历年中考数学模拟试卷 (训练题) (80)
中考数学模拟试题(含答案和解析)
【答案】C
【解析】
【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB= m.证明△AFL≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=( m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP= .FP= m.BP= .即知P为AB中点.CP=AP=BP= .由△CPN∽△FPA.得CN=m.PN= m.即得AN= m.而tan∠BAC= .又△AEC∽△BCH.根据相似三角形的性质列出方程.解方程即可求解.
【答案】B
【解析】
【分析】根据四边形的内角和等于360°计算可得∠BAC=50°.再根据圆周角定理得到∠BOC=2∠BAC.进而可以得到答案.
【详解】解:∵OD⊥AB.OE⊥AC.
∴∠ADO=90°.∠AEO=90°.
∵∠DOE=130°.
∴∠BAC=360°-90°-90°-130°=50°.
∴∠BOC=2∠BAC=100°.
A. B.
C. D.
【答案】A
【解析】
【分析】分别对每段时间的路程与时间的变化情况进行分析.画出路程与时间图像.再与选项对比判断即可.
【详解】解:对各段时间与路程的关系进行分析如下:
从家到凉亭.用时10分种.路程600米.s从0增加到600米.t从0到10分.对应图像为
在凉亭休息10分钟.t从10分到20分.s保持600米不变.对应图像为
故选:B.
【点睛】本题考查扇形统计图.解答本题的关键是明确题意.求出本次参加兴趣小组的总人数.
4.化简 的结果是( )
A. B. C. D.
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选、均不给分)1.(4分)给出四个数..其中为无理数的是()A.﹣1B.0C.0.5D.2.(4分)数据35.38.37.36.37.36.37.35的众数是()A.35B.36C.37D.383.(4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型.它的主视图是()A.B.C.D.4.(4分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0.4)B.(4.0)C.(2.0)D.(0.2)5.(4分)把a2﹣4a多项式分解因式.结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣46.(4分)小林家今年1﹣5月份的用电量情况如图所示.由图可知.相邻两个月中.用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.(4分)已知⊙O1与⊙O2外切.O1O2=8cm.⊙O1的半径为5cm.则⊙O2的半径是()A.13cm B.8cm C.6cm D.3cm 8.(4分)下列选项中.可以用来证明命题“若a2>1.则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=2 9.(4分)楠溪江某景点门票价格:成人票每张70元.儿童票每张35元.小明买20张门票共花了1225元.设其中有x张成人票.y张儿童票.根据题意.下列方程组正确的是()A.B.C.D.10.(4分)如图.在△ABC中.∠C=90°.M是AB的中点.动点P从点A出发.沿AC方向匀速运动到终点C.动点Q从点C出发.沿CB方向匀速运动到终点B.已知P.Q两点同时出发.并同时到达终点.连接MP.MQ.PQ.在整个运动过程中.△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少二、填空题(本题有6小题.每小题5分.共30分)11.(5分)化简:2(a+1)﹣a=.12.(5分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合.则这个旋转角的最小度数是度.13.(5分)若代数式的值为零.则x=.14.(5分)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况.随机抽取了100份试卷的成绩(满分为120分.成绩为整数).绘制成如图所示的统计图.由图可知.成绩不低于90分的共有人.15.(5分)某校艺术班同学.每人都会弹钢琴或古筝.其中会弹钢琴的人数会比会弹古筝的人数多10人.两种都会的有7人.设会弹古筝的有m人.则该班同学共有人(用含有m的代数式表示)16.(5分)如图.已知动点A在函数的图象上.AB⊥x轴于点B.AC⊥y轴于点C.延长CA至点D.使AD=AB.延长BA至点E.使AE=AC.直线DE分别交x.y轴分别于点P.Q.当QE:DP=4:9时.图中阴影部分的面积等于.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)解方程:x2﹣2x=5.18.(8分)如图.在方格纸中.△PQR的三个顶点及A、B、C、D、E 五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等19.(8分)如图.△ABC中.∠B=90°.AB=6cm.BC=8cm.将△ABC 沿射线BC方向平移10cm.得到△DEF.A.B.C的对应点分别是D.E.F.连接AD.求证:四边形ACFD是菱形.20.(9分)一个不透明的袋中装有红、黄、白三种颜色球共100个.它们除颜色外都相同.其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后.求从剩余的球中摸出一个球是红球的概率.21.(9分)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况.发现其正北方向的B处有人发出求救信号.他立即沿AB方向径直前往救援.同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海.径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处.再向B处游去.若CD=40米.B在C的北偏东35°方向.甲、乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:sin55°≈0.82.cos55°≈0.57.tan55°≈1.43)22.(10分)如图.△ABC中.∠ACB=90°.D是边AB上一点.且∠A =2∠DCB.E是BC边上的一点.以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1.BE=EO.求BD的长.23.(12分)温州享有“中国笔都”之称.其产品畅销全球.某制笔企业欲将n件产品运往A.B.C三地销售.要求运往C地的件数是运往A地件数的2倍.各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时.①根据信息填表:A地B地C地合计产品件数(件)x2x200运费(元)30x②若运往B地的件数不多于运往C地的件数.总运费不超过4000元.则有哪几种运输方案?(2)若总运费为5800元.求n的最小值.24.(14分)如图.经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1.m)作直线PM⊥x轴于点M.交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB.CP.(1)当m=3时.求点A的坐标及BC的长;(2)当m>1时.连接CA.问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC.问是否存在m.使得点E落在坐标轴上?若存在.求出所有满足要求的m的值.并定出相对应的点E 坐标;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选、均不给分)1.【分析】根据无理数的三种形式.①开方开不尽的数.②无限不循环小数.③含有π的数.结合选项即可作出判断.【解答】解:结合所给的数可得.无理数有:.【点评】此题考查了无理数的定义.关键要掌握无理数的三种形式.要求我们熟练记忆.2.【分析】众数指一组数据中出现次数最多的数据.根据众数的定义就可以求解.【解答】解:因为37出现的次数最多.所以众数是37;故选:C.【点评】主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据.它反映了一组数据的多数水平.一组数据的众数可能不是唯一的.3.【分析】根据主视图的定义.得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体.进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长.得出此时摆放.圆柱主视图是正方形.得出圆柱以及立方体的摆放的主视图为两列.左边一个正方形.右边两个正方形.故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.4.【分析】在解析式中令x=0.即可求得与y轴的交点的纵坐标.【解答】解:令x=0.得y=﹣2×0+4=4.则函数与y轴的交点坐标是(0.4).【点评】本题考查了一次函数与坐标轴的交点坐标的求法.是一个基础题.掌握y轴上点的横坐标为0是解题的关键.5.【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4).故选:A.【点评】此题主要考查了提公因式法分解因式.关键是掌握找公因式的方法:当各项系数都是整数时.公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母.而且各字母的指数取次数最低的;取相同的多项式.多项式的次数取最低的.6.【分析】根据折线图的数据.分别求出相邻两个月的用电量的变化值.比较即可得解.【解答】解:1月至2月.125﹣110=15千瓦时.2月至3月.125﹣95=30千瓦时.3月至4月.100﹣95=5千瓦时.4月至5月.100﹣90=10千瓦时.所以.相邻两个月中.用电量变化最大的是2月至3月.故选:B.【点评】本题考查折线统计图的运用.折线统计图表示的是事物的变化情况.根据图中信息求出相邻两个月的用电变化量是解题的关键.7.【分析】根据两圆外切时.圆心距=两圆半径的和求解.【解答】解:根据两圆外切.圆心距等于两圆半径之和.得该圆的半径是8﹣5=3(cm).故选:D.【点评】本题考查了圆与圆的位置关系.注意:两圆外切.圆心距等于两圆半径之和.8.【分析】根据要证明一个结论不成立.可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1.则a>1”是假命题的反例可以是:a=﹣2.∵(﹣2)2>1.但是a=﹣2<1.∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误.要说明数学命题的错误.只需举出一个反例即可这是数学中常用的一种方法.9.【分析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元.儿童票每张35元.共花了1225元”可得方程:70x+35y=1225.把两个方程组合即可.【解答】解:设其中有x张成人票.y张儿童票.根据题意得..故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组.关键是弄清题意.把已知量和未知量联系起来.找出题目中的相等关系.10.【分析】连接CM.根据点M是AB的中点可得△ACM和△BCM 的面积相等.又P.Q两点同时出发.并同时到达终点.所以点P到达AC的中点时.点Q到达BC的中点.然后把开始时、结束时、与中点时的△MPQ的面积与△ABC的面积相比即可进行判断.【解答】解:如图所示.连接CM.∵M是AB的中点.∴S△ACM=S△BCM=S△ABC.开始时.S△MPQ=S△ACM=S△ABC.点P到达AC的中点时.点Q到达BC的中点时.S△MPQ=S△ABC.结束时.S△MPQ=S△BCM=S△ABC.所以.△MPQ的面积大小变化情况是:先减小后增大.故选:C.【点评】本题考查了动点问题的函数图象.根据题意找出关键的开始时.中点时.结束时三个时间点的三角形的面积与△ABC的面积的关系是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】首先把括号外的2乘到括号内.去括号.然后合并同类项即可.【解答】解:原式=2a+2﹣a=a+2.故答案是:a+2.【点评】考查了整式的加减.解决此类题目的关键是熟记去括号法则.熟练运用合并同类项的法则.这是各地中考的常考点.12.【分析】观察图形可得.图形有四个形状相同的部分组成.从而能计算出旋转角度.【解答】解:图形可看作由一个基本图形每次旋转90°.旋转4次所组成.故最小旋转角为90°.故答案为:90.【点评】本题考查了观察图形.确定最小旋转角度数的方法.需要熟练掌握.13.【分析】由题意得=0.解分式方程即可得出答案.【解答】解:由题意得.=0.解得:x=3.经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件.属于基础题.注意分式方程需要检验.14.【分析】根据频数分布直方图估计出89.5~109.5.109.5~129.5两个分数段的学生人数.然后相加即可.【解答】解:如图所示.89.5~109.5段的学生人数有24人.109.5~129.5段的学生人数有3人.所以.成绩不低于90分的共有24+3=27人.故答案为:27.【点评】本题考查了读频数分布直方图的能力.根据图形估计出两个分数段的学生人数是解题的关键.15.【分析】根据会弹钢琴的人数比会弹古筝的人数多10人.表示出会弹钢琴的人数为:(m+10)人.再利用两种都会的有7人得出该班同学共有:(m+m+10﹣7)人.整理得出答案即可.【解答】解:∵设会弹古筝的有m人.则会弹钢琴的人数为:m+10.∴该班同学共有:m+m+10﹣7=2m+3.故答案为:(2m+3).【点评】此题主要考查了列代数式.根据已知表示出会弹钢琴的人数与会弹古筝的人数是解题关键.16.【分析】过点D作DG⊥x轴于点G.过点E作EF⊥y轴于点F.令A(t.).则AD=AB=DG=.AE=AC=EF=t.则图中阴影部分的面积=△ACE的面积+△ABD的面积=t2+×.因此只需求出t2的值即可.先在直角△ADE中.由勾股定理.得出DE=.再由△EFQ∽△DAE.求出QE=.△ADE∽△GPD.求出DP =:.然后根据QE:DP=4:9.即可得出t2=.【解答】解:解法一:过点D作DG⊥x轴于点G.过点E作EF⊥y 轴于点F.令A(t.).则AD=AB=DG=.AE=AC=EF=t.在直角△ADE中.由勾股定理.得DE====.∵△EFQ∽△DAE.∴QE:DE=EF:AD.∴QE=.∵△ADE∽△GPD.∴DE:PD=AE:DG.∴DP=.又∵QE:DP=4:9.∴:=4:9.解得t2=.∴图中阴影部分的面积=AC2+AB2=t2+×=+3=;解法二:∵QE:DP=4:9.∴EF:PG=4:9.设EF=4t.则PG=9t.∴A(4t.).由AC=AEAD=AB.∴AE=4t.AD=.DG=.GP=9t.∵△ADE∽△GPD.∴AE:DG=AD:GP.4t:=:9t.即t2=.图中阴影部分的面积=4t×4t+××=.故答案为:.【点评】本题考查了反比例函数的性质.勾股定理.相似三角形的判定与性质.三角形的面积等知识.综合性较强.有一定难度.根据QE:DP=4:9.得出t2的值是解题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)首先计算乘方.进行开方运算.然后合并同类二次根式即可求解;(2)方程两边同时加上1.左边即可化成完全平方式的形式.然后进行开方运算.转化成两个一元一次方程.即可求解.【解答】解:(1)(﹣3)2+(﹣3)×2﹣=9﹣6﹣2=3﹣2;(2)配方得(x﹣1)2=6∴x﹣1=±∴x1=1+.x2=1﹣.【点评】本题考查了实数的混合运算以及利用配方法解一元二次方程.正确进行配方是关键.18.【分析】(1)过A作AE∥PQ.过E作EB∥PR.再顺次连接A、E、B.此题答案不唯一.符合要求即可;(2)△PQR面积是:×QR×PQ=6.连接BA.BA长为3.再连接AD、BD.三角形的面积也是6.但是两个三角形不全等.【解答】解:(1)如图所示:;(2)如图所示:.【点评】此题主要考查了作图.关键是掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;三角形面积的计算公式:S=×底×高.19.【分析】根据平移的性质可得CF=AD=10cm.DF=AC.再在Rt △ABC中利用勾股定理求出AC的长为10.就可以根据四条边都相等的四边形是菱形得到结论.【解答】证明:由平移变换的性质得:CF=AD=10cm.DF=AC.∵∠B=90°.AB=6cm.BC=8cm.∴AC===10.∴AC=DF=AD=CF=10cm.∴四边形ACFD是菱形.【点评】此题主要考查了平移的性质.菱形的判定.关键是掌握平移的性质:各组对应点的线段平行且相等;菱形的判定:四条边都相等的四边形是菱形.20.【分析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可;(2)设白球有x个.得出黄球有(2x﹣5)个.根据题意列出方程.求出白球的个数.再除以总的球数即可;(3)先求出取走10个球后.还剩的球数.再根据红球的个数.除以还剩的球数即可.【解答】解:(1)根据题意得:100×.答:红球有30个.(2)设白球有x个.则黄球有(2x﹣5)个.根据题意得x+2x﹣5=100﹣30解得x=25.所以摸出一个球是白球的概率P==;(3)因为取走10个球后.还剩90个球.其中红球的个数没有变化.所以从剩余的球中摸出一个球是红球的概率=;【点评】此题考查了概率公式:如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.21.【分析】在直角△CDB中.利用三角函数即可求得BC.BD的长.则求得甲、乙的时间.比较二者之间的大小即可.【解答】解:由题意得∠BCD=55°.∠BDC=90°∵tan∠BCD=∴BD=CD•tan∠BCD=40×tan55°≈57.2cos∠BCD=∴BC=70.2∴t甲==38.6秒.t乙=(秒).∴t甲>t乙.答:乙先到达B处.【点评】本题考查了解直角三角形的应用.理解直角三角形中的边角关系是关键.22.【分析】(1)连接OD.如图1所示.由OD=OC.根据等边对等角得到一对角相等.再由∠DOB为△COD的外角.利用三角形的外角等于与它不相邻的两个内角之和.等量代换可得出∠DOB=2∠DCB.又∠A=2∠DCB.可得出∠A=∠DOB.又∠ACB=90°.可得出直角三角形ABC中两锐角互余.等量代换可得出∠B与∠ODB互余.即OD垂直于BD.确定出AB为圆O的切线.得证;(2)法1:过O作OM垂直于CD.根据垂径定理得到M为DC的中点.由BD垂直于OD.得到三角形BDO为直角三角形.再由BE=OE=OD.得到OD等于OB的一半.可得出∠B=30°.进而确定出∠DOB=60°.又OD=OC.利用等边对等角得到一对角相等.再由∠DOB为三角形DOC的外角.利用外角的性质及等量代换可得出∠DCB=30°.在三角形CMO中.根据30°角所对的直角边等于斜边的一半得到OC=2OM.由弦心距OM的长求出OC的长.进而确定出OD及OB的长.利用勾股定理即可求出BD的长;法2:过O作OM垂直于CD.连接ED.由垂径定理得到M为CD的中点.又O为EC的中点.得到OM为三角形EDC的中位线.利用三角形中位线定理得到OM等于ED的一半.由弦心距OM的长求出ED的长.再由BE=OE.得到ED为直角三角形DBO斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半.由DE的长求出OB 的长.再由OD及OB的长.利用勾股定理即可求出BD的长.【解答】(1)证明:连接OD.如图1所示:∵OD=OC.∴∠DCB=∠ODC.又∠DOB为△COD的外角.∴∠DOB=∠DCB+∠ODC=2∠DCB.又∵∠A=2∠DCB.∴∠A=∠DOB.∵∠ACB=90°.∴∠A+∠B=90°.∴∠DOB+∠B=90°.∴∠BDO=90°.∴OD⊥AB.又∵D在⊙O上.∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M.如图1.∵OD=OE=BE=BO.∠BDO=90°.∴∠B=30°.∴∠DOB=60°.∵OD=OC.∴∠DCB=∠ODC.又∵∠DOB为△ODC的外角.∴∠DOB=∠DCB+∠ODC=2∠DCB.∴∠DCB=30°.∵在Rt△OCM中.∠DCB=30°.OM=1.∴OC=2OM=2.∴OD=2.BO=BE+OE=2OE=4.∴在Rt△BDO中.根据勾股定理得:BD=2;解法二:过点O作OM⊥CD于点M.连接DE.如图2.∵OM⊥CD.∴CM=DM.又O为EC的中点.∴OM为△DCE的中位线.且OM=1.∴DE=2OM=2.∵在Rt△OCM中.∠DCB=30°.OM=1.∴OC=2OM=2.∵Rt△BDO中.OE=BE.∴DE=BO.∴BO=BE+OE=2OE=4.∴OD=OE=2.在Rt△BDO中.根据勾股定理得BD=2.【点评】此题考查了切线的性质.垂径定理.勾股定理.含30°直角三角形的性质.三角形的中位线定理.三角形的外角性质.以及直角三角形斜边上的中线性质.熟练掌握定理及性质是解本题的关键.23.【分析】(1)①运往B地的产品件数=总件数n﹣运往A地的产品件数﹣运往B地的产品件数;运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数.总运费不超过4000元列出不等式组.求得正整数解的个数即可;(2)总运费=A产品的运费+B产品的运费+C产品的运费.进而根据函数的增减性及(1)中②得到的x的取值求得n的最小值即可.【解答】解:(1)①根据信息填表A地B地C地合计产品件数200﹣3x(件)运费1600﹣24x50x56x+1600②由题意.得.解得40≤x≤42.∵x为正整数.∴x=40或41或42.∴有三种方案.分别是(i)A地40件.B地80件.C地80件;(ii)A地41件.B地77件.C地82件;(iii)A地42件.B地74件.C地84件;(2)由题意.得30x+8(n﹣3x)+50x=5800.整理.得n=725﹣7x.∵n﹣3x≥0.∴725﹣7x﹣3x≥0.∴﹣10x≥﹣725.∴x≤72.5.又∵x≥0.∴0≤x≤72.5且x为正整数.∵n随x的增大而减少.∴当x=72时.n有最小值为221.【点评】考查一次函数的应用;得到总运费的关系式是解决本题的关键;注意结合自变量的取值得到n的最小值.24.【分析】(1)把m=3.代入抛物线的解析式.令y=0解方程.得到的非0解即为和x轴交点的横坐标.再求出抛物线的对称轴方程.进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH =90°.利用已知条件证明△ACH∽△PCB.根据相似的性质得到:.再用含有m的代数式表示出BC.CH.BP.代入比例式即可求出m的值;(3)存在.本题要分当m>1时.BC=2(m﹣1).PM=m.BP=m﹣1和当0<m<1时.BC=2(1﹣m).PM=m.BP=1﹣m.两种情况分别讨论.再求出满足题意的m值和相对应的点E坐标.【解答】解:(1)当m=3时.y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0.x2=6.∴A(6.0)当x=1时.y=5∴B(1.5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B.C关于对称轴对称∴BC=4.(2)连接AC.过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△ACH∽△PCB.∴.∵抛物线y=﹣x2+2mx的对称轴为直线x=m.其中m>1.又∵B.C关于对称轴对称.∴BC=2(m﹣1).∵B(1.2m﹣1).P(1.m).∴BP=m﹣1.又∵A(2m.0).C(2m﹣1.2m﹣1).∴H(2m﹣1.0).∴AH=1.CH=2m﹣1.∴.∴m=.(3)∵B.C不重合.∴m≠1.(I)当m>1时.BC=2(m﹣1).PM=m.BP=m﹣1.(i)若点E在x轴上(如图1).∵∠CPE=90°.∴∠MPE+∠BPC=∠MPE+∠MEP=90°.PC=EP.在△BPC和△MEP中..∴△BPC≌△MEP.∴BC=PM.∴2(m﹣1)=m.∴m=2.此时点E的坐标是(2.0);(ii)若点E在y轴上(如图2).过点P作PN⊥y轴于点N.易证△BPC≌△NPE.∴BP=NP=OM=1.∴m﹣1=1.∴m=2.此时点E的坐标是(0.4);(II)当0<m<1时.BC=2(1﹣m).PM=m.BP=1﹣m.(i)若点E在x轴上(如图3).易证△BPC≌△MEP.∴BC=PM.∴2(1﹣m)=m.∴m=.此时点E的坐标是(.0);(ii)若点E在y轴上(如图4).过点P作PN⊥y轴于点N.易证△BPC≌△NPE.∴BP=NP=OM=1.∴1﹣m=1.∴m=0(舍去).综上所述.当m=2时.点E的坐标是(2.0)或(0.4).当m=时.点E的坐标是(.0).【点评】此题主要考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和相似三角形的性质以及全等三角形的性质和全等三角形的判定、需注意的是(3)题在不确E点的情况下需要分类讨论.以免漏解.题目的综合性强.难度也很大.有利于提高学生的综合解题能力.是一道不错的题目.。
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题本题有10小题.每小题4分.共40分.1.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣12.直六棱柱如图所示.它的俯视图是()A.B.C.D.3.第七次全国人口普查结果显示.我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为()A.218×106B.21.8×107C.2.18×108D.0.218×109 4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人.则初中生有()A.45人B.75人C.120人D.300人5.解方程﹣2(2x+1)=x.以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=xD.﹣4x﹣2=x6.如图.图形甲与图形乙是位似图形.O是位似中心.点A.B的对应点分别为点A′.则A′B′的长为()A.8B.9C.10D.157.某地居民生活用水收费标准:每月用水量不超过17立方米.每立方米a元;超过部分每立方米(a+1.2).则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元8.图1是第七届国际数学教育大会(ICME)会徽.在其主体图案中选择两个相邻的直角三角形.∠AOB=α.则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+1 9.如图.点A.B在反比例函数y=(k>0.x>0).AC⊥x轴于点C.BD ⊥x轴于点D.连结AE.若OE=1.OC=.AC=AE.则k的值为()A.2B.C.D.210.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G.连结CG.延长BE交CG于点H.若AE=2BE.则()A.B.C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:2m2﹣18=.12.(5分)一个不透明的袋中装有21个只有颜色不同的球.其中5个红球.7个白球.13.(5分)若扇形的圆心角为30°.半径为17.则扇形的弧长为.14.(5分)不等式组的解集为.15.(5分)如图.⊙O与△OAB的边AB相切.切点为B.将△OAB绕点B按顺时针方向旋转得到△O′A′B.边A′B交线段AO于点C.若∠A′=25°.则∠OCB=度.16.(5分)图1是邻边长为2和6的矩形.它由三个小正方形组成.将其剪拼成不重叠、无缝隙的大正方形(如图2);记图1中小正方形的中心为点A.B.C.图2中的对应点为点A′.B′.则当点A′.B′.圆的最小面积为.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:4×(﹣3)+|﹣8|﹣.(2)化简:(a﹣5)2+a(2a+8).18.(8分)如图.BE是△ABC的角平分线.在AB上取点D(1)求证:DE∥BC;(2)若∠A=65°.∠AED=45°.求∠EBC的度数.19.(8分)某校将学生体质健康测试成绩分为A.B.C.D四个等级.依次记为4分.2分.1分.为了解学生整体体质健康状况(1)以下是两位同学关于抽样方案的对话:小红:“我想随机抽取七年级男、女生各60人的成绩.”小明:“我想随机抽取七、八、九年级男生各40人的成绩.”根据如图学校信息.请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩.请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如图统计图.请求出这组数据的平均数、中位数和众数.20.(8分)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案.它由7个图形组成.请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中.使点P为它的一个顶点.并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形.将它的各边长扩大到原来的倍.画在图3中.21.(10分)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2.0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4.m).B(n.7).n为正数.若点P 在抛物线上且在直线l下方(不与点A.B重合).分别求出点P横坐标与纵坐标的取值范围.22.(10分)如图.在▱ABCD中.E.F是对角线BD上的两点(点E在点F左侧)(1)求证:四边形AECF是平行四边形;(2)当AB=5.tan∠ABE=.∠CBE=∠EAF时23.(12分)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍.用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元.且生产的营养品当日全部售出.若A的数量不低于B的数量.则A为多少包时24.(14分)如图.在平面直角坐标系中.⊙M经过原点O(2.0).B(0.8).连结AB.直线CM分别交⊙M于点D.E(点D在左侧).交x轴于点C(17.0)(1)求⊙M的半径和直线CM的函数表达式;(2)求点D.E的坐标;(3)点P在线段AC上.连结PE.当∠AEP与△OBD的一个内角相等时.求所有满足条件的OP的长.参考答案与试题解析一、选择题本题有10小题.每小题4分.共40分.1.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣1【分析】(﹣2)²表示2个(﹣2)相乘,根据幂的意义计算即可.【解答】解:(﹣2)²=(﹣2)×(﹣6)=4,故选:A.2.直六棱柱如图所示.它的俯视图是()A.B.C.D.【分析】根据简单几何体的三视图进行判断即可.【解答】解:从上面看这个几何体.看到的图形是一个正六边形.故选:C.3.第七次全国人口普查结果显示.我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为()A.218×106B.21.8×107C.2.18×108D.0.218×109【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n 为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时.n是正数;当原数的绝对值<1时.n是负数.【解答】解:将218000000用科学记数法表示为2.18×108.故选:C.4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人.则初中生有()A.45人B.75人C.120人D.300人【分析】利用大学生的人数以及所占的百分比可得总人数.用总人数乘以初中生所占的百分比即可求解.【解答】解:参观温州数学名人馆的学生人数共有60÷20%=300(人).初中生有300×40%=120(人).故选:C.5.解方程﹣2(2x+1)=x.以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=xD.﹣4x﹣2=x【分析】可以根据乘法分配律先将2乘进去.再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x.去括号得:﹣3x﹣2=x.故选:D.6.如图.图形甲与图形乙是位似图形.O是位似中心.点A.B的对应点分别为点A′.则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式.代入计算即可.【解答】解:∵图形甲与图形乙是位似图形.位似比为2:3.∴=.即=.解得.A′B′=9.故选:B.7.某地居民生活用水收费标准:每月用水量不超过17立方米.每立方米a元;超过部分每立方米(a+1.2).则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元【分析】应缴水费=17立方米的水费+(20﹣17)立方米的水费。
中考数学模拟测试试卷(附含有答案)
中考数学模拟测试试卷(附含有答案)学校:___________班级:___________姓名:___________考号:___________本试题分试卷和答题卡两部分、第1卷满分为40分;第11卷满分为110分,本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将试卷、答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.2B.﹣12C.-2 D.122.如图是《九章算术》中"堑堵"的立体图形,它的左视图为()3.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为()A.4x105B.4x106C.40x104D.0.4x1064.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°(第4题图)5.下列校徽的图案是轴对称图形的是()6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。
两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.12(第8题图) (第9题图)9.用尺规作一个角等于已知角,已知∠AOB、求作:∠DEF,使∠DEF=∠AOB.作法如下:(1)作射线EG:(2)①为圆心,任意长为半径画弧,交OA于点P、交OB于点Q:(3)以点E为圆心,以②为半径画强交EG于点D:(4)以点D为圆心,以③为半径画弧交前面的弧于点片:(5)过点F作④,∠DEF即为所求作的角.以上作图步骤中,序号代表的内容错误的是()A.①表示点OB.②表示OPC.③表示OQD.④表示射线EF10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-4(a≥0)|a|(a<0),则称点M'(a,b')是点M(a,b)的伴随点,如:点A(1,-2)的伴随点是A'(1,-6),B(-1,-2)的伴随点是B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能是( )A.-10B.-1C.1D.10第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向平行四边形ABCD内部投掷飞镖,飞镖恰好落在阴影区域的概率为。
中考数学模拟测试卷带答案
中考数学模拟测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A .B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( )A .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x +=(k 为常数)的图象上123y y y 、、的大小关系为( ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 .11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 米(结果保留根号).三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)第5题图 第6题图 第8题图第10题图 第11题图 第12题图14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长?15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( B )B . B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( B )B .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( A )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上123y y y 、、的大小关系为( C ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( A )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( D ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( A )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( D )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= 1- .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 31 .第5题图 第6题图 第8题图11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 23 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 ()153 1.5 米(结果保留根号). 三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)1)由题意知60CAB ∠=︒,BC=4 ...................................................1分 ∴43tan603BC AB ==︒.................................................................3分 (2)43AB =30ACB ∠=︒ 90ABC ∠=︒ ⊙832AC AB = ...........................................................................................................................................................5分60BAC ∠=︒ 30ACB ∠=︒ 60DCE ∠=︒∴=90ACD ∠︒ 60DAC ∠=︒ ..........................................................................................................................................6分 ∴83tan6038DC AC =⋅︒== ...................................................................................................................................8分 在Rt CDE △中3sin60843DE CD =⋅︒==........................................................................................................10分 14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.第10题图 第11题图 第12题图(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;{}(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长? 1)解:设水温下降过程中,y 与x 的函数关系式为k y x=(k ≠0),...........................................1分 由题意得,点(4,100)在反比例函数k y x =的图象上 ∴4100k =..............................................................................................................................2分 解得:400k =∴水温下降过程中,y 与x 的函数关系式是400y x=;.....................................................3分 解:设在加热过程中,y 与x 的函数关系式为y=kx+b(k ≠0).......................................................................4分 把(0,20),(4,100)带入y=kx+b(k ≠0)得20=b, 100=4k+b.....................................................................................................................................................5分 解得:k=20,b=20..................................................................................................................................................6分 ∴y=20x+20当y=40时1x =.............................................................................................................................................7分在降温过程中,水温为40℃时40040x=..................................................................................................8分 解得:10x =...................................................................................................................................................9分1019-=........................................................................................................................................................10分∴一个加热周期内水温不低于40℃的时间为9min .15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.(1)证明:如图所示,连接OD ,.........................................................1分∵AD 平分∠CAB∴∠OAD =∠EAD ...........................................................................................................................................................2分 ∵OD =OA∴∠ODA =∠OAD ............................................................................................................................................................3分 ∴∠ODA =∠EAD .∴OD ∥AE .........................................................................................................................................................................4分 ∵AE PE ⊥∴OD PE ⊥∵D 在⊙O 上∴EP 与⊙O 相切...........................................................................................................................................................5分 (2)证明:OD PE ⊥∵∴90ODB BDP ∠+∠=︒.............................................................................................................................................6分 ∵AB 是⊙O 的直径⊙90ADB ∠=︒............................................................................................................................................................7分 即90ODB ODA ∠+∠=︒∴=ODA BDP ∠∠......................................................................................................................................................8分 ∵OD =OA∴∠ODA =∠OAD .⊙=OAD BDP ∠∠.....................................................................................................................................................9分 又∵APD DPB ∠=∠∴APD DPB ∆∆∽.....................................................................................................................................................10分 ∴AD AP BD DP=............................................................................................................................................................11分 ∴AD ·DP =BD ·AP ...................................................................................................................................................12分 解:作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB =90°∵AB =6,AD =2∴BD 22-AB AD 2 132OD AB ==.................................................................................................................15分 ∵12AB •DG =12AD •BD∴DG 423分 ∵AD 平分∠CAB ,AE ⊥DE ,DG ⊥AB∴DE =DG 423∴AE 22AD DE -163............................................................................................................................................17分 ∵OD ∥AE∴△ODP ∽△AEP .........................................................................................................................................................18分 ∴DP EP =OD AE ,即DP DE DP OD AE += ∴4213363DPDP =........................................................................................................................................................19分 ∴2721DP =分。
初三数学中考模拟试题(含答案)
初三年级数学中考模拟试题题次 一 二 三 总分1—10 11-15 16 17 18 19 20 21 22 得分一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分) 题号 1 2 3 4 5 6 7 8 9 10 答案1. 下列各数(-2)0 , — (-2), (—2)2, (—2)3中, 负数的个数为 ( ) A 。
1 B 。
2 C. 3 D 。
42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A 。
463×108B 。
4.63×108C 。
4。
63×1010D 。
0.463×10114.“圆柱与球的组合体"如左图所示,则它的三视图是( )A .B .C . D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D .1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A. a >0,b <0,c >0 B 。
a <0,b <0,c >0 C. a <0,b >0,c <0 D. a <0,b >0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图13题图O B A C y xOC B A面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率是( ) A .61 B .31 C .21 D .326题图 7题图 8题图 9题图8.如图所示, ABCD 中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A . 180° B .36° C . 72° D . 108°9.如图,在△ABC 中,∠C =90°,AC >BC,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( ) A .S 1 =S 2 B .S 1 >S 2 C .S 1 <S 2 D .S 1 ,S 2的大小大小不能确定 10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交二、填空题:(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)题号 11 12 13 14 15 答案11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条。
九年级中考数学模拟考试卷(附答案)
九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。
中考模拟题数学试卷带答案
一、选择题(每小题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-16C. πD. 2π答案:A2. 下列各式中,正确的是()A. 2a + 3b = 5B. 2a + 3b = 5aC. 2a + 3b = 5bD. 2a + 3b = 5c答案:C3. 若x = 2,则方程2x - 3 = 0的解为()A. x = 1B. x = 2C. x = 3D. x = 4答案:B4. 已知函数f(x) = 3x - 2,若f(x) > 0,则x的取值范围是()A. x > 2/3B. x < 2/3C. x ≥ 2/3D. x ≤ 2/3答案:A5. 下列各式中,绝对值最小的是()A. | -2 |B. | -3 |C. | -4 |D. | -5 |答案:A6. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°答案:D7. 若a > b,则下列不等式中正确的是()A. a + c > b + cB. a - c > b - cC. a + c < b + cD. a - c < b - c答案:A8. 已知数列{an}的通项公式为an = 3n - 2,则数列的第10项是()A. 28B. 27C. 26D. 25答案:A9. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 2/xD. y = 2x + 3答案:C10. 若平行四边形ABCD的对角线AC和BD相交于点O,则OA:OB的比值是()A. 1:1B. 2:1C. 1:2D. 3:1答案:A二、填空题(每小题3分,共30分)11. 若a < b < 0,则|a|与|b|的大小关系是______。
中考模拟考试数学试卷及答案解析(共五套)
19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:
(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?
20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.
18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.
(1)求这种商品的单价;
(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.
C.三四线城市购买新能源汽车用户达到11万
D.四线城市以下购买新能源汽车用户最少
【分析】根据扇形统计图中的数据一一分析即可判断.
【解答】解:A、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;
B、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;
C、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;
中考数学模拟考试卷(附答案)
中考数学模拟考试卷(附答案)一选择题(共8小题,每小题3分,计24分。
每个小题只有一一个选项是符合题意的)1.(3分)−34的倒数是()A.43B.−43C.34D.−342.(3分)如图是某个几何体的展开图,该几何体是()A.圆锥B.四棱柱C.圆台D.圆柱3.(3分)下列运算正确的是()A.5a+3a=8 B.3ab﹣ab=2abC.2a+3b=5ab D.﹣(a﹣b)=﹣a﹣b4.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=160°,则∠C的度数是()A.130°B.140°C.150°D.160°5.(3分)如图是一次函数y=ax+b的图象,则关于x的方程ax+b=1的解为()A.0 B.2 C.4 D.66.(3分)在矩形ABCD中有一个菱形BEDF(点E,F分别在线段AB CD上),记它们的面积分别为S矩形ABCD和S菱形BEDF,若S矩形ABCD:S菱形BEDF=(2+√3):2,则tan∠EDF=()A.√3B.2√3C.√33D.√327.(3分)如图,在圆O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD 的中点,则AC的长是()A.4 B.2√3C.4√33D.8√338.(3分)在平面直角坐标系中,将抛物线y=x2+(m+2)x+3m﹣3(m>0)向上(下)或向左(右)平移,平移后的抛物线恰好经过原点,且平移的最小距离是2,则m的值为()A.1 B.2 C.3 D.6二填空题(共5小题,每小题3分,计15分)9.(3分)在﹣2 −√3227√6π中,无理数有个.10.(3分)如图,AC是正五边形ABCDE的对角线,则∠ACD为度.11.(3分)定义新运算:对于任意实数a b,都有a⊗b=13a﹣b,则x⊗1﹣x⊗2的值为.12.(3分)若点A(﹣1,y1)B(−14,y2)C(1,y3)都在反比例函数y=k2+1x(k为常数)的图象上,则y1y2y3的大小关系为.13.(3分)在菱形ABCD中,∠D=60°,CD=4,E为菱形内部一点,且AE=2,连接CE,点F为CE中点,连接BF,取BF中点G,连接AG,则AG的最大值为.三解答题(共13小题,计81分。
中考数学模拟试题及答案
中考数学模拟试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 以上都是答案:D3. 计算下列算式的结果:(3x - 2) - (x + 4) =A. 2x - 6B. 2x + 2C. x - 6D. x + 2答案:C4. 一个直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 6C. 7D. 8答案:A5. 下列哪个函数是二次函数?A. y = xB. y = x^2C. y = 2x + 1D. y = x^3答案:B6. 一个数的立方等于它本身,这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D7. 计算下列算式的结果:(2x + 3)(2x - 3) =A. 4x^2 - 9B. 4x^2 + 9C. 9 - 4x^2D. 9 + 4x^2答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C9. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 计算下列算式的结果:(a^2 - b^2) / (a - b) =A. a + bB. a - bC. a^2 - b^2D. a^2 + b^2答案:B二、填空题(每题2分,共20分)1. 一个数的平方根是它本身,这个数是________。
答案:0或12. 一个数的立方根是它本身,这个数是________。
答案:0,1,-13. 一个数的相反数是它本身,这个数是________。
答案:04. 一个数的倒数是它本身,这个数是________。
答案:1或-15. 一个数的绝对值是它本身,这个数是________。
答案:非负数6. 一个数的平方是25,这个数是________。
答案:5或-57. 一个数的立方是-8,这个数是________。
中考数学仿真模拟测试题(附答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
中考数学模拟试卷(有答案)
中考数学模拟试卷一、选择题(每小题3分,共24分)1.计算(﹣2)+(﹣3)的结果是()A.﹣5 B.﹣1 C.1 D.52.如图所示的几何体是由一个正方体切去一个小正方形成的,从左面看到的平面图形为()A.B.C.D.3.移动互联网已经全面进入人们的日常生活,截至2016年1月,全国4G用户总数达到3.86亿,其中3.86亿用科学记数法表示为()A.3.86×104B.3.86×106C.3.86×108D.0.162×1094.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115° D.120°5.不等式组的整数解的个数为()A.1 B.2 C.3 D.46.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是547.已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y18.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4 B.CD﹣DF=2﹣3 C.BC+AB=2+4 D.BC﹣AB=2二、填空题(每小题3分,共21分)9.计算+(﹣1)2017=.10.如图,根据阴影面积的两种不同的计算方法,验证了初中数学的哪个公式.答:.11.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.在△ABC中,AB=AC,∠A=52°,分别以A、C为圆心,大于AC长为半径画弧,两弧交于M、N两点,作直线MN交AB于D、交AC于E,则∠DCB的度数为度.13.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=.14.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是.15.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.三、解答题(共75分)16.在学习分式计算时有这样一道题:先化简÷,再选取一个你喜欢且合适的数代入求值.张明同学化简过程如下:解:÷=÷( )=( ) = ( )(1)在括号中直接填入每一步的主要依据或知识点;(2)如果你是张明同学,那么在选取你喜欢且合适的数进行求值时,你不能选取的数有 .17.唐诗是我国古代文化中的隗宝,某市教育主管部门为了解本市初中生对唐诗的学习情况,进行了一次唐诗背诵大赛,随机抽取了部分同学的成就(x 为整数,总分100分),绘制了如下尚不完整的统计表.根据以上信息解答下列问题:(1)统计表中a= ,b ,c= ;(2)扇形统计图中,m 的值为 ,“D”所对应的圆心角的度数是 (度); (3)若参加本次背诵大赛的同学共有8000人,请你估计成绩在90分及以上的学生大约有多少人?18.如图,AB是⊙O的直径,割线DA,DB分别交⊙O于点E,C,且AD=AB,∠DAB是锐角,连接EC、OE、OC.(1)求证:△OBC≌△OEC.(2)填空:①若AB=2,则△AOE的最大面积为;②当∠ABD的度数为时,四边形OBCE是菱形.19.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)20.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)21.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF的长(结果保留根号).23.如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y=x2+bx+c 的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y 轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.(1)求点C的坐标及二次函数的关系式;(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN 长度的最大值;(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)2016年河南省中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.计算(﹣2)+(﹣3)的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的加法.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选:A.2.如图所示的几何体是由一个正方体切去一个小正方形成的,从左面看到的平面图形为()A.B.C.D.【考点】简单组合体的三视图;截一个几何体.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:从左面看是一个大正方形,大正方形的右上角是一个小正方形,因为是在对面,故小正方形应该是虚线,故D符合题意,故选:D.3.移动互联网已经全面进入人们的日常生活,截至2016年1月,全国4G用户总数达到3.86亿,其中3.86亿用科学记数法表示为()A.3.86×104B.3.86×106C.3.86×108D.0.162×109【考点】科学记数法—表示较大的数.【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3.86亿用科学记数法表示为:3.86×108.故选:C.4.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115° D.120°【考点】平行线的性质.【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=∠AMO=115°.故选C.5.不等式组的整数解的个数为()A.1 B.2 C.3 D.4【考点】一元一次不等式组的整数解.【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【解答】解:,解不等式①得,x>﹣,解不等式②得,x≤1,所以,不等式组的解集是﹣<x≤1,所以,不等式组的整数解有﹣1、0、1共3个.故选C.6.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是54【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.【解答】解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.7.已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1【考点】二次函数图象上点的坐标特征.【分析】根据x1、x2、x3与对称轴的大小关系,判断y1、y2、y3的大小关系.【解答】解:∵二次函数y=﹣x2﹣7x+,∴此函数的对称轴为:x=﹣=﹣=﹣7,∵0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小,∴y1>y2>y3.故选:A.8.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4 B.CD﹣DF=2﹣3 C.BC+AB=2+4 D.BC﹣AB=2【考点】三角形的内切圆与内心;翻折变换(折叠问题).【分析】设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,证明△OMG≌△GCD,得到OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),所以c=a+b﹣2.在Rt△ABC中,利用勾股定理求得(舍去),从而求出a,b的值,所以BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,从而得到CD﹣DF=,CD+DF=.即可解答.【解答】解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得(舍去),∴,∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,∴CD﹣DF=,CD+DF=.综上只有选项A错误,故选A.二、填空题(每小题3分,共21分)9.计算+(﹣1)2017=2.【考点】实数的运算.【分析】原式利用算术平方根定义,以及乘方的意义计算即可得到结果.【解答】解:原式=3﹣1=2,故答案为:210.如图,根据阴影面积的两种不同的计算方法,验证了初中数学的哪个公式.答:a2﹣b2=(a+b)(a﹣b).【考点】平方差公式的几何背景.【分析】首先用边长是a的正方形的面积减去边长是b的正方形的面积,求出左边图形的面积是多少;然后根据长方形的面积=长×宽,求出右边阴影部分的面积,判断出验证了初中数学的哪个公式即可.【解答】解:左边图形的面积是:a2﹣b2,右边图形的面积是:(a+b)(a﹣b),∴根据阴影面积的两种不同的计算方法,验证了初中数学的平方差公式:a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).11.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:∴一共有20种情况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是=.12.在△ABC中,AB=AC,∠A=52°,分别以A、C为圆心,大于AC长为半径画弧,两弧交于M、N两点,作直线MN交AB于D、交AC于E,则∠DCB的度数为12度.【考点】线段垂直平分线的性质;等腰三角形的性质;作图—基本作图.【分析】首先根据题意可得MN是AC的垂直平分线,根据垂直平分线的性质可得AD=DC,进而得到∠A=∠ACD=52°,然后再根据等腰三角形的性质计算出∠ACB 的度数,进而得到答案.【解答】解:由题意得:MN是AC的垂直平分线,∵MN是AC的垂直平分线∴AD=DC,∴∠A=∠ACD=52°,∵AB=AC,∴∠ACB=÷2=64°,∴∠DCB=64°﹣52°=12°,故答案为:12.13.在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=2+2或2﹣2.【考点】反比例函数图象上点的坐标特征;勾股定理.【分析】把P点代入y=求得P的坐标,进而求得OP的长,即可求得Q的坐标,从而求得k的值.【解答】解:∵点P(1,t)在反比例函数y=的图象上,∴t==2,∴P(1.2),∴OP==,∵过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.∴Q(1+,2)或(1﹣,2)∵反比例函数y=的图象经过点Q,∴2=或2=,解得k=2+2或2﹣2故答案为2+2或2﹣2.14.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是6π.【考点】扇形面积的计算.【分析】图中阴影部分的面积=扇形ABD的面积+三角形DBE的面积﹣三角形ABC 的面积.又由旋转的性质知△ABC≌△DBE,所以三角形DBE的面积=三角形ABC 的面积.【解答】解:∵根据旋转的性质知∠ABD=60°,△ABC≌△DBE,∴S△ABC ﹣S△DBE,∴S阴影=S扇形ABD+S△DBE﹣S△ABC=S扇形ABD==6π.故答案是:6π.15.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【考点】一元一次方程的应用.【分析】由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,=,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.三、解答题(共75分)16.在学习分式计算时有这样一道题:先化简÷,再选取一个你喜欢且合适的数代入求值.张明同学化简过程如下:解:÷=÷(通分、因式分解)=(分式的除法法则)=(约分)(1)在括号中直接填入每一步的主要依据或知识点;(2)如果你是张明同学,那么在选取你喜欢且合适的数进行求值时,你不能选取的数有2,﹣2,1.【考点】分式的化简求值.【分析】(1)根据通分、约分、分式的除法法则解答;(2)根据分式有意义的条件进行解答即可.【解答】解:(1)原式═÷(通分、因式分解)=(分式的除法法则)= (约分)故答案为:通分,分解因式;分式的除法法则;约分;(2)∵x ﹣4≠0,x ﹣1≠0, ∴x ≠±2,1.故答案为:2,﹣2,1.17.唐诗是我国古代文化中的隗宝,某市教育主管部门为了解本市初中生对唐诗的学习情况,进行了一次唐诗背诵大赛,随机抽取了部分同学的成就(x 为整数,总分100分),绘制了如下尚不完整的统计表.根据以上信息解答下列问题:(1)统计表中a= 80 ,b =400 ,c= 0.15 ;(2)扇形统计图中,m 的值为 20 ,“D”所对应的圆心角的度数是 144 (度);(3)若参加本次背诵大赛的同学共有8000人,请你估计成绩在90分及以上的学生大约有多少人?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)首先根据A组的频数和频率确定b值,然后根据频数÷样本容量=频率求得a和c的值即可;(2)用整体1减去其他小组的百分比即可求得m的值;用周角乘以D所占的百分比即可求得其圆心角的度数;(3)用学生总人数乘以90分以上的频率即可求得人数.【解答】解:(1)∵观察频数统计图知:A组的频数为40,频率为0.1,∴b=40÷0.1=400,∴a=400×0.20=80,c=60÷400=0.15;故答案为:80,400,0.15;(2)∵m%=1﹣10%﹣15%﹣40%﹣15%=20%,∴m=20,D所在的扇形的圆心角为360×40%=144°,故答案为:20,144;(3)8000×15%=1200,所以成绩在90分及以上的学生大约有1200人.18.如图,AB是⊙O的直径,割线DA,DB分别交⊙O于点E,C,且AD=AB,∠DAB是锐角,连接EC、OE、OC.(1)求证:△OBC≌△OEC.(2)填空:①若AB=2,则△AOE的最大面积为;②当∠ABD的度数为60°时,四边形OBCE是菱形.【考点】圆的综合题.【分析】(1)利用垂直平分线,判断出∠BAC=∠DAC,得出EC=BC,用SSS判断出结论;(2)先判断出三角形AOE面积最大,只有点E到直径AB的距离最大,即是圆的半径即可;(3)由菱形判断出△AOC是等边三角形即可.【解答】解:(1)连接AC,∵AB是⊙O的直径,∴AC⊥BD,∵AD=AB,∴∠BAC=∠DAC,∴,∴BC=EC,在△OBC和△OEC中,∴△OBC≌△OEC,(2)∵AB是⊙O的直径,且AB=2,∴OA=1,设△AOE的边OA上的高为h,=OA×h=×1×h=h,∴S△AOE最大,只有h最大,∴要使S△AOE∵点E在⊙O上,∴h最大是半径,即h最大=1=,∴S△AOE最大故答案为:,(3)由(1)知,BC=EC,OC=OB,∵四边形OBCE是菱形.∴BC=OB=OC,∴∠ABD=60°,故答案为60°.19.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点C、D分别作CG⊥AB,DF⊥CG,垂足分别为G,F,根据直角三角形的性质得出CG,再根据三角函数的定义即可得出CD的长;(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,过点E作EH⊥CD于点H,根据三角函数表示出EH,在Rt△EHC中,根据正弦的定义求值即可.【解答】解:(1)过点C、D分别作CG⊥AB,DF⊥CG,垂足分别为G,F,∵在Rt△CGB中,∠CBG=90°﹣60°=30°,∴CG=BC=×(30×)=7.5,∵∠DAG=90°,∴四边形ADFG是矩形,∴GF=AD=1.5,∴CF=CG﹣GF=7.5﹣1.5=6,在Rt△CDF中,∠CFD=90°,∵∠DCF=53°,∴COS∠DCF=,∴CD===10(海里).答:CD两点的距离是10;(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,过点E作EH⊥CD于点H,则∠EHD=∠CHE=90°,∴sin∠EDH=,∴EH=EDsin53°=3t×=t,∴在Rt△EHC中,sin∠ECD===.答:sin∠ECD=.20.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴AB2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==221.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.【考点】一次函数的应用;一元二次方程的应用;一元一次不等式的应用.【分析】(1)根据甲团队人数为x人,乙团队人数不超过50人,得到x≥70,分两种情况:①当70≤x≤100时,W=70x+80=﹣10x+9600,②当100<x<120时,W=60x+80=﹣20x+9600,即可解答;(2)根据甲团队人数不超过100人,所以x≤100,由W=﹣10x+9600,根据70≤x≤100,利用一次函数的性质,当x=70时,W最大=8900(元),两团联合购票需120×60=7200(元),即可解答;(3)根据每张门票降价a元,可得W=(70﹣a)x+80=﹣(a+10)x+9600,利用一次函数的性质,x=70时,W最大=﹣70a+8900(元),而两团联合购票需120(60﹣2a)=7200﹣240a(元),所以﹣70a+8900﹣=3400,即可解答.【解答】解:(1)∵甲团队人数为x人,乙团队人数不超过50人,∴120﹣x≤50,∴x≥70,①当70≤x≤100时,W=70x+80=﹣10x+9600,②当100<x<120时,W=60x+80=﹣20x+9600,综上所述,W=(2)∵甲团队人数不超过100人,∴x≤100,∴W=﹣10x+9600,∵70≤x≤100,∴x=70时,W最大=8900(元),两团联合购票需120×60=7200(元),∴最多可节约8900﹣7200=1700(元).(3)∵x≤100,∴W=(70﹣a)x+80=﹣(a+10)x+9600,70a+8900(元),∴x=70时,W最大=﹣两团联合购票需120(60﹣2a)=7200﹣240a(元),∵﹣70a+8900﹣=3400,解得:a=10.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系∠EAF=∠BAD时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF的长(结果保留根号).【考点】四边形综合题.【分析】(1)根据旋转变换的性质和正方形的性质证明△EAF≌△GAF,得到EF=FG,证明结论;(2)把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,证明△EAF≌△HAF,证明即可;(3)延长BA交CD的延长线于P,连接AF,根据四边形内角和定理求出∠C的度数,得到∠P=90°,求出PD、PA,证明∠EAF=∠BAD,又(2)的结论得到答案.【解答】(1)证明:由旋转的性质可知,△ABE≌△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠ADG=∠ABE=90°,∴G、D、F在同一条直线上,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAG=90°,又∠EAF=45°,∴∠FAG=45°,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∴EF=BE+FD;(2)当∠EAF=∠BAD时,仍有EF=BE+FD.证明:如图(2),把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,则BE=DH,∠BAE=∠DAH,∠ADH=∠B,又∠B+∠D=180°,∴∠ADH+∠D=180°,即F、D、H在同一条直线上,当∠EAF=∠BAD时,∠EAF=∠HAF,由(1)得,△EAF≌△HAF,则EF=FH,即EF=BE+FD,故答案为:∠EAF=∠BAD;(3)如图(3),延长BA交CD的延长线于P,连接AF,∵∠B=60°,∠ADC=120°,∠BAD=150°,∴∠C=30°,∴∠P=90°,又∠ADC=120°,∴∠ADP=60°,∴PD=AD×cos∠ADP=40,AP=AD×sin∠ADP=40,∴PF=PD+DF=40,∴PA=PF,∴∠PAF=45°,又∠PAD=30°,∴∠DAF=15°,∴∠EAF=75°,∠BAE=60°,∴∠EAF=∠BAD,由(2)得,EF=BE+FD,又BE=BA=80,∴EF=BE+FD=40().23.如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y=x2+bx+c 的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y 轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.(1)求点C的坐标及二次函数的关系式;(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN 长度的最大值;(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)【考点】二次函数综合题.【分析】(1)求C点坐标,考虑作x,y轴垂线,表示横纵坐标,易得△CDA≌△AOB,所以C点坐标易知.进而抛物线解析式易得.(2)横坐标相同的两点距离,可以用这两点的纵坐标作差,因为两点分别在直线BC与抛物线上,故可以利用解析式,设横坐标为x,表示两个纵坐标.作差记得关于x的二次函数,利用最值性质,结果易求.(3)计算易得,BC=,因为Q为BC的中点,PQ=恰为半径,则易作圆,P点必在圆上.分三种情况进行解答.【解答】解:(1)如图1,过点C作CD⊥y轴于D,此时△CDA≌△AOB,∵△CDA≌△AOB,∴AD=BO=2,CD=AO=1,∴OD=OA+AD=3,∴C(﹣1,﹣3).将B(﹣2,0),C(﹣1,﹣3)代入抛物线y=x2+bx+c,解得b=,c=﹣3,∴抛物线的解析式为y=x2+x﹣3.(2)设l BC:y=kx+b,∵B(﹣2,0),C(﹣1,﹣3),。
中考数学模拟测试卷(有答案解析)
中考数学模拟测试卷(有答案解析)一、选择题:(本大题共10个小题,每小题4分,共40分,每小题均有A 、B 、C ,D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上)1.(4分)﹣2的相反数是( )A .2B .﹣2C .12D .−122.(4分)如图,直线a ∥b ,若∠1=40°,∠2=55°,则∠3等于( )A .85°B .95°C .105°D .115°3.(4分)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为m 、n ,则m +n 的值为( )A .﹣2B .﹣1C .1D .24.(4分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =2,∠ABC =60°,则BD 的长为( )A .2B .3C .√3D .2√35.(4分)某出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x 千米,则x 的最大值是( )A .13B .11C .9D .76.(4分)已知一次函数y 1=ax +c 和反比例函数y 2=b x 的图象如图所示,则二次函数y 3=ax 2+bx +c 的大致图象是( )A.B.C.D.7.(4分)不等式组{x>ax<3的整数解有三个,则a的取值范围是()A.﹣1≤a<0B.﹣1<a≤0C.﹣1≤a≤0D.﹣1<a<08.(4分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13B.19C.25D.1699.(4分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2B.√2+1C.√2D.110.(4分)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=√6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A.√2B.√3C.2D.√6二、填空题:(本题共8个小题,每小题4分,共32分)11.(4分)tan60°=.12.(4分)分解因式:x2﹣4=.13.(4分)在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.14.(4分)单项式﹣13xy2z3的次数为.15.(4分)不等式x+6>3x的非负整数解是.16.(4分)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.17.(4分)如图,点A是反比例函数y1=1x(x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2=kx(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为.18.(4分)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OC=3,OA=2√6,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为.三、解答题:(本题共4个小题,第19题10分,第20、21、22题每题10分,共40分,要有解题的主要过程)19.(10分)(1)计算:(12)−2+(π−3.14)0−|√3−2|−2cos30°.(2)先化简x2−1x2−2x+1÷x+1x⋅(x−1x)然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.20.(10分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.21.(10分)如图,小明去观赏一棵千年古银杏树,当走到点A处时,测得银杏树CD的仰角为30°,当向树前进40米到B处时,又测得树顶端C的仰角为75°.请求出这棵千年古银杏树的高.(结果精确到0.1米).(参考数据:tan75°=2+√3,√3=1.732,√2=1.414)22.(10分)黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学习时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.四、(本大题满分12分)23.(12分)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO.(1)求证:PC是⊙O的切线.(2)若OE:EA=1:2,P A=6,求⊙O的半径.五、(本大题满分12分)24.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?六.(本大题满分14分)25.(14分)如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与解析一、选择题:(本大题共10个小题,每小题4分,共40分,每小题均有A 、B 、C ,D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上)1.(4分)﹣2的相反数是( )A .2B .﹣2C .12D .−12【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣2的相反数为2.故选:A .2.(4分)如图,直线a ∥b ,若∠1=40°,∠2=55°,则∠3等于( )A .85°B .95°C .105°D .115°【分析】根据平行线的性质得出∠4=∠3,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a ∥b ,∴∠4=∠3,∵∠1+∠2=∠4,∴∠3=∠1+∠2=95°.故选:B .3.(4分)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为m 、n ,则m +n 的值为( )A .﹣2B .﹣1C .1D .2【分析】根据一元二次方程的系数结合根与系数的关系即可得出m +n 的值,由此即可得出结论.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=−ba=2.故选:D.4.(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2B.3C.√3D.2√3【分析】首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【解答】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=2×√32=√3,∴BD=2√3.故选:D.5.(4分)某出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是()A.13B.11C.9D.7【分析】已知从甲地到乙地共需支付车费17.2元,从甲地到乙地经过的路程为x千米,从而根据题意列出不等式,从而得出答案.【解答】解:因支付车费为17.2元,所以x肯定大于3km,故有1.4(x﹣3)+6≤17.2,解得:x≤11.可求出x的最大值为11千米.答:此人从甲地到乙地经过的路程为11千米.故选:B.6.(4分)已知一次函数y1=ax+c和反比例函数y2=bx的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是()A.B.C.D.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=−b2a,找出二次函数对称轴在y轴左侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,c>0,∴二次函数y3=ax2+bx+c开口向下,与y轴交点在x轴上方;∵反比例函数y2=bx的图象在第二、四象限,∴b<0,∴−b2a<0,∴二次函数y3=ax2+bx+c对称轴在y轴左侧.满足上述条件的函数图象只有B选项.故选:B.7.(4分)不等式组{x>ax<3的整数解有三个,则a的取值范围是()A.﹣1≤a<0B.﹣1<a≤0C.﹣1≤a≤0D.﹣1<a<0【分析】根据不等式组的整数解有三个,确定出a的范围即可.【解答】解:不等式组{x>ax<3的解集为a<x<3,由不等式组的整数解有三个,即x=0,1,2,得到﹣1≤a<0,故选:A.8.(4分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13B.19C.25D.169【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×12ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选:C.9.(4分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2B.√2+1C.√2D.1【分析】先求得正方体的一个面的上的对角线的长度,然后可求得正方体视图面积的最大值.【解答】解:正方体正视图为正方形或矩形.∵正方体的棱长为1,∴边长为1.∴每个面的对角线的长为=√2.∴正方体的正视图(矩形)的长的最大值为√2.∵始终保持正方体的一个面落在桌面上,∴正视图(矩形)的宽为1.∴最大值面积=1×√2=√2.故选:C.10.(4分)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=√6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A.√2B.√3C.2D.√6【分析】连接OC构建全等三角形,证明△ODC≌△OEB,得DC=BE;把CD+CE转化到同一条线段上,即求BC的长;通过等腰直角△ABC中斜边AB的长就可以求出BC=√3,则CD+CE=BC=√3.【解答】解:连接OC,∵等腰直角△ABC中,AB=√6,∴∠B=45°,∴cos∠B=BC AB,∴BC=√6×cos45°=√6×√22=√3,∵点O是AB的中点,∴OC=12AB=OB,OC⊥AB,∴∠COB=90°,∵∠DOC+∠COE=90°,∠COE+∠EOB=90°,∴∠DOC=∠EOB,同理得∠ACO=∠B,∴△ODC≌△OEB,∴DC=BE,∴CD+CE=BE+CE=BC=√3,故选:B.二、填空题:(本题共8个小题,每小题4分,共32分)11.(4分)tan60°=√3.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为√3.故答案为:√3.12.(4分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.(4分)在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是1 2.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的都是合格品的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,抽到的都是合格品的有6种情况, ∴抽到的都是合格品的概率是:612=12.故答案为:12.14.(4分)单项式﹣13xy 2z 3的次数为 6 .【分析】一个单项式中所有字母的指数的和叫做单项式的次数.直接利用单项式的次数的定义分析得出答案.【解答】解:单项式﹣13xy 2z 3的次数为1+2+3=6, 故答案为:6.15.(4分)不等式x +6>3x 的非负整数解是 0,1,2 . 【分析】首先求出不等式的解集,然后求得不等式的非负整数解. 【解答】解:解不等式x +6>3x 得,x <3, ∴不等式x +6>3x 的非负整数解是0,1,2, 故答案为:0,1,2.16.(4分)如图,在△ACB 中,∠BAC =50°,AC =2,AB =3,现将△ACB 绕点A 逆时针旋转50°得到△AC 1B 1,则阴影部分的面积为54π .【分析】根据旋转的性质可知S △ABC =S △AB 1C 1,由此可得S 阴影=S 扇形ABB 1,根据扇形面积公式即可得出结论.【解答】解:∵S △ABC =S △AB 1C 1,∴S 阴影=S 扇形ABB 1=50360πAB 2=54π. 故答案为:54π.17.(4分)如图,点A 是反比例函数y 1=1x (x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数y 2=kx (x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为2,则k 的值为 5 .【分析】延长BA ,与y 轴交于点C ,由AB 与x 轴平行,得到BC 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOC 与三角形BOC 面积,由三角形BOC 面积减去三角形AOC 面积表示出三角形AOB 面积,将已知三角形AOB 面积代入求出k 的值即可. 【解答】解:延长BA ,与y 轴交于点C , ∵AB ∥x 轴, ∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=kx (x >0)的图象上的点,∴S △AOC =12,S △BOC =k 2, ∵S △AOB =2,即k 2−12=2,解得:k =5, 故答案为:518.(4分)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OC=3,OA=2√6,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为(6√65,35).【分析】过点G作GF⊥OA于点F,根据全等直角三角形的判定定理(HL)证出Rt△DGE ≌Rt△DBE,从而得出BE=GE,根据勾股定理可列出关于AE长度的方程,解方程可得出AE的长度,再根据平行线的性质即可得出比例关系OFOA=GFEA=OGOE,代入数据即可求出点G的坐标.【解答】解:过点G作GF⊥OA于点F,如图所示.∵点D为BC的中点,∴DC=DB=DG,∵四边形OABC是矩形,∴AB=OC,OA=BC,∠C=∠OGD=∠ABC=90°.在Rt△DGE和Rt△DBE中,{DB=DG DE=DE,∴Rt△DGE≌Rt△DBE(HL),∴BE=GE.设AE=a,则BE=3﹣a,OE=√OA2+AE2=√24+a2,OG=OC=3,∴OE=OG+GE,即√24+a2=3+3﹣a,解得:a=1,∴AE=1,OE=5.∵GF⊥OA,EA⊥OA,∴GF∥EA,∴OFOA=GFEA=OGOE,∴OF =OG⋅OA OE =3×2√65=6√65,GF =OG⋅EA OE =3×15=35, ∴点G 的坐标为(6√65,35).故答案为:(6√65,35).三、解答题:(本题共4个小题,第19题10分,第20、21、22题每题10分,共40分,要有解题的主要过程)19.(10分)(1)计算:(12)−2+(π−3.14)0−|√3−2|−2cos30°. (2)先化简x 2−1x 2−2x+1÷x+1x⋅(x −1x)然后x 在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.【分析】(1)先计算负整数指数幂、零指数幂、去绝对值符号、代入三角函数值,再计算乘法,最后计算加减即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再选取使分式的x 的值代入计算即可.【解答】解:(1)原式=4+1﹣(2−√3)﹣2×√32=5﹣2+√3−√3 =3;(2)原式=(x+1)(x−1)(x−1)2•x x+1•(x+1)(x−1)x =x +1,∵x =﹣1、0、1的时候,原分式无意义, ∴x 只能取2,则当x =2时,原式=2+1=3.20.(10分)如图,点D 是AB 上一点,E 是AC 的中点,连接DE 并延长到F ,使得DE =EF ,连接CF . 求证:FC ∥AB .【分析】利用已知条件容易证明△ADE ≌△CFE ,得出角相等,然后利用平行线的判定可以证明FC ∥AB .【解答】证明:∵E 是AC 的中点, ∴AE =CE ,又EF =DE ,∠AED =∠FEC , 在△ADE 与△CFE 中, {AE =EC DE =EF ∠AED =∠CEF, ∴△ADE ≌△CFE (SAS ). ∴∠EAD =∠ECF . ∴FC ∥AB .21.(10分)如图,小明去观赏一棵千年古银杏树,当走到点A 处时,测得银杏树CD 的仰角为30°,当向树前进40米到B 处时,又测得树顶端C 的仰角为75°.请求出这棵千年古银杏树的高.(结果精确到0.1米).(参考数据:tan75°=2+√3,√3=1.732,√2=1.414)【分析】通过解直角△ACD 得到:AD =√3CD ;通过解直角△BCD 得到BD =CDtan75°【解答】解:设CD =x 米. 在Rt △ACD 中,∵∠A =30°, ∴tan30°=CD AD ,∴AD=√3x,∴BD=AD﹣AB=√3x﹣40,在Rt△BCD中,tan75°=CD BD,∴2+√3=x√3x−40,解得x≈27.3,答:这棵千年古银杏树的高为27.3米.22.(10分)黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学习时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.【分析】(1)根据B类的人数和所占的百分比即可求出总数;求出C的人数从而补全统计图;(2)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(3)用B的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,B3根据题意画出树形图,再根据概率公式列式计算即可.【解答】解:(1)共调查的中学生数是:60÷30%=200(人),C类的人数是:200﹣60﹣30﹣70=40(人),如图1:(2)本次抽样调查中,学习时间的中位数落在C等级内;(3)根据题意得:α=30200×360°=54°,(4)设甲班学生为A1,A2,乙班学生为B1,B2,B3,一共有20种等可能结果,其中2人来自不同班级共有12种,∴P(2人来自不同班级)=1220=35.四、(本大题满分12分)23.(12分)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO.(1)求证:PC是⊙O的切线.(2)若OE:EA=1:2,P A=6,求⊙O的半径.【分析】(1)连接OC,如图,由PC2=PE•PO和公共角可判断△PCE∽△POC,则∠PEC =∠PCO=90°,然后根据切线的判定定理可判断PC是⊙O的切线;(2)设OE=x,则EA=2x,OA=OC=3x,证明△OCE∽△OPC,利用相似比可表示出OP,则可列方程3x+6=9x,然后解出x即可得到⊙O的半径.【解答】(1)证明:连接OC,如图,∵CD⊥AB,∴∠PEC=90°,∵PC2=PE•PO,∴PC:PO=PE:PC,而∠CPE=∠OPC,∴△PCE∽△POC,∴∠PEC=∠PCO=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:设OE=x,则EA=2x,OA=OC=3x,∵∠COE=∠POC,∠OEC=∠OCP,∴△OCE∽△OPC,∴OC:OP=OE:OC,即3x:OP=x:3x,解得OP=9x,∴3x+6=9x,解得x=1,∴OC=3,即⊙O的半径为3.五、(本大题满分12分)24.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?【分析】(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到20﹣0.1(x﹣10)=16,解方程即可求解;(2)由于根据(1)得到x≤50,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,然后可以得到函数的增减性,再结合已知条件即可解决问题.【解答】解:(1)设一次购买x只,则20﹣0.1(x﹣10)=16,解得:x=50.答:一次至少买50只,才能以最低价购买;(2)当10<x≤50时,y=[20﹣0.1(x﹣10)﹣12]x=﹣0.1x2+9x,当x >50时,y =(16﹣12)x =4x ;综上所述:y ={−0.1x 2+9x(10<x ≤50)4x(x >50);(3)y =﹣0.1x 2+9x =﹣0.1(x ﹣45)2+202.5,①当10<x ≤45时,y 随x 的增大而增大,即当卖的只数越多时,利润更大.②当45<x ≤50时,y 随x 的增大而减小,即当卖的只数越多时,利润变小.且当x =46时,y 1=202.4,当x =50时,y 2=200.y 1>y 2.即出现了卖46只赚的钱比卖50只赚的钱多的现象.当x =45时,最低售价为20﹣0.1(45﹣10)=16.5(元),此时利润最大.六.(本大题满分14分)25.(14分)如图,直线y =﹣x +3与x 轴、y 轴分别相交于点B 、C ,经过B 、C 两点的抛物线y =ax 2+bx +c 与x 轴的另一个交点为A ,顶点为P ,且对称轴为直线x =2.(1)求该抛物线的解析式;(2)连接PB 、PC ,求△PBC 的面积;(3)连接AC ,在x 轴上是否存在一点Q ,使得以点P ,B ,Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【分析】(1)根据二次函数的对称性,已知对称轴的解析式以及B 点的坐标,即可求出A 的坐标,利用抛物线过A 、B 、C 三点,可用待定系数法来求函数的解析式(2)首先利用各点坐标得△PBC 是直角三角形,进而得出答案;(3)本题要先根据抛物线的解析式求出顶点P 的坐标,然后求出BP 的长,进而分情况进行讨论:①当BQ BC =PB AB ,∠PBQ =∠ABC =45°时,根据A 、B 的坐标可求出AB 的长,根据B 、C的坐标可求出BC 的长,已经求出了PB 的长度,那么可根据比例关系式得出BQ 的长,即可得出Q 的坐标.②当QB AB =PB CB ,∠QBP =∠ABC =45°时,可参照①的方法求出Q 的坐标.③当Q 在B 点右侧,即可得出∠PBQ ≠∠BAC ,因此此种情况是不成立的,综上所述即可得出符合条件的Q 的坐标.【解答】解:(1)∵直线y =﹣x +3与x 轴相交于点B ,∴当y =0时,x =3,∴点B 的坐标为(3,0),∵y =﹣x +3过点C ,易知C (0,3),∴c =3.又∵抛物线过x 轴上的A ,B 两点,且对称轴为x =2,根据抛物线的对称性,∴点A 的坐标为(1,0).又∵抛物线y =ax 2+bx +c 过点A (1,0),B (3,0),∴{a +b +3=09a +3b +3=0解得:{a =1b =−4∴该抛物线的解析式为:y =x 2﹣4x +3;(2)如图1,∵y =x 2﹣4x +3=(x ﹣2)2﹣1,又∵B (3,0),C (0,3),∴PC =√22+42=√20=2√5,PB =√(3−2)2+12=√2,∴BC =√32+32=√18=3√2,又∵PB 2+BC 2=2+18=20,PC 2=20,∴PB 2+BC 2=PC 2,∴△PBC 是直角三角形,∠PBC =90°,∴S △PBC =12PB •BC =12×√2×3√2=3;(3)如图2,由y =x 2﹣4x +3=(x ﹣2)2﹣1,得P (2,﹣1),设抛物线的对称轴交x 轴于点M ,∵在Rt △PBM 中,PM =MB =1,∴∠PBM =45°,PB =√2.由点B (3,0),C (0,3)易得OB =OC =3,在等腰直角三角形OBC 中,∠ABC =45°, 由勾股定理,得BC =3√2.假设在x 轴上存在点Q ,使得以点P ,B ,Q 为顶点的三角形与△ABC 相似.①当BQ BC =PB AB ,∠PBQ =∠ABC =45°时,△PBQ ∽△ABC . 即3√2=√22, 解得:BQ =3,又∵BO =3,∴点Q 与点O 重合,∴Q 1的坐标是(0,0).②当QB AB =PBCB ,∠QBP =∠ABC =45°时,△QBP ∽△ABC .即QB 2=√23√2, 解得:QB =23.∵OB =3,∴OQ =OB ﹣QB =3−23,∴Q 2的坐标是(73,0). ③当Q 在B 点右侧,则∠PBQ =180°﹣45°=135°,∠BAC <135°,故∠PBQ ≠∠BAC .则点Q不可能在B点右侧的x轴上,综上所述,在x轴上存在两点Q1(0,0),Q2(73,0),能使得以点P,B,Q为顶点的三角形与△ABC相似.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山东省威海市中考数学试卷一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3分)﹣2的绝对值是()A.2 B.﹣ C.D.﹣22.(3分)下列运算结果正确的是()A.a2•a3=a6 B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a23.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.(3分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π5.(3分)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.6.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.8.(3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣19.(3分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>010.(3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.511.(3分)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.12.(3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)分解因式:﹣a2+2a﹣2=.14.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.(3分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB 上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.16.(3分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.17.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.三、填空题(本题包括7小题,共66分)19.(7分)解不等式组,并将解集在数轴上表示出来.20.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.22.(9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表3首4首4首6首7首8首一周诗词诵背数量人数101015402520请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(12分)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.2018年山东省威海市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.【解答】解:﹣2的绝对值是2,故选:A.2.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.3.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.4.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.5.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.6.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.7.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.8.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.9.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.10.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.11.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.12.【解答】解:作FH⊥BC于H,连接FH,如图,∵点E为BC的中点,点F为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH +∠FEH=90°,∴∠AEB +∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆﹣S △ABE ﹣S △AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C .二、填空题(本题包括6小题,每小题3分,共18分)13.【解答】解:原式=﹣(a 2﹣4a +4)=﹣(a ﹣2)2, 故答案为:﹣(a ﹣2)214.【解答】解:∵关于x 的一元二次方程(m ﹣5)x 2+2x +2=0有实根,∴△=4﹣8(m ﹣5)>0,且m ﹣5≠0,解得m <5.5,且m ≠5,则m 的最大整数解是m=4.故答案为:m=4.15.【解答】解:∵A (﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.16.【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.17.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.18.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).三、填空题(本题包括7小题,共66分)19.【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.20.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.21.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.22.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛年前后的中位数和众数看,比赛后学生名背诵诗词的积极性明显提高,这次举办后的效果比较理想.23.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(3分)∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(5分)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(6分)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(8分)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(9分)∴==6,即最快在第7个月可还清10万元的无息贷款.(10分)24.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.25.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)带入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4(2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=∵EF为BC中垂线∴BE=在Rt△BEF和Rt△BOC中,cos∠CBF=∴∴BF=5,EF=,OF=3设⊙P的半径为r,⊙P与直线BC和EF都相切如图:①当圆心P1在直线BC左侧时,连P1Q1,P1R1,则P1Q1=P1R1=r1∴∠P1Q1E=∠P1R1E=∠R1EQ1=90°∴四边形P1Q1ER1是正方形∴ER1=P1Q1=r1在Rt△BEF和Rt△FR1P1中tan∠1=∴∴r1=∵sin∠1=∴FP1=,OP1=∴点P1坐标为(,0)②同理,当圆心P2在直线BC右侧时,可求r2=,OP2=7∴P2坐标为(7,0)∴点P坐标为(,0)或(7,0)(4)存在当点P坐标为(,0)时,①若DN和MP为平行四边形对边,则有DN=MP当x=时,y=﹣∴DN=MP=∴点N坐标为(﹣1,)②若MN、DP为平行四边形对边时,M、P点到ND距离相等则点M横坐标为﹣则M纵坐标为﹣由平行四边形中心对称性可知,点M到N的垂直距离等于点P到点D的垂直距离当点N在D点上方时,点N纵坐标为此时点N坐标为(﹣1,)当点N在x轴下方时,点N坐标为(﹣1,﹣)当点P坐标为(7,0)时,所求N点不存在.故答案为:(﹣1,)、(﹣1,)、(﹣1,﹣)。