2011年长春市高中毕业班第一次调研测试数学(文科)含答案

合集下载

2011年中考吉林省长春市数学试卷及解析

2011年中考吉林省长春市数学试卷及解析
14.边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2,
图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两
种卡片21张,则这个图案中阴影部分的面积之和为(结
果保留 ).
三、解答题(每小题5分,共20分)
15.先化简,再求值: + ,其中x= .
16.小华有3张卡片,小明有2张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请你用画树状图或列表的方法,求抽取的两张卡片上的数字和为6的概率.
16.解:

(3分)
P(抽取的两张卡片上的数字和为6)= = .(5分)
17.解:设小矩形花圃的长为xm,宽为ym.
根据题意,得 (3分)
解得
答:小矩形花圃的长为4m,宽为2m.(5分)
18.解:在△ABC中,∠C= , ,
∵∠A= ,AB=2.1,

(3分)
∵BD=0.9,
∴CD= BC-BD=1.701-0.9=0.801 0.8.
2011年吉林省长春市中考数学试题
一、选择题(每小题3分,共24分)
1.-2的绝对值等于【】
A.- B. C.-2D.2
2.某汽车参展商为了参加第八届中国(长春)国际汽车博览会,印制了105000张宣传彩页.105000这个数字用科学记数法表示为【】
A.10.5×104B.1.05×105C.1.05×106D.0.105×106
(1)用含有x的代数式表示CE的长.
(2)求点F与点B重合时x的值.
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.
(4)当x为某个值时,沿PD将以点D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x的值.

2011年高考数学文科试卷(全国1卷)(内含答案)(新课标卷卷)

2011年高考数学文科试卷(全国1卷)(内含答案)(新课标卷卷)

2011年普通高等学校招生全国统一考试一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )I ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【答案】D【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法. 【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥. (3)设向量,a b 满足||||1a b ==,12a b ⋅=-r r ,则2a b += (A(B(C(D【答案】B 【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【答案】D【命题意图】本题主要考查等差数列的基本公式的应用.【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足,若2,1AB AC BD ===,则CD =(A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =,在Rt OMN ∆中,30OMN ︒∠=, ∴12ON OM ==故圆N 的半径r ==,∴圆N 的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考全国数学试卷(新课标)-文科(含详解答案)

2011年高考全国数学试卷(新课标)-文科(含详解答案)

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

吉林省吉林市普通中学2011届高中毕业班摸底(数学文)

吉林省吉林市普通中学2011届高中毕业班摸底(数学文)

吉林市普通中学2010—2011学年度高中毕业班摸底测试数学试题(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共22小题,共150分,考试时间120分钟。

第I 卷 (选择题 共60分)一、选择题:本大题12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集{1,2,3,4,5,6},{1,2,3},{3,4,5},()U U A B C A B ===集合集合则 ( )A .{3}B .{6}C .{4,5}D .{1,2,6} 2.sin120的值为( )A .12B .12-C D3.若110a b<<,则下列不等式:①a b ab +<;②||||a b >; ③a b <;④ 2.a bb a+>其中正确的有 ( )A .1个B .2个C .3个D .4个4.给出下面的程序框图,那么其循环体执行的次数是( ) A .500 B .499 C .1000 D .9985.下列命题中错误的是 ( )A .若,,a a αβαβ⊥⊂⊥则B .若//,,,m n n m βααβ⊥⊂⊥则C .若,,,l l αγβγαβγ⊥⊥=⊥则D .若,,//,,AB a a AB a αβαβαβ⊥=⊥⊥则6.根据表格中的数据,可以判定方程20xe x --=的一个根所在的区间为( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3) 7.等比数列33{},3,9.n a a S q ==中则公比的值为( )A .12-B .12C .1,12-D .—1,128.某比赛为两运动员制定下列发球规则规则一:投掷一枚硬币,出现正面向上,甲发球,反面向上,乙发球;规则二:从装有2个红球与2个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球;规则三:从装有3个红球与1个黑球的布袋中随机取出2个球,如果同色,甲发球,否则乙发球。

长春市高中毕业班第一次调研测试文科数学试题参考答案及评分标准

长春市高中毕业班第一次调研测试文科数学试题参考答案及评分标准

7.【试卷答案】 D2018年长春市高中毕业班第一次调研测试数学(文科)参考答案及评分标准、选择题(本大题共 12小题,每小题5分,共60分) 1. 【试卷答案】 B【试卷解读】 由复数虚部定义: 复数 a bi aR ,的虚部为-1, 故选 B .【试卷答案】 B【试卷 解读】因 为 M -fx|1 :::x ::::3?M N 」x|1 : x<2:\ 故选 B【试卷答案】A[ 试卷解读b R 的虚部为b ,得2. 3. ,N J x|x :2?,4. 【试卷答案】 【试卷解读】5. 【试卷答案】 【试卷解读】6. 【试卷答案】z =1 —if(x)=(2x c sx) 将选项代入验证,当由抛物线标准方程 到准线的距离,又x 2 2 2=so i x c i sn 2s )nxc xi 毛1 o 2n ,Tt时,f (x )取得最值,故选A4= 2py p 0中p 的几何意义为:1蔦,故选D .由三视图可知,该几何体下方为一个长方体,长宽高分别为 抛物线的焦点5,4,4 ,方接一个沿旋转轴切掉的半圆柱,底面半径为 2,高为 为S =4 5 3 4 4 2 4二 2二 5 =92 • 14二.故选 A . C5,所以表面积【试卷解读】设公比为 9 q ,又 a^9,则 2q9 2+ +9 = 27,即 2q _q_1 = 0,解得 q2,故选C .11.【试卷答案】 C【试卷解读】由题意可知,程序框图的运算原理可视为函数'a(b 十1 ,a AbS = a 过b =丿 ,a(b -1 ,a cb所以 2tan 5 In e = 21 = 4, 4内,不能得到n _ :• ; C 选项,直线l 与m 可能平行,可能异面,还可 能相交;故选D .10.【试卷答案】B【试卷解 读】由 BA + BF =BA —BF 得 BA BF=0,又 A(a,0 ), B(0,—b ),F (-c,0)则 BA 二 a,b , BF =I-c,b ,所以有 b 2-ac=0 ,即22小一2c -a -ac =0,从而 e - e-1 = 01g100@,故选D .8【试卷答案】 A【试卷解读】由 —科,得y = —x • z 贝U z 表示该组 p >1 平行直线在y 轴的截距。

吉林省东北师大附中2011届高三第一次模拟(数学文)

吉林省东北师大附中2011届高三第一次模拟(数学文)

2011届高三第一次模拟试题数学试题(文科)一、选择题(本大题共12小题,每小题5分,共计60分)1.设集合I ={―2,―1,0,1,2},A ={1,2},B ={―2,―1,2},则A (C I B )=( )A .{0,1,2}B .{1,2}C .{2}D .{1}2.函数2lg(1)()2x f x -=+的定义域是 ( )A .),31(+∞-B .)1,31(-C .)31,31(-D .)31,(--∞3.若p :|x +1|>2,q :x >2,,则┐p 是┐q 成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 设a >1,函数f (x )=a |x|的图像大致是 ( )5.如图是一个几何体的三视图,则此三视图所描述几何体的表面积为 ( ) A .π)3412(+ B .20π C .π)3420(+D .28π6.已知a =(1,2),b =(3,-1)且a +b 与a -λb 互相垂直,则实数的λ值为 ( ) A .-116B .-611 C .116 D .6117.过点(3,-2)的直线l 经过圆x 2+y 2-2y =0的圆心,则直线l 的倾斜角大小为( ) A .150° B . 60° C .30° D . 120°8.在△ABC 中,已知a =2b cos C ,那么这个三角形一定是 ( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形9.⎪⎩⎪⎨⎧≤+->=)1(2)24()1()(x x ax a x f x 是R 上的单调递增函数,则实数a 的取值范围为 ( ) A .(1,+∞)B .[4,8]C .(4,8)D .(1,8)10.2008年3月份开始实施的《个人所得税法》规定:全月总收入不超过2000元的免征个人工资、薪金所得税,超过2000元的部分需征税,设全月总收入金额为x 元,前三级当全月总收入不超过4000元时,计算个人所得税的一个算法框图如上所示,则输出①,输出②分别为 ( ) A .0.05x,0.1x B .0.05x, 0.1x -225C .0.05x -100, 0.1xD .0.05x -100, 0.1x -22511.若不等式组5003x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩表示的平面区域是一个三角形,则a 的取值范围是( )A .5a <B .8a ≥C .5a <或8a ≥D .58a ≤<12.对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数,例如[2]=2;[1.2]=2;[2.2-]=3-, 这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。

2014年长春市高中毕业班第一次调研试题数学试题卷(文科WORD)(精心校对)

2014年长春市高中毕业班第一次调研试题数学试题卷(文科WORD)(精心校对)

(AБайду номын сангаас.
11.若函数 y=f(x)图象上的任意一点 p 的坐标(x,y)满足条件|x| ,则称函数具有性质 S,那 么下列函数中具有性质 S 的是( ) (A). (B). f(x)= lnx (C). f(x)=sinx (D). f(x)= tanx 12.已知.f(x)=1+x[a,b] (a<b,a,b (A) + +…+ , 设函数 F(x)= f(x+4) ,且函数 F(x)的零点均在区间 ) (D). 4
1/4
2 6
4
正视图
侧视图
4
(B)
5 俯视图 第5题图
(D) - 1 或 b,运算原理如图所示,则式子 的
( A). -3
(B). -4
(C).-8
(D). 0
8.实数 x,y 满足 大值为 4,则实数 a 的值为 (A). 2 (B). 3 (C). 4
若函数 z=x+y 的最
(D).
9.已知三条不重合的直线 m,n,l 和两个不重合的平 面 ,下列命题中正确的是:( ) (A). 若 m//n,n ,则 m// (B). 若 ⊥β, β=m, n⊥m ,则 n⊥ . (C) .若 l⊥n ,m⊥n, 则 l//m (D). 若 l⊥ ,m⊥ , 且 l⊥m ,则 10. 已知双曲线 - =1(a>0,b>0) 的右顶点、左焦点分别为 A 、 F ,点 B ( 0 , -b ) ,若 | + |=| |,则双曲线的离心率 e 的值为( (B). (C). ) (D).
请考生在 22、23、24 三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分 10 分)选修 4-1:几何证明选讲. A 如图,四边形 ABCD 是边长为 a 的正方形,以 D 为圆心,DA 为半 径的圆弧与以 BC 为直径的圆 O 交于 F,连接 CF 并延长交 AB 于点 E. E F (1).求证:E 为 AB 的中点; (2).求线段 FB 的长.

2011年吉林省长春市中考数学试卷解析版

2011年吉林省长春市中考数学试卷解析版

2011年长春市初中毕业生学业考试数 学本试卷包括七道大题,共26小题.共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸上、试卷上答题无效.一、选择题(每小题3分,共24分)1.2-的绝对值是 ( ) (A)12-. (B)21. (C)2-. (D)2. 【考 点】:绝对值M113.【难易度】:容易题.【分 析】:根据正数的绝对值是其本身,负数的绝对值是其相反数,得2-的绝对值则 为2-的相反数即为2,故选D.【解 答】:D【点 评】:本题考查看绝对值的定义,掌握其定义是解本题的关键.2.某汽车参展商为参加第8届(长春)国际汽车博览会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为 ( )(A )10.5410⨯. (B )1.05⨯510. (C )1.05⨯610. (D )0.105610⨯.【考 点】:科学记数法M11C.【难易度】:容易题.【分 析】:根据科学记数法的表示形式为a ×10n ,其中1≤|a|<10,n 为整数.确定n 的值是易错点,本题由于105000有6位,所以可以确定n=6﹣1=5.即105000=1.05⨯510.故选B【解 答】:B .【点 评】:本题考查了科学记数法表示较大的数的方法,准确确定a 与n 值是关键.3.右图是由4个相同的小正方体组成的几何体,其俯视图为 ( )(A ) (B ) (C ) (D )【考 点】:视图与投影M414.【难易度】:容易题.【分 析】:对于本题,找到从上面看几何体所得到的图形即可,注意所有的看到的棱都应 表现在俯视图中.从上面看第一层有两个正方形,第二层有一个正方形且在右 边.故选B.【解 答】:B【点 评】:本题考查了三视图的知识,注意俯视图是从物体的上面看得到的视图.4.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为 ( )(A)37. (B)35. (C)33.8.(D)32.【考 点】:中位数、众数M214.【容易堵】:容易题.【分 析】:根据中位数的定义(将一组数据从小到大(或从大到小)重新排列后,最中间 的那个数(最中间两个数的平均数))求解即可.将这组数据从小到大排列为; 28,32,35,37,37,所以这组数据的中位数是35,故选:B .【解 答】:B【点 评】:本题考查了中位数,关键是要掌握中位数的概念:中位数是将一组数据从小到 大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫 做这组数据的中位数.5.不等式组24,20x x >-⎧⎨-≤⎩的解集为 ( ) (A)2x >-. (B)22x -<<. (C)2x ≤. (D)22x -<≤.【考 点】:一元一次不等式(组)的解及解集M12K .【难易度】:容易题.【分 析】:对于本题,先求出不等式组中每一个不等式的解集,再求出它们的公共部分(一 般用数轴)就是不等式组的解集.⎩⎨⎧⋅⋅⋅≤-⋅⋅⋅->②02①42x x解①得:x >﹣2,解②得:x ≤2,则不等式组的解集是:﹣2<x ≤2.故选D .【解 答】:D【点 评】:本题考查了一元一次不等式组的解,应注意的是不等式组的解是个不等式解的 公共部分.6.小玲每天骑自行车或步行上学,她上学的路程为2 800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是 ( ) (A)30428002800=-xx . (B)30280042800=-x x . (C)30528002800=-x x . (D)30280052800=-xx . 【考 点】:分式方程的应用M12D.【难易度】:容易题.【分 析】:对于本题,根据题意设步行的平均速度为x 米/分,则骑自行车的平均速度为 4x 米/分.由于总路程为2 800米,则不行所用的时间为x2800,骑自行出所用的时间为x 42800.又骑自行车比步行上学早到30分钟,从而由此建立等式为 30428002800=-xx .故选A. 【解 答】:A【点 评】:本题考查了列分式方程,解题的关键是根据题意找出等量关系.7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD=BE=1.沿直线DE 将△BDE 翻折,点B 落在点B ′处.则点B ′的坐标为 ( )(A )(1,2). (B )(2,1). (C )(2,2). (D )(3,1).【考 点】:图形的折叠、镶嵌M411;不同位置的点的坐标的特征M132.【难易度】:容易题.【分 析】:对于本题,根据翻折的性质知E B′=EB ,D B′=DB ,且四边形E B′DB 为矩形, BD=BE=1,则且四边形E B′DB 为边长为1的正方形.而点B 的坐标为(3,2), 所以点B ′的坐标为(2,1).故选B.【解 答】:B【点 评】:本题考查了图形翻折的性质及坐标的变换,解题的关键就在于根据翻折的性质 得到EB ′=EB ,DB ′=DB .8.如图,直线l 1//l 2,点A 在直线l 1上,以点A 为圆心,适当长为半径画弧,分别交直线l 1、l 2于B 、C 两点,连结AC 、BC .若∠ABC =54°,则∠1的大小为 ( )(A)36°. (B)54°. (C)72°. (D)73°.【考 点】:平行线的判定及性质M31B ;等腰三角形性质与判定M327.【难易度】:中等题.【分 析】:对于本题,先根据等腰三角形的性质求出∠ACB 的度数,再根据平行性的性质 (两直线平行同旁内角互补)求出∠1的大.具体过程如下:∵以点A 为圆心,适当长为半径画弧,分别交直线l 1、l 2于B 、C 两点, ∴△ABC 为等腰三角形,则∠ACB=∠ABC=54°.又∵直线l 1//l 2,∴∠ACB+∠ABC+∠1=180°,∠1=180°-∠ACB-∠ABC=180°-54°-54°=72°. 故选C.【解 答】:C【点 评】:本题考查了平行线的性质及等腰三角形的性质,熟悉掌握这些性质并灵活运用 是解题的关键.二、填空题(每小题3分,共18分)9.计算:23x x ⋅=_____________.【考 点】:整式运算M11N .【难易度】:容易题.【分 析】:对于本题,根据同底数幂乘法的法则(同底数幂相乘,底数不变,指数相加) 计算即可得出结果.即23x x ⋅=32+x=5x ,故答案为:5x . 【解 答】:5x【点 评】:本题考查了同底数幂乘法的法则(同底数幂相乘,底数不变,指数相加),同时 注意下同底数幂相除的法则(同底数幂相除,底数不变,指数相减).10.有a 名男生和b 名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块,这a 名男生和b 名女生一共搬了____块砖(用含a 、b 的代数式表示).【考 点】:列代数式M11H .【难易度】:容易题.【分 析】: 对于本题,根据题意有男生a 名,每人搬了40块,则男生总共搬砖为40a .同 理,女生b 名,每人搬了30块,则女生总共搬砖为30b.故a 名男生和b 名女生 一共搬了40a+30b 块砖.即答案为40a+30b.【解 答】:40a+30b. 【点 评】:本题考查了列代数式,根据题意,找出题目蕴含的数量关系解决问题的关键.11.如图,将三角板的直角顶点放在⊙O 的圆心上,两条直角边分别交⊙O 于A 、B 两点,点P 在优弧AB 上,且与点A 、B 不重合,连结P A 、PB .则∠APB 的大小为__ _度.【考 点】:圆心角与圆周角M343.【难易度】:容易题.【分 析】:由题意根据圆周角定理(同弧所对的圆周角是圆心角的一半),则∠APB=21∠AOB=21*90°=45°.故答案为45. 【解 答】:45【点 评】:本题考查了圆周角定理:同弧所对的圆周角是圆心角的一半.主要是要掌握定理 内容.12.如图,在△ABC 中,∠B =30°,ED 垂直平分BC ,ED =3.则CE 的长为 .【考 点】:线段垂直平分线性质、判定、画法M313;解直角三角形M32E .【难易度】:容易题.【分 析】:对于本题,由垂直平分线的性质(垂直平分线上的点到线段两端的距离相等), 得CE=BE.又在直角三角形BDE 中有∠B =30°,ED =3,则解直角三角形得BE=B DE sin =30sin 3=6,故得CE=BE=6. 【解 答】:6【点 评】:本题考查了垂直平分线的性质及解直角三角形的知识,熟悉性质并能灵活运用 是解本题的关键.13.如图,一次函数b kx y +=(0k <)的图象经过点A .当3y <时,x 的取值范围是 .【考 点】:一次函数的的图象、性质M142.【难易度】:中等题.【分 析】:对于本题,由函数图像可以看出随着自变量x 的逐渐增大,函数值y 是在逐渐 减小的,而当x=2时,y=3.故当x>2时,y<3.即答案为x>2.【解 答】:x>2.【点 评】:本题考查了一次函数图像性质,通过图像可以发现y 随x 的变化而变化的情况(图 像由左向右呈上升趋势,则y 随x 的增大而增大;图像由左向右呈下降趋势,则 y 随x 的增大而减小).解本题的关键是要数形结合.14.边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2.图②是交替摆放A 、B 两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为 (结果保留π).【考 点】:弦、弧、直径、扇形、弓形M342.【难易度】:中等题.【分 析】:对于本题,由题意结合图形可以发现A 、B 两种图阴影部分的面积刚好为一个 边长为2的正方形的面积,故前20张卡片阴影部分面积之和为40.从摆放的顺 序来看,第21张卡片应为A 种卡片,其面积为边长为2的正方形的面积减去B 种卡片阴影部分的面积,即4-π2241⨯=4-π.故21张卡片种阴影部分面积之和 为40+4-π=44-π.【解 答】:44-π【点 评】:本题考查了扇形面积的计算及图形的变换,应注意的是21张卡片种排列的顺序 是解本题关键.三、解答题(每小题5分,共20分)15.先化简,再求值:2121-1a a a ++-,其中21=a . 【考 点】:分式运算M11R ;求代数式的值M11L ;因式分解M11O .【难易度】:容易题.【分 析】:对于本题,先将原式第一项约分后,利用同分母分式的减法法则计算得到最简结果,再将a 的值代入计算即可求出值.【解 答】:解:原式=aa a a -+-++12)1)(1(1 ................................................2分 =a -11+a-12 =a-13 当a=21时,原式=6. .................................................5分 【点 评】:本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.小华有3张卡片,小明有2张卡片,卡片上的数字如图所示.小华和小明分别从自己的卡片中随机抽取一张.请用画树状图(或列表)的方法,求抽取的两张卡片上的数字和为6的概率.【考 点】:概率的计算M222;概率的意义、应用M223;分式的基本性质M11Q .【难易度】:容易题.【分 析】:对于本题,首先根据题意列出表格,然后由表格求得所有等可能的结果与两张 卡片上的数字之和为6的情况,再利用概率公式:概率=所求情况数与总情况 之比,即可进行解答.【解 答】:解:画树状图得:∵由表格可以得到共有6种等可能的结果,两张卡片上的数字之和为6的有2 种情况, ................................................3分 ∴两张卡片上的数字之和为6概率为:3162=. ....................................5分 【点 评】:本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复 不遗漏的列出所有可能的结果,其区别在于:列表法适合于两步完成的事件, 树状图法适合两步或两步以上完成的事件.17.在长为10m ,宽为8m 的矩形空地上,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求其中一个小矩形花圃的长和宽.【考 点】:二元一次方程组的应用M12G ;解二元一次方程组M12F ;等式的基本性质M121.【难易度】:容易题.【分 析】:对于本题,根据题目中图可以看出大矩形的长等于小矩形的两个长和一个宽之 和的,而宽则是等于小矩形的两个宽和一个长之和的.设小矩形的长为x 米,宽 为y 米,在由题意列出方程组即可求出答案.【解 答】:解:设小矩形花圃的长为x m ,宽为y m .根据题意,得⎩⎨⎧=+=+.82,102y x y x .................................................3分 解得 42.x y =⎧⎨=⎩, 答:小矩形花圃的长为4m ,宽为2m . ..................................................5分【点 评】:本题主要考查了如何由实际问题抽象出二元一次方程组,在解题时要能根据题 意找出等量关系列出方程是解本题的关键.18.平放在地面上的直角三角形铁板ABC 的一部分被沙堆掩埋,其示意图如图所示.量得角A 为54°,斜边AB 的长为2.1m ,BC 边上露出部分BD 长为0.9m .求铁板BC 边被掩埋部分CD 的长.(结果精确到0.1m )【参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38】【考 点】:解直角三角形M32E ;近似数M11A ;直角三角形性质与判定M329.【难易度】:容易题.【分 析】:对于本题,由题意得在直角三角形铁板ABC 中有∠C=90,∠A=54,AB=2.1, 由解直角三角形可得BC的长度,又BD 长为0.9,从而可解得CD 的长度.【解 答】:解:在△ABC 中,∠C =90,sin BC A AB=, .................2分 ∵∠A =54,AB =2.1,∴sin 2.1sin54BC AB A ==⨯ 2.10.81 1.701.=⨯=又∵BD =0.9,∴CD= BC -BD =1.701-0.9=0.801≈0.8.答:铁板BC 边被掩埋部分CD 的长约为0.8m ............5分【点 评】:本题考查了解直角三角形的应用,给出的解法是用∠A 的,不妨试着用下∠B, 同样可以解得.四、解答题(每小题6分,共12分)19.如图,平面直角坐标系中,直线1122y x =+与x 轴交于点A ,与双曲线x k y =在第一象限内交于点B ,BC ⊥x 轴于点C ,OC =2AO .求双曲线的解析式.【考 点】:反比例函数的应用M154;反比例函数的的图象、性质M152;一次函数的的图象、 性质M142;用待定系数法求函数关系式M137.【难易度】:中等题.【分 析】:对于本题,首先由一次函数的解析式可以求得其与x轴的交点A的坐标,从而 得出OA的长,继而可得OC的长,即为点B的横坐标.又点B在一次函数解 析式上,从而可得点B的坐标.而点B又在反比例函数解析式上,将其带入则 可得k的值.【解 答】:解:∵直线1122y x =+与x 轴交于点A , ∴11022x +=.解得1x =-.∴AO =1.∵OC =2AO ,∴OC =2. .........................2分∵BC ⊥x 轴于点C ,∴点B 的横坐标为2.∵点B 在直线1122y x =+上,∴1132222y =⨯+=.∴点B 的坐标为3(22,). ........................4分 ∵双曲线xk y =过点B 3(22,),∴322k =.解得3k =. ∴双曲线的解析式为3y x=. ........................6分 【点 评】:本题主要考查了反比例函数点的坐标与反比例函数解析式的关系,以及一次函 数与坐标轴交点坐标的特征.熟练的掌握和灵活的运用这些知识点是解本题的 关键.20.在正方形网格图①、图②中各画一个等腰三角形.每个等腰三角形的一个顶点为格点A ,其余顶点从格点B 、C 、D 、E 、F 、G 、H 中选取,并且所画的两个三角形不全等.【考 点】:尺规作图M318;等腰三角形性质与判定M327.【难易度】:容易题.【分 析】:对于这种作图大的方面可分为两类,一类是以点A为顶角上的点如下图的②⑤; 另一类是以点A为底角上的点,如下图的①③④⑥.主要是要利用网格线来构造 三角形的腰,很容易得出它们的长度关系.【解 答】:解:如图所示:...................6分【点 评】:本题主要考查了应用设计作图.首先要弄清问题中对所作图形的要求,然后结 合对应几何图形的性质和基本作图的方法作图.五、解答题(每小题6分,共12分)21.如图,平面直角坐标系中,⊙P 与x 轴分别交于A 、B 两点,点P 的坐标为(3,-1),AB =32.(1)求⊙P 的半径.(4分)(2)将⊙P 向下平移,求⊙P 与x 轴相切时平移的距离.(2分)【考 点】:垂径定理及其推论M349;勾股定理的实际应用M32B ;图形的平移与旋转M413.【难易度】:容易题.【分 析】:(1)如图,过点P 作PC ⊥AB 于C , 连结PA ,由垂径定理可得PC 垂直平分 AB.在直角三角形APC中,用勾股定理就可得到AP的长度,即半径.(2)由(1)可得⊙P 的半径,且知PC的长度,则平移就是半径减去PC的长 度.【解 答】:解:(1)如图,作PC ⊥AB 于C , 连结P A .∴AC =CB =21AB . ∵AB =32,∴AC =3. ....2分∵点P 的坐标为(31-,),∴PC =1.在Rt △P AC 中,∠PCA =90°,∴PA =22AC PC += 2)3(122=+.∴⊙P 的半径为2 . ..................4分(2)将⊙P 向下平移,⊙P 与x 轴相切时平移的距离为211-=. ...6分【点 评】:本题考查了垂径定理以及图形的平移,解题的关键是利用垂径定理构造直角三 角形.22.某校课外兴趣小组从我市七年级学生中抽取2 000人做了如下问卷调查,将统计结果绘制了如下两幅统计图.根据上述信息解答下列问题:(1)求条形统计图中n 的值.(2分)(2)如果每瓶饮料平均3元钱,“少2瓶以上”按少喝3瓶计算.①求这2000名学生一个月少喝饮料能节省多少钱捐给希望工程?(2分)②按上述统计结果估计,我市七年级6万学生一个月少喝饮料大约能节省多少钱捐给希望工程?(2分)【考 点】:统计图(扇形、条形、折线)M216;用样本估计总体M217;总体、个体、样本、 容量M211.【难易度】:容易题.【分 析】:(1)用抽取的总数2000人乘以喝饮料的比例,再减去少喝0瓶、1瓶、2瓶的 人数就是n的值;(2)①由条形统计图可得少喝0瓶、1瓶、2瓶以及2瓶以上的人数,就可以 求出总人数,再乘以每瓶饮料的价格就可以求出总费用了,即为捐给希望 工程的钱数.②用学生总人数除以2000再乘以2000名学生一个月少喝饮料能节省的钱数 即为所求结果.【解 答】:解:(1)200060%(445470185)100⨯-++=.所以,条形统计图中100n =. ...................2分(2)①47011852100333420⨯+⨯+⨯⨯=(). 所以,这2 000名学生一个月少喝饮料能节省3 420元钱捐给希望工程...4分②6000034201026002000⨯=. 所以,我市七年级6万名学生一个月少喝饮料大约能节省102 600元钱捐给 希望工程. .......................6分【点 评】:本题考查了条形统计图的知识,解题的关键是正确的读图并从中整理出进一步解题的有关信息.六、解答题(每小题7分,共14分)23.如图,平面直角坐标系中,抛物线32212+-=x x y 交y 轴于点A .P 为抛物线上一点,且与点A 不重合.连结AP ,以AO 、AP 为邻边作□OAPQ ,PQ 所在直线与x 轴交于点B .设点P 的横坐标为m .(1)点Q 落在x 轴上时m 的值.(3分)(2)若点Q 在x 轴下方,则m 为何值时,线段BQ 的长取最大值,并求出这个最大值.(4分)【参考公式:二次函数)0(2≠++=a c bx ax y 的顶点坐标为(a b ac a b 44,22--)】【考 点】:二次函数的应用M164;二次函数的的图象、性质M162;平行四边形的性质与判定M332.【难易度】:中等题【分 析】:(1)首先根据抛物线解析式求出A 点的坐标,由于四边形OAPQ 为平行四边形,则QP=OA 且相互平行,即可得点P 的纵坐标,再将其带入抛物线解析式就可求出其横坐标.(2)由于PQ 的长度是确定的,而BQ=PQ-BP ,要使线段BQ 的长取最大值,则BP 应取最小值.由图像就可以看出当点P 在抛物线的定点处时,BP 的长度是最小的,即当m 为对称轴时,线段BQ 的长取最大值.【解 答】:解:(1)抛物线32212+-=x x y 与y 轴交于点A , ∴点A 的坐标为(03),.∴OA =3. ∵四边形OAPQ 为平行四边形,∴QP =OA =3.∴当点Q 落在x 轴上时,有212332m m -+=. 解得1204m m ==,.当m=0,点P 与点A 重合,不符合题意,舍去.∴m=4. .......................3分(2)∵QP =3,=3QB BP -,∴线段BP 的长取最小值时,线段QB 的长取最大值.当点P 为抛物线的顶点时,线段BP 的长取最小值.即当22b x a =-=时,214344211442ac b y a ⨯⨯--===⨯. ∴线段BP 的长最小值为1.∴2m =时,线段QB 的长取最大值,最大值为3-1=2. ..............7分【点 评】:本题考查了二次函数的的图象、性质及平行四边形的性质与判定.主要利用了二次函数与坐标轴交点的特征以及顶点坐标,解答本题的重点和难点在于求最值问题.24.探究如图①,在□ABCD 的形外分别作等腰直角△ABF 和等腰直角△ADE ,∠F AB=∠EAD =90°,连结AC 、EF .在图中找一个与△F AE 全等的三角形,并加以证明.(5分)应用以□ABCD 的四条边为边,在其形外分别作正方形,如图②,连结EF 、GH 、IJ 、KL .若□ABCD 的面积为5,则图中阴影部分四个三角形的面积和为 .(2分)【考 点】:全等三角形性质与判定M32A ;平行四边形的性质与判定M332;正方形的性质与判定M335.【难易度】:中等题【分 析】:探究:对于本题,由题意可得△ABC 与△FAE 全等.原因是由□ABCD 的性质(对边平行且相等,对角相等),再由等腰直角△ABF 和等腰直角△ADE 的构造方法可以得到边相等的关系,即AF AB =,AE BC =.又由∠FAB=∠EAD=90°,得∠EAF 与∠DAB 互补,而由平行四边形的性质知∠DAB 与∠ABC 互补,从而的∠CBA =∠EAF .故证得两三角形全等.应用:连接AC 、BD ,由探究的知识可得△ABC ≌△FAE ,△ABC ≌△JCI ,△BCD ≌△LDK,△BCD ≌△HBG ,图中阴影部分四个三角形的面积之和为两个□ABCD ,即为10.【解 答】: 解:探究:△ABC 与△FAE 全等.证明:∵90FAB EAD ∠=∠=,∴∠+EAF ∠180=DAB °.∵四边形ABCD 是平行四边形,∴BC AD BC AD =,//.∴∠+DAB ∠180=CBA °.∴∠CBA =∠EAF .......................................................2分∵AD AE =,∴AE BC =.∵AF AB =,∴△ABC ≌△FAE . ................... ................................5分应用: 10. ......................................................7分【点 评】:本题考查了全等三角形的判定与性质、平行四边形的性质及正方形的性质.熟记性质并确定出三角形全等的条件是解题的关键,在应用中作辅助线构造出探究的条件是解题的关键.七、解答题(每小题10分,共20分)25.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)的函数图象如图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数关系式.(2分)(2)求乙组加工零件总量a 的值.(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)【考 点】:一次函数的应用M144;一次函数的的图象、性质M142;用待定系数法求函数关系式M137.【难易度】:中等题.【分 析】:(1)显然有图像可得甲组的函数为正比例函数,且有一点(6,360),故代入则可得函数关系式.(2)从图像可以求出乙组前两小时的工作效率,而根据后面的工作效率是前面效率的两倍,就可得后面的工作效率,再结合工作时间就可求得a 的值.(3)由于乙组在工作中有停工现象,则需分时段来讨论,主要分为四个时段:①0到2小时;②2到2.8小时;③2.8到4.8小时;④4.8到6小时.根据这四个时段来讨论工作总量问题.【解 答】:解:(1)设甲组加工的零件数量y 与时间x 的函数关系式为y kx =.根据题意,将点(6,360)代入得6360k =,解得60k =.所以,甲组加工的零件数量y 与时间x 的函数关系式为60y x =. .............................2分(2)当2x =时,100y =.则前两小时的工作效率是50件/小时.因为更换设备后,乙组工作效率是原来的2倍,即100件/小时,所以,a=100*(4.8-2.8)+100=300. ........................5分(3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为100100( 2.8)100180y x x =+-=-.当0≤x ≤2时,6050300x x +=.解得3011x =.舍去. 当2<x ≤2.8时,10060300x +=.解得103x =.舍去. 当2.8<x ≤4.8时,60100180300x x +-=.解得3x =.所以,经过3小时恰好装满第1箱. ...........................................8分当3<x ≤4.8时,601001803002x x +-=⨯.解得398x =.舍去. 当4.8<x ≤6时.603003002x +=⨯.解得5x =.因为5-3=2,所以,再经过2小时恰好装满第2箱. . ......................................10分【点 评】:本题考查了一次函数及用待定系数法求函数关系式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.同时,还考查了分类思想的应用,只是个难点也是个重点问题.26.如图,∠C =90°,点A 、B 在∠C 的两边上,CA =30,CB =20,连结AB .点P 从点B 出发,以每秒4个单位长度的速度沿BC 方向运动,到点C 停止.当点P 与B 、C 两点不重合时,作PD ⊥BC 交AB 于D ,作DE ⊥AC 于E .F 为射线CB 上一点,且∠CEF =∠ABC .设点P 的运动时间为x (秒).(1)用含有x 的代数式表示CF 的长.(2分)(2)求点F 与点B 重合时x 的值.(2分)(3)当点F 在线段CB 上时,设四边形DECP 与四边形DEFB 重叠部分图形的面积为y(平方单位).求y 与x 之间的函数关系式.(3分)(4)当x 为某个值时,沿PD 将以D 、E 、F 、B 为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x 值.(3分)【考 点】:相似三角形性质与判定M32H ;四边形的面积M339;直角三角形性质与判定M329;比例的性质M32J .【难易度】:较难题.【分 析】:(1)由题意可得△DBP ∽△ABC ∽△FEC ,由此可以得出各边的比例关系,即可用x 表示CF.(2)当点F 与点B 重合时,CF CB =,由CB 的长度及(1)的结果就可以求 出x 的值.(3)分三种情况讨论:①当点F 与点P 重合时;②当点F 在点P 左边时;③当 点F 在点P 右边时.(4)主要分为如下三种情况:a :如图③,当PD PF =时,62013x x =-.解得2019x =.B DE '∆为拼成 的三角形.b :如图④,当点F 与点P 重合时,4920x x +=.解得2013x =.BDC ∆为拼 成的三角形.c :如图⑤,当DE PB =时,2044x x -=.解得52x =.DPF ∆为拼成的三 角形.【解 答】:解:(1)由题意知,△DBP ∽△ABC ,四边形PDEC 为矩形, ∴PD PB CA CB=,CE =PD . ∴304620CA PB x PD x CB ⨯⨯===.∴6CE x =. 又∵△CEF ∽△CBA ,∴CF CE CA CB=. ∴306920CA CE x CF x CB ⨯⨯===. ............2分 (2)当点F 与点B 重合时,CF CB =,即9x =20.解得920=x . ...........................................4分 (3)当点F 与点P 重合时,BP CF CB +=, 即4x +9x =20.解得1320=x .... ...........5分 当20013x <<时,如图①,()26(2013204)2PD PF DE y x -x x +=+-= x x 120512+-=. .....................6分 当2013≤x <209时,如图②, 12y DE DG =⨯ =12(204)(204)23x x -⋅- 216(5)3x =-. ....................7分 (4)2019x =. ............................................................8分 2013x = ............................................................9分 52x = ............................................................10分 【点 评】:本题考查了相似三角形性质与判定,是一个综合性的题型.解本题的关键 是要熟悉掌握这些性质,更重要的是要学会分类讨论的思想,这是个重 点也是个难点.。

2011年长春市高中毕业班第二次调研测试(文科数学)

2011年长春市高中毕业班第二次调研测试(文科数学)

2011年东北三省四市教研协作体等值诊断联合考试2011年长春市高中毕业班第二次调研测试数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第Ⅱ卷22题-24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回. 注意事项:1. 答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀. 参考公式:样本数据12,,,n x x x 的标准差:s =x 为样本的平均数. 柱体体积公式:V Sh =,其中S 是柱体的底面积,h 为高.锥体体积公式:13V Sh =,其中S 是锥体的底面积,h 为高.第Ⅰ卷(选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有..一项..是符合题目要求的,请将正确选项填涂在答题卡上). 1. 已知复数a ii i--在复平面内对应的点在二、四象限的角平分线上,则实数a 的值为 A. -2 B. -1 C. 0 D. 22.已知集合{|30}M x x =∈-<<Z ,{|11}N x x =∈-Z ≤≤,A. {-2}B. {-2,-1}C. {-2,-1,0}D. {-2,-1,0,1}3. 已知向量(1,1),(2,),a b x ==若a b + 与42b a - 平行,则实数x A. -2 B. 0 C. 1 D. 2 4. 若点(cos ,sin )P αα在直线2y x =-上,则sin 22cos2αα+=A. 145- B. 75- C. 2- D. 455. 已知{}n a 是首项为1的等比数列,n S 是{}n a 的前n 项和,且369S S =,则数列1{}na 的前5项和为A .8532B .1631 C .815 D .8526. 将边长为1的正方形ABCD 沿对角线AC 折叠,其正视图和俯视图如图所示. 此时连结顶点B 、D 形成三棱锥B -ACD ,则其侧视图的面积为 A. 1 B. 12正视图俯视图A BCDC. 14D.187.已知[1,1],[0,2]x y ∈-∈,则点(,)P x y 落在区域22021020x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤内的概率为A. 316B. 38C. 34D. 328.某调查机构对本市小学生课业负担情况进行了调查,设平均每人每天做作业的时间为x 分钟.有1000名小学生参加了此项调查,调查所得数据用程序框图处理,若输出的结果是680,则平均每天做作业的时间在0~60分钟内的学生的频率是A. 680B. 320C. 0.68D. 0.329.已知定义域为R 的偶函数()f x 在(,0]-∞上是减函数,且1()02f =,则不等式2(log )0f x >的解集为A. )+∞B. )+∞C. 1(0,)(2,)2+∞D. 1(0,)210.气象学院用32000元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为(*)104.9nn ∈+N 元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了 A. 600天 B. 800天 C. 1000天 D. 1200天11.四棱锥P ABCD -的底面ABCD 为正方形 ,且PD 垂直于底面ABCD ,N 为PB 中点,则三棱锥P ANC -与四棱锥 P ABCD -的体积比为 A. 1:2 B. 1:3C. 1:4D. 1:812.已知函数()f x k =定义域为D ,且方程()f x x =在D 上有两个不等实根,则k 的取值范围是A. 1k -<≤12-B. 12≤k <1C. 1k >-D. k <1第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13. 若命题“2,2390x x ax ∃∈-+<R ”为假命题,则实数a 的取值范围是 . 14. 1234212,21334,2135456,213575678,⨯=⨯⨯=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯⨯⨯…依此类推,第n 个等式为 . 15. 给出下列六种图象变换方法:①图象上所有点的横坐标缩短到原来的12,纵坐标不变;②图象上所有点的横坐标伸长到原来的2倍,纵坐标不变;ABCDP N③图象向右平移π3个单位; ④图象向左平移π3个单位;⑤图象向右平移2π3个单位;⑥图象向左平移2π3个单位.请用上述变换中的两种变换,将函数sin y x =的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换的序号依次是...(填上一种你认为正确的答案即可). 16. 设椭圆22221(0)x y a b a b+=>>的下、上顶点分别为B 1、B 2,若点P 为椭圆上的一点,且直线PB 1、PB 2的斜率分别为14和-1,则椭圆的离心率为 .三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17. (本小题满分12分) 在海岛A 上有一座海拔1km 的山峰,山顶设有一个观察站P .有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东15︒、俯角为30︒的B 处,到11:10时,又测得该船在岛北偏西45︒、俯角为60︒的C 处. (1) 求船的航行速度;(2) 求船从B 到C 行驶过程中与观察站P 的最短距离. 18. (本小题满分12分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(1) 求这次铅球测试成绩合格的人数;(2) 若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;(3) 若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a 、b 的成绩均为优秀,求两人至少有1人入选的概率.19. (本小题满分12分)如图,在三棱柱111ABC A B C -中,,AC BC ⊥1,AB BB ⊥1,AC BC BB D ==为AB 的中点,且1CD DA ⊥.(1) 求证:1BC ∥平面1DCA ;(2) 求1BC 与平面11ABB A 所成角的大小. 20. (本小题满分12分)已知两点A 、B 分别在直线y x =和y x =-上运动,且||AB =,动点P 满足2OP OA OB =+(O 为坐标原点),点P 的轨迹记为曲线C . (1) 求曲线C 的方程;(2) 过曲线C 上任意一点作它的切线l ,与椭圆2214x y +=交于M 、N 两点, 求证:OM ON ⋅为定值. 21. (本小题满分12分)A BB A CC D111已知函数2(2)()().xx x x e f x g x e e-==, (1) 求函数()f x 的单调区间和极值; (2) 求证:当1x >时,()();f x g x >(3) 如果12x x ≠,且12()()f x f x =,求证:12()(2).f x f x >-请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-1:几何证明选讲.如图,AB 是⊙O 的直径,弦BD 、CA 的延长线相交于点E ,EF 垂直BA 的延长线于点F .求证:(1) DFA DEA ∠=∠; (2) AB 2=BE ⋅BD -AE ⋅AC .23. (本小题满分10分)选修4-4:坐标系与参数方程选讲.在直角坐标系xOy 中,以原点O 为极点,以x 轴非负半轴为 极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的极坐标方程为cos()4πρθ-=(1) 写出曲线C 的普通方程和直线l 的直角坐标方程; (2) 求曲线C 上的点到直线l 的最大距离.24. (本小题满分10分)选修4-5:不等式选讲.已知()f x =a ≠b ,求证:|f (a )-f (b )|<|a -b |.2011年东北三省四市教研协作体等值诊断联合考试2011年长春市高中毕业班第二次调研测试 数学(文科)试题参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.A2.A3.D4.C5.B6.C7.B8.D9.A 10.B 11.C 12.A 简答与提示:1. A 化简复数a -ii-i =-1-(a +1)i ,由题意知a +1=-1,解得a =-2.2. A {2,1,0},{1,0M N =--=-,∴阴影部分表示的集合为{-2}. 3. D ∵(3,1)a b x +=+ 与42(6,42)b a x -=-平行,∴3(42)(1)60x x --+=,解得2x =.4. C ∵点P 在y =-2x 上,∴sin α=-2cos α,∴sin2α+2cos2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.5. B ∵639S S =,∴1234568()a a a a a a ++=++,∴38q =,∴2q =,∴12n n a -=.∴111()2n n a -=,∴⎭⎬⎫⎩⎨⎧n a 1前5项和为511[1()]31211612⋅-=-. 6. C 由正视图和俯视图可知,平面ABC ⊥平面ACD .三棱锥B -ACD 侧视图为等腰直角三角形,直角边长为2,∴侧视图面积为14.7. B 不等式组表示的区域如图所示,阴影部分的面积为113(2)(11)222-+=,则所求概率为38. 8. D 程序框图统计的是作业时间为60分钟以上的学生的数量,因此由输出果为680知,有680名学生的作业时间超过60分钟,因此作业时间在0~60分钟内的学生总数有320人,故所求频率为0.32. 9. A 作出函数()f x 的示意图如图,则2log x >12或21log 2x <-,解得x >或02x <<. 10. B 设一共使用了n 天,则使用n 天的平均耗资为(5 4.9)10320002nn n+++=32000 4.9520n n ++,当且仅当3200020n n =时, 取得最小值,此时n =800.11. C ∵N 为PB 中点,∴P ANC B ANC V V --=,∴P ANC NABC V V --=,∴:N ABC V -P ABCD V -=1:4.12. Ax k =-在1[,)2-+∞上有两个不等实根.(方法一)问题可化为y =和y x k =-在1[,)2-+∞上有ABC DPN两个不同交点. 对于临界直线m ,应有k -≥12,即k ≤12-.对于临界直线n ,化简方程x k =-,得22(2+2)10x k x k -+-=,令0∆=,解得1k =-,∴:1n y x =+,令0x =,得1y =,∴k -<1,即1k >-.综上,1k -<≤12-.(方法二)x k =-,得22(2+2)10x k x k -+-=.令22()(2+2)1g x x k x k =-+-,则由根的分布可得1()02112>0g k ⎧-⎪⎪⎪+>-⎨⎪∆⎪⎪⎩≥,即2()102321k k k ⎧+⎪⎪⎪>-⎨⎪>-⎪⎪⎩≥,解得1k >-.x k =-,∴x ≥k ,∴k ≤12-.综上,1k -<≤12-.二、填空题(本大题包括4小题,每小题5分,共20分) 13.[-14. 213(21)(1)(2)(2)nn n n n ⨯⨯⨯⨯-=+⨯+⨯⨯……15. ④②或②⑥(填出其中一种即可)16.2简答与提示:13.[- 原命题的否定形式为2,239x x ax ∀∈-+R ≥0,为真命题. 即2239x ax -+≥0恒成立,∴只需∆=2(3)429a --⨯⨯≤0,解得a∈[-.14. 213(21)(1)(2)(2)nn n n n ⨯⨯⨯⨯-=+⨯+⨯⨯…….15. ④②或②⑥(填出其中一种即可)y =sin x (4)−−→y =sin(x +π3)(2)−−→y =sin(x 2+π3),或y=sin x (2)−−→y =sin 12x (6)−−→y =sin 12(x +2π3)=sin(x 2+π3). 16.11:4B P y x b =-,2:B P y x b =-+,解得交点83(,)55b bP -,代入椭圆得226491,2525b a +=解得2a b=,∴e ===. 三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分) 【命题意图】本小题主要考查解三角形的有关知识及空间想象能力,具体涉及到余弦定理、正弦定理,三角形的面积公式.【试题解析】解:⑴设船速为x km/h ,则6x BC =km. 在Rt △PAB 中,∠PBA 与俯角相等为30°,∴1tan 30AB ==︒同理,Rt △PCA中,1tan 603AC ==︒. (4分)在△ACB 中,∠CAB =15°+45°=60°,∴由余弦定理得3BC ==,∴6x ==,∴船的航行速度为 (6分) ⑵(方法一) 作AD BC ⊥于点D ,∴当船行驶到点D 时,AD 最小,从而PD 最小.此时,sin 60AB AC AD BC ⋅⋅︒===(10分) ∴PD. ∴船在行驶过程中与观察站Pkm . (12分)(方法二) 由⑴知在△ACB 中,由正弦定理sin sin 60AC BCB =︒,∴sin B ==(8分) 作AD BC ⊥于点D ,∴当船行驶到点D 时,AD 最小,从而PD 最小.此时,sin AD AB B ===(10分) ∴PD.∴船在行驶过程中与观察站Pkm . (12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、中位数及古典概型等内容.【试题解析】解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,∴此次测试总人数为7500.14=(人). ∴第4、5、6组成绩均合格,人数为(0.28+0.30+0.14)×50=36(人). (4分) (2)直方图中中位数两侧的面积相等,即频率相等.前三组的频率和为0.28,前四组的频率和为0.56,∴中位数位于第4组内. (8分) (3)设成绩优秀的9人分别为,,,,,,,,,a b c d e f g h k 则选出的2人所有可能的情况为:,,,,,,,;ab ac ad ae af ag ah ak ,,,,,,;bc bd be bf bg bh bk ,,,,,;cd ce cf cg ch ck ,,,,;de df dg dh dk ,,,;ef eg eh ek ,,;fg fh fk ,;gh gk hk . 共36种,其中a 、b 到少有1人入选的情况有15种,∴a 、b 两人至少有1人入选的概率为155.3612P == (12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识及空间想象能力,具体涉及到线面的平行关系、线面角的求法.【试题解析】⑴证明:如图一,连结1AC 与1AC 交于点K ,连结DK .在△1ABC 中,D 、K 为中点,∴DK ∥1BC . (4分) 又DK ⊂平面1DCA ,1BC ⊄平面1DCA ,∴1BC ∥平面1DCA . (6分)ABB AC C D111KABB A CC D111E ABB AC C D111KF图一 图二 图三⑵证明:(方法一)如图二,∵,AC BC D =为AB 的中点,∴CD AB ⊥.又1CD DA ⊥,1AB DA D = ,∴CD ⊥平面11ABB A . (8分) 取11A B 的中点E ,又D 为AB 的中点,∴DE 、1BB 、1CC 平行且相等, ∴1DCC E 是平行四边形,∴1C E 、CD 平行且相等.又CD ⊥平面11ABB A ,∴1C E ⊥平面11ABB A ,∴∠1EBC 即所求角. (10分) 由前面证明知CD ⊥平面11ABB A ,∴1CD BB ⊥,又1AB BB ⊥,AB CD D = ,∴1BB ⊥平面ABC ,∴此三棱柱为直棱柱.设12,AC BC BB ===∴1BC =1EC =1EBC =30︒. (12分)(方法二)如图三,∵,AC BC D =为AB 的中点,∴CD AB ⊥.又1CD DA ⊥,1AB DA D = ,∴CD ⊥平面11ABB A . (8分)取1DA 的中点F ,则KF ∥CD ,∴KF ⊥平面11ABB A .∴∠KDF 即1BC 与平面11ABB A 所成的角. (10分) 由前面证明知CD ⊥平面11ABB A ,∴1CD BB ⊥,又1AB BB ⊥,AB CD D = ,∴1BB ⊥平面ABC ,∴此三棱柱为直棱柱.设12,AC BC BB ===∴2KF =,DK =30KDF =︒. (12分) 20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与圆、椭圆的相关知识.【试题解析】解:⑴(方法一)设1122(,),(,),(,).P x y A x x B x x -∵2OP OA OB =+ ,∴P 是线段AB 的中点,∴1212,2.2x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩ (2分)∵||AB =,∴22121216()()5x x x x -++=,∴2216(2)(2)5y x +=. ∴化简得点P 的轨迹C 的方程为2245x y +=. (5分)(方法二)∵2OP OA OB =+,∴P 为线段AB 的中点. (2分)∵M 、N 分别在直线y x =和y x =-上,∴90AOB ∠=︒.又||AB =,∴||OP =,∴点P. ∴点P 的轨迹C 的方程为2245x y +=. (5分)⑵证明:当直线l 的斜率存在时,设l : y =kx +m ,∵l 与C 相切,∴|m |1+k 2=255,∴224(1)5m k =+. 联立2244y kx m x y ⎧⎨+=⎩=+,∴2222222(14)8440(14)240k x mkx m k y my m k ⎧⎪⎨-⎪⎩+++-=++-=. 设M (x 1,y 1),N (x 2,y 2),则x 1·x 2=4m 2-41+4k 2,22122414m k y y k-=+. (8分) ∴OM ·ON =x 1x 2+y 1y 2=5m 2-4k 2-41+4k2. 又224(1)5m k =+,∴OM ·ON =0. (10分)当直线l 的斜率不存在时,l 的方程为x =±255,带入椭圆方程得M (255,255),N (255,-255) 或 M (-255,255),N (-255,-255),此时,OM ·ON =45-45=0. 综上所述,OM ·ON为定值0. (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来研究函数的单调性、极值,并考查数学证明.【试题解析】解:⑴∵()f x =x x e ,∴()f x '=1xxe -. (2分) 令()f x '=0,解得1x =.∴()f x 在( (3分)∴当1x =时,()f x 取得极大值(1)f =1e. (4分) ⑵证明:2(2)()()()xx x x e F x f x g x e e -=-=-令,则()F x '=22221(1)(1)()x x x x x e x x e e e e e +-----=. (6分) 当1x >时,1x -<0,2x >2,从而22xe e -<0, ∴()F x '>0,()F x 在(1,)+∞是增函数.11()(1)0,1()().F x F x f x g x e e>=-=>>∴故当时, (8分)⑶证明:∵()f x 在(,1)-∞内是增函数,在(1,)+∞内是减函数.∴当12x x ≠,且12()()f x f x =时,1x 、2x 不可能在同一单调区间内. 不妨设121x x <<,由⑵的结论知1x >时,()()()F x f x g x =->0,∴22()()f x g x >. ∵12()()f x f x =,∴12()()f x g x >.又22()(2)g x f x =-,∴12()(2).f x f x >- (12分) 22. (本小题满分10分)【命题意图】本小题主要平面几何的证明,具体涉及到四点共圆、相交弦定理及三角形相似等内容.【试题解析】证明:⑴连结AD ,因为AB 为圆的直径,所以∠ADB =90°, (2分) 又EF ⊥AB ,∠EF A =90°,则A 、D 、E 、F 四点共圆,∴∠DEA =∠DF A.(5分) ⑵由(1)知,BD ⋅BE =BA ⋅BF . 又△ABC ∽△AEF ,∴AFAC AE AB =,即AB ⋅AF =AE ⋅ (7分)∴ BE ⋅BD -AE ⋅AC =BA ⋅BF -AB ⋅AF =AB (BF -AF (10分)23. (本小题满分10分)【命题意图】本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.【试题解析】解:⑴由cos()4πρθ-=得(cos sin )4ρθθ+=,∴:l 40x y +-=. (3分)由sin x y θθ⎧=⎪⎨=⎪⎩得:C 2213x y +=. (5分) ⑵在:C 2213x y +=上任取一点,sin )P θθ,则点P 到直线l 的距离为|2sin()4|32d πθ+-==≤3. (此答案有问题,分母应该是根号2) (8分) ∴当sin()=3πθ+-1,即56θπ=-时,max 3d =. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值三角不等式及不等式证明等内容.【试题解析】解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2(2分)=|a -b ||a +b |1+a 2+1+b 2 ≤|a -b |(|a |+|b |)1+a 2+1+b 2 (5分)<|a -b |(|a |+|b |)a 2+b2=|a -b |. (10分)。

2011年长春市高中毕业班第一次调研测试

2011年长春市高中毕业班第一次调研测试

数学(文) 第1页(共4页)2011年长春市高中毕业班第一次调研测试数学试题卷(文科)考生须知:1.本试卷分试题卷和答题纸,满分150分,考试时间120分钟.2.答题前,在答题纸密封区内填写学校、班级、姓名和准考证号.3.所有答案必需写在答题纸上,写在试卷上无效.4.考试结束,只需上交答题纸.参考公式:柱体体积公式:Sh V =,其中S 为底面面积,h 为高. 锥体体积公式:Sh V 31=,其中S 为底面面积,h 为高. 第Ⅰ卷 (选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题纸上)1. 已知复数ii z -+=11(i 是虚数单位),则=||z A.1 B.0 C.1-D.2 2. 已知集合{}{}0|,1|2>=<=x x N x x M ,则N M =A.∅B.}0|{>x xC.{}|1x x <D.{}|01x x <<3. 已知直线⊥l 平面α,直线⊂m 平面β,则l ⊥m 是βα//的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 若31)6sin(=-απ,则)3cos(απ+的值为 A.31 B.31- C.322 D.322- 5. 如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的体积为A.23πB.45πC. πD.4π 6. 平面向量a 与b 的夹角为︒60,a =(2,0), |b |=1,则 |a +2b |=C.4D.12。

2011年高考新课标全国卷_文科数学(含答案)

2011年高考新课标全国卷_文科数学(含答案)

2011年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={1,3,5},P=M N ,则P 的子集共有A .2个B .4个C .6个D .8个2.复数512ii=-A .2i -B .12i -C . 2i -+D .12i -+3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=4.椭圆221168x y +=的离心率为A .13 B .12C .33D .225.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B . 720C .1440D .50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A .13 B . 12C .23D .347.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A . 45-B .35-C .35D .458.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧 视图可以为9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为 A .18 B .24C . 36D . 4810.在下列区间中,函数()43xf x e x =+-的零点所在的区间为A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A .10个B .9个C .8个D .1个二、填空题:本大题共4小题,每小题5分. 13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量ka-b 垂直,则k=_____________.14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________. 三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥; (II )设PD=AD=1,求棱锥D-PBC 的高. 19.(本小题满分12分) 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表 指标值分组 [90,94)[94,98)[98,102)[102,106)[106,110]频数 8 20 42228B 配方的频数分布表指标值分组 [90,94)[94,98)[98,102)[102,106)[106,110]频数 412423210(I )分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润. 20.(本小题满分12分) 在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (I )求a ,b 的值;(II )证明:当x>0,且1x ≠时,ln ()1xf x x >-. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求|AB|.24.(本小题满分10分)选修4-5:不等式选讲 设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试文科数学试卷参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题(13)1 (14)-6 (15)4315 (16)31三、解答题 (17)解:(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++= )21(n +++-=2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n (18)解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E 。

新长春市十一高中2011—2012学年度高三下学期初考试建 Microsoft Word 文档

新长春市十一高中2011—2012学年度高三下学期初考试建 Microsoft Word 文档

长春市十一高中2011—2012学年度高三下学期初考试文科综合参考答案1 2 3 4 5 6 7 8 9 11 1D B B C A C D D C C B1 2131415161718192212223A B C B A D C D D A B C2 4252627282933132333435C B CD C A B D A B A C 36.(26分)(1)该国以山地为主(2分),地势北高南低(2分),北部是喜马拉雅山的南坡(2分),南部山高谷深,山河相间(2分)(2)处于喜马拉雅上的南坡,板块交界(2分),地壳隆起抬升与河流长期下切(侵蚀)共同作用的结果(4分)(3)北部:山地气候、南部:热带季风气候(4分)(4)河流多(2分),短小流急(山高谷深,落差大)(2分);河水补给充足(有高山冰雪融水和降水补给),水量较大(2分)。

经济落后资金不足,技术力量缺乏(2分)37.(20分)(1)湿润系数小于1,说明降水量小于蒸发量;(2分)总体从东南向西北递减,(2分)局部地区形成湿润中心和干燥中心。

(2分)(2)A的湿润系数小于0.05,B的湿润系数大于0.5,B的湿润系数远大于A。

(2分)B地位于西风的迎风坡,山地降水多;(2分)纬度高,气温低,蒸发较弱。

(2分)(3)地势平坦,土壤肥沃;(2分)光照充足,热量较丰富;(2分)黄河干流经过,灌溉便利。

(2分)干旱地区发展灌溉农业,注意排灌结合,防止土壤盐渍化。

(2分)38.(26分)(1)(14分)原因:(6分)①市场调节具有自发性,“地沟油”泛滥是部分企业片面追求自身经济利益的表现;(2分)②市场规则不完善,企业经营者缺乏诚信意识,非法经营;(2分)③国家宏观调控力度不够,缺乏对“地沟油”的有效监管。

(2分)如何杜绝:(8分)①从政府角度:要加强宏观调控,综合运用经济、行政和法律手段加强对市场的监管,加大执法检查力度,打击假冒伪劣生产行为。

(2分)要加强食品安全诚信体系建设,建立健全行之有效的信用监督和失信惩戒制度,引导广大生产经营者诚信守法经营。

2011年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2011年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2011 年全国统一高考数学试卷(文科)(大纲版)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩ N)=()A.{1,2} B.{2,3} C.{2,4} D.{1,4} 2.(5 分)函数y= (x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)3.(5分)设向量、满足| |=| |=1,•=﹣,| +2 |=()A..B.C.、D..4.(5 分)若变量x、y 满足约束条件,则z=2x+3y 的最小值为()A.17 B.14 C.5 D.35.(5 分)下面四个条件中,使a>b 成立的充分而不必要的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b36.(5 分)设S n 为等差数列{a n}的前n 项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8 B.7 C.6 D.57.(5 分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω 的最小值等于()A.B.3 C.6 D.98.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C 为垂足,点B∈β,BD⊥l,D 为垂足,若AB=2,AC=BD=1,则CD=()A.2 B.C.D.19.(5分)4 位同学每人从甲、乙、丙3 门课程中选修1 门,则恰有2 人选修课程甲的不同选法共有()A.12 种B.24 种C.30 种D.36 种10.(5 分)设f(x)是周期为2 的奇函数,当0≤x≤1 时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.11.(5 分)设两圆C1、C2 都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4 B.C.8 D.12.(5 分)已知平面α截一球面得圆M,过圆心M 且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为()A.7πB.9πC.11πD.13π二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)(1﹣x)10的二项展开式中,x 的系数与x9的系数之差为:.14.(5 分)已知a∈(π,),tanα=2,则cosα=.15.(5 分)已知正方体ABCD﹣A1B1C1D1 中,E 为C1D1 的中点,则异面直线AE 与BC 所成的角的余弦值为.16.(5 分)已知F1、F2 分别为双曲线C:的左、右焦点,点A∈C,点M 的坐标为(2,0),AM 为∠F1AF2 的平分线,则|AF2|= .三、解答题(共6 小题,满分70 分)17.(10 分)设等比数列{a n}的前n 项和为S n,已知a2=6,6a1+a3=30,求a n 和S n.18.(12 分)△ABC 的内角A、B、C 的对边分别为a、b、c.已知asinA+csinC﹣asinC=bsinB,(Ⅰ)求B;(Ⅱ)若A=75°,b=2,求a,c.19.(12 分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1 位车主至少购买甲、乙两种保险中的1 种的概率;(II)求该地的3 位车主中恰有1 位车主甲、乙两种保险都不购买的概率.20.(12 分)如图,四棱锥S﹣ABCD 中,AB∥CD,BC⊥CD,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.(I)证明:SD⊥平面SAB;(II)求AB 与平面SBC 所成的角的大小.: 21.(12 分)已知函数f (x )=x 3+3ax 2+(3﹣6a )x +12a ﹣4(a ∈R )(I ) 证明:曲线 y=f (x )在 x=0 处的切线过点(2,2);(II )若 f (x )在 x=x 0 处取得极小值,x 0∈(1,3),求 a 的取值范围.22.(12 分)已知 O 为坐标原点,F 为椭圆 C 在 y 轴正半轴上的焦点,过 F 且斜率为﹣的直线 l 与 C 交于 A 、B 两点,点 P 满足.(I ) 证明:点 P 在 C 上;(II ) 设点 P 关于点 O 的对称点为 Q ,证明:A 、P 、B 、Q 四点在同一圆上.2011 年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩ N)=()A.{1,2} B.{2,3} C.{2,4} D.{1,4}【考点】1H:交、并、补集的混合运算.【专题】11:计算题.【分析】先根据交集的定义求出M∩N,再依据补集的定义求出∁U(M∩N).【解答】解:∵M={1,2,3},N={2,3,4},∴M∩N={2,3},则∁U(M∩N)={1,4},故选:D.【点评】本题考查两个集合的交集、补集的定义,以及求两个集合的交集、补集的方法.2.(5 分)函数y= (x≥0)的反函数为()A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)【考点】4R:反函数.【专题】11:计算题.【分析】由原函数的解析式解出自变量x 的解析式,再把x 和y 交换位置,注明反函数的定义域(即原函数的值域).【解答】解:∵y= (x≥0),∴x= ,y≥0,故反函数为y= (x≥0).故选:B.【点评】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.3.(5分)设向量、满足| |=| |=1,•=﹣,| +2|=()A..B.C.、D..【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】11:计算题.【分析】由| +2|==,代入已知可求【解答】解:∵| |=| |=1,•=﹣,| +2|===故选:B.【点评】本题主要考查了向量的数量积性质的基本应用,属于基础试题4.(5 分)若变量x、y 满足约束条件,则z=2x+3y 的最小值为()A.17 B.14 C.5 D.3【考点】7C:简单线性规划.【专题】31:数形结合.【分析】我们先画出满足约束条件的平面区域,然后求出平面区域内各个顶点的坐标,再将各个顶点的坐标代入目标函数,比较后即可得到目标函数的最值.【解答】解:约束条件的平面区域如图所示:由图可知,当x=1,y=1 时,目标函数z=2x+3y 有最小值为5故选:C.【点评】本题考查的知识点是线性规划,其中画出满足约束条件的平面区域是解答本题的关键.5.(5 分)下面四个条件中,使a>b 成立的充分而不必要的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b3【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】利用不等式的性质得到a>b+1⇒a>b;反之,通过举反例判断出a>b 推不出a>b+1;利用条件的定义判断出选项.【解答】解:a>b+1⇒a>b;反之,例如a=2,b=1 满足a>b,但a=b+1 即a>b 推不出a>b+1,故a>b+1 是a>b 成立的充分而不必要的条件.故选:A.【点评】本题考查不等式的性质、考查通过举反例说明某命题不成立是常用方法.6.(5 分)设S n 为等差数列{a n}的前n 项和,若a1=1,公差d=2,S k+2﹣S k=24,则k=()A.8 B.7 C.6 D.5【考点】85:等差数列的前n 项和.【专题】11:计算题.,S k,将S k+2﹣S k=24 转化为关于k 【分析】先由等差数列前n 项和公式求得S k+2的方程求解.【解答】解:根据题意:S k+2=(k+2)2,S k=k2∴S k﹣S k=24 转化为:+2(k+2)2﹣k2=24∴k=5故选:D.【点评】本题主要考查等差数列的前n 项和公式及其应用,同时还考查了方程思想,属中档题.7.(5 分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω 的最小值等于()A.B.3 C.6 D.9【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】56:三角函数的求值.【分析】函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.【解答】解:f(x)的周期T=,函数图象平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,所以,k∈Z.令k=1,可得ω=6.故选:C.【点评】本题是基础题,考查三角函数的图象的平移,三角函数的周期定义的理解,考查技术能力,常考题型.8.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C 为垂足,点B∈β,BD⊥l,D 为垂足,若AB=2,AC=BD=1,则CD=()A.2 B.C.D.1【考点】MK:点、线、面间的距离计算.【专题】11:计算题.【分析】根据线面垂直的判定与性质,可得AC⊥CB,△ACB 为直角三角形,利用勾股定理可得BC 的值;进而在Rt△BCD 中,由勾股定理可得CD 的值,即可得答案.【解答】解:根据题意,直二面角α﹣l﹣β,点A∈α,AC⊥l,可得AC⊥面β,则AC⊥CB,△ACB 为Rt△,且AB=2,AC=1,由勾股定理可得,BC=;在Rt△BCD 中,BC=,BD=1,由勾股定理可得,CD=;故选:C.【点评】本题考查两点间距离的计算,计算时,一般要把空间图形转化为平面图形,进而构造直角三角形,在直角三角形中,利用勾股定理计算求解.9.(5分)4 位同学每人从甲、乙、丙3 门课程中选修1 门,则恰有2 人选修课程甲的不同选法共有()A.12 种B.24 种C.30 种D.36 种【考点】D3:计数原理的应用.【专题】11:计算题.【分析】本题是一个分步计数问题,恰有2 人选修课程甲,共有C42 种结果,余下的两个人各有两种选法,共有2×2 种结果,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,∵恰有2 人选修课程甲,共有C42=6 种结果,∴余下的两个人各有两种选法,共有2×2=4 种结果,根据分步计数原理知共有6×4=24 种结果故选:B.【点评】本题考查分步计数问题,解题时注意本题需要分步来解,观察做完这件事一共有几步,每一步包括几种方法,这样看清楚把结果数相乘得到结果.10.(5 分)设f(x)是周期为2 的奇函数,当0≤x≤1 时,f(x)=2x(1﹣x),则=()A.﹣B.﹣C.D.【考点】3I:奇函数、偶函数;3Q:函数的周期性.【专题】11:计算题.【分析】由题意得=f(﹣)=﹣f(),代入已知条件进行运算.【解答】解:∵f(x)是周期为2 的奇函数,当0≤x≤1 时,f(x)=2x(1﹣x),∴=f(﹣)=﹣f()=﹣2×(1﹣)=﹣,故选:A.【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.11.(5 分)设两圆C1、C2 都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4 B.C.8 D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】圆在第一象限内,设圆心的坐标为(a,a),(b,b),利用条件可得a 和b 分别为x2﹣10x+17=0 的两个实数根,再利用韦达定理求得两圆心的距离|C1C2|=•的值.【解答】解:∵两圆C1、C2 都和两坐标轴相切,且都过点(4,1),故圆在第一象限内,设两个圆的圆心的坐标分别为(a,a),(b,b),由于两圆都过点(4,1),则有=|a|,|=|b|,故a 和b 分别为(x﹣4)2+(x﹣1)2=x2的两个实数根,即a 和b 分别为x2﹣10x+17=0 的两个实数根,∴a+b=10,ab=17,∴(a﹣b)2=(a+b)2﹣4ab=32,∴两圆心的距离|C1C2|=•=8,故选:C.【点评】本题考查直线和圆相切的性质,两点间的距离公式、韦达定理的应用,属于基础题.12.(5 分)已知平面α截一球面得圆M,过圆心M 且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为()A.7πB.9πC.11πD.13π【考点】MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先求出圆M 的半径,然后根据勾股定理求出求出OM 的长,找出二面角的平面角,从而求出ON 的长,最后利用垂径定理即可求出圆N 的半径,从而求出面积.10 【解答】解:∵圆 M 的面积为 4π∴圆 M 的半径为 2根据勾股定理可知 OM=∵过圆心 M 且与 α 成 60°二面角的平面 β 截该球面得圆 N∴∠OMN=30°,在直角三角形 OMN 中,ON=∴圆 N 的半径为则圆的面积为 13π故选:D .【点评】本题主要考查了二面角的平面角,以及解三角形知识,同时考查空间想象能力,分析问题解决问题的能力,属于基础题.二、填空题(共 4 小题,每小题 5 分,满分 20 分)13.(5 分)(1﹣x )10 的二项展开式中,x 的系数与 x 9 的系数之差为: 0 .【考点】DA :二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令 x 的指数分别取 1; 9 求出展开式的 x 的系数与 x 9 的系数;求出两个系数的差.【解答】解:展开式的通项为 T r +1=(﹣1)r C r x r所以展开式的 x 的系数﹣10x 9 的系数﹣10x 的系数与 x 9 的系数之差为(﹣10)﹣(﹣10)=0故答案为:0【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.14.(5 分)已知 a ∈(π, ),tan α=2,则 cosα= ﹣ .【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】先利用α的范围确定cosα的范围,进而利用同脚三角函数的基本关系,求得cosα 的值.【解答】解:∵a∈(π,),∴cosα<0∴cosα=﹣=﹣故答案为:﹣【点评】本题主要考查了同角三角函数基本关系的应用.解题的关键是利用那个角的范围确定三角函数符号.15.(5 分)已知正方体ABCD﹣A1B1C1D1 中,E 为C1D1 的中点,则异面直线AE 与BC 所成的角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题;31:数形结合;35:转化思想.【分析】根据题意知AD∥BC,∴∠DAE 就是异面直线AE 与BC 所成角,解三角形即可求得结果.【解答】解:连接DE,设AD=2易知AD∥BC,∴∠DAE 就是异面直线AE 与BC 所成角,在△RtADE 中,由于DE=,AD=2,可得AE=3∴cos∠DAE==,故答案为:.【点评】此题是个基础题.考查异面直线所成角问题,求解方法一般是平移法,转化为平面角问题来解决,体现了数形结合和转化的思想.16.(5 分)已知F1、F2 分别为双曲线C:的左、右焦点,点A∈C,点M 的坐标为(2,0),AM 为∠F1AF2 的平分线,则|AF2|= 6 .【考点】KC:双曲线的性质.【专题】16:压轴题.【分析】利用双曲线的方程求出双曲线的参数值;利用内角平分线定理得到两条焦半径的关系,再利用双曲线的定义得到两条焦半径的另一条关系,联立求出焦半径.【解答】解:不妨设A 在双曲线的右支上∵AM 为∠F1AF2 的平分线∴=又∵|AF1|﹣|AF2|=2a=6解得|AF2|=6故答案为6【点评】本题考查内角平分线定理;考查双曲线的定义:解有关焦半径问题常用双曲线的定义.三、解答题(共6 小题,满分70 分)17.(10 分)设等比数列{a n}的前n 项和为S n,已知a2=6,6a1+a3=30,求a n 和1 n n1 n n S n .【考点】88:等比数列的通项公式;89:等比数列的前 n 项和.【专题】54:等差数列与等比数列.【分析】设出等比数列的公比为 q ,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前 n 项和的公式即可.【解答】解:设{a n }的公比为 q ,由题意得:,解得: 或 ,当 a =3,q=2 时:a =3×2n ﹣1,S =3×(2n ﹣1);当 a =2,q=3 时:a =2×3n ﹣1,S =3n ﹣1.【点评】此题考查学生灵活运用等比数列的通项公式及前 n 项和的公式化简求值,是一道基础题.18.(12 分)△ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c .已知 asinA +csinC ﹣asinC=bsinB ,(Ⅰ)求 B ;(Ⅱ)若 A=75°,b=2,求 a ,c .【考点】HU :解三角形.【专题】11:计算题.【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转换成边的关系,代入余弦定理中求得 cosB 的值,进而求得 B .(Ⅱ)利用两角和公式先求得 sinA 的值,进而利用正弦定理分别求得 a 和 c .【解答】解:(Ⅰ)由正弦定理得 a 2+c 2﹣ac=b 2,由余弦定理可得 b 2=a 2+c 2﹣2accosB ,故cosB= ,B=45°(Ⅱ)sinA=sin(30°+45°)=sin30°cos45°+cos30°sin45°=故a=b×==1+∴c=b×=2×=【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用.19.(12 分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1 位车主至少购买甲、乙两种保险中的1 种的概率;(II)求该地的3 位车主中恰有1 位车主甲、乙两种保险都不购买的概率.【考点】C5:互斥事件的概率加法公式;CN:二项分布与n 次独立重复试验的模型.【专题】5I:概率与统计.【分析】(I)设该车主购买乙种保险的概率为P,由相互独立事件概率公式可得P(1﹣0.5)=0.3,解可得p,先求出该车主甲、乙两种保险都不购买的概率,由对立事件的概率性质计算可得答案.(II)该地的3 位车主中恰有1 位车主甲、乙两种保险都不购买,是一个n 次独立重复试验恰好发生k 次的概率,根据上一问的结果得到该地的一位车主甲、乙两种保险都不购买的概率,代入公式得到结果.【解答】解:(I)设该车主购买乙种保险的概率为p,根据题意可得p×(1﹣0.5)=0.3,解可得p=0.6,该车主甲、乙两种保险都不购买的概率为(1﹣0.5)(1﹣0.6)=0.2,由对立事件的概率该车主至少购买甲、乙两种保险中的1 种的概率1﹣0.2=0.8 (II)每位车主甲、乙两种保险都不购买的概率为0.2,则该地的3 位车主中恰有1 位车主甲、乙两种保险都不购买的概率P=C31×0.2×0.82=0.384.【点评】本题考查互斥事件的概率公式加法公式,考查n 次独立重复试验恰好发生k 次的概率,考查对立事件的概率公式,是一个综合题目.20.(12 分)如图,四棱锥S﹣ABCD 中,AB∥CD,BC⊥CD,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.(I)证明:SD⊥平面SAB;(II)求AB 与平面SBC 所成的角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】11:计算题;14:证明题.【分析】(1)利用线面垂直的判定定理,即证明SD 垂直于面SAB 中两条相交的直线SA,SB;在证明SD 与SA,SB 的过程中运用勾股定理即可(Ⅱ)求AB与平面SBC 所成的角的大小即利用平面SBC 的法向量,当为锐角时,所求的角即为它的余角;当为钝角时,所求的角为【解答】(Ⅰ)证明:在直角梯形ABCD 中,∵AB∥CD,BC⊥CD,AB=BC=2,CD=1∴AD==∵侧面SAB 为等边三角形,AB=2∴SA=2∵SD=1∴AD2=SA2+SD2∴SD⊥SA同理:SD⊥SB∵SA∩SB=S,SA,SB⊂面SAB∴SD⊥平面SAB(Ⅱ)建立如图所示的空间坐标系则A(2,﹣1,0),B(2,1,0),C(0,1,0),作出S 在底面上的投影M,则由四棱锥S﹣ABCD 中,AB∥CD,BC⊥CD,侧面SAB 为等边三角形知,M 点一定在x 轴上,又AB=BC=2,CD=SD=1.可解得MD=,从而解得SM=,故可得S(,0,)则设平面SBC 的一个法向量为则,即取x=0,y=,z=1即平面SBC 的一个法向量为=(0,,1)又=(0,2,0)cos<,>===∴<,>=arccos即AB 与平面SBC 所成的角的大小为arcsin【点评】本题考查了直线与平面垂直的判定,直线与平面所成的角以及空间向量的基本知识,属于中档题.21.(12 分)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(I)证明:曲线y=f(x)在x=0 处的切线过点(2,2);(II)若f(x)在x=x0 处取得极小值,x0∈(1,3),求a 的取值范围.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;16:压轴题.【分析】(Ⅰ)求出函数f(x)在x=0 处的导数和f(0)的值,结合直线方程的点斜式方程,可求切线方程;(Ⅱ)f(x)在x=x0 处取得最小值必是函数的极小值,可以先通过讨论导数的零点存在性,得出函数有极小值的a 的大致取值范围,然后通过极小值对应的x0∈(1,3),解关于a 的不等式,从而得出取值范围【解答】解:(Ⅰ)f′(x)=3x2+6ax+3﹣6a由f(0)=12a﹣4,f′(0)=3﹣6a,可得曲线y=f(x)在x=0 处的切线方程为y=(3﹣6a)x+12a﹣4,当x=2 时,y=2(3﹣6a)+12a﹣4=2,可得点(2,2)在切线上∴曲线y=f(x)在x=0 的切线过点(2,2)(Ⅱ)由f′(x)=0 得x2+2ax+1﹣2a=0 (1)方程(1)的根的判别式①当时,函数f(x)没有极小值②当或时,由f′(x)=0 得故x0=x2,由题设可知:(i ) 当时,不等式没有实数解; (ii ) 当时,不等式化为 a +1<<a +3,解得综合①②,得 a 的取值范围是【点评】将字母 a 看成常数,讨论关于 x 的三次多项式函数的极值点,是解决本题的难点,本题中处理关于 a 的无理不等式,计算也比较繁,因此本题对能力的要求比较高.22.(12 分)已知 O 为坐标原点,F 为椭圆 C 在 y 轴正半轴上的焦点,过 F 且斜率为﹣的直线 l 与 C 交于 A 、B 两点,点 P 满足. (I ) 证明:点 P 在 C 上;(II ) 设点 P 关于点 O 的对称点为 Q ,证明:A 、P 、B 、Q 四点在同一圆上.【考点】9S :数量积表示两个向量的夹角;KH :直线与圆锥曲线的综合.【专题】15:综合题;16:压轴题;35:转化思想.【分析】(1)要证明点 P 在 C 上,即证明 P 点的坐标满足椭圆 C 的方程, 根据已知中过 F 且斜率为﹣的直线 l 与 C 交于 A 、B 两点,点 P 满足,我们求出点 P 的坐标,代入验证即可.(2)若 A 、P 、B 、Q 四点在同一圆上,则我们可以先求出任意三点确定的圆的方程,然后将第四点坐标代入验证即可.【解答】证明:(Ⅰ)设A(x1,y1),B(x2,y2)椭圆C:①,则直线AB 的方程为:y=﹣x+1 ②联立方程可得4x2﹣2x﹣1=0,则x1+x2=,x1×x2=﹣则y1+y2=﹣(x1+x2)+2=1设P(p1,p2),则有:=(x1,y1),=(x2,y2),=(p1,p2);∴+=(x1+x2,y1+y2)=(,1);=(p1,p2)=﹣(+)=(﹣,﹣1)∴p 的坐标为(﹣,﹣1)代入①方程成立,所以点P 在C 上.(Ⅱ)设点P 关于点O 的对称点为Q,证明:A、P、B、Q 四点在同一圆上.设线段AB 的中点坐标为(,),即(,),则过线段AB 的中点且垂直于AB 的直线方程为:y﹣= (x﹣),即y=x+;③∵P 关于点O 的对称点为Q,故0(0.0)为线段PQ 的中点,则过线段PQ 的中点且垂直于PQ 的直线方程为:y=﹣x④;③④联立方程组,解之得:x=﹣,y=③④的交点就是圆心O1(﹣,),r2=|O1P|2=(﹣﹣(﹣))2+(﹣1﹣)2=故过P Q 两点圆的方程为:(x+)2+(y﹣)2=…⑤,把y=﹣x+1 …②代入⑤,有x1+x2= ,y1+y2=1∴A,B 也是在圆⑤上的.∴A、P、B、Q 四点在同一圆上.【点评】本题考查的知识点是直线与圆锥曲线的关系,向量在几何中的应用,其中判断点与曲线关系时,所使用的坐标代入验证法是解答本题的关键.。

吉林省长春市高中毕业班第一次调研测试(文)

吉林省长春市高中毕业班第一次调研测试(文)

2008年吉林省长春市高中毕业班第一次调研测试数学试题(文科)注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,本试卷满分150分。

考试时间120分钟。

Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小匙分,共60分。

在每小题的四个选项中,只有一项是符合题目要求的,请将正确选项填在题后括号内。

)1.已知集合N M x x x N x x M 则集合},032|{},4|{22<--=<== ( )A .}2|{-<x xB .}3|{>x xC .}21|{<<-x xD .}32|{<<x x2.已知θπθπθcot ,223,54cos 则且<<=的值是 ( )A .43B .-43C .35D .-343.已知函数=-=+-=)(,21)(,11log )(a f a f x x x f 则若( )A .21B .21- C .-2D .-2 4.在等差数列===⋅d a a a a n 则公差中,3,8,}{231 ( )A .1B .-1C .±1D .±2 5.对于两条直线a,b 和平面α,若αα////,a b a b 是则⊂的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分又不必要条件6.若把一个函数的图象按)2,3(--=πa 平移后,得到函数x y cos =的图象,则原图象的函数解析式是 ( )A .2)3cos(-+=πx y B .2)3cos(--=πx yC .2)3cos(++=πx y D .2)3cos(+-=πx y7.在平面直角坐标系中,不等式组,040⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x (a 是常数)表示的平面区域面积是9,那么实数a 的值为 ( )A .223+B .-223+C .-5D .18.设a,b 是两个不共线向量,若b ka kb a +--与8共线,则实数k 的值为 ( )A .22B .-22C .±22D .8 9.已知函数)(,]3,1(,2]1,0[,2)(1x f x x x x f x-⎩⎨⎧∈∈=则的最大值是( )A .8B .6C .3D .23 10.从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为( )A .40B .48C .52D .5611.设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( ) A .36B .12C .312D .2412.已知二次函数0)0(),()(2>''++=f x f c bx ax x f 的导数为,对任意实数x 有0)(≥x f ,则)0()1(f f '的最小值为 ( )A .2B .3C .23D .25 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分,把正确答案填在题中的横线上) 13.二项式xx x 1)22(9展开式中-的系数为 。

2011年长春市高中毕业班第一次调研测试数学(理科)含答案

2011年长春市高中毕业班第一次调研测试数学(理科)含答案

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

1.2011年长春市高中毕业班第一次调研测试数学试题卷(理科)第Ⅰ卷 (选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题纸上)1. 已知复数iiz -+=11(i 是虚数单位),z 是z 的共轭复数,则z z ⋅= A.1 B.0 C.1- D.2 2. 已知集合{}{}1|,1|>=<=x e x N x x M ,则N M = A.∅ B.}0|{>x x C.{}|1x x < D.{}|01x x <<3. 已知直线⊥l 平面α,直线⊂m 平面β,有下面四个命题,其中正确命题是①m l ⊥⇒βα// ②m l //⇒⊥βα ③βα⊥⇒m l //④βα//⇒⊥m lA.①与②B.①与③C.②与④D.③与④4. 若31)6sin(=-απ,则)3cos(απ+的值为A.31B.31-C.322 D.322-5. 如图所示,一个空间几何体的正视图和侧视图都是边长为 1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为A.23πB .45π C.π D .4π 6. 平面向量a 与的夹角为︒60,a =(2,0), |a +2|=32,则||=B.1C.2D.13-7. 如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完,已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的距离,则H 与下落时间t (分)的函数关系表示的图象只可能是8. 设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1·2PF =0,则 |1|·|2PF |的值等于 A.2B.22C.4D.89. 已知y ax y x y x x +⎪⎩⎪⎨⎧≤--≥+-≥若022,011的最小值是2,则=aA.1B.2C.3D.410. 函数)2||,0()sin()(πϕωϕω<>+=x x f 的最小正周期为π,若其图象向左平移6π个单位后得到的函数为奇函数,则函数)(x f 的图象A.关于点)0,12(π对称 B.关于点)0,125(π对称 C.关于直线125π=x 对称 D.关于直线12π=x 对称 11. 已知直线2-=x y 与圆03422=+-+x y x 及抛物线x y 82=的四个交点从上到下依次为D C B A 、、、四点,则||||CD AB +=A.12B.14C.16D.1812. 已知函数)1ln()(+=x x f ,),0(+∞∈x ,下列结论错误..的是 A.),0(,21+∞∈∀x x ,)]()()[(1212x f x f x x --≥0 B.),0(1+∞∈∀x ,),0(2+∞∈∃x ,)()(2112x f x x f x > C.),0(1+∞∈∀x ,),0(2+∞∈∃x ,1212)()(x x x f x f -<- D.),0(,21+∞∈∃x x ,2(2)()(2121x x f x f x f +>+5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

吉林省长春市高三毕业班第一次调研测试数学(文)试题Word版含解析.pdf

吉林省长春市高三毕业班第一次调研测试数学(文)试题Word版含解析.pdf

2014年长春市高中毕业班第一次调研试题 数学试题卷(文科) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分 钟,其中第II卷22题一24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡 一并交回. 注意事项: 1.答题前,考生必须将自己的姓名、准考证号码填写楚,将条形码准确粘贴在条形码区域内. 2.选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹楚. 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 4.保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀. 第I卷 一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中, 只有一项是符合题目要求的,请将正确选项填涂在答题卡上). 1.复数Z=1i 的虚部是( ) (A). (B) -i (C) -1 (D)1 2.已知集合M={},集合N={ x|lg(3-x)>0},则=( ) (A).{ x|2<x<3} (B). { x|1<x<3} (C) . { x|1<x<2} (D) 3.函数f(x)=(sinx+cosx)2 的一条对称轴的方程是( ) 4.抛物线的焦点到准线的距离是( ) (A) 2 (B)1 (C). (D). 5.某几何体的三视图如右图,(其中侧视图中的圆弧是半圆),则该几何体的表面积为 (A).92+14π (B). 82+14π (C). 92+24π (D). 82+24π 6.等比数列中前三项和为=27,则公比q的值是( ) (A). (B)- (C) 1或 (D)- 1或 7.定义某种运算,运算原理如图所示则式子的值为 ( A). (B).-4 (C).-8 (D). 0 8.实数x,y满足若函数z=x+y的最大值为4,则实数a的值为 (A). (B). 3 (C). (D).4 9.已知三条不重合的直线m,n,l 和两个不重合的平面 ,下列命题正确的是:( ) (A). 若m//nnα,则m// (B). 若⊥β, αβ=m, n⊥m ,则n⊥. (C) .若 l⊥n ,m⊥n, 则l//m (D). 若l⊥,m⊥, 且l⊥m ,则⊥β 10.已知双曲线的右顶点、左焦点分别为A、F,点B(0,b),若,则双曲线的离心率值为( ) (B) (C) (D) 11.若函数y=f(x)图象上的任意一点p的坐标(x,y)满足条件|x|,则称函数具有性质S,那么下列函数中具有性质S的是( ) (A). (B). f(x)=lnx (C). f(x)=sinx (D). f(x)=tanx 12.已知设函数F(x)=f(x+),且F(x)的零点均在区间[a,b] (a<b,a,b) 内,则b-a的最小值为( ) (A) (B). (C).3 (D). .4 第二卷(非选择题,共90分) 本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作 答,第22题-24题为选考题,考生根据要求作答. 二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13、在正三角形ABC中,D是BC上的点,AB=3,BD=1,则=___ 14.已知三棱柱ABC-A1B1C1 底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12,则该三棱柱的体积为 . 1.若圆, . ①f(x)是奇是函数 ②.f(x)是周期函数 ,周期为2 ③..f(x)的最小值为0 ,无最大值 ④. f(x)无最小值,最大值为sin1.正确的序号为 . 17.(本小题满分12分) 设数列是等差数列, 且成等比数列。

吉林省长春十一中高一数学下学期期初考试 文

吉林省长春十一中高一数学下学期期初考试 文

长春市十一高中2010-2011学年度高一下学期期初考试数 学 试 题(文)本试卷分第一部分(选择题)和第二部分(非选择题),满分120分,测试时间120分钟。

第Ⅰ卷一、选择题(本大题共有12个小题,每小题只有一个正确选项,每题4分,共48分)1.设π20<≤x ,则满足方程0)cos cos(=x π的角x 的集合是( )A .⎭⎬⎫⎩⎨⎧3π B .⎭⎬⎫⎩⎨⎧34,32ππ C .⎭⎬⎫⎩⎨⎧34,3ππ D .⎭⎬⎫⎩⎨⎧35,34,32,3ππππ 2.在ABC ∆中,7:5:3::=c b a ,那么ABC ∆是( )A .直角三角形B .钝角三角形C .锐角三角形D .非钝角三角形3.已知53cos -=α,且23παπ<<,那么2cos α的值是( ) A .55- B .55 C .552- D .552 4.函数)32cos(π+=x y 的图象的一个对称中心是( ) A .)0,24(πB .)0,12(πC .)1,3(-πD .)1,65(π 5.在等差数列{}n a 中,1310=a ,4621=a ,则=5a ( )A .2-B .1C .4D .76.如图,要测量河对岸可见但不可到达的两点B A ,的距离,现选岸上相距40米的两点D C ,,并用仪器测得:︒=∠60ACB ,︒=∠45BCD ,︒=∠60ADB ,︒=∠30ADC ,根据以上数据,求得AB 为( )米A .240B .220C .620D .3207.已知向量)2,2(=,)1,4(=,O 为坐标原点,在x 轴上找一点P ,使⋅最小,则P 点坐标为( )A .)0,3(-B .)0,2(C .)0,3(D .)0,4(8.若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则( )A .b a <B .b a >C .2>abD .1<ab9.ABC ∆的三个内角C B A ,,所对的边分别是c b a ,,,设),(b c a p +=,),(a c a b q --=,D C B A若∥,则角C 的大小为( )A .32πB .2πC .6πD .3π 10.已知⎥⎦⎤⎢⎣⎡∈2,0πα,则化简ααsin 1sin 1-++的值为( ) A .2cos 2α- B .2sin 2α- C . 2cos 2αD .2sin 2α 11.设函数2cos 2sin 12sin 2tan 2)(2x x x x x f --=,则)12(πf 的值是( ) A .334- B .34- C .34 D .8 12.数列{}n a 中,21=a ,32=a ,11-+-=n n n a a a ,)2(≥n ,设21a a S n += ++n a ,那么=+-3654100S S S ( )A .0B .2C .3D .4第Ⅱ卷考生注意:第Ⅱ卷所有问题的答案按要求都书写到答题纸指定的位置上!二、填空题(本大题共4小题,每题4分,共16分)13.等腰三角形的顶角的余弦值是43,则一个底角的余弦值为 . 14.=︒︒+︒+︒25tan 35tan 325tan 35tan .15.函数x x x f ππ22sin cos )(-=的最小正周期为 .16.关于下列四个说法:(1)AC BD DC AB =++;(2)函数x x f 2cos )(=是周期为π的偶函数;(3)在ABC ∆中,若c b a >>,则必有C B A sin sin sin >>;(4)把函数)32sin(2)(π-=x x f 的图象向左平移3π个单位得到函数x y 2sin 2=的图象,其中正确说法的序号是 .三、解答题(本大题共6个小题,其中17、18题每题8分,19——22题每题10分,共56分;每题都要有必要的推理过程,直接写结果不得分)17.在ABC ∆中,︒=150C ,31sin =B ,BC 边的高设为AD ,且1=AD ,根据上述条件求:(1))60cos(︒+A 的值;(2)ABC ∆的面积.18.已知),0(π∈x ,且21cos sin =+x x ,求: (1)x 2sin 的值;(2)x x cos sin -的值.19.设平面向量)sin ,(cos αα=m )20(πα<≤,)23,21(-= (1)证明;)()(-⊥+(2-=,求α.20.已知ABC ∆中,a =5,b=6,c=7,求:(1)求A cos ;(2)求ABC ∆的内切圆半径r.21.已知数列{}n a 中,31=a ,111+=--n n n a a a ,2≥n (1)求32,a a ;(2)设nn a b 1=,求证:数列{}n b 是等差数列. D A C B22.已知函数2()sin cos cos (0)f x a x x x b a =⋅++> (1)写出函数的单调递减区间;(2)设]20[π,∈x ,()f x 的最小值是2-,最大值是3,求⎪⎭⎫ ⎝⎛3πf 的值.四、附加题(本题满分10分,记入总分)23. 设n n a a a S +++=...21,)1(1+=n n a n ,求2011S 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学(文) 第1页(共10页)2011年长春市高中毕业班第一次调研测试数学试题卷(文科)考生须知:1.本试卷分试题卷和答题纸,满分150分,考试时间120分钟.2.答题前,在答题纸密封区内填写学校、班级、姓名和准考证号.3.所有答案必需写在答题纸上,写在试卷上无效.4.考试结束,只需上交答题纸. 参考公式:柱体体积公式:Sh V =,其中S 为底面面积,h 为高.锥体体积公式:Sh V 31=,其中S 为底面面积,h 为高. 第Ⅰ卷 (选择题,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题纸上)1. 已知复数iiz -+=11(i 是虚数单位),则=||z A.1 B.0 C.1-D.22. 已知集合{}{}0|,1|2>=<=x x N x x M ,则N M = A.∅ B.}0|{>x x C.{}|1x x <D.{}|01x x <<3. 已知直线⊥l 平面α,直线⊂m 平面β,则l ⊥m 是βα//的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 若31)6sin(=-απ,则)3cos(απ+的值为 A.31B.31-C.322 D.322-5. 如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的体积为 A.23π B.45π C. π D.4π 6. 平面向量a 与b 的夹角为︒60,a =(2,0), |b |=1,则|a +2b |=C.4D.127.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完,已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是8.已知yxyxyxx+⎪⎩⎪⎨⎧≤--≥+-≥222,011则的最小值是A.1B.2C.3D.49.设F1,F2是双曲线42x-y2=1的两个焦点,点P在双曲线上,且1PF·2PF=0,则|1PF|·|2PF|的值等于A.2B.22C.4D.810.函数)2||,0()sin()(πϕωϕω<>+=xxf的最小正周期为π,若其图象向左平移6π个单位后得到的函数为奇函数,则函数)(xf的图象A.关于点)0,12(π对称B.关于点)0,125(π对称C.关于直线125π=x对称D.关于直线12π=x对称11.已知直线2-=xy与圆03422=+-+xyx及抛物线xy82=的四个交点从上到下依次为DCBA、、、四点,则||||BCAD+等于A.12B.14C.16D.1812.已知函数xxf sin)(=,对于满足π<<<210xx的任意21,xx,给出下列结论:①0)]()()[(1212>--xfxfxx;②)()(2112xfxxfx>;③1212)()(xxxfxf-<-;④2(2)()(2121xxfxfxf+<+.其中正确结论的个数为A.1B.2C.3D.4数学(文)第2页(共10页)数学(文) 第3页(共10页)ABCD PM第Ⅱ卷 (非选择题,共90分)本卷包括必考题和选考题两部分,第13题—21题为必考题,每个试题考生都必须作答,第22题—24题为选考题,考生根据要求作答. 二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填写在答题纸中的横线上) 13. 阅读程序框图,该程序输出的结果是 .14. 已知函数93)(23-++=x ax x x f 在3-=x 时取得极 值,则a = .15. 已知0,0,12>>=+n m n m ,则nm 12+的最小值为 .16. “三角形的三条中线交于一点,而且这一点到顶点的距离等于它到对边中点距离的2倍”.试类比:四面体的四条中线(顶点到对面三角形重心的连线段)交于一点,而且这一点到顶点的距离等于它到对面重心距离的 倍.三、解答题(本大题必做题5小题,三选一选1小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. 已知等差数列}{n a 的前n 项和为n S ,且满足2a =3,6S =36.(1) 求数列}{n a 的通项公式;(2) 若数列{n b }是等比数列且满足24,35421=+=+b b b b .设数列}{n n b a ⋅的前n 项和为n T ,求3T .18. 如图,一人在C 地看到建筑物A 在正北方向,另一建筑物B在北偏西45°方向,此人向北偏西75°方向前进30km 到达D 处,看到A 在他的北偏东45°方向,B 在北偏东75°方向,试求这两座建筑物之间的距离.19. 已知四棱锥ABCD P -的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且121====AB DC AD PA ,M 是PB 的中点.(1) 求证:MC ∥平面PAD ; (2) 求证:BC ⊥平面PAC ; (3) 求三棱锥ACM P -的体积.数学(文) 第4页(共10页)BAD EC20. 已知椭圆1222=+y ax (0>a )的离心率为23.(1) 求椭圆的方程;(2) 设直线l 与椭圆相交于不同的两点A 、B ,已知点A 的坐标为)0,(a -,若||AB 524=,求直线l 的倾斜角.21. 已知函数x x f ln 1)(+=.(1) 求过原点且与曲线)(x f y =相切的直线方程;(2) 若关于x 的不等式)(x f ≤ax 恒成立,求实数a 的取值范围.请考生在第22、23、24题中任选一题在答题纸上做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1:几何证明选讲已知,如右图,在等腰梯形ABCD 中,BC AD //,DC AB =,过点D 作AC 的平行线DE ,交BA 的延长线于点E .求证: (1) ABC ∆≌DCB ∆; (2) BD AE DC DE ⋅=⋅23. (本小题满分10分)选修4-4:坐标系与参数方程设过原点O 的直线与圆C :1)1(22=+-y x 的一个交点为P ,点M 为线段OP 的中点. (1) 求圆C 的极坐标方程;(2) 求点M 轨迹的极坐标方程,并说明它是什么曲线.24. (本小题满分10分)选修4-5:不等式选讲解不等式1|43|2+>--x x x .数学(文) 第5页(共10页)2011年长春市高中毕业班第一次调研测试数学(文科)参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1.A 2.D 3.B 4.A 5.D 6.B 7.C 8.B 9.A 10.C 11.D 12.C 简答与提示:1. i iz -+=11=)1)(1()1(2i i i +-+=22i =i ,1||=∴z ,故选A.2.由已知{}11|<<-=x x M ,{}0|>=x x N ,则{}10|<<=x x N M ,故选D.3.由于m l m l ⊥⇒⊂⊥βαβα//,, ;⇒⊥⊂⊥m l m l ,,βαβα//,所以m l ⊥ 是α∥β的必要不充分条件,故选B. 4.=+)3cos(απ31)6sin(=-απ, 故选A. 5.由三视图知该几何体为圆柱,其底面半径为21=r ,高h =1,∴42ππ==h r V , 故选D.6.由已知22244|2|,2||+⋅+=+== 4+4×2×1×cos60°+4=12,则有=+|2|故选B.7.开始时液面下降速度较慢,逐渐变快,越来越快.故选C.8.由已知得线性可行域如图所示,则z =y x +2的最小值为2.故选B.9.由已知)0,5(),0,5(21F F -,则5221=F F .即⎪⎩⎪⎨⎧=-==+420212212221PF PF F F PF PF , 2=.故选A. 10.由已知πωπ==2T ,则2=ω;)2sin()(ϕ+=x x f 向左移6π个单位得。

相关文档
最新文档