北京大学高等代数7
高等代数——课程介绍

《高等代数》是北京大学数学科学学院(由数学、概率统计、科学与工程计算、信息科学、金融数学五个系组成)本科一年级的三门最重要的基础课之一,为期一学年,教学时间30周,复习、考试4周,总共10学分(每学期5学分)。
每年学生约260人(包括本院学生、元培班学生和重修的学生),分成两个大班,由两个主讲教师依照同样的教学计划(包括进度、内容、习题和作业的的安排)同步授课(每周4学时),同时配备有四位助教上习题课(每周2学时)和批改作业。
主讲教师负责安排习题课内容以及指导助教的工作。
每学期期中、期末考试各一次,采用统一的考题和统一的评分标准。
考试分数为百分制。
期末总成绩为期中成绩的40%加上期末成绩的60%再减去学生未交作业的次数。
课程目前采用的教材是蓝以中编著的《高等代数简明教程》(上、下册)(北京大学出版社2002年出版,北京大学数学教学系列丛书,该书为普通高等教育“十五”国家级规划教材及2002年北京市教育精品教材重点项目)。
主要教学参考书是北大几何与代数教研室代数小组编《高等代数》(高等教育出版社,1991年,第二版,曾获国家优秀教材一等奖);丘维声编著的《高等代数》(上、下册)(高等教育出版社1996年出版,国家“九五”重点教材)。
本课程的内容包括:线性方程组,矩阵,行列式,双线性型与二次型,线性空间,线性变换,具有度量的线性空间(欧氏空间、酉空间、四维时空空间、辛空间),Jordan标准形,有理整数环,一元和多元多项式环,多线性代数(张量积、张量、外代数)的初步理论等。
本课程不仅注重讲授代数学的基本知识,更强调对于学生的“三个基本训练”和“一个初步训练”,即、代数学基本思想的训练、代数学基本方法的训练、线性代数基本计算的训练以及综合运用分析、几何、代数方法处理问题的初步训练。
高等代数课件(北大版)第七章-线性变换§7.3

1,2, ,n A B
∴ + 在基 1, 2 , , n下的矩阵为A+B.
§7.3 线性变换的矩阵
② 1,2, ,n 1,2, ,n 1,2, ,n B 1, 2, , n B
1,2, ,n AB
∴ 在基 1, 2 , , n下的矩阵为AB.
③ k 1,2, ,n k 1 , ,k n k 1 , ,k n k 1 , , n
k 1, 2, , n k 1,2, , n A 1,2, ,n kA
∴ k 在基 1, 2 , , n下的矩阵为 kA.
§7.3 线性变换的矩阵
④ 由于单位变换(恒等变换) E对应于单位矩阵E.
所以, E
与 AB=BA=E 相对应.
因此,可逆线性变换 与可逆矩阵A对应,且 逆变换 - 1 对应于逆矩阵 A- 1.
x1
,
n
A
x2
xn
1, 2 ,
y1
,n
y2
1, 2 ,
yn
x1
,
n
A
x2
xn
由于 1, 2 ,
, n线性无关,所以
y1 x1
y2
=A
x2
.
yn xn
§7.3 线性变换的矩阵
4.同一线性变换在不同基下矩阵之间的关系
定理4 设线性空间V的线性变换 在两组基
显然,1,2 , ,n 也是一组基,且 在这组基下的
矩阵就是B.
§7.3 线性变换的矩阵
(3)相似矩阵的运算性质 ① 若 B1 X 1A1X , B2 X 1A2 X , 则 B1 B2 X 1( A1 A2 )X , B1B2 X 1( A1A2 )X . 即, A1 A2 B1 B2 , A1 A2 B1B2 .
高等代数(北大第三版)习题答案完整

f ( x) = x 4 − 2 x 2 + 3 = ( x + 2) 4 − 8( x + 2)3 + 22( x + 2) 2 − 24( x + 2) + 11
3)
f ( x) = x 4 + 2ix 3 − (1 + i ) x 2 + 3 x + 7 + i
= ( x + i − i )4 + 2i ( x + i − i )3 − (1 + i )( x + i − i ) 2 − 3( x + i − i ) + 7 + i = ( x + i ) 4 − 2i( x + i)3 + (1 + i)( x + i ) 2 − 5( x + i ) + 7 + 5i
2
ε1 =
− 1 + 3i − 1 − 3i ,ε 2 = 2 2
证:设 ( f ( x ) h( x ), g ( x ) h( x )) = m( x ) 由
( f ( x ), g ( x)) h( x ) | f ( x) h( x) ∴ ( f ( x ), g ( x)) h( x ) | m( x )
设 d ( x ) = ( f ( x ), g ( x )) = u ( x ) f ( x ) + v ( x ) g ( x ).
由 12 题 ( fg , f + g ) = 1 令 g = g1 g 2 … g n
∴ 每个i, ( fi , g ) = 1 ⇒ ( f1 f1 , g ) = 1, ⇒ ( f1 f 2 f3 , g ) = 1 , ⇒ ( f1 f 2
高等代数北大版习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。
1999-2000,2,5-8,10北京大学高等代数考研真题

1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。
其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。
3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。
4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。
数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。
用U 表示K 上所有n 级循环矩阵组成的集合。
证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。
5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。
在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。
试问:f 是不是n R 上的一个内积,写出理由。
(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。
令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
北京大学数学系课程设置

北京⼤学数学系课程设置本科⽣1)公共与基础课程:44-50学分⼤学英语系列课程(2-8学分),政治系列课程、军事理论以及军训等课程(18学分)、计算机系列课程(6学分),体育系列课程(4学分),数学分析(14学分)2)核⼼课程:29学分⾼等代数Ⅰ(5学分),⾼等代数Ⅱ(4学分),⼏何学(5学分),抽象代数(3学分),复变函数(3学分),常微分⽅程(3学分),数学模型(3学分),概率论(3分)3)数学系限选课程32学分a) 21学分选⾃下⾯9门课: 数论基础(3学分),群与表⽰(3学分),基础代数⼏何(3学分),拓扑学(3学分),微分⼏何(3学分),微分流形(3学分),实变函数(3学分),泛函分析(3学分),偏微分⽅程(3学分)。
b) 理学部的⾮数学学院课程8学分(其中4学分物理).c) 毕业论⽂3学分4) 数学系通识与⾃主选修课程:27学分A.理学部课程:12学分,可以选⾃理学部中的任何院系,包括数学学院。
B. 通选课:12学分,其中社会科学类⾄少2学分;哲学与⼼理学类⾄少2学分;历史学类⾄少2学分;语⾔学、⽂学、艺术与美育类⾄少4学分,其中⼤学国⽂必选,另⼀门是艺术与教育类课程;数学与⾃然科学类和社会可持续发展类⾄少2学分。
C. 在全校课程中选择其余3学分。
研究⽣中级课程分析学与偏微分⽅程中级课程《实分析》(包含初步的⼏何测度论知识)+《调和分析》:上下学期开设,作为整体⼀年的课程。
《复分析》:与复⼏何课程衔接。
《泛函分析II》。
《⼆阶椭圆型⽅程》+《双曲⽅程》:上下学期轮流开设。
每两年开设⼀次《⾮线性分析基础》;《变分学》:轮流开设,有区分度。
《多复变函数论》。
资格考试课程:分析类:1) 泛函分析II, 2) 调和分析, 3)复分析; 偏微类:4) ⼆阶椭圆型⽅程,5)双曲⽅程另:偏微分⽅程概论(各类偏微分⽅程,拟微分算⼦)列为初级课程,在本科⽣开设。
常微分⽅程与动⼒系统类课程《常微分⽅程定性理论》。
高等代数 北大 课件

拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。
北京大学数学系《高等代数》考点讲义

绪 论 1 第一章 多项式 4 第二章 行列式 13 第三章 线性方程组 19 第四章 矩阵 25 第五章 二次型 31 第六章 线性空间 35 第七章 线性变换 40 第八章 λ-矩阵 43 第九章 欧氏空间 44
三、教材选用
主要参考教材:《高等代数》(第三版),高等教育出版社,2003,北京大学数学系几何与代数教研 室代数小组编.
1.该教材的内容覆盖了《高等代数》考试大纲的所有内容和知识点. 2.全国采用该教材的学校所占比例非常大. 3.该教材荣获全国高等学校优秀教材. 4.该教材习题编排较好,有梯度.
四、考题综述及变化趋势
— 1—
量、矩阵的若当标准型、矩阵的方幂、矩阵的对角化、矩阵的秩、矩阵张成的线性空间、正定矩阵等概 念,分值占到 150分中的 105分.
厦门大学 2012年考题中,16道题中有 10道题考察了矩阵的相关概念和理论. 中科院研究生院 2012年考题中,8道题中有 5道题考察了矩阵的相关内容. (2)线性空间和线性变换理论. 南开 2012年试题中,9道题中有 4道题考察了线性空间及线性变换的内容,占到 150分中的 70分. (3)多项式理论. 多项式理论在各校的考研题中所占的比例适中,一般占到 150分的 15分至 25分,但这部分内容 是各校考试题中的必考内容. 3.从方法看,考察的热点有: (1)矩阵的初等变换方法; (2)特征值和特征向量方法; (3)标准正交化方法; (4)子空间直和的判定方法. 4.发展趋势 (1)题型仍会以证明题和计算题为主,因为研究生考试重点考察学生分析问题的能力及综合利用 知识解决问题的能力. 但随着数学在各个领域的应用逐渐扩大,计算题的比重有上升的趋势. (2)考察内容仍将以矩阵理论、线性空间和线性变换理论、多项式理论和线性方程组为热点内容. (3)注意新的概念和新的理论的出现. 中山大学 2001年考察了线性空间商空间的概念、对偶空间、子空间的零化子等概念. (4)反问题的讨论. (南京航天航空大学 2011)(20分)设二次型 f(x1,x2,x3) =a(x2 1 +x2 2 +x2 3)+2b(x1x2 +x1x3 + x2x3)经过正交变换 X =CY化为二次型 3y2 1 +3y2 2,求参数 a,b的值及正交矩阵.
高等代数-北京大学第三版--北京大学精品课程

一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则, 则称这样的一个体系为定义(数域) 设K 是某些复数所组成的集合。
如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、四则运算是封闭的,即对K 内任两个数a 、 b ( a 可 以等于b ), 必有b K , abK ,且当b 0时,a/b K ,则称K 为一个数域。
1.1典型的数域举例:复数域C ;实数域R ;有理数域Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = •.1命题 任意数域K 都包括有理数域Q 。
证明 设K 为任意一个数域。
由定义可知,存在一个元素K ,且 a 0。
于是进而最后,m, n Z巴K 。
这就证明了nK 。
证毕。
1.1.3集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为A 与B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩定义(集合的映射) 设A 、B 为集合。
如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定若a a'代都有f (a)第一章代数学的经典课题§ 1若干准备知识1.1.1代数系统的概念个代数系统。
1.1.2数域的定义定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作A B ;把A下的元素组成的集合成为A 与B 的差集,记做A B 。
的元素(记做f(a)),则称f 是A 到B 的一个映射,记为B, f (a).如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。
A 的所有元素在f 下的像构成的 B 的子集称为A 在f 下的像,记做f (A),即 f (A) f(a)| a A 。
f(a'),则称f 为单射。
若 b B,都存在a A ,使得f(a) b ,则称f 为满射。
(完整版)高等代数(北大版)第7章习题参考答案

第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数【北大版】

f(k1a1+k2a2β)=f1(k1a1+k2a2)f2(6)
例3.设 是数域 上的 维线性空间,
令
①
则
为 上的一个双线性函数.
若
则
②
事实上 ,①或②是数域 上任意上的 维线性
空间 上双线性函数
的一般形式.
设
为数域 上线性空间V的一组基,
第十章 双线性函数
§10. 1 线性函数 §10.2 对偶空间 §10.3 双线性函数 §10.4 对称双线性函数
§10.3 双线性函数
、 双线性函数 二 、度量矩阵 三 、非退化双线性函数
一 、双线性函数
定义 设 是数域 上的 维线性空间 , 映射
为 上的二元函数. 即对
根据 唯一地对应于 中一个数
如果
具有性质 :
(2)f(k1α1+k2a2β)=k1f(a1β)+k2f(α2β)
其中
则
称为 上的一个双线性函数.
注
对于线性空间V上的一个双线性函数 当固定一个向量 (或 )不变时 ,可以得出一 个双线性函数.
例1.线性空间 上的内积即为一个双线性函数.
例2. 上两个线性函数 定义
证明 : f是V上的一个双线性函数.
同构.
则
是V上的一个双线性函数.
为满射.
若双线性函数
但
则设
为单射.
令
易证
仍为V上双线性函数.
并且
f+g→A+B=(f(6))+(s6))
命题2 维线性空间V上同一双线性函数,
在V 的不同基下的矩阵是合同的.
高等代数北大版课后答案完整版

高等代数(北大高等代数(北大**第三版)答案第一章多项式1.用)(x g 除)(x f ,求商)(x q 与余式)(x r :1)123)(,13)(223+−=−−−=x x x g x x x x f ;2)2)(,52)(24+−=+−=x x x g x x x f 。
解1)由带余除法,可得92926)(,9731)(−−=−=x x r x x q ;2)同理可得75)(,1)(2+−=−+=x x r x x x q 。
2.q p m ,,适合什么条件时,有1)q px x mx x ++−+32|1,2)q px x mx x ++++242|1。
解1)由假设,所得余式为0,即0)()1(2=−+++m q x m p ,所以当⎩⎨⎧=−=++012m q m p 时有q px x mx x ++−+32|1。
2)类似可得⎩⎨⎧=−−+=−−010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=−−m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==1q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =−−=+;2)32(),()12f x x x x g x x i =−−=−+。
解1)432()261339109()327q x x x x x r x =−+−+=−;2)2()2(52)()98q x x ix i r x i=−−+=−+。
4.把()f x 表示成0x x −的方幂和,即表成2010200()()...()n n c c x x c x x c x x +−+−++−+⋯的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =−+=−;3)4320()2(1)37,f x x ix i x x i x i =+−+−++=−。
北京大学数学系《高等代数》课后习题详解(行列式)【圣才出品】

010
0
002
0
(2)
000
n 1
n00
0
0 0
(3)
n 1 0
010 200
000 00n
解:(1)
n(n1)
原行列式=(1) (n , n1 , , 2 , 1) n! (1) 2 n!
(2)(-1)n-1n!
( n 1)( n 2 )
(3) (1) 2 n!
(1) ( j1 jn )
(1) ( j1 jn ) l k 0
j1 jn
j1 jn
故 l=k,即奇偶排列各占一半.
12.设
1 x x2
x n 1
P(x) 1 a1 a12
a1n1
1 an1 an21
其中 a1,a2,…,an-1 是互丌相同的数.
a n 1 n1
10.由行列式定义计算
2x x 1 2 1 x 1 1 f (x) 3 2x 1 1 11 x
中 x4 不 x3 的系数,并说明理由.
解:f(x)的展开式中 x 的 4 次项只有一项:2x∙x∙x∙x,故 x4 的系数为 2;x 的 3 次项
也只有一项(-1)r(2134)x∙1∙x∙x,故 x3 的系数为-1.
5.如果排列 x1x2…xn-1xn 的逆序数为 k,排列 xnxn-1…x2x1 的逆序数是多少? 解:(1/2)n(n-1)-k.
6.在 6 级行列式中,a23a31a42a56a14a65;a32a43a14a51a66a25 这两项应带有什么符号? 解:a23a31a42a56a14a65 带正号;a32a43a14a51a66a25 带正号.
7.写出 4 级行列式中所有带有负号并且包含因子 a23 的项.
高等代数北大版习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4)∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3))2,1,1,1(=α, )0,1,2,3(-=β。
高等代数北大版ppt课件

A1( )
A1( ) 中的全部元素都是可以被 bs ( ) 除尽的, 因为它们都是 Bs ( ) 中元素的组合.
如果 A1( ) 0 ,则对于A1( ) 可以重复上述过程,
进而把矩阵化成
16
d1( ) 0 L 0
0 0
d2 ( )
0
L
,
M 0
M 0
A2( )
其中 d1( ) 与 d2( ) 都是首1多项式( d1( ) 与 bs ( )
注: ① 全部初等矩阵有三类:
1
O
1
0L 1
i行
P(i, j)
M
1L 0
j行
1
O 1
4
1
O
1
p(i(c))
c
i行
1
O 1
1
O
1 L ()
i行
p(i, j(( )))
O
1
j行
O 1
5
② 初等矩阵皆可逆. p(i, j)1 p(i, j)
p(i(c))1
p(i
(
1 c
))
p(i, j(( )))1 p(i, j(( )))
L
L
aij ( ) a1 j ( ) ( )
L
L L
A1( )
矩阵 A1( )的第一行中,有一个元素:
aij ( ) (1 ( ))a1 j ( )
不能被左上角元素 a11( ) 除尽,转为情形 ii) .
证毕.
12
2.(定理2)任意一个非零的 s n的 一矩阵 A( )
都等价于下列形式的矩阵
除尽,这种情况的证明i)与类似.
iii) A( )的第一行与第一列中的元素都可以被 a11( )
高等代数【北大版】7.9

LLLLL
0 ≠ 0. ( J aE )k 1 = M O O 0 1 0 L 0
k ∴ J 的最小多项式为 ( x a ) .
§7.9 最小多项式
6.(定理13) A ∈ P n×n与对角矩阵相似 (定理13)
A 的最小多项式是 上互素的一次因式的积. 的最小多项式是P上互素的一次因式的积 上互素的一次因式的积
第七章 线性变换
§1 线性变换的定义 §2 线性变换的运算 §3 线性变换的矩阵 §4 特征值与特征向量 §5 对角矩阵 §6线性变换的值域与核 §7不变子空间 §8 若当标准形简介 §9 最小多项式 小结与习题
§7.9 最小多项式
一,最小多项式的定义 二,最小多项式的基本性质
§7.9 最小多项式
二,最小多项式的基本性质
1.(引理1)矩阵 的最小多项式是唯一的 (引理1 矩阵A的最小多项式是唯一的 的最小多项式是唯一的. 都是A的最小多项式 的最小多项式. 证:设 g1 ( x ), g2 ( x ) 都是 的最小多项式 由带余除法,g1 ( x ) 可表成 由带余除法,
g1 ( x ) = q( x ) g2 ( x ) + r ( x )
∴ g1 ( x ) h( x ), g2 ( x ) h( x ).
从而
g ( x ) h( x ).
的最小多项式. 故 g( x ) 为A的最小多项式 的最小多项式
§7.9 最小多项式
推广: 若A是一个准对角矩阵 是一个准对角矩阵
A1 A2 O As
且 Ai 的最小多项式为 gi ( x ), i = 1,2,..., s 则A的最小多项式是为 [ g1 ( x ), g2 ( x ),..., g s ( x )]. 的最小多项式是为 两两互素, 特别地,若 g1 ( x ), g2 ( x ),..., g s ( x ) 两两互素,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京大学数学学院期中试题
考试科目 高等代数I 考试时间 2012年11月8日 姓 名 学 号
一.(30分)填空题.
1.设
当λ = 时, α1 , α2 , α3不能表出β ; 当λ = 时, 表出方式不唯一.
2. 设α1 , α2是矩阵A = 的行向量, 则 α1 α1T + α2 α2 T = __ , α1T α1 + α2T α2 = ___ ;
A T A =__ , A T A 的秩 =__ , A A T = __ .
3.设 若矩阵 能写成 k 1 α1 α1T + k 2 α1 α2T + k 3 α2 α1T + k 4 α2 α2T , 则 [ k 1 , k 2 , k 3 , k 4 ] =__.
4. 已知 B 是3⨯4矩阵, [ 2 0 1 3 ] T 是齐次线性方程组B X = 0
的一个解. 设A 是将行向量 [ 2 0 1 3 ] 添加到B 下面
得到的方阵. 若A 的 (4,1) 元的余子式为6, 则 | A | =___.
5. 对矩阵做初等行变换, 矩阵的_____ 不变(多选).
A 秩
B 行空间
C 列空间
D 解空间
6. 设α = [ 1 1 2 ] T 与 β = [ 3 0 2 ] T 是3维几何空间里的向量. 则
α , β之间夹角的余弦值是__, α , β张成的三角形的面积是__, 与α , β都正交的单位向量是___.
二.(12分)已知 .11α,11α21⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦
⎤⎢⎣⎡31021121.,,2320202
1211010===b b a a t b b a a b b a a ⎥⎦
⎤⎢⎣⎡d c b a ,⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+=1λ21β,5λ42α,45λ2α,222λα321
求行列式
.
三.(24分)已知 是K 4的子空间V 的一组生成元.
1) 求V 的基, 使得每个基底向量至少有 dim V – 1个分量为0 .
2) 求V 的一组基, 使得该基底是α1 , α2 , α3 , α4 , α5的部分组;
3) 分别写出α1 , α2 , α3 , α4 , α5 在以上两组基下的坐标.
四.(24分)
1) 叙述向量空间线性子空间的定义并证明: 若V 1 与 V 2是
K n 的线性子空间, 则 V 1 ⋂ V 2 也是K n 的线性子空间.
2) 已知V 1 = < α1 , α2 , α3 , α4 > , V 2 = < β1 , β2 , β3 > , (αi , βj 为列向量)
且矩阵A = [ α1 α2 α3 α4 β1 β2 β3 ] 的简化阶梯型为
求V 1 ⋂ V 2 的维数与一组基, 用α1 , α2 , α3 , α4 的线性组合表示.
五.(10分)已知矩阵A 的前r 行构成A 行向量组的极大无关组,
A 的前 r 列构成A 列向量组的极大无关组. 问A 的前 r 行, 前 r 列交叉位置元素排成的r 阶子式是否一定非零? 如是, 请给出证明, 否则给出反例. ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=5022α1000α,7596α,2242α,3112α54321,21021
2102100000
b b b b b b a a a a a a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1100000203100010201103010201J。