=102d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f ,则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由xz x =,yz y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.解:方程29ln )(y y f e xe =的两边对x 求导,得因)(29ln y f y xe e =,故y y y f x'=''+)(1,即))(1(1y f x y '-=',因此二、(5分)求极限x enx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解:因 故 因此三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解:由A xx f x =→)(lim和函数)(x f 连续知,0)(limlim )(lim )0(0===→→→xx f x x f f x x x 因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,⎰=xu u f xx g 0d )(1)(,故 当0≠x 时,xx f u u f xx g x )(d )(1)(02+-='⎰, 这表明)(x g '在0=x 处连续.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .证:因被积函数的偏导数连续在D 上连续,故由格林公式知 (1)y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 和y 是对称的,即知 因此 (2)因 故 由 知即2sin sin 25d d π⎰≥--Ly y x ye y xe五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''和 x x x e xe e y 212++=',x x x e xe e y 2142++='' 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令0)1(278)21(3152)(=---+='a a a a V πππ, 得 即 因此45-=a ,23=b ,1=c .七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n,且neu n =)1(,求函数项级数∑∞=1)(n n x u 之和.解x n n ne x x u x u 1)()(-+=', 即由一阶线性非齐次微分方程公式知 即 因此由)1()1(nC e u ne n +==知,0=C , 于是下面求级数的和:令 则即由一阶线性非齐次微分方程公式知令0=x ,得C S ==)0(0,因此级数∑∞=1)(n n x u 的和八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.解令2)(t x t f =,则因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减。

因此即()d ()1()d n f t t f n f t t ∞+∞+∞=≤≤+∑⎰⎰,又2()n n n f n x ∞∞===∑∑,21ln1d 1ln1d d d )(01ln222πxt e xt et x t t f t xt t ====⎰⎰⎰⎰∞+-∞+-∞+∞+,所以,当-→1x 时,与∑∞=02n n x 等价的无穷大量是x-121π。

2010-2012年第二届全国大学生数学竞赛预赛试卷 (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

) 一、(25分,每小题5分)(1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

(3)设0s >,求0(1,2,)sx n I e x dx n ∞-==⎰。

(4)设函数()f t 有二阶连续导数,221,(,)r x y g x y f r⎛⎫=+= ⎪⎝⎭,求2222g gx y∂∂+∂∂。

(5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离。

解:(1)22(1)(1)(1)nn x a a a =+++=22(1)(1)(1)(1)/(1)nn x a a a a a =-+++-=222(1)(1)(1)/(1)na a a a -++-==12(1)/(1)n a a +--(2)22211ln (1)ln(1)1lim 1lim lim x x x e x x xx xx x x e e e x -++--→∞→∞→∞⎛⎫+== ⎪⎝⎭令x=1/t,则原式=21(ln(1))1/(1)112(1)22lim lim lim t t t t ttt t t e eee +-+---+→→→===(3)0000112021011()()[|](1)!!sx n n sx n sx sx n n sx n n n n n I e x dx x de x e e dx s sn n n n n n e x dx I I I s s s s s∞∞∞---∞-∞----+==-=--=-=====⎰⎰⎰⎰二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞→-∞''''>=>=<且存在一点0x ,使得0()0f x <。

证明:方程()0f x =在(,)-∞+∞恰有两个实根。

解:二阶导数为正,则一阶导数单增,f(x)先减后增,因为f(x)有小于0的值,所以只需在两边找两大于0的值。

将f(x)二阶泰勒展开: 因为二阶倒数大于0,所以lim ()x f x →+∞=+∞,lim ()x f x →-∞=-∞证明完成。

三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ。

相关文档
最新文档