2016-2017学年江苏省常州市金坛市七年级(上)数学试卷

合集下载

苏科版2016-2017学年七年级数学(上册)期末测试卷和答案

苏科版2016-2017学年七年级数学(上册)期末测试卷和答案

2016-2017学年七年级(上)期末数学试卷一、选择题(24分)1.﹣0.5的相反数是( )A.0.5 B.﹣0.5 C.﹣2 D.22.如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A.B.C.D.3.下列运算正确的是( )A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab4.已知x=2是关于x的方程2x﹣a=1的解,则a的值是( )A.3 B.﹣3 C.7 D.25.下列图形中,由AB∥CD,能得到∠1=∠2的是( )A.B.C.D.6.下列计算正确的是( )A.a+a2=2a3B.a2•a3=a6C.(2a4)4=16a8D.(﹣a)6÷a3=a37.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是( )A.B.C.D.8.已知a=355,b=444,c=533,则有( )A.a<b<c B.c<b<a C.c<a<b D.a<c<b二、填空题(30分)9.某种细菌的存活时间只有0.000 012秒,若用科学记数法表示此数据应为__________秒.10.如图所示,直线a∥b,则∠A=__________度.11.我们知道:式子|x﹣3|的几何意义是数轴上表示数x的点与表示数3的点之间的距离,则式子|x﹣2|+|x﹣1|的最小值为__________.12.计算:=__________.13.线段PQ被分成3:4:5三部分,若第一和第二两部分的中点间的距离是2.1cm,则线段PQ的长是__________cm.14.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是__________.15.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是__________ cm.16.如图中每个阴影部分是以多边形各顶点为圆心,2为半径的扇形,并且所有多边形的每条边长都大于2,则第n个多边形中,所有扇形面积之和是__________(结果保留π).17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=__________.18.圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的点,然后从1→2为第二次“移位”.若小明从编号为4的点开始,第2015次“移位”后,他到达编号为__________的点.三、解答题19.计算:(1)﹣12010﹣(1﹣)÷3×|3﹣(﹣3)2|(2)2(a2)3﹣a2•a4+(2a4)2÷a2.20.解方程:(1)5x+3(2﹣x)=8(2).21.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.22.如图,已知∠1=52°,∠2=128°,∠C=∠D,探索∠A与∠F的数量关系,并说明理由.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:__________cm3.24.如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC 的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数.(2)若OE、OF分别平分∠BOD、∠BOC,求∠EOF的度数.(写出必要的推理过程)25.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00﹣次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2013年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表).根据上述信息,解答下列问题:月用电量(度)电费(元)1月90 51.802月92 50.853月98 49.244月105 48.555月(1)计算5月份的用电量和相应电费,将所得结果填入表中;(2)小明家这5个月的月平均用电量呈__________趋势(选择“上升”或“下降”);这5个月每月电费呈__________趋势(选择“上升”或“下降”);(3)小明预计7月份家中用电量很大,估计7月份用电可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.26.已知:△ABC中,∠C>∠B,AE平分∠BAC.(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,求出∠DAE的度数;(2)若△ABC中,∠B=α,∠C=β(α<β),探索∠DAE与α、β间的等量关系,不必说明理由;(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F 作FG⊥BC于G,且∠B=30°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG 的度数大小发生改变吗?说明理由.27.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=36°,则∠OGA=__________.(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=36°,则∠OGA=__________.(3)将(2)中“∠OBA=36°”改为“∠OBA=β”,其余条件不变,则∠OGA=__________(用含β的代数式表示).(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=β(30°<β<90°)求∠OGA 的度数(用含β的代数式表示).28.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.2016-2017学年七年级(上)期末数学试卷一、选择题(24分)1.﹣0.5的相反数是( )A.0.5 B.﹣0.5 C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数相反数.2.如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、C、D.3.下列运算正确的是( )A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.4.已知x=2是关于x的方程2x﹣a=1的解,则a的值是( )A.3 B.﹣3 C.7 D.2【考点】一元一次方程的解.【分析】把x=2代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=2是关于x的方程2x﹣a=1的解,∴2×2﹣a=1,解得a=3.故选:A.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.5.下列图形中,由AB∥CD,能得到∠1=∠2的是( )A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.下列计算正确的是( )A.a+a2=2a3B.a2•a3=a6C.(2a4)4=16a8D.(﹣a)6÷a3=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用合并同类项、同底数幂的乘法、积的乘方、幂的乘方以及同底数幂的除法的知识求解即可求得答案.注意排除法在解选择题中的应用.【解答】解:A、a与a2不能合并,故本选项错误;B、a2•a3=a5,故本选项错误;C、(2a4)4=16a16,故本选项错误;D、(﹣a)6÷a3=a6÷a3=a3,故本选项正确.故选D.【点评】此题考查了合并同类项、同底数幂的乘法、积的乘方、幂的乘方以及同底数幂的除法的知识.注意掌握指数的变化是解此题的关键.7.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是( )A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看到的图形即可.【解答】解:从上面看,可得到左边是一个圆,右边是长方形,一组对边与圆相接,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.已知a=355,b=444,c=533,则有( )A.a<b<c B.c<b<a C.c<a<b D.a<c<b【考点】幂的乘方与积的乘方.【专题】计算题.【分析】由a=355=(35)11,b=444=(44)11,c=533=(53)11,比较35,44,53,的大小即可.【解答】解:∵a=355=(35)11,b=444=(44)11,c=533=(53)11,44>35>>53,∴(44)11>(35)11>(53)11,即c<a<b,故选C.【点评】本题考查了幂的乘方的逆运算,以及数的大小比较.二、填空题(30分)9.某种细菌的存活时间只有0.000 012秒,若用科学记数法表示此数据应为1.2×10﹣5秒.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 012秒=1.2×10﹣5秒.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图所示,直线a∥b,则∠A=22度.【考点】三角形的外角性质;平行线的性质;三角形内角和定理.【专题】计算题.【分析】依题意由平行线的性质,结合三角形外角及外角性质,可以得到∠A=∠C﹣∠B,易求∠A的度数.【解答】解:∵a∥b,∴∠ADE=50°,∵∠ABE=28°,根据三角形外角及外角性质,∴∠A+∠ABE=∠ADE,∴∠A=∠C﹣∠B=22°.∴∠A=22°.【点评】这类题首先利用平行线的性质(两直线平行,同位角相等),然后根据三角形外角及外角性质将所求角的关系与已知角的关系转化求解.11.我们知道:式子|x﹣3|的几何意义是数轴上表示数x的点与表示数3的点之间的距离,则式子|x﹣2|+|x﹣1|的最小值为3.【考点】绝对值.【分析】根据绝对值的意义,可知|x﹣2|是数轴上表示数x的点与表示数2的点之间的距离,|x+1|是数轴上表示数x的点与表示数﹣1的点之间的距离,由线段的性质,两点之间,线段最短,可知当﹣1≤x≤2时,|x﹣2|+|x+1|有最小值.【解答】解:根据题意,可知当﹣1≤x≤2时,|x﹣2|+|x+1|有最小值.此时|x﹣2|=2﹣x,|x+1|=x+1,∴|x﹣2|+|x+1|=2﹣x+x+1=3.故答案为:3.【点评】本题考查的是绝对值的意义及线段的性质,掌握式子|x﹣a|的几何意义是数轴上表示数x的点与表示数a的点之间的距离是解题的关键.12.计算:=﹣.【考点】幂的乘方与积的乘方;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂的乘法,可得指数相同的幂的乘法,根据积的乘方运算,可得答案案.【解答】解:原式=(﹣)==﹣,故答案为:﹣.【点评】本题考查了积的乘方,先化成指数相同的幂的乘法,再进行积的乘方运算.13.线段PQ被分成3:4:5三部分,若第一和第二两部分的中点间的距离是2.1cm,则线段PQ的长是7.2cm.【考点】两点间的距离.【分析】首先根据线段PQ被分成3:4:5三部分,则可以设第一部分=3x,第二部分=4x,DB=4x.第一和第二两部分的中点间的距离=(3x+4x)÷2,根据第一和第二两部分的中点间的距离是1即可求得x的值,进而求得线段PQ的长.【解答】解:设一份的长是x,依题意有(3x+4x)÷2=2.1,解得x=0.6,0.6×(3+4+5)=0.6×12=7.2(cm).故线段PQ的长是7.2cm.故答案为:7.2.【点评】本题主要考查了线段的计算,正确理解中点的定义,把求线段的长的问题转化为解方程的问题是解题关键.14.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是﹣1.【考点】专题:正方体相对两个面上的文字.【分析】先根据正方体相对两个面的特点,确定出相对的面,然后依据加法法则求解即可.【解答】解:根据题意可知2的对面是﹣2;3的对面是﹣4;0的对面是1.∵2+(﹣2)=0;3+(﹣4)=﹣1,;0+1=1.∴原正方体相对两个面上的数字之和的最小值是﹣1.故答案为:﹣1.【点评】本题主要考查的是正方体对面上的文字,掌握正方体相对两个面的特点是解题的关键.15.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17 cm.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.如图中每个阴影部分是以多边形各顶点为圆心,2为半径的扇形,并且所有多边形的每条边长都大于2,则第n个多边形中,所有扇形面积之和是2nπ(结果保留π).【考点】多边形内角与外角;三角形内角和定理.【分析】先找圆心角的变化规律,得出第n个多边形中,所有扇形面积之和应为圆心角为n×180°,半径为2的扇形的面积.【解答】解:第n个多边形中,所有扇形面积之和是:=2nπ.故答案是:2nπ.【点评】考查了多边形内角和和扇形面积的计算,根据已知图形,找出规律,掌握扇形面积求法与多边形内角和是关键.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=2.【考点】三角形的面积.【分析】S△ADF﹣S△BEF=S△ABD﹣S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.【解答】解:∵点D是AC的中点,∴AD=AC,∵S△ABC=12,∴S△ABD=S△ABC=×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=S△ABC=×12=4,∵S△ABD﹣S△ABE=(S△ADF+S△ABF)﹣(S△ABF+S△BEF)=S△ADF﹣S△BEF,即S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.故答案为:2.【点评】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.18.圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的点,然后从1→2为第二次“移位”.若小明从编号为4的点开始,第2015次“移位”后,他到达编号为2的点.【考点】规律型:图形的变化类.【分析】根据移位的定义,结合图形第一次“移位”走4段弧长,然后依次进行计算即可得到第四次“移位”的位置,再根据规律求出第2015次“移位”的位置.【解答】解:从编号为4的点开始,第一次“移位”到达3,第二次“移位”到达1,第三次“移位”到达2,第四次“移位”到达4;第五次“移位”到达3,…依此类推,每4次为一组“移位”循环,∵2015÷4=503…3,∴第2015次“移位”后与第3次移位到达的数字编号相同为2.故答案为:2.【点评】此题考查图形变化规律,读懂题目信息,根据“移位”的定义,找出其变化循环的规律是解题的关键.三、解答题19.计算:(1)﹣12010﹣(1﹣)÷3×|3﹣(﹣3)2|(2)2(a2)3﹣a2•a4+(2a4)2÷a2.【考点】整式的混合运算;有理数的混合运算.【专题】计算题;整式.【分析】(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则,同底数幂的乘法及单项式除以单项式法则计算,合并即可得到结果.【解答】解:(1)原式=﹣1﹣××6=﹣1﹣1=﹣2;(2)原式=2a6﹣a6+4a6=5a6.【点评】此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)5x+3(2﹣x)=8(2).【考点】解一元一次方程.【专题】计算题.【分析】(1)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母、去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.【解答】解:(1)去括号得:5x+6﹣3x=8,移项合并得:2x=2,系数化为1得:x=1;(2)去分母得:3(2x﹣1)=12﹣4(x+2),去括号得:6x﹣3=12﹣4x﹣8,移项合并得:10x=7,系数化为1得:.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.注意去分母时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.21.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】先根据绝对值及完全平方的非负性求出x和y的值,然后对所求的式子去括号、合并同类项得出最简整式,代入x和y的值即可.【解答】解:∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.【点评】本题考查了非负数的性质及整式的化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.22.如图,已知∠1=52°,∠2=128°,∠C=∠D,探索∠A与∠F的数量关系,并说明理由.【考点】平行线的判定与性质.【专题】计算题.【分析】结论为∠A=∠F,理由为:由∠1+∠2=180°,利用同旁内角互补两直线平行得到BD与CE平行,利用两直线平行同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AC与DF平行,利用两直线平行内错角相等即可得证.【解答】解:结论:∠A=∠F,理由为:证明:∵∠1=52°,∠2=128°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:12cm3.【考点】展开图折叠成几何体.【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、2厘米和2厘米,将数据代入长方体的体积公式即可求解.【解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的容积为:3×2×2=12(cm3).故答案为:12.【点评】本题考查了平面图形的折叠与长方体的展开图及其体积的计算,比较简单.24.如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC 的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数.(2)若OE、OF分别平分∠BOD、∠BOC,求∠EOF的度数.(写出必要的推理过程)【考点】角的计算;角平分线的定义.【分析】(1)首先设∠BOD=x°,由∠AOC的度数比∠BOD的度数的3倍多10度,且∠COD=90°,可得方程:x+(3x+10)+90=180,解此方程即可求得答案;(2)由OE、OF分别平分∠BOD、∠BOC,可得∠BOE=∠BOD,∠BOF=∠BOC=(∠BOD+∠COD),又由∠EOF=∠BOF﹣∠BOE=∠COD,即可求得答案.【解答】解:(1)设∠BOD=x°,∵∠AOC的度数比∠BOD的度数的3倍多10度,且∠COD=90°,∴x+(3x+10)+90=180,解得:x=20,∴∠BOD=20°;(2)∵OE、OF分别平分∠BOD、∠BOC,∴∠BOE=∠BOD,∠BOF=∠BOC=(∠BOD+∠COD),∴∠EOF=∠BOF﹣∠BOE=(∠BOC﹣∠BOD)=∠COD=45°.【点评】此题考查了角的计算与角平分线的定义.此题难度适中,注意掌握数形结合思想与方程思想的应用.25.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00﹣次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2013年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表).根据上述信息,解答下列问题:月用电量(度)电费(元)1月90 51.802月92 50.853月98 49.244月105 48.555月(1)计算5月份的用电量和相应电费,将所得结果填入表中;(2)小明家这5个月的月平均用电量呈上升趋势(选择“上升”或“下降”);这5个月每月电费呈下降趋势(选择“上升”或“下降”);(3)小明预计7月份家中用电量很大,估计7月份用电可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.【考点】折线统计图;统计表.【分析】(1)根据有理数的加法,可得5月份的用电量,根据平时段每度电价乘以平时段的用用电量,可得平时段的电费,根据时各段每度电价乘以平时段的用用电量,可得各时段的电费,根据有理数的加法,可得答案;(2)统计表中的信息,可得答案;(3)根据用电量,可得未知数,根据电费,可得方程,根据解方程,可得答案.【解答】解:(1)5月份的用电量为45+65=110度,5月份的电费为65×0.3+45×0.61=19.5+27.45=46.95(元),故答案为:110,46.95;(2)用统计表,得小明家这5个月的月平均用电量呈上升趋势;这5个月每月电费呈下降趋势,故答案为:上升,下降;(3)设7月份平时段的用电量为x度,各时段的用电量为(500﹣x)度,根据题意,得0.61x+0.3(500﹣x)=243.化简,得0.31x=93,解得x=300,500﹣x=200,答:7月份小明家平时段用电量为300度,各时段用电量为200度.【点评】本题考查的是统计表和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.统计表能清楚地表示出每个项目的数据,如粮食产量,折线统计图表示的是事物的变化情况,如增长率,利用一元一次方程解决用电量是解题关键.26.已知:△ABC中,∠C>∠B,AE平分∠BAC.(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,求出∠DAE的度数;(2)若△ABC中,∠B=α,∠C=β(α<β),探索∠DAE与α、β间的等量关系,不必说明理由;(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F 作FG⊥BC于G,且∠B=30°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG 的度数大小发生改变吗?说明理由.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)先根据三角形内角和定理得到∠BAC=180°﹣∠B﹣∠C,再利用角平分线定义得∠DAC=∠BAC=90°﹣(∠B+∠C),接着根据垂直定义得到∠AEC=90°,则∠EAC=90°﹣∠C,所以∠DAE=∠DAC﹣∠EAC=(∠C﹣∠B),再把∠C=70°,∠B=30°代入计算即可;(2)由(1)易得∠DAE=(β﹣α);(3)由于∠DAE=(∠C﹣∠B),则把∠B=30°,∠C=80°代入可计算出∠DAE=25°,然后根据平行线的性质求解;(4)根据平行线的性质易得∠EFG=∠EAD=25°.【解答】解:(1)在△ABC中,∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD平分∠BAC,∴∠DAC=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AE⊥BC于E,∴∠AEC=90°,∴∠EAC=90°﹣∠C,∴∠DAE=∠DAC﹣∠EAC=90°﹣(∠B+∠C)﹣(90°﹣∠C)=(∠C﹣∠B),当∠C=70°,∠B=30°,∴∠DAE=(70°﹣30°)=20°;(2)∵∠DAE=(∠C﹣∠B),∴∠DAE=(β﹣α);(3)∵∠DAE=(∠C﹣∠B),而∠B=30°,∠C=80°,∴∠DAE=(80°﹣30°)=25°,∵AD⊥BC,FG⊥BC,∴FG∥AD,∴∠EFG=∠EAD=25°;(4)∠EFG的度数大小不发生改变.理由如下:∵AD⊥BC,FG⊥BC,∴FG∥AD,∴∠EFG=∠EAD=25°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.准确识别图形,即在哪个三角形中运用内角和定理是解题的关键.27.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=36°,则∠OGA=18°.(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=36°,则∠OGA=12°.(3)将(2)中“∠OBA=36°”改为“∠OBA=β”,其余条件不变,则∠OGA=(用含β的代数式表示).(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=β(30°<β<90°)求∠OGA 的度数(用含β的代数式表示).【考点】角的计算;角平分线的定义.【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=β+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=β+90°,则∠OGA=+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA=﹣15°.【解答】解:(1)∵∠BOA=90°,∠OBA=36°,∴∠BAD=∠BOA+∠ABO=126°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD=∠BAD=63°,∠EOA=∠BOA=45°,∴∠OGA=∠GAD﹣∠EOA=63°﹣45°=18°;故答案为18°;(2)∵∠BOA=90°,∠OBA=36°,∴∠BAD=∠BOA+∠ABO=126°,∵∠BOA=90°,∠GOA=∠BOA,∠GAD=∠BAD∴∠GAD=42°,∠EOA=30°,∴∠OGA=∠GAD﹣∠EOA=42°﹣30°=12°;故答案为12°;(3)∵∠BOA=90°,∠OBA=β,∴∠BAD=∠BOA+∠ABO=90°+β,∵∠BOA=90°,∠GOA=∠BOA,∠GAD=∠BAD∴∠GAD=30°+,∠EOA=30°,∴∠OGA=∠GAD﹣∠EOA=β,故答案为:β;(4)当∠EOD:∠COE=1:2时,则∠EOD=30°,∵∠BAD=∠ABO+∠BOA=β+90°,∵AF平分∠BAD,∴∠FAD=∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=β+90°,∴∠OGA=β+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA=﹣15°,即∠OGA的度数为+15°或﹣15°.【点评】本题考查了三角形内角和定理:三角形内角和为180°.也考查了三角形外角性质.28.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;。

2016-2017年常州市七年级第一学期期中数学试卷(扫描版+答案)

2016-2017年常州市七年级第一学期期中数学试卷(扫描版+答案)

七年级数学参考答案及评分意见一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9.31- ,52 10.2- 11.少跳了8个(只要意思正确就行)12< 13.24 14.1- 15.6 16.3 17.47 18.150x +100或150x -100 三、计算题(每小题5分,共20分)19.计算(每小题5分,共20分)⑴ 8632+-+-+)()( ⑵ 212)4(12⨯÷-- =)()(6382-+-++ ------------ 2分 =2141)4(1⨯⨯-- ---------------------- 2分 =)9(10-+ -------------------- 4分=)21(1-- ---------------------- 4分 =1 --------------------------------- 5分 =23 --------------------------------- 5分 ⑶ )121()316541(-÷+-⑷ 414)21(88132÷+⨯-⨯- =)12()316541(-⨯+- -------- 2分 =4481881⨯+⨯-⨯- ------- 3分 =4103-+- ------------------ 4分= 1618+-- -------------------- 4分 =3 --------------------------------- 5分 = 7 ------------------------------------- 5分四.计算与化简(每小题5分,共16分)20. y x y x 32--+-=y y x x 32-+-- --------------------------------------------------------------------------- 3分=y x 23-- --------------------------------------------------------------------------------------- 5分 21. ))(xy x x xy ----223(223= xy x x xy 262322+-+- ----------------------------------------------------------------- 2分=226223x x xy xy -++- ------------------------------------------------------------------- 4分 =24x xy -- -------------------------------------------------------------------------------------- 5分22.)3(4)352222b a ab ab b a +--(=b a ab ab b a 2222124515--- ---------------------------------------------------------- 2分=2293ab b a - ---------------------------------------------------------------------------- 3分 =223121931213)()()(⨯⨯-⨯⨯ --------------------------------------------------------- 5分 =41- --------------------------------------------------------------------------------------------- 6分 五.解答题(共28分)23.数轴略(描对一个点得1分) --------------------------------------------------------------- 4分 4-<211-<2-<)5.3(--(数化简了也正确) ---------------------------------- 5分 24.⑴ 解:-8+18+2-16+11-5=2 km -------------------------------------------------- 2分 答:该养护小组最后到达的地方在出发点的东边,距出发点2 km. -------- 3分⑵ 60511162188=-+++-+++++-km -------------------------------- 5分305.060=⨯L ------------------------------------------------------------------------------ 6分 答:这次养护共耗油30升. ----------------------------------------------------------- 7分25.⑴ 5.5 ----------------------------------------------------------------------------------------------- 1分⑵ a =20-(1+4+2+2+5)=6 ------------------------------------------------------------ 1分 365.25)2(2)5.1(4113=⨯+⨯-+⨯-+⨯+⨯-千克 --------------------------- 4分 答:与标准重量比较,这20筐葡萄总计超过了3千克. ---------------------- 5分 ⑶ 30332015=+⨯千克 -------------------------------------------------------------------- 6分 24248303=⨯元 ---------------------------------------------------------------------------- 7分 答:出售这20筐葡萄可卖2424元. --------------------------------------------------- 8分26.⑴ =①S 22b a -,=②S ))((b a b a -+ (不化简不影响得分) 2分⑵ ①S =②S ------------------------------------------------------------------------------------- 4分 相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和. ------------------------------------------------------------------------------------ 6分 ⑶ 2220142016- (直接计算平方并作差不得分)=)20142016)(20142016(-+=4030×2=8060 ------------------------------------------------------------------------------------------ 8分。

2016-2017学年苏教版七年级数学上册期中试卷及答案3

2016-2017学年苏教版七年级数学上册期中试卷及答案3

2016-2017学年第一学期七年级数学期中测试卷题号 1 2 3 4 5 6 7 8 9 10 答案1.计算(-2)2的结果是 A .0 B .-2 C .4 D .-82.下列各数22200923122(3) ,0 ,() , ,(1) ,2 ,(8) , 274---------中,正数有A .2个B .3个C .4个D .5个3.与a -b 互为相反数的是A .a+bB .a -bC .-b -aD .b -a4.下列运算正确的是A .5x -2x=3B .xy 2-x 2y=0C .a 2 +a 2 =a 4D .222211333xy xy xy -= 5.若n 为整数,则2n+1是A .奇数B .偶数C .素数D .合数 6.若n b a 425与327b a m -是同类项,则m 、n 的取值为 A .m=2,n=3 B .m=4,n=2 C .m=3,n=3 D .m=4,n=3 7.已知24a -=,则a 的值为 A .6 B .-2 C .6或-2 D .-6或2 8.有理数a 、b 在数轴上的位置如图示,则A .a+b<0B .a+b>0C .a -b=0D .a -b>0 9.已知x 、y 互为相反数,a 、b 互为倒数,m 的绝对值是3.则22x ym ab m+++的值 为A .12B .10C .9D .11 10.已知a+b=4,c -d=-3,则(b+c)-(d -a)的值为 A .7 B .-7 C .1 D .-1 二、填空题(本题20分,每空2分)11.用代数式表示:比a 的3倍大2的数____________. 12.用科学记数法表示:380500=_____________.班级 学号 姓名 考试号 座位号13.单项式2323a b -的系数是 . 14.如果一个数的平方等于它的绝对值,那么这个数是__________. 15.比较大小:78-______910-. 16.绝对值大于2而小于5的整数之和是_______________.17.当x=-2时,代数式3x+2x 2-1与代数式x 2-3x 的差是__________. 18.已知代数式22a a -值是4,则代数式2136a a +-的值是_____________.19.观察下更算式:1+3=2 2,1+3+5=3 2,1+3+5+7=4 2,1+3+5+7+9=5 2…………,请你猜测1+3+5+……+2n -1=________________.20.在数1、2、3、4、……、2009、2010的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:_____ ___ __ ______. 三、解答题(9大题,共60分) 21.计算(本题24分)(1) 2111943+-+-- (2) 3×(—4)+(—28)÷7(3) 36926521⨯⎪⎭⎫ ⎝⎛-- (4) ()⎪⎭⎫⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-⨯3255.294321(5)2)3(315131511-⨯-⎪⎭⎫ ⎝⎛-÷- (6)24312111[3()(1)]()2342-⨯⨯---+÷-22.化简(本题6分)(1) a 2-3a+8-3a 2+4a -6 (2) )212(44622ab a ab a +-+23.先化简,再求值.(本题12分)(1)(5a 3+3)-(1-2a)+3(3a -a 3),其中a=-1.(2)()22222322x y xy xy x y ⎡⎤-++⎣⎦,其中12x =,y=-2.(3) 已知A= 5x 2+4x –1,B= –x 2–3x+3,C= 8–7x –6x 2,求A –B+C 的值24.(本题6分)回答下列问题:(1)填空:①()223⨯= ② 2223⨯=③2182⎛⎫-⨯ ⎪⎝⎭= ④22182⎛⎫-⨯ ⎪⎝⎭=⑤3122⎛⎫-⨯ ⎪⎝⎭= ⑥33122⎛⎫-⨯ ⎪⎝⎭= (2)想一想:(1)中每组中的两个算式的结果是否相等? (3)猜一猜:当n 为正整数时,()nab 等于什么?(4)试一试:2009200912123⎛⎫⎛⎫⨯- ⎪⎪⎝⎭⎝⎭结果是多少?25.(本题6分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱剩余油量为30升.(假设行驶过程中汽车的耗油量是均匀的.)(1)写出用行驶路程x(千米)来表示剩余油量Q(升)的代数式;(2)当x=300千米时,求剩余油量Q的值;(3)当油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.26.(本题6分)某股民上星期五买进某公司股票1000股,每股20元,下表为本周内每日(1)星期三收盘时,每股是多少元?(2)本周内最高收盘价是每股多少元? 收盘价最低是每股多少元?(3)已知此股民买进和卖出股票时都要付0.15%的手续费和卖出时0.1%的交易税,如果他在星期五以收盘价将股票全部卖出,他的收益情况如何?初一数学期中考试答案11、 3a +2 12、510805.3⨯ 13、 32-14、 0和1 15、 > 16、0 17、—9 18、13 19、2n 20、—1+2+3—4—5+…+2007—2008—2009+2010 三、解答题:21、(1) 211-194-3-++ (2) 72843÷+⨯)(-)(- =(-3-4-11)+(19+2) (1’) =-12+(-4) (2’)=-(3+4+11)+(19+2) (1’) =-16 (2’) =-18+21 (1’) = 3 (1’)(3) 36926521⨯⎪⎭⎫⎝⎛-- (4) ()⎪⎭⎫⎝⎛-÷-⨯⎪⎭⎫ ⎝⎛-⨯3255.294321=369236653621⨯-⨯-⨯ (2’) =)253()25(9435-⨯-⨯-⨯)( (2’)=18-30-8 (1’) =)253259435(⨯⨯⨯- (1’) =-20 (1’) =-2 (1’) (5)2)3(315131511-⨯-⎪⎭⎫ ⎝⎛-÷- (6) 24312111[3()(1)]()2342-⨯⨯---+÷- =931)152(56⨯-÷-(2’) =)81(41]1943[211-÷+-⨯⨯- (1’) =3)215(56-⨯ (1’) =)8(41]134[211-⨯+-⨯- (1’) =39- =)8(4131211-⨯+⨯- (1’)=6 (1’) =67)2(611-=-+- (1’)22、(1)原式=(223a a -)+(a a 43+-)+(8-6) (2’) = 222++-a a (1’)(2)原式=)28(4622ab a ab a +-+ (1’) =ab a ab a 284622--+ (1’) =ab a 222+- (1’) 23、(1) 原式=33392135a a a a -++-+ (1’) =(3335a a -)+(a a 92+)+(3-1) (1’) =21123++a a (1’)当a= -1时 21123++a a =2)1(11)1(23+-⨯+-⨯ (2’)=112112-=+-- (1’)(2)原式=]423[22222y x xy xy y x ++- (1’) =y x xy xy y x 22224232--- (1’) =2252xy y x -- (1’)当2,21-==y x 时, 2252xy y x --=22)2()21(5)2()21(2-⨯⨯--⨯⨯- (2’)= -9 (1’) (3)A-B+C=)678()33(145222x x x x x x --++----+ (2’) =22267833145x x x x x x --+-++-+ (2’) =4 (2’)24、(1) ①36 ②36 (两空1分,错一个全扣)③16 ④16 (1’)⑤-1 ⑥-1 (1’)(2) 相等 (1’) (3) nnb a (1’)(4)-1 (1’)25、(1)Q=45-0.1x (2’)(2)当x=300时Q=15 (2’)(3)当x=400时Q=5 >3 ,所以能在汽车报警前回家(2’)26、(1)周三收盘时,股价为20.6元(2’)(2)最高21.6元;最低20.1元。

【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案

【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案


2
1 B 、8 C 、 1
A、 6
8
D 、3 2
7. 某商品进价 a 元,商店将价格提高 30%作零售价销售, 在销售旺季过后, 商店以 8 折(即
售价的 80%)的价格开展促销活动,这时一件商品的售价为(

A.a 元; B.0.8a

C.1.04a
元;
D.0.92a 元
8.已知:如图,点 C 是线段 AB的中点,点 D 是线段 BC的中点, AB=20cm,那么线段 AD
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
1.- 2016 的相反数是(

A.
1
2016
1
B.
2016
C . 6102
D . 2016
2.有理数 ( 1)2 , ( 1)3 , 12 ,

A、 2n 1 3n 2
B
、 2n 2 1 n
C 、 2n 1 3n 2
11. 下列图形 ( 如图所示 ) 经过折叠不能围成正方体的是 (
D

2n
2
1
n
)
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
C. ax=-ay D.3-ax=3-ay
6、现规定一种新运算“ * ”:a* b= a b ,如 3*2= 32 =9,则( 1 ) *3= (

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。

2016--2017学年度上期中七年级数学试卷

2016--2017学年度上期中七年级数学试卷

第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。

2016学年江苏省常州市金坛二中七年级(上)数学期中试卷带参考答案

2016学年江苏省常州市金坛二中七年级(上)数学期中试卷带参考答案

2015-2016学年江苏省常州市金坛二中七年级(上)期中数学试卷一、细心填一填(1~7题每空1分,8~10题每空2分,共19分)1.(3分)﹣(﹣5)的相反数是;的倒数是;绝对值等于3的数是.2.(2分)若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9,﹣3;则两名学生的实际得分为分,分.3.(1分)太阳的半径约为696000千米,这个数据用科学记数法表示为千米.4.(2分)单项式﹣的系数是,次数是.5.(1分)已知单项式3a2b m﹣1与3a n b的和仍为单项式,则m+n=.6.(2分)已知A=a+a2+a3+a4+…+a2n,若a=1,则A=;若a=﹣1,则A=.7.(2分)如图,一个表面涂满颜色的正方体,现将棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;各面都没有涂色的有个.8.(2分)若a+b+c=0,则(a+b)(b+c)(c+a)+abc=.9.(2分)按照下图所示的操作步骤,若输出y的值为22,则输入的值x为.10.(2分)如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字.电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“0”的圆圈开始,按逆时针方向跳了2015次后,落在一个圆圈中,该圆圈所标的数字是.二、精心选一选(每小题3分,共30分)11.(3分)下列几种说法正确的是()A.﹣a一定是负数B.一个有理数的绝对值一定是正数C.倒数是本身的数为1D.0的相反数是012.(3分)下列比较大小正确的是()A.﹣(﹣3)<+(﹣3)B.C.﹣|﹣12|>11 D.13.(3分)有理数a、b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.大于等于0 D.小于等于014.(3分)下列各式的计算,正确的是()A.3a+2b=5ab B.5y2﹣3y2=2C.﹣12x+7x=﹣5x D.4m2n﹣2mn2=2mn15.(3分)数轴上一点A,一只蚂蚁从A出发爬了5个单位长度到了原点,则点A所表示的数是()A.5 B.﹣5 C.±5 D.±1016.(3分)下列各式中值必为正数的是()A.|a|+|b| B.a2+b2C.a2+1 D.a17.(3分)a是一个三位数,b是一个两位数,若把b放在a的左边,组成一个五位数,则这个五位数为()A.ba B.b+a C.100b+a D.1000b+a18.(3分)已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定19.(3分)小明用如图的胶滚沿从左到右的方向将图案滚涂到墙上,所给的四个图案中符合胶滚的图案的是()A.B.C.D.20.(3分)观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A.3n﹣2 B.3n﹣1 C.4n+1 D.4n﹣3三、用心算一算(21、22题每小题16分,23题5分,共29分)21.(16分)计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19);(2)(﹣﹣)×(﹣60);(3)﹣14﹣×[2﹣(﹣3)2];(4)﹣9×57.22.(8分)化简(1)4xy﹣3x2﹣3xy+2x2;(2)﹣3(2x2﹣xy)﹣(x2+xy﹣6)23.(5分)先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1)+(2﹣a2)+4a,其中a=﹣2.四、大胆试一试(共22分)24.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米)14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?25.某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)26.定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=.(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n);d ()=d(m)﹣d(n).根据运算性质,填空:=,若d(3)=0.477,则d(9)=,d(0.3)=.(3)下表中与x数对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数并改正.27.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,图②是边长为m﹣n的正方形.(1)请用图①中四个小长方形和图②中的正方形拼成一个大正方形,画出示意图(要求连接处既没有重叠,也没有空隙);(2)请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积.方法1:,方法2.(3)请直接写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.28.阅读下面一段文字回答相关问题:数轴上表示a的点可简称为“点a”.在数轴上理解|a|,就是点a到原点的距离,如|﹣3|指数轴上点﹣3到原点的距离,而|a|可以写成|a﹣0|,因此这种理解可以推广,|a﹣b|是指数轴上表示点a与点b之间的距离.如:|3﹣2|指数轴上点3与点2之间的距离,值为1;|(﹣3)﹣(﹣2)|指数轴上点(﹣3)与点(﹣2)之间的距离,值为1.问题:(1)|a﹣1|指数轴上表示点和点之间的距离;若|a﹣1|的值为1,则a=.(2)|a+2|指数轴上点a和点之间的距离;(3)若|a﹣3|与|a+2|的和为5,且a为整数,则a可以取得哪些数?(4)若|a﹣3|与|a+2|的和为7,则整数a=.2015-2016学年江苏省常州市金坛二中七年级(上)期中数学试卷参考答案与试题解析一、细心填一填(1~7题每空1分,8~10题每空2分,共19分)1.(3分)﹣(﹣5)的相反数是﹣5;的倒数是﹣;绝对值等于3的数是3或﹣3.【解答】解:根据相反数和倒数的定义得:∵﹣(﹣5)=5,∴﹣(﹣5)的相反数为﹣5;∵﹣2=﹣,∴﹣2的倒数为,根据绝对值的定义得:绝对值等于3的数是:3或﹣3.2.(2分)若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9,﹣3;则两名学生的实际得分为94分,82分.【解答】解:试标准成绩定为85分,规定高于标准记为正,则低于标准记为负,因为两位学生的成绩分别记作:+9,﹣3所以两名学生的实际得分为85+9=94分;85﹣3=82分.3.(1分)太阳的半径约为696000千米,这个数据用科学记数法表示为 6.96×105千米.【解答】解:696000=6.96×105,故答案为:6.96×105.4.(2分)单项式﹣的系数是﹣,次数是5.【解答】解:∵﹣=﹣a2b3,∴﹣的系数是﹣,次数是2+3=5.故答案为:﹣,5.5.(1分)已知单项式3a2b m﹣1与3a n b的和仍为单项式,则m+n=4.【解答】解:∵单项式3a2b m﹣1与3a n b的和仍为单项式,∴3a2b m﹣1与3a n b为同类项,∴n=2,m﹣1=1,∴m=2,n=2,∴m+n=4.故答案为:4.6.(2分)已知A=a+a2+a3+a4+…+a2n,若a=1,则A=2n;若a=﹣1,则A=0.【解答】解:当a=1时,A=1+1+…+1=2n;当a=﹣1时,A=﹣1+1﹣1+1…﹣1+1=0,故答案为:2n;0.7.(2分)如图,一个表面涂满颜色的正方体,现将棱三等分,再把它切开变成若干个小正方体,两面都涂色的有12个;各面都没有涂色的有1个.【解答】解:两面都涂色是中间那层,边上的部分共有12个各面都没有涂色的只有最中间那个,所以只有一个.故答案为:12;1.8.(2分)若a+b+c=0,则(a+b)(b+c)(c+a)+abc=0.【解答】解:∵a+b+c=0,∴a+b=﹣c,b+c=﹣a,c+a=﹣b,∴(a+b)(b+c)(c+a)+abc,=﹣c•(﹣a)•(﹣b)+abc,=﹣abc+abc,=0,故答案是0.9.(2分)按照下图所示的操作步骤,若输出y的值为22,则输入的值x为±3.【解答】解:由题意得3x2﹣5=22解得x=±3.故答案为±3.10.(2分)如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字.电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“0”的圆圈开始,按逆时针方向跳了2015次后,落在一个圆圈中,该圆圈所标的数字是1.【解答】解:数字11、10、9、8、7、6、5、4、3、2、1、0这12个数一循环,∵2015÷12=167…11,∴该圆圈所标的数字是1.故答案为:1.二、精心选一选(每小题3分,共30分)11.(3分)下列几种说法正确的是()A.﹣a一定是负数B.一个有理数的绝对值一定是正数C.倒数是本身的数为1D.0的相反数是0【解答】解:∵当a是负数时,﹣a一定是正数,故本选项错误.∵0的绝对值是0,∴有理数的绝对值一定是正数是错误的,故本选项错误.∵倒数是本身的数还有﹣1,故本选项错误.∵0的相反数是0,故本选项正确.故选:D.12.(3分)下列比较大小正确的是()A.﹣(﹣3)<+(﹣3)B.C.﹣|﹣12|>11 D.【解答】解:A、∵﹣(﹣3)=3>0,+(﹣3)=﹣3<0,∴﹣(﹣3)>+(﹣3),故本选项错误;B、∵﹣<0,﹣<0,|﹣|=>|﹣|=,∴﹣<﹣,故本选项正确;C、∵﹣|﹣12|=﹣12<0,11>0,∴﹣|﹣12|>11,故本选项错误;D、∵﹣|﹣|=﹣<0,﹣(﹣)=>0,∴﹣|﹣|<﹣(﹣),故本选项错误.故选:B.13.(3分)有理数a、b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.大于等于0 D.小于等于0【解答】解:根据图可得:a<0,b>0,|b|>|a|,则a+b>0;故选:A.14.(3分)下列各式的计算,正确的是()A.3a+2b=5ab B.5y2﹣3y2=2C.﹣12x+7x=﹣5x D.4m2n﹣2mn2=2mn【解答】解:A、3a与2b不是同类项,不能合并,故错误;B、5y2﹣3y2=2y2,故错误;C、正确;D、4m2n与2mn2不是同类项,不能合并,故错误.故选:C.15.(3分)数轴上一点A,一只蚂蚁从A出发爬了5个单位长度到了原点,则点A所表示的数是()A.5 B.﹣5 C.±5 D.±10【解答】解:A到原点的距离是5个单位长度.则A所表示的数是:±5.故选C.16.(3分)下列各式中值必为正数的是()A.|a|+|b| B.a2+b2C.a2+1 D.a【解答】解:A、当a=0,b=0时,此式不符合条件,故本选项错误;B、当a=0,b=0时,此式不符合条件,故本选项错误;C、无论a取何值,a2+1的值都为正数,故本选项正确;D、当a=0或负数时,此式不符合条件,故本选项错误;故选:C.17.(3分)a是一个三位数,b是一个两位数,若把b放在a的左边,组成一个五位数,则这个五位数为()A.ba B.b+a C.100b+a D.1000b+a【解答】解:根据题意得:这个五位数为1000b+a.故选:D.18.(3分)已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定【解答】解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.故选:C.19.(3分)小明用如图的胶滚沿从左到右的方向将图案滚涂到墙上,所给的四个图案中符合胶滚的图案的是()A.B.C.D.【解答】解:根据旋转的性质和胶滚上的图案可知,横向状态转为正立状态,胶滚滚出的图案是.故选:C.20.(3分)观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A.3n﹣2 B.3n﹣1 C.4n+1 D.4n﹣3【解答】解:第n个点阵中的点的个数是1+4(n﹣1)=4n﹣3.故选D.三、用心算一算(21、22题每小题16分,23题5分,共29分)21.(16分)计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣19);(2)(﹣﹣)×(﹣60);(3)﹣14﹣×[2﹣(﹣3)2];(4)﹣9×57.【解答】解:(1)原式=﹣3﹣4﹣11+19=1;(2)原式=﹣40+5+4=﹣31;(3)原式=﹣1﹣×(﹣7)=﹣1+=;(4)原式=(﹣10+)×57=﹣570+3=﹣567.22.(8分)化简(1)4xy﹣3x2﹣3xy+2x2;(2)﹣3(2x2﹣xy)﹣(x2+xy﹣6)【解答】解:(1)4xy﹣3x2﹣3xy+2x2,=(4xy﹣3xy)+(2x2﹣3x2),=xy﹣x2;(2)﹣3(2x2﹣xy)﹣(x2+xy﹣6),=﹣6x2+3xy﹣x2﹣xy+6,=﹣7x2+2xy+6.23.(5分)先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1)+(2﹣a2)+4a,其中a=﹣2.【解答】解:原式=4a2﹣3a﹣2a2﹣a+1+2﹣a2+4a=a2+3,当a=﹣2时,原式=(﹣2)2+3=7.四、大胆试一试(共22分)24.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米)14,﹣9,18,﹣7,13,﹣6,10,﹣5,问:(1)B地在A地的东面,还是西面?与A地相距多少千米?(2)这一天冲锋舟离A最远多少千米?(3)若冲锋舟每千米耗油2升,油箱容量为100升,求途中至少需要补充多少升油?【解答】解:(1)14﹣9+18﹣7+13﹣6+10﹣5=28,即B在A东28千米.(2)累计和分别为5,23,16,29,23,33,28,因此冲锋舟离A最远33千米.(3)各数绝对值和为14+9+18+7+13+6+10+5=82,因此冲锋舟共航行82千米,则应耗油82×2=164升,则途中至少应补充64升油.25.某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为1500a 元,乙旅行社的费用为1600a﹣1600元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为7a.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)【解答】解:(1)由题意得,甲旅行社的费用=2000×0.75a=1500a;乙旅行社的费用=2000×0.8(a﹣1)=1600a﹣1600;(2)将a=20代入得,甲旅行社的费用=1500×20=30000(元);乙旅行社的费用=1600×20﹣1600=30400(元)∵30000<30400元∴甲旅行社更优惠;(3)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a﹣3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.26.定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=3.(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n);d ()=d(m)﹣d(n).根据运算性质,填空:=5,若d(3)=0.477,则d(9)=0.954,d(0.3)=﹣0.523.(3)下表中与x数对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数并改正.【解答】解:(1)根据题意可得,d(103)可表示为:10b=103,得b=3.故答案为:3.(2)∵若m、n为正数,则d(mn)=d(m)+d(n),d(3)=0.477∴=,d(9)=d(3×3)=d(3)+d(3)=0.477+0.477=0.954,d(0.3)=d()=d(3)﹣d(10)=0.477﹣1=﹣0.523故答案为:5,0.954,﹣0.523(3)若d(3)≠2a﹣b,则d(9)=2d(3)≠4a﹣2b,d(27)=3d(3)≠6a﹣3b,从而表中有三个劳格数是错误的,与题设矛盾,∴d(3)=2a﹣b,d(9)=4a﹣2b,d(27)=6a﹣3b都是正确的;若d(5)≠a+c,则d(2)=d(10)﹣d(5)=1﹣d(5)≠1﹣a﹣c,∴d(8)=3d(2)≠3﹣3a﹣3c,d(6)=d(3)+d(2)≠1+a﹣b﹣c,表中也有三个劳格数是错误的,与题设矛盾,∴d(5)=a+c,d(6)=1+a﹣b﹣c,d(8)=3﹣3a﹣3c都是正确的;∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)﹣d(10)=3a﹣b+c﹣1,d(12)=d(3)+2d(2)=2﹣b﹣2c.27.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,图②是边长为m﹣n的正方形.(1)请用图①中四个小长方形和图②中的正方形拼成一个大正方形,画出示意图(要求连接处既没有重叠,也没有空隙);(2)请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积.方法1:(m﹣n)2+2m•2n=(m+n)2,方法2(m+n)(m﹣n)=(m+n)2.(3)请直接写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a﹣b)2的值.【解答】解:(1)如右图:(2)方法1:(m﹣n)2+2m•2n=m2﹣2mn+n2+4mn=m2+2mn+n2=(m+n)2,方法2:(m+n)•(m+n)=(m+n)2;故答案为:(m﹣n)2+2m•2n=(m+n)2,(m+n)•(m+n)=(m+n)2.28.阅读下面一段文字回答相关问题:数轴上表示a的点可简称为“点a”.在数轴上理解|a|,就是点a到原点的距离,如|﹣3|指数轴上点﹣3到原点的距离,而|a|可以写成|a﹣0|,因此这种理解可以推广,|a﹣b|是指数轴上表示点a与点b之间的距离.如:|3﹣2|指数轴上点3与点2之间的距离,值为1;|(﹣3)﹣(﹣2)|指数轴上点(﹣3)与点(﹣2)之间的距离,值为1.问题:(1)|a﹣1|指数轴上表示点a和点1之间的距离;若|a﹣1|的值为1,则a=2或0.(2)|a+2|指数轴上点a和点﹣2之间的距离;(3)若|a﹣3|与|a+2|的和为5,且a为整数,则a可以取得哪些数?3,2,1,0,﹣1,﹣2(4)若|a﹣3|与|a+2|的和为7,则整数a=﹣3,4.【解答】解:(1)|a﹣1|指数轴上表示点a和点1之间的距离;若|a﹣1|的值为1,则a=2或0.故答案为:a,1,2或0;(2)|a+2|指数轴上点a和点﹣2之间的距离,故答案为:﹣2;(3)若|a﹣3|与|a+2|的和为5,且a为整数,则a可以取:3,2,1,0,﹣1,﹣2;故答案为:3,2,1,0,﹣1,﹣2;(4)若|a﹣3|与|a+2|的和为7,则整数a=﹣3,4,故答案为:﹣3,4.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

2016-2017七年级上期末数学试卷含答案解析

2016-2017七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。

江苏省常州市度七年级数学上学期期末考试试题(含解析) 苏科版-苏科版初中七年级全册数学试题

江苏省常州市度七年级数学上学期期末考试试题(含解析) 苏科版-苏科版初中七年级全册数学试题

某某省某某市2015-2016学年度七年级数学上学期期末考试试题一、填空题:每小题2分,共20分.1.﹣3的绝对值是.2.某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是℃.3.已知∠A=50°,则∠A的补角是度.4.若单项式与单项式﹣5x m y3是同类项,则m﹣n的值为.5.已知点C是线段AB的中点,线段BC=5,则线段AB的长为.6.如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字的小等边三角形重合.7.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.8.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b=.9.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是.10.若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画条直线.二、选择题:下列各题中都给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在()内,每小题3分,共18分.11.下列式子中,正确的是()A.(﹣2)2=8 B.(﹣3)2=﹣9 C.(﹣3)2﹣9 D.(﹣3)2=﹣612.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.13.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.1个B.2个C.3个D.4个14.某某是“全国文明城市”,在文明城市创建时,X老师特制了一个正方体模型,其展开图如图所示,则正方体中标有“建”字所在的面和标有哪个字所在的面相对?()A.创B.城C.市D.明15.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30° B.40° C.50° D.30°或50°16.已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A.4030 B.4031 C.4032 D.4033三、解答题:第17(1)(2)题每题4分,第18、19(1)(2)题每题6分,共26分.17.(1)计算:﹣5+(﹣2)2﹣(﹣3)(2)计算:﹣22×7﹣(﹣3)÷6﹣|﹣5|18.先化简,再求值:,其中x=2,y=.19.(1)解方程:2(y+6)=4﹣2(2y﹣1)(2)解方程:.四、解答题:第20题8分,第21题4分,第22题4分,第23题6分,第24题6分,共28分.20.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?21.图①是由大小相同的小正方体搭成的几何体.(1)请在图②中画出该几何体的俯视图和左视图;(2)如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有个正方体恰有两个面是红色,有个正方体恰有三个面是红色.22.如图,在∠AOB内有一点C.(1)过点C画CD垂直于射线OB,垂足为点D;(2)过点C画OB的平行线,交射线OA于点E;(3)过点E画射线OA的垂线,交CD的延长线于点H,试判断线段EH和线段CH的大小,即EHCH.(填<、>或=)23.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.五、操作与探究:本题8分.25.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD=°.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD 和∠COE之间的数量关系:.某某省某某市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、填空题:每小题2分,共20分.1.﹣3的绝对值是 3 ﹣.【考点】倒数;绝对值.【分析】求一个数的倒数,即用1除以这个数.【解答】解:﹣3的绝对值是3,﹣1.5的倒数是﹣,故答案为:3;﹣【点评】本题主要考查绝对值,倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是21 ℃.【考点】有理数的减法.【专题】应用题.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为15﹣(﹣6)=21℃.故答案为:21【点评】本题主要考查有理数的减法法则,关键是根据减去一个数等于加上这个数的相反数解答.3.已知∠A=50°,则∠A的补角是130 度.【考点】余角和补角.【专题】计算题.【分析】根据补角定义计算.【解答】解:∠A的补角是:180°﹣∠A=180°﹣50°=130°.【点评】熟知补角定义即可解答.4.若单项式与单项式﹣5x m y3是同类项,则m﹣n的值为 2 .【考点】同类项.【分析】根据同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.【解答】解:与单项式﹣5x m y3是同类项,得m=2,n﹣1=3.解得n=4.m﹣n=4﹣2=2,故答案为:2.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.5.已知点C是线段AB的中点,线段BC=5,则线段AB的长为10 .【考点】两点间的距离.【分析】根据线段中点的性质进行计算即可.【解答】解:∵C是线段AB的中点,线段BC=5,∴AB=2BC=10.故答案为:10.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义和性质是解题的关键.6.如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字7 的小等边三角形重合.【考点】旋转的性质.【分析】利用等边三角形的性质结合旋转角直接得出答案.【解答】解:由题意可得:标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字7的小等边三角形重合.故答案为:7.【点评】此题主要考查了旋转的性质,正确利用等边三角形的性质得出答案是解题关键.7.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b= 3 .【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据已知的新定义得:a*b=a﹣b﹣2,当a=2,b=﹣3时,原式=2+3﹣2=3,故答案为:3【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是﹣2187 .【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1,而其中某三个相邻数的和是5103,设第一个的数为x,由此即可得到关于x的方程,解方程即可求解.【解答】解:设第一个的数为x,依题意得x﹣3x+9x=5103,∴x=729,∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律,解题的关键是首先认真观察所给数字,然后找出隐含的规律即可解决问题.10.若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画条直线.【考点】直线、射线、线段.【专题】规律型.【分析】根据直线两两相交且不交于同一点,可得答案.【解答】解:平面内有n个点,过其中两点画直线,最多画条.故答案为:.【点评】本题考查了直线,直线两两相交且不交于同一点,每条直线都有(n﹣1)个交点,n条直线有n(n﹣1)个交点,每个交点都重复了一次,交点的总个数除以2.二、选择题:下列各题中都给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在()内,每小题3分,共18分.11.下列式子中,正确的是()A.(﹣2)2=8 B.(﹣3)2=﹣9 C.(﹣3)2﹣9 D.(﹣3)2=﹣6【考点】有理数的乘方.【分析】根据有理数的乘方计算解答即可.【解答】解:A、(﹣2)2=4,错误;B、(﹣3)2=9,错误;C、(﹣3)2=9,正确;D、(﹣3)2=9,错误;故选C.【点评】此题考查有理数的乘方问题,关键是根据有理数的乘方法则计算.12.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.【考点】方程的解.【分析】把x=2代入方程判断即可.【解答】解:A、把x=2代入方程,12≠3,错误;B、把x=2代入方程,4=4,正确;C、把x=2代入方程,2≠1,错误;D、把x=2代入方程,3≠0,错误;故选B【点评】此题考查方程的解问题,关键是把x=2代入方程,利用等式两边是否相等判断.13.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.1个B.2个C.3个D.4个【考点】绝对值;相反数.【分析】分别根据相反数、绝对值的概念分别判断即可.【解答】解:①任何数的绝对值都是非负数,所以绝对值最小是0,所以①正确;②绝对值等于它本身的数还有0,所以②不正确;③数轴上原点两侧的数,只有到原点的距离相等的数才互为相反数,所以③不正确;④两个负数比较时,绝对值大的反而小,所以④不正确;所以正确的只有一个,故选:A.【点评】本题主要考查绝对值的有关概念,解题时注意0的特殊性.14.某某是“全国文明城市”,在文明城市创建时,X老师特制了一个正方体模型,其展开图如图所示,则正方体中标有“建”字所在的面和标有哪个字所在的面相对?()A.创B.城C.市D.明【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:“创”与“城”是相对面,“建”与“明”是相对面,“文”与“市”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,掌握正方体的相对的面之间一定相隔一个正方形是解题的关键.15.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30° B.40° C.50° D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.【点评】本题考查的是角平分线的定义,解答≜此题时要根据OA与∠BOC的位置关系分两种情况进行讨论,不要漏解.16.已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A.4030 B.4031 C.4032 D.4033【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把x=﹣2015代入原式,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:当x=﹣2015时,原式=|(﹣2015)2﹣2014×2015+1|+|(﹣2015)2﹣2015×2016﹣1|=20152﹣2014×2015+1﹣20152+2015×2016+1=2015×+2=4030+2=4032.故选C【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.三、解答题:第17(1)(2)题每题4分,第18、19(1)(2)题每题6分,共26分.17.(1)计算:﹣5+(﹣2)2﹣(﹣3)(2)计算:﹣22×7﹣(﹣3)÷6﹣|﹣5|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣5+4+3=﹣5+7=2;(2)原式=﹣4×7+﹣5=﹣28+﹣5=﹣32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中x=2,y=.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=2,y=时,原式=﹣6+=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(1)解方程:2(y+6)=4﹣2(2y﹣1)(2)解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2y+12=4﹣4y+2,移项合并得:6y=﹣6,解得:y=﹣1;(2)去分母得:2(x+1)﹣3(2﹣3x)=12,去括号得:2x+2﹣6+9x=12,移项合并得:11x=16,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题:第20题8分,第21题4分,第22题4分,第23题6分,第24题6分,共28分.20.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.图①是由大小相同的小正方体搭成的几何体.(1)请在图②中画出该几何体的俯视图和左视图;(2)如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有 1 个正方体恰有两个面是红色,有 2 个正方体恰有三个面是红色.【考点】作图-三视图.【分析】(1)由已知条件可知,俯视图有2列,每列小正方形数目分别为3,2;左视图有3列,每列小正方形数目分别为3,2,1.据此可画出图形;(2)有2个面是黄色的应该是第一列正方体中最底层中间那个;有3个面是黄色的应是第一列最底层最后面那个和第一列第二层最后面的那个,依此即可求解.【解答】解:(1)如图所示:(2)由分析可知:如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有1个正方体恰有两个面是红色,有2个正方体恰有三个面是红色.故答案为:1,2.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.22.如图,在∠AOB内有一点C.(1)过点C画CD垂直于射线OB,垂足为点D;(2)过点C画OB的平行线,交射线OA于点E;(3)过点E画射线OA的垂线,交CD的延长线于点H,试判断线段EH和线段CH的大小,即EH >CH.(填<、>或=)【考点】作图—复杂作图.【分析】(1)利用直角三角板,一条边与BO重合,沿OB所在直线平移,使另一条直角边过C,再画直线即可;(2)根据过直线外一点做已知直线平行线的方法过点C画OB的平行线即可;(3)利用直角三角板,一条边与AO重合,沿OA所在直线平移,使另一条直角边过E,再画直线即可;根据垂线段最短可得EH>CH.【解答】解:(1)(2)如图所示:;(3)如图所示:EH>CH.【点评】此题主要考查了复杂作图,以及垂线段的性质,关键是掌握过直线外一点作已知直线平行线和垂线的方法.23.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?【考点】一元一次方程的应用.【分析】分别表示出140元时的利润以及降价后的利润,再利用销量得出利润,进而得出等式求出答案.【解答】解:设剩下的衬衫促销价格定为每件x元时,销售完这批衬衫恰好盈利10800元,根据题意可得:(140﹣120)×500+(x﹣120)×100=10800,解得:x=128.答:剩下的衬衫促销价格定为每件128元时,销售完这批衬衫恰好盈利10800元.【点评】此题主要考查了一元一次方程的应用,根据题意分别表示出降价前后的利润是解题关键.24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角的性质和角平分线的定义求出∠BOE,根据图形求出∠BOF的度数,计算即可.【解答】解:∠BOD=∠AOC=74°,∵OE平分∠BOD,∴∠BOE=∠BOD=37°,∠BOF=∠DOF﹣∠BOD=16°,∴∠EOF=∠BOE+∠BOF=53°.【点评】本题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.五、操作与探究:本题8分.25.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD=40 °.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD 和∠COE之间的数量关系:∠BOD+2∠COE=360°.【考点】角的计算;角平分线的定义;余角和补角;角的大小比较.【专题】推理填空题;开放型;线段、角、相交线与平行线.【分析】(1)由互余得∠DOE度数,进而由角平分线得到∠AOE度数,根据∠AOC=∠AOE﹣∠COE、∠BOD=180°﹣∠AOC﹣∠COD可得∠BOD度数;(2)由互余及角平分线得∠DOE=90°﹣∠COE=∠AOE,∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,最后根据∠BOD=180°﹣∠AOC﹣∠COD可得;(3)由互余得∠DOE=90°﹣∠COE,由角平分线得∠AOD=2∠DOE=180°﹣2∠COE,最后根据∠BOD=180°﹣∠AOC﹣∠COD可得;(4)由互余得∠DOE=∠COE﹣90°,由角平分线得∠AOD=2∠DOE=2∠COE﹣180°,最后根据∠BOD=180°﹣∠AOD可得;【解答】解:(1)∠EOD=∠COD﹣∠COE=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=2×70°=140°,∴∠BOD=180°﹣∠AOD=180°﹣140°=40°.(2)∠BOD=2∠COE.理由如下:∵∠COD=90°,∴∠DOE=90°﹣∠COE,∵OE平分∠AOD,∴∠AOE=∠DOE=90°﹣∠COE,∴∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,∵A、O、B在同一直线上,∴∠BOD=180°﹣∠AOC﹣∠COD=180°﹣90°﹣(90°﹣2∠COE)=2∠COE,即:∠BOD=2∠COE.(3)∠BOD=2∠COE,理由如下;∵OE平分∠AOD,∴∠AOD=2∠EOD,∵∠BOD+∠AOD=180°,∴∠BOD+2∠EOD=180°.∵∠COD=90°,∴∠COE+∠EOD=90°,∴2∠COE+2∠EOD=180°,∴∠BOD=2∠COE;(4)∵∠COD=90°,∴∠DOE=∠COE﹣90°,又∵OE平分∠AOD,∴∠AOD=2∠DOE=2∠COE﹣180°,∴∠BOD=180°﹣∠AOD=180°﹣2∠COE+180°=360°﹣2∠COE,即:∠BOD+2∠COE=180°.故答案为:(1)40°,(4)∠BOD+2∠COE=360°.【点评】本题主要考查利用互余、互补及角平分线进行角的计算,求∠BOD时可逆向推理得到与∠COE 间关系,灵活运用以上三点是关键.。

苏科版2016-2017学年度上学期七年级数学初一上册期末考试模拟试题 含答案

苏科版2016-2017学年度上学期七年级数学初一上册期末考试模拟试题 含答案

2016-2017学年第一学期期末模拟考试考试七年级数学试卷考试时间:100分钟卷面总分:100分一.选择题(每题3分,共24分)1.-的相反数是()A.B.﹣ C.3 D.﹣32.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>03.下列计算正确的是()A.a3+a3=a6 B.2x+3y=5xy C.a3•a=a4D.(2a2)3=6a54.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.25.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A.(a-20%)元B.(a+20%)元C.a元D.a元6.下列四个图形中是正方体的平面展开图的是()A.B.C. D.7.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°8.如图三角形的顶点落在折叠后的四边形内部,则∠γ与∠α+∠β之间的关系是()A.∠γ=∠α+∠β B.2∠γ=∠α+∠βC.3∠γ=2∠α+∠β D.3∠γ=2(∠α+∠β)第 7 题第 8 题二.填空题(每题2分,共20分)9.某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件(填“合格”或“不合格”).10.写出一个在三视图中俯视图与主视图完全相同的几何体.11.若a﹣2b=3,则9﹣2a+4b的值为.12.若a x=2,a y=5,则a x+y= .13.一个角的余角比它的补角的一半少20°,则这个角为.14.某程序如图,当输入x=5时,输出的值为15.如图,点O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,若∠COE等于64°,则∠AOD等于度.16.对于实数a,b,c,d,规定一种数的运算:=ad﹣bc,那么当=10时,x= .17.已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长为.18.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是.三.解答题(8题,共56分)19.(4分)计算:|﹣9|÷3+(﹣)×12﹣(﹣2)2.20.(每题4分,共8分)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2).21.(5分)先化简再求值:7a2b+(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2),其中(a+2)2+|b ﹣|=0.22.(7分)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.23.(6分)已知,n为正整数,且x2n=7,求(3x3n)2﹣4(x2)2n的值.24.(6分)如图,已知M是线段AB的中点,N在AB上,MN=AM,若MN=2m,求AB的长.25.(10分)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?26.(10分)已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当∠AOC=40°,点C、E、F在直线AB的同侧(如图1所示)时,求∠BOE和∠COF 的度数.(2)当∠AOC=40°,点C与点E、F在直线AB的两旁(如图2所示)时,求∠BOE和∠COF的度数.(3)当∠AOC=n°,请选择图(1)或图(2)一种情况计算,∠BOE=∠COF= (用含n的式子表示)(4)根据以上计算猜想∠BOE与∠COF的数量关系(直接写出结果).答案一.选择题1-5 ABCBC 6-8 BBB 二.填空题(9).不合格 (10).正方形或球 (11).3 (12).10 (13).40° (14).-10 (15).26 (16) .-1 (17).10或50 (18).垂直 三.解答题(19). -3 (20)①y=516 ②x=221(21).-a 2b+11ab 2 -215(22).①28 ②③ 2 (24).AB=10 cm (25)①80公斤 ②a=1.5③设张家雇人x 人,则王家雇人2x 人,其中机械采摘的有人,手工采摘的有人,∵张家付给雇工工钱总额为14400元∴80×1.5×x×8=14400解得x=15王家这次采摘棉花的总重量是:8×35××8+8×10××8=35200(公斤).(26).①∠BOE=50°∠COF=25°②∠BOE=130°∠COF=65°1n°③图1 ∠BOE=90°- n°∠COF=45°-21n°(选一图2 ∠BOE= 90°+ n°∠COF=45°+2种即可)1∠BOE④∠COF=2。

2016-2017学年苏教版七年级数学上册期中试卷及答案15

2016-2017学年苏教版七年级数学上册期中试卷及答案15

七年级数学期中试题 第 2 页 共 6 页输 出×(-2) 输入x ( )2A .4B .2-C .4-D .4或4-9、一列火车长m 米,以每秒n 米的速度通过一个长为p 米的桥洞,用代数式表示它 刚好全部通过桥洞所需的时间为 ( ) A .n m p +秒 B .np 秒 C . n mn p +秒 D .n mp -秒 10、已知x =3,y =4,且x >y ,则2x -y 的值为 ( ) A .+2 B .±2 C .+10 D .-2或+10 二、填充(每小题2分,计20分) 11、最大的负整数是_________.12、绝对值大于3小于6的所有整数是 .13、“x 的4倍与-2的和除以5”列式为________________.14、右上图是一数值转换机,若输出的结果为-32,则输入的x 的值为 .15、靖江2008年人口普查结果显示,靖江人口已达66.5万,请你将66.5万用科学 记数法表示应是 .16、4-(+1)+(-6)-(-5)写成省略加号的和的形式为 . 17、冬天某日上午的温度是3℃,中午上升了5℃达到最高温度,到夜间最冷时下降了10℃,则这天的日温差是_______℃.18、已知关于x 的方程:ax +4=1-2x 恰为一元一次方程,那么系数a 应该满足的条件为______________. 19、单项式33mx y -与单项式412nx y 是同类项,则m -2n= . 20、将一张长方形的纸对折,如图所示,可得到一条折痕(图中虚线),继续对折,对 折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么如果对折五次,可以得到 条折痕,对折n 次可以得到 条折痕.……七年级数学期中试题 第 3 页 共 6 页三、计算 (16分+18分=34分) 21、计算:(本题16分)(1).⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--614131412213 (2).137()(8)248--⨯-(3). 52)45()5(457--⨯-+⨯- (4). 1+[⎪⎭⎫ ⎝⎛⨯--315.011]×[()232--]22、化简及求值(本题8分+10分) (1).)1(2)39(31----a a (2) .)54(3)53(22mn n m mn n m ----(3))32(4)23(52222b a ab ab b a +--- ,其中2-=a ,1=b .(4)若x 2-3x +1=0,求代数式3x 2-[3x 2+2(x 2-x ) -4x -5]的值.七年级数学期中试题 第 4 页 共 6 页23、(本题5分)式子)232()12(222bx x x x x ax ---++-的值与x 无关,求b a ,的值。

(2021年整理)2016-2017苏教版七年级数学上册期末试卷

(2021年整理)2016-2017苏教版七年级数学上册期末试卷

(完整)2016-2017苏教版七年级数学上册期末试卷编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2016-2017苏教版七年级数学上册期末试卷)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2016-2017苏教版七年级数学上册期末试卷的全部内容。

2016年秋学期期末考试试卷初一数学2017。

1(考试时间:100分钟,试卷满分:110分)一、选择题(每题3分,共30分.)1.-6的相反数是( )A.6 B.-6 C.错误!D.-错误!2.计算错误!b的正确结果是()A.ab2B.-a错误!C.错误!b D.-错误!b3.单项式错误!b的系数和次数分别是()A.2,2 B.2,3 C.3,2 D.4,24.已知x=2是方程2x-5=x+m的解,则m的值是( )A.1 B.-1 C.3 D.-35.下列去括号正确的是( )A.a+(b-c)=a+b+c B.a-(b-c)=a-b-cC.a-(b-c)=a-b+c D.a+(b-c)=a-b+c6.下列叙述,其中不正确...的是( )A.两点确定一条直线(第7题图)B.同角(或等角)的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短7.如图,射线OC在∠AOB的内部,下列给出的条件中不能..得出OC是∠AOB的平分线的是( )A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.错误!∠AOB8.如图,小明用6个相同的小正方体搭成的立体图形研究几何(第8题图)体的三视图的变化情况,若由图1变到图2,不改变的是( )A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图9.在同一平面内,已知线段AB的长为10厘米,点A、B到直线l的距离分别为6厘米和4厘米,则符合条件的直线l的条数为( )A.2条B.3条C.4条D.无数条10.把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6),(8,10,12),(14,16,18,20),…,现有等式错误!=(i,j)表示正偶数m是第i组第j个数(从左往右数).如错误!=(1,1),错误!=(3,2),错误!=(4,3),则错误!可表示为()A.(45,19)B.(45,20)C.(44,19)D.(44,20)二、填空题(每空2分,共16分.)11.-3的倒数是.12.多项式2a3+b2-ab3的次数是.13.2017无锡马拉松赛将于2017年3月19日上午7:30发枪,本次比赛设全程马拉松、半程马拉松和迷你马拉松三个项目,其中迷你马拉松需跑3500米,3500用科学记数法表示为.14.某楼盘为促销打算降价销售,原价a元/平方米的套房,按八五折销售,人们购买该楼房每平方米可节省元.15.已知∠α=34°,则∠α的补角为°.16.用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2=°.(第16题图) (第17题图)17.如图,一个长方体的表面展开图中四边形ABCD是正方形,则根据图中数据可得原长方体的体积是cm3.18.小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本,笔记本买来后,小明、小华分别比小敏多拿了5本和7本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏元.三、解答题(共64分.)19.(本题满分8分)计算:(1)(-2)2-3×(-13)-|-5|;错误!×[2-(-3)].20.(本题满分8分)解方程:(1)2(x+8)=3x-3;错误!.21.(本题满分6分)先化简,再求值:错误!,其中a=-2,b=3.22.(本题满分8分)如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一点,且M为PA的中点,N为PB的中点.请你画出图形,观察MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.23.(本题满分8分)如图,直线AB、CD相交于点O,∠BOD=45°,按下列要求画图并回答问题:(1)利用三角尺,在直线AB上方画射线OE,使OE⊥AB;(2)利用圆规,分别在射线OA、OE上截取线段OM、ON,使OM=ON,连接MN;(3)利用量角器,画∠AOD的平分线OF交MN于点F;(4)直接写出∠COF = °.(第23题图)24.(本题满分8分)如图所示,直线AB 、CD 相交于点O ,OM ⊥AB .(1)若∠1=∠2,判断ON 与CD 的位置关系,并说明理由;(2)若∠1=14∠BOC ,求∠MOD 的度数.(第24题图) AB CM N DO 12 A BO DC25.(本题满分8分)2017年元旦期间,某商场打出促销广告,如下表所示.小欣妈妈两次购物分别用了134元和490元.(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.26.(本题满分10分)已知数轴上有A ,B ,C 三点,分别代表-30,-10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)甲,乙在数轴上的哪个点相遇? (2)多少秒后,甲到A ,B ,C 的距离和为48个单位?(3)在甲到A 、B 、C 的距离和为48个单位时,若甲调头并保持速度不变,则甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.备用图 -30 C B A -10 0 10甲 乙 -30C B A -10 0 10 甲 乙初一数学期末考试参考答案2017.1.(考试时间:100分钟,试卷满分:110分)一、选择题(每题3分,共30分.)1.A2.D3.B4.D5.C6.C7.B8.D9.10.A二、填空题(每空2分,共16分.)11.-错误! 12.413.3.5×103 14.0。

【苏科版】2016-2017学年七年级上期中考试数学试题(含答案)

【苏科版】2016-2017学年七年级上期中考试数学试题(含答案)

实验初级中学 初一数学期中试题....(考试时间:100分钟 满分:100 分)..一、选择题:(2分×8=16分)..1.2-的倒数是 A .2 B .-2 C .12 D .12- 2.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是 A .B .C .D .3.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是 A .6.75×103吨B .67.5×103吨C .6.75×104吨D .6.75×105吨4.下列式子中,是一元一次方程的是 A .3x +1=4xB .x +2>1C .x 2-9=0 D .2x -3y =05.下列各组中的两项,不是同类项的是 A .-x 2y 与2yx 2B .2πR 与π2RC .-m 2n 与21mn 2 D .23与326.下面的说法中,正确的是 A .若ac =bc ,则a =b B .若21-x =1,则x =2 C .若|x |=|y |,则x =yD .若byb x =,则x =y7.在一张挂历上,任意圈出同一列上的三个数的一定可能....是 A .14 B .33 C .66 D .698.现有五种说法:①-a 表示负数;②若x x -=,则x <0;③绝对值最小的无理数是0;④32y x -的系数是31-;⑤倒数等于本身的数是1 .其中正确..的有 A .1个 B .2个 C .3个 D .4个二、填空题(2分×8=16分)【苏科版】2016-2017学年七年级上期中考试数学试题(含答案) 姓名 考试证号 密封线内不要答题 ……………………………………………装………………………………订…………………………………………………………………9.比较大小:32-43-.10.在下列数:+3、+(-2.1)、-21、0、-|-9|中,正数有_________个. 11.一天早晨的气温为-3℃,中午上升了6℃,半夜又下降了7℃,则半夜气温是________℃. 12.已知多项式x -3xy a +1+x 3y -3x 4-1是关于x 、y 的五次多项式,则a = . 13.已知关于x 的方程332xa x -=+的解为2,则代数式221a a -+ 的值是 .14.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .15.随着计算机技术的迅速发展,电脑价格不断降低.某品牌电脑按原价降低m 元后,又降价20%,现售价为n 元,那么该电脑的 原价为___________元.16.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x 的值为 .三、解答题:17. (4分×6=24分)计算或化简: (1)-373-(-81)+(-674)+187; (2) )333264(-÷8 (3)34.0751331)72(34.03213⨯+⨯+-⨯-⨯ (4) ()⎪⎭⎫ ⎝⎛-⨯-÷-⎪⎭⎫ ⎝⎛-⨯-411232211222…(5) a 2―a ―4+2a ―3a 2 (6) 5a 2b +3(1-2ab 2)-2(a 2b -4ab 2)18.解方程:(4分×2=8分)(1)4-x =3(2-x ) (2) 1616352212--=+--x x x19.(6分) 先化简,再求值:5x 2-2(3y 2+2x 2)+3 (2y 2-xy ) 其中x =-12,y =-1.20.(7分)已知13y x =-+,223y x =-. (1)当x 取何值时,12y y =;(2)当x 取何值时,1y 的值比2y 的值的2倍大8.21.(7分) 泰兴交警大队一辆警车沿着一条南北方向的公路巡视,某天早晨从A 地出发,晚上到达B 地,约定向北为正方向,当天行驶记录如下(单位:千米)+18,-9,+7,-13, -6,+13, -6,-8.问:(1) B 地在A 地哪个方向?相距多少千米?(2) 若该警车每千米耗油0.1升,则整个巡视过程中共消耗多少升油?22.(8分) 为鼓励节约用水,某地推行阶梯式水价计费制,标准如下:每户每月用水不超过17m 3的按每立方米a 元计费;超过17 m 3按每立方米b 元计费.(1)小明家上月用水20 m 3,应交水费________________元(用含a 、b 的代数式表示); (2)若a =2,且小红家上月用水24 m 3,缴纳水费55元,试求b 的值;(3)在(2)的条件下,小华家上月用水x m 3,请用含x 的代数式表示出他家上月应交水费.23.(8分) 已知a 、b 满足2(2)60a ab -++=,c =2a +3b . (1)直接写出a 、b 、c 的值:a =______,b =______,c =______.(2)若有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,点A 与点B 之间的距离表示为AB ,点B 与点C……………………订………………………………………线…………………………………………之间的距离表示为BC.如果数轴上有一点N到点A的距离AN=AB-BC,请直接写出点N所表示的数;(3)在(2)的条件下,点A、B、C在数轴上运动,若点C以每秒1个单位的速度向左运动,同时点A和点B分别以每秒3个单位和每秒2个单位的速度向右运动.试问:是否存在一个常数m使得m·AB-2BC不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.初一数学期中试题参考答案2016.11一、选择题:BBCACDBA 二、填空题9.> 10.1 11.-4 12.3 13.1 14.4 15.m n +45(不化简不扣分) 16.370 三、解答题: 17.计算或化简:(1) -8 (2) 3348- (3)13.34 (4) 16 (5) -2a 2+a ―4 (6)3a 2b +2ab 2+3 18.解方程:(1) x=1 (2)23-=x19.化简得x 2-3xy 45-20.(1) x=2 (2) x =5121.(1) B 地在A 南,相距4千米; (2) 8升.22.(1)17a+3b (2) b =3(3)当x<17时 2x 当x>17时 3x -1723.(1) a =2,b =-3,c =-5(2)点N 所表示的数是-1或5(3)存在常数m , m =6这个不变化的值为26.………………线…………………………………………。

2016-2017 学年七年级(上)数学试卷

2016-2017 学年七年级(上)数学试卷

2016-2017学年七年级(上)数学试卷一、精心选一选(本大题共8个小题,每小题3分,共24分)1.﹣2的绝对值是( )A.2 B.﹣2 C.D.2.如果收入15元记作+15元,那么支出20元记作( )A.+5元B.+20元C.-5元D.-20元3.在下面的图形中是正方体的展开图的是( )A.B.C.D.4.(台州中考)计算-4×(-2)的结果是( )A.8 B.-8 C.6 D.-25.某班共有学生x人,其中男生人数占35%,那么女生人数是( )A.35%x B.(1﹣35%)x C.D.6.在下列几何体中,主视图是四边形的个数是( )(1)正方体(2)球体(3)圆锥(4)圆柱.A.1个B.2个C.3个D.4个7.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3 700千克,3 700用科学计数法表示为( )A.3.7×102B.3.7×103C.37×102D.0.37×1048.用一个平面去截正方体,截面的形状不可能是( )A.四边形B.五边形C.六边形D.七边形当a=3,b=2时,a2+2ab+b2的值是( )A.5 B.13 C.21 D.25 下图是一个数值转换机,输入x,输出3(x-2),下面给出了四种转换步骤,其中正确的是( )A.先减去2,再乘以3 B.先减去-2,再乘以3C.先乘以3,再减去2 D.先乘以3,再加上2根据流程图中的程序,当输入数值x为-2时,输出数值y为( )A.4 B.6 C.8 D.10二、耐心填一填(本大题共8个小题,每小题3分,共24分)9.如图,折叠围成一个正方体时,数字__________会在与数字2所在的平面相对的平面上.10.观察下列算式:22﹣02=4=1×4,42﹣22=12=3×4,62﹣42=20=5×4,82﹣62=28=7×4,…,第n个式子是什么,将发现的规律表示出来__________.11.郑阿姨在超市买了一袋洗衣粉,包装上标有“净重:800±5g”的字样,那么这袋洗衣粉的重量应不多于__________g.12.﹣5的相反数是__________.13.写出一个比﹣2大的有理数是__________.(一个即可)14.比较大小:0________-2(填“>”“<”或“=”).15.若a☆b=a+ab,则6☆(﹣5)=__________.a+5+(b-4)2=0,则(a+b)2 016=________.16.若||已知a2+2a=1,则代数式2a2+4a﹣1的值为 .三、细心算一算(每题5分,共20分)17.(1)32+(﹣2﹣5)÷7﹣|﹣|×(﹣2)2.(2)25×﹣(﹣25)×+25×(﹣)(3)﹣14﹣(1﹣0.5)××[10﹣(﹣2)2]﹣(﹣1)3.(4)﹣9÷3+(﹣)×12+32.四、专心解一解(本大题共4个小题,第18、19题各6分,第22、21题各7分,共26分)18.19.20.分别画如图几何体的主视图、左视图、俯视图.21.画数轴,在数轴上标出表示下列各数的点,并用<号把这些数从小到大的顺序连接起来.3,﹣4,0,﹣1,,﹣1.8.用一个平面去截正方体,截面的形状不可能是( )A.四边形B.五边形C.六边形D.七边形【考点】截一个几何体.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:如图所示:用平面去截正方体时最多与六个面相交得六边形,因此截面的形状可能是:三角形、四边形、五边形、六边形,不可能是七边形.故选D.【点评】本题考查正方体的截面,正方体的截面的四种情况应熟记.。

2016-2017年度苏科版第一学期七年级数学期中试卷有答案

2016-2017年度苏科版第一学期七年级数学期中试卷有答案

2016-2017学年度第一学期期中检测七年级数学试题(全卷共120分,考试时间90分钟)温馨提示:请把答案全部填涂在答题纸上,否则不给分.一、选择题(本大题有8小题,每小题3分,共24分。

在每小题所给出的四个选项中,只.有一项...是符合题目要求的,请将正确选项前的字母代号填写在答题.....卡.) 1.下列是无理数的是 A .0.666… B .227C .2πD .2.62626662 2.气象部门测定高度每增加1km ,气温约下降5℃,现在地面气温是15℃,那么4km 高空的气温是A .5℃B .0℃C .-5℃D .-15℃ 3.下列各数中,是负数的A.)51(--B.|41|--C. 2)31(-D.|61|- 4.下列各式计算正确的是A .a 2 + a 2=2a 4B .5m 2-3m 2=2C .-x 2 y + yx 2=0D .4m 2n -m 2n =2mn 5.现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差A .0.8kgB .0.6kgC .0.4kgD .0.5kg6.下列说法正确的是A . 两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差一定大于被减数D . 0减去任何数,差都是负数7.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.当a 取一切有理数时,下列代数式的值一定是正数的是 A.2a B . a C . 2(6)a - D . 213x +二、填空题(本大题有8小题,每小题3分,共24分). 9.-2的相反数是 ▲ .10.某水库的水位下降1米,记作 -1米,那么 +1.2米表示 ▲ .11.有资料表明,被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应为 ▲ 公顷.12.代数式-322ab 的系数是 ▲ .13.数轴上,若A ,B 表示互为相反数的两个点,A 在B 的左边,,并且这两点的距离为8,则A 点所表示的数是 ▲ .14.若|x -3|+(y +2)2=0,则x 2y 的值为 ▲ .15.已知代数式x +2y 的值是3,则代数式2x +4y +1的值是 ▲ .16.当n 等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n 个图形中白色小正方形和黑色小正方形的个数总和等于 ▲ . (用含n 的代数式表示,n 是正整数)第16题三、解答题(本大题有9小题,共72分. 解答时应写出文字说明或演算步骤.) 17.(本题6分)在数轴上表示下列各数,并把它们按照从小到大....的顺序排列 ()213,2,0,1,22------18.(本题10分)计算:(1) -10-(-16)+(-24) (2) 5÷(-35)×5319.(本题10分)计算: (1)111(+)20245-+⨯ (2)311(10.5)(4)3--+⨯÷-20.(本题10分)合并同类项:(1) 2231253x x x x ---+- (2)()()2221231a a a a -+--+21.(本题6分) 先化简,再求值:-3(2x 2-xy)+4(x 2+xy -6),其中x =-1,y =222.(本题6分) 已知 4x 2m y 3+n 与-3x 6y 2是同类项,求多项式22222110.30.452m n mn n m m n nm -+-+的值.23.(本题6分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数).(2)本周总生产量与计划生产量相比,是增加了还是减少了?(3)生产量最多的一天比生产量最少的一天多生产了多少辆?24.(本题8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带。

2016-2017学年江苏省常州市金坛区七年级数学上期中考试试卷.doc

2016-2017学年江苏省常州市金坛区七年级数学上期中考试试卷.doc

金坛区2016年秋学期其中质量调研七年级数学试题一 选择题:每小题2分,共8小题,共16分。

1.如果想有走3步记作+3,那么向左走2步记作( )A.+21B.- 21 C.+2 C.-2 2.有理数-1,0,-2,3中,最小的数是( )A.-1B.0C.-2D.33.2017年我国大学毕业人人数预计将达到7260000,数据7260000用科学记数法表示为( )A.72.6×105B.7.26×107C.7.26×106D.0.726×1074.小明买了m 千克苹果,花了n 元,则每千克苹果是( )A.m n 元B.mn 元 C.mn 元 D.(n-m)元 5.下列单项式中,与a 2b 是同类项是( )A.2a 2bB.a 2b 2C.ab 2D.3ab6.有理数a 、b 在数轴上的对应点的位置如图所示,下列结论中,错误的是( )A.a+b<0B.a-b<0C.ab>0D.0>ba 7.定义一种新的运算:a*b=ab ,如-4*2=(-4)2=16,则-1*2的值是( )A.-2B.2C.-1D.18.计算210-29的结果等于( )A.219B.29C.28D.2二 填空题:每小题2分,共8小题,共16分。

9.21-的倒数是 . 10.+5.6的相反数是 .11.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .12.一个两位数,十位上的数字为a ,个位上的数字为b ,这个两位数是 .13.已知一个长方形的宽是m+2n ,长比宽多m ,则该长方形的周长是 .14.写出一个含有字母x 、y 的5次单项式: .15.已知3,4==b a ,且a<b ,则a+b 的值是: .16.一组数按图中规律从左向右依次排列,则第9个图中m+n= .三 解答题:共9小题,共68分。

17.计算:(1)1)2.0()56(+--- (2)7)28()4(3÷-+-⨯18.计算:(1)y x y x 7523--+- (2))64(2123-++-a a19.先化简,再求值:(1))132()34(22----a a a a ,其中a=-2;(2))]2(5[2)3(222ab a ab b a ab -----,其中a=1,b=-2.20.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作-10.上星期图书馆借出图书记录如下:(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?21.现代互联网技术的广泛应用,催生了快递行业的告诉发展,小明计划计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.设小明快递物品x(x>1)千克.(1)用含有x的代数式表示小明快递物品的费用;(2)若小明快递物品3千克,应付快递费多少元?22.观察下来关于自然数的一列等式:(1)12=22-3;(2)22=32-5;(3)32=42-7;(4)42=52-9;.........根据上述规律解决下面的问题:(1)写出第5个等式;(2)写出含有82的等式;(3)写出第n个等式(用含有n的代数式表示).23.图1、图2分别由两个长方形拼成.(1)图1中图形的面积为a2-b2,图2中图形的面积为(a-b)×( );(用含有a、b 的代数式表示)(2)由(1)可以得到等式:;(3)根据你得到的等式解决下列问题:①计算:68.52-31.52②若m+4n=2,求(m+1)2+(2n+1)2-m2-(2n-1)2的值.24.已知a是最大的负整数,且b、c满足0+b.+-c)6(12=(1)填空:a= ,b= ,c= ;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B重合),其对应的数为x,化简:1+xx;1-+2(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒6个单位长度和2个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

苏科版2016~2017学年度初一数学七年级上学期期末测试卷和答案

苏科版2016~2017学年度初一数学七年级上学期期末测试卷和答案

2016~2017学年度七年级上学期期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.﹣5的相反数是()A.B.C.﹣5 D.52.下列为同类项的一组是()A.x3与23B.﹣xy2与yx2C.7与﹣D.ab与7a3.下列四个平面图形中,不能折叠成无盖的长方体盒子的是()A.B.C.D.4.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是35.如果0<x<1,则下列不等式成立的()A.B.C.D.6.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为()A.两点之间线段最短 B.两直线相交只有一个交点C.两点确定一条直线 D.垂线段最短7.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;其中错误的有()A.1个B.2个C.3个D.4个8.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×102二、填空题:(本大题共10小题,每小题3分,共30分)9.比较大小:(填“<”、“=”、“>”)10.“x的2倍与3的差不小于0”,用不等式表示为.11.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为千米.12.若x﹣3y=﹣2,那么3+2x﹣6y的值是.13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于.14.如果一个角的余角是60°,那么这个角的补角是.15.如图,已知AC⊥BC,CD⊥AB于点D,AC=5cm,BC=12cm,AB=13cm,那么点B到AC的距离是cm.16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC为度.17.如图所示,将图沿虚线折起来得到一个正方体,那么“5”的对面是(填编号).18.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为.三、解答题:1919.计算:(1)﹣1.5+1.4﹣(﹣3.6)﹣1.4+(﹣5.2)(2)﹣22×7﹣(﹣3)×6﹣5÷(﹣).20.合并同类项:(1)3a2+2a﹣2﹣a2﹣5a+7(2)(7y﹣3z)﹣(8y﹣5z)21.解方程:(1)2(x﹣1)+1=0(2)4(2x﹣1)﹣3(5x+1)=14(3)(4).22.解不等式组,并把解集在数轴上表示出来,同时写出解集中的所有整数解.23.如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC 的长度是多少?24.某中学为了绿化校园,计划购买A、B两种树,经过市场调查,A树的单价比B树少20元,购买4棵A树和购买3棵B树的费用相等.(1)求两种树的单价各是多少?(2)根据学校的实际情况,需购买两种树共150棵,总费用不超过10840元,且购买B树的棵数不少于A树的1.5倍.请你算算,该校本次购买这两种树共有哪几种方案.25.由大小相同的小立方块搭成的几何体,请在方格中画出该几何体的三视图.26.定义一种新运算:a*b=2a﹣b(1)直接写出b*a的结果为;(用含a,b的式子表示)(2)化简:[(x﹣2y)*(x+y)]*3y;(3)解方程:2*(1*x)=*x.27.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是、、(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=160°.那么根据可得∠BOC=度.②如果∠AOD=4∠EOF,求∠EOF的度数.28.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C 两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.2016~2017学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.﹣5的相反数是()A.B.C.﹣5 D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列为同类项的一组是()A.x3与23B.﹣xy2与yx2C.7与﹣D.ab与7a【考点】同类项.【分析】根据同类项的定义回答即可.【解答】解:A、x3与23,不是同类项,故A错误;B、相同字母的指数不相同,不是同类项,故B错误;C、几个常数项也是同类项,故C正确;D、所含字母不同,不是同类项,故D错误.故选:C.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.3.下列四个平面图形中,不能折叠成无盖的长方体盒子的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】利用长方体及其表面展开图的特点解题.【解答】解:选项B,C,D都能折叠成无盖的长方体盒子,选项A中,上下两底的长与侧面的边长不符,所以不能折叠成无盖的长方体盒子.故选A.【点评】解决这类问题时,不妨动手实际操作一下,即可解决问题.4.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是3【考点】单项式.【专题】推理填空题.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.故选A.【点评】本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果0<x<1,则下列不等式成立的()A.B.C.D.【考点】不等式的性质.【分析】利用不等式的基本性质,分别求得x、x2及的取值范围,然后比较,即可做出选择.【解答】解:∵0<x<1,∴0<x2<x(不等式两边同时乘以同一个大于0的数x,不等号方向不变);0<1<(不等式两边同时除以同一个大于0的数x,不等号方向不变);∴x2.故答案选B.【点评】解答此题的关键是熟知不等式的基本性质:基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.6.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为()A.两点之间线段最短 B.两直线相交只有一个交点C.两点确定一条直线 D.垂线段最短【考点】线段的性质:两点之间线段最短.【专题】应用题.【分析】此题为数学知识的应用,由题意从A地到B地有多条道路,肯定要尽量选择两地之间最短的路程,就用到两点间线段最短定理.【解答】解:图中A和B处在同一条直线上,根据两点之间线段最短,知其路程最短.故选A.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.7.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;其中错误的有()A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据垂线的概念、对顶角的性质、平行线的性质解答即可.【解答】解:一条直线有无数条垂线,①错误;不相等的两个角一定不是对顶角,②正确;在同一平面内,两条不相交的直线叫做平行线,③错误;若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,④错误,故选:C.【点评】本题考查的是命题的真假判断,熟悉课本中的性质定理是解题的关键.8.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×102【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】先根据题中所给的规律,把式子中的1×2,2×3,…99×100,分别展开,整理后即可求解.注意:1×2=×(1×2×3).【解答】解:根据题意可知3×(1×2+2×3+3×4+…+99×100)=3×[×(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+(99×100×101﹣98×99×100)] =1×2×3﹣0×1×2+2×3×4﹣1×2×3+3×4×5﹣2×3×4+…+99×100×101﹣98×99×100=99×100×101.故选:C.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.二、填空题:(本大题共10小题,每小题3分,共30分)9.比较大小:>(填“<”、“=”、“>”)【考点】有理数大小比较.【分析】先将绝对值去掉,再比较大小即可.【解答】解:∵=﹣=﹣,=﹣,∴>.【点评】同号有理数比较大小的方法:都是负有理数,绝对值大的反而小.10.“x的2倍与3的差不小于0”,用不等式表示为2x﹣3≥0.【考点】由实际问题抽象出一元一次不等式.【分析】“不小于0”应表示为大于或等于0.【解答】解:“x的2倍与3的差不小于0”,用不等式表示为2x﹣3≥0.【点评】解决本题的关键是理解“不小于0”用数学符号应表示为:“≥0”.11.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为 1.496×108千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:149 600 000=1.496×108,故答案为:1.496×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x﹣3y=﹣2,那么3+2x﹣6y的值是﹣1.【考点】代数式求值.【分析】等式x﹣3y=﹣2两边同时乘以2得到2x﹣6y=﹣4,然后代入计算即可.【解答】解:∵x﹣3y=﹣2,∴2x﹣6y=﹣4.∴原式=3+(﹣4)=﹣1.故答案为:﹣1.【点评】本题主要考查的是求代数式的值,利用等式的性质求得2x﹣6y=﹣4是解题的关键.13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于﹣1.【考点】方程的解.【专题】计算题.【分析】使方程左右两边的值相等的未知数的值是该方程的解.将方程的解代入方程可得关于m的一元一次方程,从而可求出m的值.【解答】解:根据题意得:4+3m﹣1=0解得:m=﹣1,故答案为:﹣1.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于m字母系数的方程进行求解,注意细心.14.如果一个角的余角是60°,那么这个角的补角是150°.【考点】余角和补角.【分析】首先根据余角的度数计算出这个角的度数,再算出它的补角即可.【解答】解:90°﹣60°=30°,180°﹣30°=150°.答:这个角的补角是150°.故答案为:150°.【点评】此题主要考查了余角和补角,关键是掌握:(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如图,已知AC⊥BC,CD⊥AB于点D,AC=5cm,BC=12cm,AB=13cm,那么点B到AC的距离是12cm.【考点】点到直线的距离;三角形的面积.【分析】由题意即可推出点B到AC的距离即为点B到AC的垂线段的长度即为BC的长度.【解答】解:∵AC⊥BC,BC=12cm,∴点B到AC的距离为12cm.故答案为:12.【点评】本题主要考查点到直线的距离,关键在于推出点B到AC的距离为BC的长度.16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC为55°度.【考点】翻折变换(折叠问题);角平分线的定义;角的计算;对顶角、邻补角.【专题】计算题.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∠ABE=35°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=35°,∴∠DBC=55°.故答案为:55.【点评】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键,难度一般.17.如图所示,将图沿虚线折起来得到一个正方体,那么“5”的对面是1(填编号).【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,“3”与“6”是相对面.故答案为:1.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.18.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为2小时或2.5小时.【考点】一元一次方程的应用.【分析】设t时后两车相距50千米,分为两种情况,两人在相遇前相距50km和两人在相遇后相距50千米,分别建立方程求出其解即可.【解答】解:设t时后两车相距50千米,由题意,得450﹣120t﹣80t=50或10t+80t﹣450=50,解得:t=2或2.5.故答案为:2小时或2.5小时.【点评】本题考查了列一元一次方程解实际问题的运用,分类讨论思想的运用,由行程问题的数量关系建立方程是关键.三、解答题:1919.计算:(1)﹣1.5+1.4﹣(﹣3.6)﹣1.4+(﹣5.2)(2)﹣22×7﹣(﹣3)×6﹣5÷(﹣).【考点】有理数的混合运算.【分析】(1)先去括号,再从左到右依次计算即可;(2)先算乘方,再算乘除,最后算加减即可.【解答】解:(1)原式=﹣1.5+1.4+3.6﹣1.4﹣5.2=﹣0.1+3.6﹣1.4﹣5.2=3.5﹣1.4﹣5.2=2.1﹣5.2=﹣3.1;(2)原式=﹣4×7+3×6﹣5×(﹣5)=﹣28+18+25=﹣10+25=15.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.20.合并同类项:(1)3a2+2a﹣2﹣a2﹣5a+7(2)(7y﹣3z)﹣(8y﹣5z)【考点】合并同类项.【分析】(1)首先找出同类项,进而合并同类项得出答案;(2)首先去括号,进而合并同类项得出答案.【解答】解:(1)3a2+2a﹣2﹣a2﹣5a+7=(3a2﹣a2)+(2a﹣5a)+(7﹣2)=2a2﹣3a+5;(2)(7y﹣3z)﹣(8y﹣5z)=7y﹣8y﹣3z+5z=2z﹣y.【点评】此题主要考查了合并同类项,正确找出同类项是解题关键.21.解方程:(1)2(x﹣1)+1=0(2)4(2x﹣1)﹣3(5x+1)=14(3)(4).【考点】解一元一次方程.【分析】(1)去括号,移项,合并同类项,将x系数化为1,即可求出解;(2)去括号,移项,合并同类项,将x系数化为1,即可求出解;(3)去分母,移项,合并同类项,将x系数化为1,即可求出解;(2)去分母,移项,合并同类项,将x系数化为1,即可求出解.【解答】解:(1)2(x﹣1)+1=0去括号得:2x﹣2+1=0,移项、合并同类项得:2x=1,系数化为1得:x=;(2)4(2x﹣1)﹣3(5x+1)=14去括号得:8x﹣4﹣15x﹣3=14移项、合并同类项得:﹣7x=21,系数化为1得:x=﹣3;(3)5﹣=x去分母得:25﹣x﹣1=5x移项、合并同类项得:6x=24,系数化为1得:x=4;(4)﹣=1去分母得:3x+3﹣4+6x=6,移项、合并同类项得:9x=7,系数化为1得:x=.【点评】此题考查了解一元一次方程的解法;其步骤为:去分母,去括号,移项,合并同类项,将未知数系数化为1,求出解.22.解不等式组,并把解集在数轴上表示出来,同时写出解集中的所有整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】先根据一元一次不等式组解出x的取值,根据x是正整数解得出x的可能取值.【解答】解:不等式可化为:即,在数轴上可表示为:故不等式的解集为:﹣≤x<3故不等式所有整数解为﹣1,0,1,2.【点评】本题主要考查了等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.23.如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC 的长度是多少?【考点】比较线段的长短.【专题】计算题.【分析】已知CD的长度,CD是线段BC的一半,则BC长度可求出,根据3AB=BC,即可求出AB的长度,进而可求出AC的长度.【解答】解:∵点D是线段BC的中点,CD=3cm,∴BC=6cm,∵BC=3AB,∴AB=2cm,AC=AB+BC=6+2=8cm.【点评】本题考点:线段中点的性质.结合图形根据题干中的信息得出各线段之间的关系,然后结合已知条件即可求出AC的长度.24.某中学为了绿化校园,计划购买A、B两种树,经过市场调查,A树的单价比B树少20元,购买4棵A树和购买3棵B树的费用相等.(1)求两种树的单价各是多少?(2)根据学校的实际情况,需购买两种树共150棵,总费用不超过10840元,且购买B树的棵数不少于A树的1.5倍.请你算算,该校本次购买这两种树共有哪几种方案.【考点】一元一次方程的应用.【分析】(1)设A树的单价是x元,则B树的单价为(x+20)元,根据购买4棵A树和购买3棵B 树的费用相等可列方程求解.(2)设购买A树m棵,则购买B树(150﹣m)棵,根据总费用不超过10840元,且购买B树的棵数不少于A树的1.5倍,可列不等式组求解.【解答】解:(1)设A树的单价是x元,则B树的单价为(x+20)元,根据题意得4x=3(x+20),解得x=60,则x+20=80.答:A树的单价是60元,B树的单价为80元;(2)设购买A树m棵,则购买B树(150﹣m)棵,根据题意得,解得58≤m≤60,∵m为整数,∴m为58或59或60.答:该校本次购买这两种树共有3种方案:①购买A树58棵,购买B树92棵;②购买A树59棵,购买B树91棵;③购买A树60棵,购买B树90棵.【点评】本题考查一元一次方程的应用,一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系列出方程或不等式组,再求解.25.由大小相同的小立方块搭成的几何体,请在方格中画出该几何体的三视图.【考点】作图-三视图.【分析】根据主视图、俯视图以及左视图观察的角度分别得出图形即可.【解答】解:根据题意画图如下:【点评】此题考查了作图﹣三视图,从不同方向观察问题和几何体,锻炼了学生的空间想象力和抽象思维能力.26.定义一种新运算:a*b=2a﹣b(1)直接写出b*a的结果为2b﹣a;(用含a,b的式子表示)(2)化简:[(x﹣2y)*(x+y)]*3y;(3)解方程:2*(1*x)=*x.【考点】整式的加减—化简求值;解一元一次方程.【专题】新定义.【分析】(1)根据新运算得出即可;(2)根据新运算先展开括号里面的,求出后再展开,即可得出答案;(3)先根据新运算展开括号内的,再展开括号外的,最后解方程即可.【解答】解:(1)b*a=2b﹣a.故答案为:2b﹣a;(2)[(x﹣2y)*(x+y)]*3y=[2(x﹣2y)﹣(x+y)]*3y=[x﹣5y]*3y=2(x﹣5y)﹣3y=2x﹣13y;(3)2*(1*x)=*x,2*(2﹣x)=*x,4﹣(2﹣x)=1﹣x,4﹣2+x=1﹣x,2x=﹣1,x=﹣.【点评】本题考查了整式的加减和求值,解一元一次方程的应用,解此题的关键是能根据新运算展开,难度不是很大.27.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠EOF、∠BOD、∠AOC(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①∠AOC=∠EOF;②∠AOC=∠BOD;③∠DOE=∠AOF.(3)①如果∠AOD=160°.那么根据对顶角相等可得∠BOC=160度.②如果∠AOD=4∠EOF,求∠EOF的度数.【考点】垂线.【分析】(1)余角即与令一个角的和为90°的角;(2)相等的角可以是与同一个角互余的角,也可以是对顶角等;(3)①是对顶角相等,②是利用平角为180°求解.【解答】解:(1)∠EOF、∠BOD、∠AOC;(2)∠AOC=∠EOF,∠AOC=∠BOD,∠DOE=∠AOF,答案不唯一;(3)①:对顶角相等,160°;36°.②:∵∠AOC=∠EOF,∠AOC+∠AOD=180°,即5∠AOC=180°,则∠EOF=∠AOC=36°.【点评】本题主要考查了垂线的一些性质问题,能够掌握并利用其性质求解一些简单的计算问题.28.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C 两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【考点】一元一次方程的应用;数轴.【分析】(1)可设x秒后甲与乙相遇,根据甲与乙的路程差为34,可列出方程求解即可;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,分甲应为于AB或BC之间两种情况讨论即可求解;(3)分①原点O是甲蚂蚁P与乙蚂蚁Q两点的中点;②乙蚂蚁Q是甲蚂蚁P与原点O两点的中点;③甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,三种情况讨论即可求解.【解答】解:(1)设x秒后甲与乙相遇,则4x+6x=34,解得x=3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.故甲、乙在数轴上的﹣10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得y=2;②BC之间时:4y+(4y﹣14)+(34﹣4y)=40,解得y=5.①甲从A向右运动2秒时返回,设y秒后与乙相遇.此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣24+4×2﹣4y;乙表示的数为:10﹣6×2﹣6y,依据题意得:﹣24+4×2﹣4y=10﹣6×2﹣6y,解得:y=7,相遇点表示的数为:﹣24+4×2﹣4y=﹣44(或:10﹣6×2﹣6y=﹣44),②甲从A向右运动5秒时返回,设y秒后与乙相遇.甲表示的数为:﹣24+4×5﹣4y;乙表示的数为:10﹣6×5﹣6y,依据题意得:﹣24+4×5﹣4y=10﹣6×5﹣6y,解得:y=﹣8(不合题意舍去),即甲从A向右运动2秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣44.(3)①设x秒后原点O是甲蚂蚁P与乙蚂蚁Q两点的中点,则24﹣12x=10﹣6x,解得x=(舍去);②设x秒后乙蚂蚁Q是甲蚂蚁P与原点O两点的中点,则24﹣12x=2(6x﹣10),解得x=;③设x秒后甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,则2(24﹣12x)=6x﹣10,解得x=;综上所述,秒或秒后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题在解答第二问注意分类思想的运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年江苏省常州市金坛市七年级(上)期中数学试卷一.选择题:每小题2分,共8小题,共16分.1.如果向右走3步记作+3,那么向左走2步记作( )A .+B .﹣C .+2D .﹣22.有理数﹣1,0,﹣2,3中,最小的数是( )A .﹣1B .0C .﹣2D .33.2017年我国大学毕业人人数预计将达到7260000,数据7260000用科学记数法表示为()A .72.6×105B .7.26×107C .7.26×106D .0.726×1074.小明买了m 千克苹果,花了n 元,则每千克苹果是( )A .元B .元C .mn 元D .(n ﹣m )元5.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab6.有理数a ,b 在数轴上对应的位置如图所示,则下列结论中,错误的是( )A .a+b <0B .a ﹣b <0C .ab >0D .7.定义一种新的运算:a*b=a b ,如﹣4*2=(﹣4)2=16,则﹣1*2的值是( )A .﹣2B .2C .﹣1D .18.计算210﹣29的结果等于( )A .219B .29C .28D .2二.填空题:每小题2分,共8小题,共16分.9.﹣的倒数是 .10.+5.6的相反数是 .11.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .12.一个两位数,十位上的数字为a,个位上的数字为b,则这个两位数是.13.已知一个长方形的宽是m+2n,长比宽多m,则该长方形的周长是.14.写出一个含有字母x、y的5次单项式:.15.若|a|=4,|b|=3且a<b,则a+b= .16.一组数按图中规律从左向右依次排列,则第9个图中m+n= .三.解答题:共8小题,共68分.17.计算:(1)(﹣)﹣(0.2)+1(2)3×(﹣4)+(﹣28)÷7.18.计算:(1)﹣3x+2y﹣5x﹣7y(2)﹣3a+2+(4a﹣6)19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2﹣3a﹣1),其中a=﹣2;(2)(ab﹣3a2)﹣2b2﹣[5ab﹣(a2﹣2ab)],其中a=1,b=﹣2.20.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如表:星期一星期二星期三星期四星期五0 +8 +6 ﹣2 ﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?21.现代互联网技术的广泛应用,催生了快递行业的告诉发展,小明计划计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.设小明快递物品x(x>1)千克.(1)用含有x的代数式表示小明快递物品的费用;(2)若小明快递物品3千克,应付快递费多少元?22.观察下来关于自然数的一列等式:(1)12=22﹣3;(2)22=32﹣5;(3)32=42﹣7;(4)42=52﹣9;…根据上述规律解决下面的问题:(1)写出第5个等式;(2)写出含有82的等式;(3)写出第n个等式(用含有n的代数式表示).23.图1、图2分别由两个长方形拼成.(1)图1中图形的面积为a2﹣b2,图2中图形的面积为(a﹣b)×();(用含有a、b的代数式表示)(2)由(1)可以得到等式:;(3)根据你得到的等式解决下列问题:①计算:68.52﹣31.52②若m+4n=2,求(m+1)2+(2n+1)2﹣m2﹣(2n﹣1)2的值.24.已知a是最大的负整数,且b、c满足|b﹣1|+(c+6)2=0.(1)填空:a= ,b= ,c= ;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B 重合),其对应的数为x,化简:|x+1|+2|x﹣1|;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒6个单位长度和2个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2016-2017学年江苏省常州市金坛市七年级(上)期中数学试卷参考答案与试题解析一.选择题:每小题2分,共8小题,共16分.1.如果向右走3步记作+3,那么向左走2步记作()A.+B.﹣ C.+2 D.﹣2【考点】正数和负数.【分析】根据向右走3步记作+3,可以得到向左走2步记作什么,本题得以解决.【解答】解:∵向右走3步记作+3,∴向左走2步记作﹣2,故选D.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际意义.2.有理数﹣1,0,﹣2,3中,最小的数是()A.﹣1 B.0 C.﹣2 D.3【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由题意,得3>0>﹣1>﹣2,故选:C.【点评】本题考查了有理数的大小比较,熟记据正数大于零,零大于负数是解题关键.3.2017年我国大学毕业人人数预计将达到7260000,数据7260000用科学记数法表示为()A.72.6×105B.7.26×107C.7.26×106D.0.726×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7260000用科学记数法表示为:7.26×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.小明买了m千克苹果,花了n元,则每千克苹果是()A.元 B.元 C.mn元D.(n﹣m)元【考点】列代数式(分式).【分析】根据单价=总价÷苹果的重量,列式即可.【解答】解:依题意得:每千克苹果的价格=(元).故选:B.【点评】本题考查了列代数式,比较简单,理解单价的表示是解题的关键.5.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.6.有理数a,b在数轴上对应的位置如图所示,则下列结论中,错误的是()A.a+b<0 B.a﹣b<0 C.ab>0 D.【考点】数轴.【分析】根据数轴上点的位置判断出a与b的正负及绝对值的大小,即可作出判断.【解答】解:由数轴得:b<﹣1<a,|b|>|a|,A、a+b<0,正确;B、a﹣b>0,故错误;C、ab>0,正确;D、,正确;故选:B.【点评】此题考查了数轴,弄清数轴上点的位置是解本题的关键.7.定义一种新的运算:a*b=a b,如﹣4*2=(﹣4)2=16,则﹣1*2的值是()A.﹣2 B.2 C.﹣1 D.1【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:﹣1*2=(﹣1)2=1,故选D【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.计算210﹣29的结果等于()A.219B.29C.28D.2【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式提取公因式,计算即可得到结果.【解答】解:原式=29×(2﹣1)=29,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题:每小题2分,共8小题,共16分.9.﹣的倒数是﹣2 .【考点】倒数.【分析】根据倒数的定义直接解答即可.【解答】解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.【点评】本题考查倒数的基本概念,即若两个数的乘积是1,我们就称这两个数互为倒数.属于基础题.10.+5.6的相反数是﹣5.6 .【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:5.6的相反数是﹣5.6,故答案为:﹣5.6.【点评】本题考查了相反数,在一个数的前面加上符号就是相反数.11.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 4 .【考点】代数式求值.【专题】图表型.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y 的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.12.一个两位数,十位上的数字为a,个位上的数字为b,则这个两位数是10a+b .【考点】列代数式.【分析】两位数=10×十位数字+个位数字.【解答】解:这个两位数是10a+b.【点评】用到的知识点为:两位数=10×十位数字+个位数字.13.已知一个长方形的宽是m+2n,长比宽多m,则该长方形的周长是6m+8n .【考点】整式的加减.【专题】推理填空题.【分析】首先求出长方形的长是多少;然后根据长方形的周长=(长+宽)×2,求出该长方形的周长是多少即可.【解答】解:[(m+2n+m)+(m+2n)]×2=[3m+4n]×2=6m+8n∴该长方形的周长是6m+8n.故答案为:6m+8n.【点评】此题主要考查了整式的加减,以及长方形的周长的求法,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.14.写出一个含有字母x、y的5次单项式:x4y(答案不唯一).【考点】单项式.【分析】直接利用单项式的定义进而得出答案.【解答】解:由题意可得:x4y(答案不唯一).故答案为:x4y(答案不唯一).【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.15.若|a|=4,|b|=3且a<b,则a+b= ﹣7或﹣1 .【考点】有理数的加法;绝对值.【分析】根据绝对值的性质求出a、b,根据a<b即可求出a、b的值,再代入计算即可求解.【解答】解:∵|a|=4,|b|=3,∴a=±4,b=±3,∵a<b,∴a=﹣4,b=±3,∴①当a=﹣4,b=﹣3时,a+b=﹣4﹣3=﹣7,②当a=﹣4,b=3时,a+b=﹣4+3=﹣1.故答案为:﹣7或﹣1.【点评】本题主要考查绝对值及有理数的大小比较,熟练掌握有理数的大小比较是解题的关键.16.一组数按图中规律从左向右依次排列,则第9个图中m+n= 100 .【考点】规律型:数字的变化类.【分析】根据题意可以求得m的值,n=10+m,从而可以求得m+n的值,从而可以解答本题.【解答】解:由图可知,m=1+2+3+4+5+6+7+8+9=45,n=m+10=45+10=55,∴m+n=45+55=100,故答案为:100.【点评】本题考查数字的变化类,解题的关键是明确题意,找出数字的变化规律.三.解答题:共8小题,共68分.17.计算:(1)(﹣)﹣(0.2)+1(2)3×(﹣4)+(﹣28)÷7.【考点】有理数的混合运算.【分析】(1)根据有理数的加法和减法可以解答本题;(2)根据有理数的乘除法和加法可以解答本题.【解答】解:(1)(﹣)﹣(0.2)+1==;(2)3×(﹣4)+(﹣28)÷7=(﹣12)+(﹣4)=﹣16.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.18.计算:(1)﹣3x+2y﹣5x﹣7y(2)﹣3a+2+(4a﹣6)【考点】整式的加减.【专题】计算题.【分析】整式的加减的一般步骤是:先去括号,然后合并同类项,据此化简每个算式即可.【解答】解:(1)﹣3x+2y﹣5x﹣7y=(﹣3﹣5)x+(2﹣7)y=﹣8x﹣5y(2)﹣3a+2+(4a﹣6)=﹣3a+2+2a﹣3=(﹣3+2)a+(2﹣3)=﹣a﹣1【点评】此题主要考查了整式的加减,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2﹣3a﹣1),其中a=﹣2;(2)(ab﹣3a2)﹣2b2﹣[5ab﹣(a2﹣2ab)],其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】根据去括号法则、合并同类项法则把原式化简,代入计算即可.【解答】解:(1)原式=4a2﹣3a﹣2a2+3a+1=2a2+1,当a=﹣2时,原式=2×(﹣2)2+1=9;(2)原式=ab﹣3a2﹣2b2﹣5ab+(a2﹣2ab)=ab﹣3a2﹣2b2﹣5ab+a2﹣2ab=﹣2a2﹣6ab﹣2b2,当a=1,b=﹣2时,原式=﹣2+12﹣8=2.【点评】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.20.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如表:星期一星期二星期三星期四星期五0 +8 +6 ﹣2 ﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?【考点】正数和负数.【专题】计算题;实数.【分析】(1)由表格中的数据求出星期五借出图书即可;(2)找出上星期二与星期五借出的图书,求出之差即可;(3)根据表格中的数据求出上星期平均每天借出图书即可.【解答】解:(1)根据题意得:50﹣7=43(册),则上星期五借出图书43册;(2)星期二:50+8=58(本),星期五43(本),则上星期二比上星期五多借出图书58﹣43=15(本);(3)上星期平均每天借出图书:50+(0+8+6﹣2﹣7)÷5=50+1=51(本).【点评】此题考查了正数与负数,弄清题中的数据是解本题的关键.21.现代互联网技术的广泛应用,催生了快递行业的告诉发展,小明计划计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.设小明快递物品x(x>1)千克.(1)用含有x的代数式表示小明快递物品的费用;(2)若小明快递物品3千克,应付快递费多少元?【考点】列代数式.【分析】(1)根据物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费和小明快递物品x(x>1)千克,列式计算即可;(2)根据(1)列出的算式,再代值计算即可.【解答】解:(1)∵快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,又∵小明快递物品x(x>1)千克,∴小明快递物品的费用是:22+15(x﹣1)=(15x+7)元;(2)将x=3代入得:15×3+7=45+7=53(元),答:小明快递物品3千克,应付快递费53元.【点评】此题考查了列代数式,关键是读懂题意,正确的表示出总费用是解题的关键.22.观察下来关于自然数的一列等式:(1)12=22﹣3;(2)22=32﹣5;(3)32=42﹣7;(4)42=52﹣9;…根据上述规律解决下面的问题:(1)写出第5个等式;(2)写出含有82的等式;(3)写出第n个等式(用含有n的代数式表示).【考点】规律型:数字的变化类;有理数.【分析】根据已知所反映的规律:等式的左边是序数加1的平方,右边第一个加数是序数,第二个加数是序数的平方,第三个加数是序数加1,由此得出即可.根据所反映的规律得出,并用n表示,进一步证明即可.【解答】解:(1)22=32﹣5,32=42﹣7,42=52﹣9,第6个等式为52=62﹣11;(2)72=82﹣15;82=92﹣17(3)n2=(n+1)2﹣(2n+1).【点评】此题考查数字的变化规律,发现规律,利用规律解决问题.23.图1、图2分别由两个长方形拼成.(1)图1中图形的面积为a2﹣b2,图2中图形的面积为(a﹣b)×(a+b );(用含有a、b的代数式表示)(2)由(1)可以得到等式:a2﹣b2=(a+b)(a﹣b);(3)根据你得到的等式解决下列问题:①计算:68.52﹣31.52②若m+4n=2,求(m+1)2+(2n+1)2﹣m2﹣(2n﹣1)2的值.【考点】完全平方公式的几何背景.【分析】(1)图2面积根据长方形面积公式可得;(2)根据两个图形的面积相等可得;(3)①直接套用公式a2﹣b2=(a﹣b)(a+b)可得;②将原式变形为[(m+1)2﹣m2]+[2n+1)2(2n ﹣1)2],再套用平方差公式可得答案.【解答】解:(1)图1中图形的面积为a2﹣b2,图2中图形的面积为(a﹣b)×(a+b),故答案为:a+b;(2)根据两个图形的面积相等可得a2﹣b2=(a﹣b)(a+b),故答案为:a2﹣b2=(a﹣b)(a+b);(3)①68.52﹣31.52=(68.5﹣31.5)(68.5+31.5)=35×100=3500;②(m+1)2+(2n+1)2﹣m2﹣(2n﹣1)2=[(m+1)2﹣m2]+[2n+1)2(2n﹣1)2]=[(m+1﹣m)(m+1+m)]+[(2n+1﹣2n+1)(2n+1+2n﹣1)]=2m+1+8n=4+1=5.【点评】本题主要考查平方差公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.24.已知a是最大的负整数,且b、c满足|b﹣1|+(c+6)2=0.(1)填空:a= ﹣1 ,b= 1 ,c= ﹣6 ;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B重合),其对应的数为x,化简:|x+1|+2|x﹣1|;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒6个单位长度和2个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】一元一次方程的应用;数轴;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)根据绝对值和偶次幂具有非负性可得b﹣1=0,c+6=0,进而可得答案;(2)根据a、b、c的值可得x+1>0,x﹣1<0,然后再利用绝对值的性质取绝对值合并同类项即可;(3)根据题意可得A、B、C三点对应的数字,然后表示出AC、AB的长,进而可得AC﹣AB的值是常数.【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵|b﹣1|+(c+6)2=0,∴b﹣1=0,c+6=0,∴b=1,c=﹣6.故答案为:﹣1;1;﹣6;(2)由题意可知:﹣1<x<1,所以x+1>0,x﹣1<0,所以:|x+1|+2|x﹣1|=x+1﹣2x+2=﹣x+3.(3)由题意可知:A点对应的数字:﹣1﹣2t;B点对应的数字:1+2t;C点对应的数字:﹣6﹣6t,所以AC=﹣1﹣2t﹣(﹣6﹣6t)=4t+5,AB=1+2t﹣(﹣1﹣2t)=4t+2,所以AC﹣AB=4t+5﹣(4t+2)=3.【点评】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB,AC的变化情况是关键.。

相关文档
最新文档