2015-2016学年天津二十中九年级数学第一次月考试题 答案
天津市天津102中学2015-2016初三10月月考【数学试题】
2015-2016学年第一学期九年级数学学科学习情况调查(一)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合要求的) 1. 2sin30°的值等于 A. 1B.2C.3D. 22. 下列图形中,可以看作是中心对称图形的是 A.B.C.D.3. 右图是一个由4个相同的正方体组成的立体图形,它的三视图为A. B. C. D.4. 如图,以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB=10cm ,CD=6cm ,那么AC的长为 A. 2cm B. 1.5cmC. 1cmD. 0.5cm5. 如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°,则∠ADC 的度数为 A. 40° B. 50°C. 60°D. 70°6. 制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本 A. 8.5%B. 9%C. 9.5%D. 10%7. 如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB=45°,则弦AB 的长为 A. 22 B.2C. 2D. 48. 如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°,连接AC ,则∠A 的大小等于 A. 30°B. 35°C. 40°D. 45°9. 已知饭比例函数xy 6,当1<x<3时,y 的取值范围是 A. 0<y<1 B. 1<y<2C. 2<y<6D. y>610. 如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD=22,BD=3,则AB 的长为A. 2B. 3C. 4D. 511. 如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是A. 15°B. 20°C. 25°D. 30°12. 设二次函数c bx ax y ++=2,当1≤x 时,总有0≥y ,当31≤≤x 时,总有0≤y ,那么c 的取值范围是A c=3B. 3≥cC. 31≤≤cD. 3≤c二、填空题(本大题共6小题,每小题3分,共18分)13. 若一次函数y=2x+b (b 为常数)的图像经过点(1,5),则b 的值为 14. 若抛物线()1-2m m x y ++=的对称轴是直线x=1,则它的顶点坐标是15. 在一个口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,在随机地摸取一个小球,则两次摸取的小球标号的和是2的倍数或3的倍数的概率是 16. 若△ABC 的三边长分别为6,8,10,则其外接圆的半径是17. 如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点D 逆时针旋转60°,得到△BAE ,连接ED 。
天津市 九年级(上)第一次月考数学试卷
九年级(上)第一次月考数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2-3xy+4=0;③x2−1x=4;④x2=1;⑤x2−x3+3=0A. 2个B. 3个C. 4个D. 5个2.方程x2+x-12=0的两个根为()A. x1=−2,x2=6B. x1=−6,x2=2C. x1=−3,x2=4D. x1=−4,x2=33.关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 04.某地2017年投入教育经费1200万元,预计2019年投入教育经费3600万元,若每年投入教育经费的年平均增长率为x,则根据题意下列方程正确的是()A. 1200(1+x)2=3600B. 1200+1200(1+x)+1200(1+x)2=3600C. 1200(1−x)2=3600D. 1200(1+x)+1200(1+x)2=36005.关于x的方程(m-1)x2+2x+1=0有实数根,则m的取值范围是()A. m≤2B. m<2C. m<3且m≠2D. m≤3且m≠26.工会组织篮球比赛庆五一,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,则这次参加比赛的球队个数为()A. 12个B. 11个C. 9个D. 10个7.抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,−1)C. (−3,1)D. (−3,−1)8.要得到抛物线y=13(x-4)2,可将抛物线y=13x2()A. 向上平移4个单位B. 向下平移4个单位C. 向右平移4个单位D. 向左平移4个单位9.二次函数y=x2-6x+5配成顶点式正确的是(),顶点坐标为()A. y=(x−3)2−4;(3,−4)B. y=(x+3)2−4;(−3,−4)C. y=(x+3)2+5;(−3,5)D. y=(x−3)2+14;(3,14)10.已知函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A. a>0,c>0B. a<0,c<0C. a<0,c>0D. a>0,c<011.已知一次函数y=ax+c与y=ax2+bx+c,它们在同一坐标系内的大致图象是()A. B.C. D.12.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为()A. 3或6B. 1或6C. 1或3D. 4或6二、填空题(本大题共10小题,共30.0分)13.关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为______.14.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实根,那么c的取值范围是______.15.有一人患了流感,经过两轮传染后共有64人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.16.已知m、n是方程x2+2x-2019=0的两个根,则代数式m2+3m+n的值为______.17.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是______.18.将函数y=x2-2x+4化为y=a(x-h)2+k的形式为______.19.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为_________20.已知点A(4,y1),B(0,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是______.21.抛物线y=2x2+bx+c的顶点坐标是(-1,4),则b=______,c=______.22.对于抛物线y=(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(-1,3);④x>1时,y随x的增大而减小,其中正确的有______.三、计算题(本大题共2小题,共14.0分)23.解方程:(1)(x-2)2=2x-4(2)x2+4x-5=0(3)3x2-2x-5=0(4)x2+4x-2=024.已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E.求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短.若存在请求出P点的坐标,若不存在说明理由.四、解答题(本大题共2小题,共12.0分)25.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?26.(1)已知二次函数y=14x2-x-3①求出函数图象顶点坐标、对称轴,井写出图象的开口方向②列表,并在所给网格中建立平面直角坐标系井直接画出此函数的图象(2)抛物线y=ax2+bx+c过(-3,0),(1,0)两点,与y轴的交点为(0,4),求抛物线的解析式.答案和解析1.【答案】B【解析】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选:B.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.【答案】D【解析】解:x2+x-12=(x+4)(x-3)=0,则x+4=0,或x-3=0,解得:x1=-4,x2=3.故选:D.将x2+x-12分解因式成(x+4)(x-3),解x+4=0或x-3=0即可得出结论.本题考查了因式分解法解一元二次方程,解题的关键是将x2+x-12分解成(x+4)(x-3).本题属于基础题,难度不大,解决该题型题目时,牢记因式分解法解一元二次方程的一般步骤是关键.3.【答案】B【解析】解:根据题意,知,,解方程得:m=2.故选:B.根据一元二次方程成立的条件及常数项为0列出方程组,求出m的值即可.本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.4.【答案】A【解析】解:设每年投入教育经费的年平均增长率为x.根据题意得:12000(1+x)2=3600.故选:A.2018年的教育经费为1200(1+x)万元,2019年的教育经费为12000(1+x)2万元,最后依据2109年的投入为3600万元列方程即可.本题主要考查的是一元二次方程的应用,找出题目的等量关系是解题的关键.5.【答案】A【解析】解:①当m-1≠0,即m≠1时,∵关于x的方程(m-1)x2+2x+1=0有实数根,∴△=22-4×(m-1)×1=8-4m≥0,解得:m≤2.②当m-1=0,即m=1时,原方程为2x+1=0,该方程有一个实数根.综上可知:m的取值范围是m≤2.故选:A.分二次项系数m-1≠0和m-1=0两种情况考虑,当m-1≠0时,根据根的判别式△≥0可得出关于m的一元一次不等式,解不等式即可得出m的取值范围;当m-1=0时,可得出方程有一个实数根.结合两种情况即可得出结论.本题考查了根的判别式,解题的关键是分两种情况考虑.本题属于基础题,难度不大,解决该题型题目时,分方程为一元二次方程和一元一次方程两种情况考虑是关键.6.【答案】D【解析】解:设这次参加比赛的球队有x个,根据题意得:x(x-1)=45,解得:x1=10,x2=-9(不合题意,舍去).故选:D.设这次参加比赛的球队有x个,根据共进行了45场比赛及每两队之间都赛一场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】A【解析】解:由y=2(x-3)2+1,根据顶点式的坐标特点可知,顶点坐标为(3,1).故选:A.已知抛物线的顶点式,可直接写出顶点坐标.此题考查二次函数的性质,解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.8.【答案】C【解析】解:∵y=(x-4)2的顶点坐标为(4,0),y=x2的顶点坐标为(0,0),∴将抛物线y=x2向右平移4个单位,可得到抛物线y=(x-4)2.故选:C.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.9.【答案】A【解析】解:∵二次函数y=x2-6x+5=(x-3)2-4,所以该函数的顶点坐标是(3,-4),故选:A.根据二次函数的解析式,可以将该函数解析式化为顶点式,从而可以解答本题.本题考查二次函数的性质、二次函数的三种形式,解答本题的关键是明确题意,利用二次函数的性质解答.10.【答案】D【解析】解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的负半轴上,∴c<0.故选:D.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.考查二次函数y=ax2+bx+c系数符号的确定.11.【答案】C【解析】解:A、D中,由二次函数图象可知a的符号,与由一次函数的图象可知a的符号,两者相矛盾,排除A、D;一次函数y=ax+c与y=ax2+bx+c的图象都过点(0,c),排除B.C正确,故选C.本题可先由一次函数y=ax+c的图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.解决此类问题步骤一般为:(1)先根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求.12.【答案】B【解析】解:当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.13.【答案】-4【解析】解:把x=1代入得:4+m=0解得:m=-4,故答案为:-4.把x=1代入方程得到一个关于m的方程,求出方程的解即可.本题主要考查对一元二次方程的解,解一元一次方程,等式的性质等知识点的理解和掌握,能得到方程4+m=0是解此题的关键.14.【答案】c>9【解析】解:∵关于x的一元二次方程x2-6x+c=0(c是常数)没有实根,∴△=(-6)2-4c<0,即36-4c<0,解得:c>9.故答案为:c>9.根据关于x的一元二次方程没有实数根时△<0,得出△=(-6)2-4c<0,再解不等式即可.本题考查了一元二次方程的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.15.【答案】512【解析】解:设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=-9(舍去).64+64×7=512(人).经过第三轮后,共有512人患有流感.故答案为:512.设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,进而求出第三轮过后,共有多少人感染.本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.16.【答案】2017【解析】【分析】本题主要考查了根与系数的关系,掌握根与系数的关系是解题的关键.由于m,n是方程x2+2x-2019=0的两个根,根据根与系数的关系得:m2+2m=2019,m+n=-2,再变形m2+3m+n为m2+2m+(m+n),把m2+2m=2019,m+n=-2代入即可求解.【解答】解:∵m,n是方程x2+2x-2019=0的两个根,∴m2+2m=2019,m+n=-2,∴m2+3m+n=m2+2m+(m+n)=2019-2=2017.故答案为2017.17.【答案】6或12或10【解析】解:由方程x2-6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程x2-6x+8=0的根,进行分情况计算.本题一定要注意判断是否能构成三角形的三边.18.【答案】y=(x-1)2+3【解析】解:y=x2-2x+4=(x2-2x+1)+3,=(x-1)2+3,所以,y=(x-1)2+3.故答案为:y=(x-1)2+3.利用配方法整理即可得解.本题考查了二次函数的三种形式,熟练掌握配方法是解题的关键.19.【答案】y=2(x+1)2-2【解析】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2-2,即y=2(x+1)2-2.故答案为:y=2(x+1)2-2.直接根据“上加下减,左加右减”的原则进行解答.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.20.【答案】y2=y1<y3【解析】解:当x=4,y1=(x-2)2-1=(4-2)2-1=3;当x=0,y2=(x-2)2-1=(0-2)2-1=3;当x=-2,y3=(x-2)2-1=(-2-2)2-1=15,所以y2=y1<y3.故答案为y2=y1<y3.分别计算自变量为4、0、-2对应的函数值,然后比较函数值的大小.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.21.【答案】4 6【解析】解:∵抛物线y=2x2+bx+c的顶点坐标是(-1,4),∴抛物线解析式为y=2(x+1)2+4=2x2+4x+2+4=2x2+4x+6∴b=4,c=6.故答案为4,6.写出二次函数的顶点式解析式,然后展开再根据对应项系数相等解答即可.本题考查了二次函数的性质,利用顶点坐标和二次项系数写出函数解析式求解更简便.22.【答案】③【解析】解:①∵a=1>0,∴抛物线的开口向上,错误;②对称轴为直线x=-1,故本小题错误;③顶点坐标为(-1,3),正确;④∵x>-1时,y随x的增大而增大,∴x>1时,y随x的增大而增大一定错误;综上所述,结论正确的个数是③共1个.故答案为:③.根据二次函数的性质对各小题分析判断即可得解.本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.23.【答案】解:(1)(x-2)2=2x-4,(x-2)2-2(x-2)=0,(x-2)(x-2-2)=0,x-2=0,x-2-2=0,x1=2,x2=4;(2)x2+4x-5=0,(x+5)(x-4)=0,x+5=0,x-4=0,x1=-5,x2=4;(3)3x2-2x-5=0,(3x-5)(x+1)=0,3x-5=0,x+1=0,x1=53,x2=-1;(4)x2+4x-2=0,b2-4ac=42-4×1×(-2)=24,x=−4±242,x1=-2+6,x2=-2-6.【解析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可;(3)分解因式,即可得出两个一元一次方程,求出方程的解即可;(4)求出b2-4ac的值,再代入公式求出即可.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.24.【答案】解:(1)根据题意得−1−b+c=0c=3,解得b=2c=3,∴抛物线解析式为y=-x2+2x+3;(2)当y=0时,-x2+2x+3=0,解得x1=-1,x2=3,则E(3,0);y=-(x-1)2+4,则D(1,4),∴S△ODE=12×3×4=6;连接BE交直线x=1于点P,如图,则PA=PE,∴PA+PB=PE+PB=BE,此时PA+PB的值最小,易得直线BE的解析式为y=-x+3.,当x=1时,y=-x+3=3,∴P(1,2).【解析】(1)把A点和B点坐标分别代入y=-x2+bx+c得到关于b、c的方程组,然后解方程组即可;(2)通过解方程-x2+2x+3=0得到E点坐标,再把一般式配成顶点式得到D点坐标,然后根据三角形面积公式计算△ODE的面积;连接BE交直线x=1于点P,如图,利用两点之间线段最短可判断此时PA+PB的值最小,然后求出BE 的解析式后易得P点坐标.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了最短路径问题.25.【答案】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60-x-40)(100+x2×20)=2240.…4分化简,得x2-10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60-6=54(元),设按原售价的m折出售,则有:60×m10=54,解得m=9答:该店应按原售价的九折出售.【解析】(1)设每千克核桃降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.26.【答案】解:(1)y=14x2-x-3=14(x-2)2-4,①∴函数图象顶点坐标(2,-4)、对称轴x=2,开口向上,(2)y=ax2+bx+c过(-3,0),(1,0)两点,与y轴的交点为(0,4),用交点式,则表达式为:y=a(x-1)(x+3),把(0,4)代入得:函数解析式为:y=-43x2-83x+4.【解析】(1)把函数表示为顶点式即可解答;(2)把函数与x轴交点代入交点式表达式,再将与y轴的交点为(0,4)代入即可求解.本题考查的是二次函数图象问题,要灵活运用函数3种表达式,交点式和顶点式用的比较多,本题是基本题.。
2016年初三第一次月考 数学答案
2015—2016学年度第二学期初三年级第一次月考数学答案(满分100分,考试时间90分钟)一、选择题(本题共12小题,每小题3分,共36分,每小题只有一个答案是正确的)二、填空题(本题共4小题,每小题3分,共12分)三、解答题(共7小题,共52分,请在答题区域内作答,超出答题区域书写的答案无效) 17.(本题6分)计算: 原式2332193⨯--+=------4分 3193--+=-------1分8=-------1分18.(本题6分)先化简,再求值: 原式=1x 3x 1x 91x x 2-+÷⎪⎪⎭⎫ ⎝⎛---------1分=3x 1x 1x 9x 2+-⋅--------1分 =3x 1x 1x )3x )(3x (+-⋅-+-------1分 =3x -------1分当x=2时,2-3=-1------2分19. (本题7分)(1)频数分布表:6, 16 ,0.4频数分布直方图:画6, 16------共5分,每个1分 (2)第4组------ 1分 (3)350户------ 1分20.(本题6分)解:设CF 为x 米∵在Rt △BCF 中,∠CBF=45° ∴BC=CF=x 米 ------1分 ∵在Rt △ACF 中,∠CAF=30° ∴AC=x 3米 ------2分 ∵AB=AC -BC ∴x 3-x=1400------3分∴ 米)13(700131400x +=-=------4分 ∴ )13(7002274DF +-=()米37001574-= ------5分 答:钓鱼岛的最高海拔高度为()米。
37001574- ------6分21.(本题8分)解:(1)设y=kx+b (k ≠0)则有⎩⎨⎧+=+=bk 70300b k 40600解得:⎩⎨⎧=-=1000b 10k ------1分 ∴y=-10x+1000)70x 40(≤≤ ------2分(2)10000)30x )(1000x 10(=-+-解得:80x ,50x 21== ------3分∵70x 40≤≤∴x 取50元 ------4分答:若平均每月想获得利10000元,则售价应定为50元。
天津初三初中数学月考试卷带答案解析
天津初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.关于x 的一元二次方程(a 2﹣1)x 2+x ﹣2=0是一元二次方程,则a 满足( )A .a≠1B .a≠﹣1C .a≠±1D .为任意实数2.把二次函数y=﹣x 2﹣x+3用配方法化成y=a (x ﹣h )2+k 的形式( )A .y=﹣(x ﹣2)2+2B .y=(x ﹣2)2+4 C .y=﹣(x+2)2+4 D .y=2+33.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k >﹣1且k≠0C .k <1D .k <1且k≠04.若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( )A .x 2+3x ﹣2="0"B .x 2﹣3x+2="0"C .x 2﹣2x+3="0"D .x 2+3x+2=05.二次函数y=2x 2+mx+8的图象如图所示,则m 的值是( )A .﹣8B .8C .±8D .66.已知x=﹣1是关于x 的方程x 2+mx ﹣3=0的一个实数根,则此方程的另一个实数根为( )A .2B .﹣2C .3D .﹣37.当ab >0时,y=ax 2与y=ax+b 的图象大致是( )A .B .C .D .8.对于任意实数k ,关于x 的方程x 2﹣2(k+1)x ﹣k 2+2k ﹣1=0的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定9.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人.A.12B.10C.9D.810.二次函数y=x2﹣4x+5的最小值是( )A.﹣1B.1C.3D.511.已知点(﹣2,5),(4,5)是抛物线上的两点,则此抛物线的对称轴为( )A.x=﹣2B.x="2"C.x="1"D.无法确定12.已知二次函数y=(x﹣h)2+4,当x>﹣1时,y随x的增大而增大,则有( )A.h≥﹣1B.h>﹣1C.h<﹣1D.h≤﹣1二、填空题1.抛物线y=x2+的开口向,对称轴是.2.若函数y=(m﹣3)是二次函数,则m= .3.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.4.抛物线y=﹣2x2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是.5.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是.6.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,设每千克应涨价x元,则可列方程为.三、解答题1.解方程:(1)x2﹣8x+1=0(2)3x(x﹣2)=2(2﹣x)(3)x2+2x﹣3=0.2.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.3.如图所示,要在20米宽,32米长的矩形耕地上修筑同样宽的三条小路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块花田,要使花田面积为570m2,则道路应修多宽?4.已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.四、计算题1.已知二次函数y=﹣x2+x+4.(1)求抛物线的顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?当x取何值时,y有最大值还是最小值?是多少?2.已知当x=1时,二次函数有最大值5,且图象过点(0,﹣3),求此函数关系式.天津初三初中数学月考试卷答案及解析一、选择题1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足( )A.a≠1B.a≠﹣1C.a≠±1D.为任意实数【答案】C.【解析】由题意得:a2﹣1≠0,解得a≠±1.故选C.【考点】一元二次方程的定义.2.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式( )A.y=﹣(x﹣2)2+2B.y=(x﹣2)2+4C.y=﹣(x+2)2+4D.y=2+3【答案】C.【解析】y=﹣x2﹣x+3=﹣(x2+4x+4)+1+3=﹣(x+2)2+4故选C.【考点】二次函数解析式的不同形式.3.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k >﹣1且k≠0C .k <1D .k <1且k≠0【答案】B.【解析】∵关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,∴,即,解得k >﹣1且k≠0.故选B .【考点】1.根的判别式;2.一元二次方程的定义.4.若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( )A .x 2+3x ﹣2="0"B .x 2﹣3x+2="0"C .x 2﹣2x+3="0"D .x 2+3x+2=0【答案】B.【解析】两个根为x 1=1,x 2=2则两根的和是3,积是2.A 、两根之和等于﹣3,两根之积等于﹣2,故不正确;B 、两根之和等于3,两根之积等于2,故正确;C 、两根之和等于2,两根之积等于3,故不正确;D 、两根之和等于﹣3,两根之积等于2,故不正确,故选B .【考点】根与系数的关系.5.二次函数y=2x 2+mx+8的图象如图所示,则m 的值是( )A .﹣8B .8C .±8D .6【答案】B .【解析】由图象可知,抛物线与x 轴只有一个交点,所以,△=0,即m 2﹣4×2×8=0,解得m=±8,∵对称轴为直线x=﹣<0,∴m >0,∴m 的值为8.故选B .【考点】抛物线与x 轴的交点.6.已知x=﹣1是关于x 的方程x 2+mx ﹣3=0的一个实数根,则此方程的另一个实数根为( )A .2B .﹣2C .3D .﹣3【答案】C.【解析】设方程的另一个实数根为x 1,由根与系数关系,得x 1•(-1)=﹣3,∴x 1=3.故选C .【考点】根与系数的关系.7.当ab >0时,y=ax 2与y=ax+b 的图象大致是( )A.B.C.D.【答案】D.【解析】根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2开口向下,过原点,y=ax+b过二、三、四象限,此时,D选项符合,故选D.【考点】1.二次函数的图象;2.一次函数的图象.8.对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为( )A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定【答案】C.【解析】∵a=1,b=﹣2(k+1),c=﹣k2+2k﹣1,∴△=b2﹣4ac=[﹣2(k+1)]2﹣4×1×(﹣k2+2k﹣1)=8+8k2>0∴此方程有两个不相等的实数根,故选C.【考点】根的判别式.9.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人.A.12B.10C.9D.8【答案】C.【解析】设这小组有x人,由题意得:x(x﹣1)=72,解得x1=9,x2=﹣8(不合题意,舍去).这个小组有9人.故选C.【考点】一元二次方程的应用.10.二次函数y=x2﹣4x+5的最小值是( )A.﹣1B.1C.3D.5【答案】B.【解析】化为顶点式得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.【考点】二次函数的最值.11.已知点(﹣2,5),(4,5)是抛物线上的两点,则此抛物线的对称轴为( )A.x=﹣2B.x="2"C.x="1"D.无法确定【答案】C.【解析】∵抛物线经过点(﹣2,5),(4,5),∴此两点关于抛物线的对称轴对称,∴对称轴为直线x==1.故选C.【考点】二次函数图象上点的坐标特征.12.已知二次函数y=(x﹣h)2+4,当x>﹣1时,y随x的增大而增大,则有( )A.h≥﹣1B.h>﹣1C.h<﹣1D.h≤﹣1【答案】A.【解析】∵a=,∴二次函数开口向上,∴二次函数对称轴的右边y随x的增大而增大,∴h≥﹣1.故选A.【考点】二次函数的性质.二、填空题1.抛物线y=x2+的开口向,对称轴是.【答案】上,y轴.【解析】抛物线y=x2+的开口向上,对称轴为y轴.【考点】二次函数的性质.2.若函数y=(m﹣3)是二次函数,则m= .【答案】﹣5.【解析】∵y=(m﹣3)是二次函数,∴,解得m=﹣5.【考点】二次函数的定义.3.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.【答案】4.【解析】∵y=2x2﹣bx+3,对称轴是直线x=1,∴-=1,即﹣=1,解得b=4.【考点】二次函数的性质.4.抛物线y=﹣2x2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是.【答案】y=﹣2x2﹣4x+5.【解析】抛物线y=﹣2x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向上平移7个单位得到的对应点的坐标为(﹣1,7),所以平移后的抛物线的解析式为y=﹣2(x+1)2+7=﹣2x2﹣4x+5.【考点】二次函数图象与几何变换.5.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是.【答案】3.【解析】∵α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,∴α+β=﹣2m﹣3,α•β=m2,∴===﹣1,∴m2﹣2m﹣3=0,解得m=3或m=﹣1;∵一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根;∴△=(2m+3)2﹣4×1×m2=12m+9>0,∴m>﹣,∴m=﹣1不合题意舍去,∴m=3.【考点】1.根与系数的关系;2.解一元二次方程-因式分解法;3.根的判别式.6.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,设每千克应涨价x元,则可列方程为.【答案】(10+x)(500﹣20x)=6000.【解析】设每千克水果涨了x元,由题意得(10+x)(500﹣20x)=6000;【考点】一元二次方程的应用.三、解答题1.解方程:(1)x2﹣8x+1=0(2)3x(x﹣2)=2(2﹣x)(3)x2+2x﹣3=0.【答案】(1)x 1=4+,x 2=4﹣;(2)x 1=2,x 2=﹣; (3)x 1=1,x 2=﹣3.【解析】(1)方程利用配方法求出解即可;(2)方程利用因式分解法求出解即可;(3)方程利用因式分解法求出解即可.试题解析:(1)配方得:x 2﹣8x+16=15,即(x ﹣4)2=15,x ﹣4=±,∴ x 1=4+,x 2=4﹣; (2)方程整理得:3x (x ﹣2)+2(x ﹣2)=0,(x ﹣2)(3x+2)=0,∴ x 1=2,x 2=﹣; (3)分解因式得:(x ﹣1)(x+3)=0,∴ x 1=1,x 2=﹣3.【考点】1.解一元二次方程-因式分解法;2.解一元二次方程-配方法.2.已知关于x 的方程mx 2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.【答案】(1)证明见解析;(2)正整数m 的值为1或2.【解析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m ﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x 1=1,x 2=,然后利用整数的整除性确定正整数m 的值.试题解析:(1)∵m≠0,△=(m+2)2﹣4m×2=m 2﹣4m+4=(m ﹣2)2,而(m ﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)(x ﹣1)(mx ﹣2)=0,x ﹣1=0或mx ﹣2=0,∴x 1=1,x 2=,当m 为正整数1或2时,x 2为整数,即方程的两个实数根都是整数,∴正整数m 的值为1或2.【考点】根的判别式.3.如图所示,要在20米宽,32米长的矩形耕地上修筑同样宽的三条小路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块花田,要使花田面积为570m 2,则道路应修多宽?【答案】道路为1m 宽.【解析】设道路为x 米宽,将所修筑的小路平移到矩形耕地相邻的两边处,则大小不等的六块花田构成一个新的矩形,长为(32-2x)米,宽为(20-x )米,根据矩形面积可列出方程求出x 的值,然后将不合题意的舍去即可. 试题解析:设道路为x 米宽,由题意得:(32-2x)(20-x )=570,整理得:x 2﹣36x+35=0,解得:x=1,x=35,经检验都是原方程的解,但是x=35>20,因此不合题意舍去.答:道路为1m 宽.【考点】一元二次方程的应用.4.已知:如图,抛物线y=ax 2+3ax+c (a >0)与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧.点B 的坐标为(1,0),OC=3BO .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;(3)若点E 在x 轴上,点P 在抛物线上.是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x 2+x-3;(2)四边形ABCD 面积有最大值;(3)存在3个点符合题意,坐标分别是P 1(﹣3,﹣3),P 2(,3),P 3(,3). 【解析】(1)已知B 点坐标,由已知易得OB 、OC 的长,将B 、C 的坐标代入抛物线中,由待定系数法即可得出抛物线的解析式.(2)由A 、C 的坐标,可得直线AC 的解析式.因为AB 、OC 都是定值,所以△ABC 的面积不变,若四边形ABCD 面积最大,则△ADC 的面积最大;可过D 作x 轴的垂线,交AC 于M ,x 轴于N ;易得△ADC 的面积是DM 与OA 积的一半,可设N 点的坐标,分别代入直线AC 和抛物线的解析式中,即可求出DM 的长,从而可得出四边形ABCD 的面积与N 点横坐标间的函数关系式,根据所得函数的性质即可求出四边形ABCD 的最大面积.(3)本题应分情况讨论:①过C 作x 轴的平行线,与抛物线的交点符合P 点的要求,此时P 、C 的纵坐标相同,代入抛物线的解析式中即可求出P 点坐标;②将AC 平移,令C 点落在x 轴(即E 点)、A 点落在抛物线(即P 点)上;可根据平行四边形的性质,得出P 点纵坐标(P 、C 纵坐标的绝对值相等),代入抛物线的解析式中即可求得P 点坐标.试题解析:(1)∵B (1,0),∴OB=1;∵OC=3BO ,∴C (0,﹣3);∵y=ax 2+3ax+c 过B (1,0)、C (0,﹣3),∴,解得,∴抛物线的解析式为:y=x 2+x-3;(2)过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M 、N在y=x 2+x-3中,令y=0,得方程x 2+x-3=0,解得x 1=﹣4,x 2=1,∴A (﹣4,0)设直线AC 的解析式为y=kx+b ,则有,解得,∴AC 的解析式为:y=-x-3;∵S 四边形ABCD=S △ABC+S △ADC=+DM·(AN+ON)=+2DM , 设D (x,x 2+x-3),M(x ,-x-3),则DM=-x-3-(x 2+x-3)=-(x+2)2+3, 当x=﹣2时,DM 有最大值3,此时四边形ABCD 面积有最大值;(3)如图所示,①过点C 作CP 1∥x 轴交抛物线于点P 1,过点P 1作P 1E 1∥AC 交x 轴于点E 1,此时四边形ACP 1E 1为平行四边形, ∵C (0,﹣3),∴设P 1(x ,﹣3),∴x 2+x-3=-3,解得x 1=0,x 2=﹣3,∴P 1(﹣3,﹣3);②平移直线AC 交x 轴于点E ,交x 轴上方的抛物线于点P ,当AC=PE 时,四边形ACEP 为平行四边形, ∵C (0,﹣3)∴设P (x ,3),∴x 2+x-3=3,x 2+3x ﹣8=0,解得x=或x=, 此时存在点P 2(,3)和P 3(,3);综上所述存在3个点符合题意,坐标分别是P 1(﹣3,﹣3),P 2(,3),P 3(,3).【考点】二次函数综合题.四、计算题1.已知二次函数y=﹣x2+x+4.(1)求抛物线的顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?当x取何值时,y有最大值还是最小值?是多少?【答案】(1)顶点坐标为(1,),对称轴为x=1;(2)当x<1时,y随x的增大而增大;当x>1时y随x的增大而减小;函数有最大值为.【解析】(1)根据函数解析式可求出顶点坐标,对称轴及与坐标轴的交点;(2)根据确定的对称轴及顶点坐标确定其增减性即可.试题解析:(1)∵y=﹣x2+x+4=﹣(x2﹣2x+1﹣1)+4=﹣(x﹣1)2+,∴顶点坐标为(1,),对称轴为x=1;(2)∵开口向下且对称轴为x=1,∴当x<1时,y随x的增大而增大;当x>1时y随x的增大而减小;函数有最大值为.【考点】1.二次函数的性质;2.二次函数的最值.2.已知当x=1时,二次函数有最大值5,且图象过点(0,﹣3),求此函数关系式.【答案】二次函数的解析式为y=﹣8(x﹣1)2+5.【解析】由于已知抛物线的顶点坐标,则可设顶点式y=a(x﹣1)2+5,然后把(0,﹣3)代入求出a的值即可.试题解析:由题意,设二次函数的解析式为y=a(x﹣1)2+5,把(0,﹣3)代入得a(0﹣1)2+5=﹣3,解得a=﹣8,∴二次函数的解析式为y=﹣8(x﹣1)2+5.【考点】待定系数法求二次函数解析式.。
【解析版】天津一中2015届九年级上第一次月考数学试卷
17.(3 分)对于实数 a,b,定义运算“﹡”:a﹡b=
.例如 4﹡2,因为 4
>2,所以 4﹡2=42﹡4×2=8.若1 x ,2 x 是一元二次方程 x2﹡5x+6=0 的两个根,x 则﹡x = .
范围是()
A.k>﹡ 1
B.k<1 且 k≠0
C.k≥﹡1 且 k≠0 D.k>﹡1 且 k≠0
3.(3 分)抛物线 y=2(x+3)2+1 的顶点坐标是()
A.(3,1)
B.(3,﹡ 1)
C.(﹡ 3,1)
D.(﹡ 3,﹡ 1)
4.(3 分)已知二次函数 y=x2﹡3x+m(m 为常数)的图象与 x 轴的一个交点为(1,0),则
其中正确的有()
A.1 个
B.2 个
C.3 个
D.4 个
12.(3 分)如图,二次函数 y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0, 1)和(﹡1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当 x
>﹡1 时,y>0,其中正确结论的个数是()
A.5 个
B.4 个
C.3 个
二、填空题(每小题 3 分,共 18 分)
D.2 个
13.(3 分)方程 x2﹡2x﹡2=0 的解是.
14.(3 分)在二次函数 y=﹡x2+2x+1 的图象中,若 y 随 x 的增大而增大,则 x 的取值范围 是.
15.(3 分)已知整数 k<5,若△ABC 的边长均满足关于 x 的方程 x2﹡3 x+8=0,则△ABC 的周长是.
九年级上第一次月考数学试题含答案
t/小时S/千米a 44056054321D CB A O 九年级数学试卷一、选择题(每小题3分,共计30分)1. 点M (-1,2)关于x 轴对称的点的坐标为( )(A )(-1,-2) (B )(-1,2) (C )(1,-2) (D )(2,-1)2. 下列计算正确的是( )(A )235a a a += (B )()326a a = (C )326a a a =÷ (D )a a a 632=⨯ 3. 下列图案中,既是轴对称图形又是中心对称图形的是( ) 4. 抛物线()2345y x =-+的顶点坐标是( )(A )(4,5) (B )(-4,5) C 、(4,-5) (D )(-4,5)5. 等腰三角形的一边长为4 cm,另一边长为9 cm,则它的周长为( )(A )13 cm (B )17 cm (C )22 cm (D )17 cm 或22 cm6. 已知反比例函数k y x=的图象经过点P(-l ,2),则这个函数的图象位于( ) (A )第二、三象限 (B )第一、三象限 (C )第三、四象限 (D )第二、四象限7. 某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到l 210辆,则该厂四、五月份的月平均增长率为( )(A )12.1% (B )20% (C )21% (D )10%8. 如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,△ADE 可以由△ABC 绕点 A 顺时针旋转900得到,点D 与点B 是对应点,点E 与点C 是对应点),连接CE ,则∠CED 的度数是( )(A )45° (B )30° (C )25° (D )15°9. 如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=600,AB=5,则AD 的长是( )(A )53 (B )52 (C )5 (D )1010. 甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是( ) (A )M 、N 两地的路程是1000千米; (B )甲到N 地的时间为 4.6小时;(C )甲车的速度是120千米/小时; (D )甲乙两车相遇时乙车行驶了440千米. 二、填空题(每小题3分,共计30分)11. 将2 580 000用科学记数法表示为 .12. 函数12y x =-的自变量x 的取值范围是 . 13..14. 分解因式:322_____________x x x ---=.15. 抛物线223y x bx =-+的对称轴是直线1x =-,则b 的值为 .16. 如图,CD 为⊙O 的直径,AB ⊥CD 于E ,DE =8cm ,CE =2cm ,则AB = cm.17.不等式组⎩⎨⎧-≤--14352x x >的解集是 .19. 在ΔABC 中,若,∠B=3020. 如图,△ABC ,AB=AC ,∠BAC=90°,点D 为BC 上一点,CE ⊥BC ,连接AD 、DE ,若CE=BD ,DE=4,则AD 的长为 .三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21. 先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x=12+. 22. 如图,图1和图2都是7×4正方形网格,每个小正方形的边长是1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画出一个等腰直角△ABC ;(2)在图2中画出一个钝角△ABD ,使△ABD 的面积是3.图1 图223. 某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查.将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3,请你根据以上信息回答下列问题:(1)通过计算补全条形统计图;(2)在这次调查中,一共抽取了多少名学生?(3)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?24. 已知:BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE=AF.(1)如图1,求证:四边形ADEF 是平行四边形;(2)如图2,若AB=AC ,∠A=36°,不添加辅助线,请你直接写出与DE 相等的所有线段(AF 除外).25. .某车队有载重量为8吨、10吨的卡车共12110吨残土. (1)(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?26. 如图,在⊙O 中,AB 、CE 是直径,BD ⊥CE 于G ,交⊙O 于点D ,连接CD 、CB.(1)如图1,求证:∠DCO=90°-21∠COB ; (2)如图2,连接BE ,过点G 作BE 的垂线分别交BE 、AB 、CD 于点F 、H 、M ,求证:MC=MD ;(3)在(2)的条件下,连接AC 交MF 于点N ,若MN=1,NH=4,求CG 的长.(第26题图1) (第26题图2) (第26题图3)27. 已知:如图,抛物线y=-x 2+bx+c 与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴正半轴交于点C ,OA=3,O B=1,点M 为点A 关于y 轴的对称点.(1)求抛物线的解析式;(2)点P 为第三象限抛物线上一点,连接PM 、PA ,设点P 的横坐标为t ,△PAM 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,PM 交y 轴于点N ,过点A 作PM 的垂线交过点C 与x 轴平行的直线于点G ,若ON ∶CG=1∶4,求点P 的坐标.答案一、ABCAC DDDAC二、11、2.58×106 12、x ≠2 13、23 14、-x(x+1)2 15、-4 16、817、x ≥5 18、30 19、34或38 20、22三、21、(7分)原式=2211=-x 22、(1)(3分) (2)(4分)23、(1)30%;(2分)(2)100-30-35-5=30,补图略;(3分)(3)(5÷100)×2000=100人(3分)24、(1)(4分)EB=ED=AF ,ED ∥AF∴四边形ADEF 为平行四边形;(2)(4分)CD 、BE 、BG 、FG25、(1)(4分)设89吨卡车有x 辆8x+10(12-x)=110解得:x=5,∴12-x=7;(2)(4分)设购进载重量8吨a 辆8(a+5)+10(6+7-a)≥165a≤2.5∵a 为整数,∴a 的最大值为226、(1)略 (2)略 (3)AC ∥BE ,△CNG ≌△BFH,设GN=x ,CE=x+1,BC=2x+2=FN=x+4,x=2CN=22,CG=3227、(1)322+--=x x y (2)963S 2-+=x x(3)过点A 作CG 的垂线,垂足为E ,四边形CEAO 为 正方形 △AGE ≌△MNO ,ON=EG ,CE=3ON=3,N (0,-1) 直线MP 解析式为131-=x y ,⎪⎩⎪⎨⎧+--=-=321312x x y x y 解得 P (6193-7-,18193-25-)。
九年级(上)第一次月考数学模拟试题(含答案).doc
第一学期第一月考模拟九年级数学(考试内容:第二I-一章——第二十二章第一节时间:120分钟,满分:150分)选择题(共40分)一、选择题(每小题4分,共40分)下列方程中,是关于兀的一元二次方程的是方程 2x(x -3) = 5(x — 3)的根为()如果x=4是一元二次方程X 2-3X = 6/2的一个根,贝I 」常数a 的值是三角形的两边长分別为3和6,第三边的长是方程疋-6x + 8 = 0的一个根,则这个三角形的周长是()8.从正方形铁片,截去2cm 宽的一个长方形,余下的血积是48cn?,贝U 原来的正方形铁片的面积是()9. —•个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25B.36C.25 或 36D. —25 或一36A. 2.3(X 4-1)2=2(X + 1);B. g +丄-2 = 0X X若函数y=做宀“一6是二次函数且图象开口向上,C. ax" +bx + c = 0 D ・ 2x = 14- A. -2 B. 4 C- 4或一2 D ・4或3关于函数y=,的性质表达正确的一项是(A.无论x 为任何实数,y 值总为正 C.它的图象关于y 轴对称B. D. 当兀值增人时,y 的值也增大 它的图象在第一、 三象限内一元二次方程X 2+3X = 0的解是(A ・ x = —3B. x { = 0?x 2 = —3C.D. x = 35.A. x = 2.5 B ・x = 3 C.x = 2.5 或兀=3D •以上都不对6.A ・2 B. -2 C. ±2D. ±4A. 13B. 11C. 9D. 147. A. 8cmB. 64cmC. 8cm 2D. 64cm 210.某经济开发区今年一刀份工业产值达50亿元,笫一季度总产值为175亿元,问二、三刀平均每刀的增长率是多少?设平均每月增长的百分率为x,根据题意得方程为()第II卷非选择题(共110分)二、填空题(每小题4分,共40分)11.把一元二次方程(兀一3)2=4化为一般形式为:_________ ,二次项系数为:__________ , 一次项系数为:________ ,常数项为: ________ .12.已知2是关于x的一元二次方程?+4x-p=0的一个根,则该方程的另一个根是_______________ ・13.已知兀】,JO是方程X2~2X+]= 0的两个根,则丄+丄=兀1 X214.若|/?-l|+V^4=0,且一元二次方程kx2+ax+b = 0有两个实数根,则R的取值范围是__________________ .15.已知函数y=(m-2)^+rnx-3(m为常数).⑴当〃7 ___________ 吋,该函数为二次函数;⑵当〃7 __________时,该函数为一次函数.16.二次函数y=ax2(a/0)(fy图象是__ ,当Q0时,开口向 ________ ;顶点坐标是 _____ ,对称轴是_______ .17.抛物线)=2,—加+3的对称轴是宜线x= -1,则b的值为______________ .18.抛物线y=—2,向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是___________ .19.如左下图,已知二次函数y=ax2+bx+c的图象与x轴交于4(1,0), 3(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是20.二次函数y=~x2+bx+c的图象如右上图所示,则一次函数y=bx+c的图象不经过第__________________ 象限.三、解答题(共70分)21.(8分)已知x = \是一元二次方程+ -m2x-2m-\ = 0的一个根.求m的值,并写出此吋的一元二次方程的一般形式.22.(每题7分,共14分)用适当的方法解下列方程:(l)2?-3x-5 = 0 (2) <—4x+4=0.23. (10分)九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高二01,与篮圈屮心的水平9距离为7m,当球出手后水平距离为4m 时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1) 建立如图所示的平而直角处标系,求抛物线的解析式并判断此球能否准确投中?(2) 此时,若对方队员乙在甲前面lm 处跳起盖帽拦截,已知乙的最人摸高为3.1m,那么他能否获得成功?(JC4m24. (12分)已知,在同一平面直角坐标系中,正比例函数y = -2x 与二次函数y=-x 2+2x+c 的图象交于点 4(— 1, m ).(1) 求加,e 的值;(2) 求:次函数图彖的对称轴和顶点坐标.25. (12分)某商场礼品柜台新年期间购进人址贺年卡,一种贺年卡平均每天可售岀500张,每张盈利0.3元. 为了尽快减少库存,商场决定采取适当的降价措施,调杏发现,如果这种贺年卡的售价每降低0」元,那么 商场平均每天可多售出100张,商场耍想平均每天盈利120元,每张贺年R应降价多少元?4m26. (14分)如图,抛物线y=ax 2-5x+4a 与x 轴相交于点A, B,且过点C (5,4).⑴求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二彖限,并写出平移后抛物线的解析式.20 (本题10分)解:由题意可知,抛物线经过(0, —),顶点坐标是(4, 4) • 9设抛物线的解析式是y = 6/(x-4)2+4,解得a = --,所以抛物线的解析式是y = --(x-4)2+4 ;篮9 9 圈的坐标是(7, 3),代入解析式得y = -£(7-+4 = 7,这个点在抛物线上,所以能够投中.1 C(2)当x = \时,),=一6(1_4)「+4 = 3<3.1,所以能够盖帽拦截成功.24. (本题12分)解:(1);・点A 在正比例函数y = -2x 的图象上,/.w=-2x (-1)=2.・••点A 坐标为(一1, 2). T 点A 在二次函数图象上—1 —2 + c=2,即c=5.参考答案一、 选择题(每小题4分,共40分)1. A2.B 3・ C 4.B 5・ C 6・ C 7.A 8. D 9. C 10. D二、 填空题(每小题4分,共40分)11. %2-6X + 5 = 0;1;-6;5 12. -6 13.2 14.^<4H/r^0 15. H 2;=216.抛物线;上;(0,0)17. -41& y = -(x + l 『+7三、 解答题(共60分) 19.(2-1)20.三21.(本题8分)解:m = 0 ,22. 解: (每题7分,共14分) (1) X] = -1, x 2 =—(2) Xj — %2 = 223.(2)・.•二次函数的解析式为y=—x2+2x+5,・・.y=—f+2x+5= -(兀一I)? +6 .・・・对称轴为直线x=l,顶点坐标为(1, 6).25.(本题12分)解:设每张贺年卡应降价兀元. 则根据题意得:(0.3-X)(500+型兰)=120,0.1整理,得:100/ + 20x —3 = 0, 解得:坷=0.1,兀2=-0.3 (不合题意,舍去).・・・兀=0・1.答:每张贺年卡应降价0」元.26.(本题14 分)解:(1)«=1, P(-,~匕‘ 4丿。
2015-2016学年九年级(上)月考数学试卷(9月份)附答 案
九年级(上)月考数学试卷(9月份)一、选择题(每题3分,共18分)1.如果向东走20m记作+20m,那么﹣30m表示()A.向东走30m B.向西走30m C.向南走30m D.向北走30m 2.下列两个数互为相反数的是()A.和﹣0.3 B.3和﹣4 C.﹣2.25和2D.8和﹣(﹣8)3.数轴上的点A表示数为1,则数轴上到点A的距离为2的点表示的数为()A.2 B.3 C.﹣1 D.﹣1或34.下列各式中,不正确的是()A.|﹣3|=|+3| B.|﹣0.8|=|| C.|﹣2|<0 D.|﹣1.3|>05.有理数a,b在数轴上的对应点的位置如图所示,则()A.a+b=0 B.a+b>0 C.a﹣b<0 D.a﹣b>06.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1和0 D.±1二、填空题(每题3分,共18分)7.﹣的倒数是.8.﹣5的绝对值是.9.0.1的相反数是.10.比较大小:﹣﹣.11.2008年冬天的某日,大连市最低气温﹣5℃,哈尔滨市最低气温﹣21℃,这一天大连市的最低气温比哈尔滨的最低气温高℃.12.计算:﹣1÷2×(﹣)=.三、计算题(注意步骤书写完整)(每题4分,共40分)13.(﹣8)﹣8.14.(﹣8)+10﹣(﹣2)+(﹣1)15.(﹣3)×9+11.16.(﹣5)×(﹣9)×8×(﹣2).17.﹣8+(﹣15)÷(﹣3).18.(﹣2)×7﹣3×(﹣7)19.﹣10﹣(﹣3)×(﹣4).20.(﹣)÷(﹣)+×(﹣).21.24÷(﹣).22.(+﹣)×(﹣24).四、解答题(25题6分、26题5分、27题6分、28各7分,共24分)23.画数轴,然后在数轴上表示下列各数,并用“<”号将各数连接起来.3.5,﹣2,3,0,1.5,﹣4.24.将下列各数填在相应的大括号内:﹣,0,1.5,﹣6,7,﹣5.32,2,﹣2009,0.正有理数集合:…负分数集合:…整数集合:…非正数集合:…25.有10盒巧克力豆,以100粒为标准,超过的粒数为正,不足的粒数为负,每盒记录如下:+3,﹣1,﹣3,+2,0,﹣2,﹣3,+4,﹣2,﹣3,这10盒巧克力共有多少粒巧克力豆?26.一辆出租车在一条南北方向的公路上行驶,从A地出发,司机记录了出租车所行驶的路程:(向北为正方向,单位:千米)﹣10,9,4,﹣8,9,10.然后车停下来休息.(1)此时出租车在A地的什么方向?距A地多远?(2)出租车距A地最远有多少千米?(3)已知出租车每千米耗油0.1升,在此过程中共耗油多少升?参考答案与试题解析一、选择题(每题3分,共18分)1.如果向东走20m记作+20m,那么﹣30m表示()A.向东走30m B.向西走30m C.向南走30m D.向北走30m考点:正数和负数.分析:在一对具有相反意义的量中,向东走记作正,则负就代表向西走,据此求解.解答:解:∵向东走20m记作+20m,∴﹣30m记作向西走30m.故选B.点评:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.下列两个数互为相反数的是()A.和﹣0.3 B.3和﹣4 C.﹣2.25和2D.8和﹣(﹣8)考点:相反数.分析:此题依据相反数的概念作答.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.解答:解:A、的相反数是﹣,故选项错误;B、3的相反数的是﹣3,故选项错误;C、﹣2.25和2互为相反数,故选项正确;D、8的相反数是﹣8,5=﹣(﹣8),故选项错误.故选:C.点评:考查了相反数,此题关键是看两个数是否“只有符号不同”,并注意分数与小数的转化.3.数轴上的点A表示数为1,则数轴上到点A的距离为2的点表示的数为()A.2 B.3 C.﹣1 D.﹣1或3考点:数轴.分析:设数轴上到点A的距离为2的点表示的数为x,再根据数轴上两点间距离的定义即可得出结论.解答:解:设数轴上到点A的距离为2的点表示的数为x,则|x﹣1|=2,解得x=﹣1或x=3.故选D.点评:本题考查的是数轴,熟知数轴上两点间距离的定义是解答此题的关键.4.下列各式中,不正确的是()A.|﹣3|=|+3| B.|﹣0.8|=|| C.|﹣2|<0 D.|﹣1.3|>0考点:绝对值.分析:由绝对值的性质可得答案.解答:解:A.|﹣3|=3,|+3|=3,故A正确;B.0.8=,|﹣0.8|=,||=,故B正确;C.|﹣2|=2>0,故C错误;D.|﹣1.3|=1.3>0,故D正确,故选C.点评:本题主要考查了绝对值的性质,利用绝对值的定义和性质化简是解答此题的关键.5.有理数a,b在数轴上的对应点的位置如图所示,则()A.a+b=0 B.a+b>0 C.a﹣b<0 D.a﹣b>0考点:数轴.分析:由数轴可得a<0<b,|a|>|b|,即可判定.解答:解:由数轴可得a<0<b,|a|>|b|,所以a+b<0,a﹣b<0,故选:C.点评:本题主要考查了数轴,解题的关键是利用数轴确定a,b的数量关系.6.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1和0 D.±1考点:倒数.分析:根据倒数的定义可知乘积是1的两个数互为倒数.解答:解:一个数和它的倒数相等,则这个数是±1.故选D.点评:主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.二、填空题(每题3分,共18分)7.﹣的倒数是﹣.考点:倒数.分析:直接根据倒数的定义求解.解答:解:﹣的倒数是﹣.故答案为:﹣.点评:本题考查了倒数的定义,关键是根据a的倒数为(a≠0).8.﹣5的绝对值是5.考点:绝对值.分析:绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解答:解:根据负数的绝对值是它的相反数,得|﹣5|=5.点评:解题的关键是掌握绝对值的性质.9.0.1的相反数是﹣0.1.考点:相反数.分析:先根据负整数指数幂的运算法则求出2﹣2的值,再求出其相反数即可.解答:解:0.1的相反数是﹣0.1.故答案为﹣0.1.点评:本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.10.比较大小:﹣<﹣.考点:有理数大小比较.分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解答:解:根据有理数比较大小的方法,可得﹣<﹣.故答案为:<.点评:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.2008年冬天的某日,大连市最低气温﹣5℃,哈尔滨市最低气温﹣21℃,这一天大连市的最低气温比哈尔滨的最低气温高16℃.考点:有理数的减法.专题:应用题.分析:由大连气温减去哈尔滨的气温,即可得到结果.解答:解:根据题意得:﹣5﹣(﹣21)=﹣5+21=16(℃),则这一天大连市的最低气温比哈尔滨的最低气温高16℃.故答案为:16点评:此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.12.计算:﹣1÷2×(﹣)=.考点:有理数的除法;有理数的乘法.分析:利用有理数的乘除法则求解即可.解答:解::﹣1÷2×(﹣)=﹣×(﹣),=.故答案为:.点评:本题主要考查了有理数的乘除法,解题的关键是熟记有理数的乘除法则.三、计算题(注意步骤书写完整)(每题4分,共40分)13.(﹣8)﹣8.考点:有理数的减法.专题:计算题.分析:原式利用减法法则变形,计算即可得到结果.解答:解:原式=﹣8+(﹣8)=﹣16.点评:此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.14.(﹣8)+10﹣(﹣2)+(﹣1)考点:有理数的加法.专题:计算题.分析:原式利用减法法则变形,计算即可得到结果.解答:解:原式=﹣8+10+2﹣1=3.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.15.(﹣3)×9+11.考点:有理数的混合运算.专题:计算题.分析:原式先计算乘法运算,再计算加法运算即可得到结果.解答:解:原式=﹣27+11=﹣16.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.(﹣5)×(﹣9)×8×(﹣2).考点:有理数的乘法.分析:先确结果的符号,然后利用乘法的交换律和结合律进行简便运算即可.解答:解:原式=﹣5×9×8×2=﹣(5×2)×(9×8)=﹣10×72=﹣720.点评:本题主要考查的是有理数的乘法,利用利用乘法的交换律和结合律进行简便运算是解题的关键.17.﹣8+(﹣15)÷(﹣3).考点:有理数的除法;有理数的加法.分析:先算除法,然后再算加法.解答:解:原式=﹣8+5=﹣3.点评:本题主要考查的是有理数的四则混合运算,掌握有理数的运算顺序是解题的关键.18.(﹣2)×7﹣3×(﹣7)考点:有理数的乘法.分析:先算乘法,然后再计算减法.解答:解:(﹣2)×7﹣3×(﹣7)=﹣14+21=7.点评:本题主要考查的是有理数的四则混合运算,掌握运算法则和运算顺序是解题的关键.19.﹣10﹣(﹣3)×(﹣4).考点:有理数的乘法.分析:先算乘法,然后再算减法.解答:解:原式=﹣10﹣12=﹣22.点评:本题主要考查的是有理数的四则混合运算,掌握运算顺序和运算法则是解题的关键.20.(﹣)÷(﹣)+×(﹣).考点:有理数的除法;有理数的乘法.分析:首先将除法转化为乘法,然后按照有理数的乘法法则计算即可.解答:解;原式==2+(﹣2)=0.点评:本题主要考查的是有理数的乘除运算,掌握有理数的乘法和除法法则是解题的关键.21.24÷(﹣).考点:有理数的除法.分析:首先将除法转化为乘法,然后将24变形为25﹣,最后利用乘法分配律计算即可.解答:解:原式=(25﹣)×(﹣10)=﹣250+2=﹣248.点评:本题主要考查的是有理数的除法,将除法转化为乘法,然后进行简便运算是解题的关键.22.(+﹣)×(﹣24).考点:有理数的乘法.专题:计算题.分析:原式利用乘法分配律计算即可得到结果.解答:解:原式=﹣9﹣4+18=5.点评:此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.四、解答题(25题6分、26题5分、27题6分、28各7分,共24分)23.画数轴,然后在数轴上表示下列各数,并用“<”号将各数连接起来.3.5,﹣2,3,0,1.5,﹣4.考点:有理数大小比较;数轴.分析:根据数轴是用点表示数的一条直线,可用数轴上的点表示数,根据数轴上的点表示的数右边的总比左边的大,可得答案.解答:解:如图:数轴上的点表示的数右边的总比左边的大,得.点评:本题考查了有理数比较大小,数轴上的点表示的数右边的总比左边的大.24.将下列各数填在相应的大括号内:﹣,0,1.5,﹣6,7,﹣5.32,2,﹣2009,0.正有理数集合: 1.5,7,2,0.…负分数集合:﹣,﹣5.32…整数集合:0,﹣6,7,2,﹣2009…非正数集合:﹣,0,﹣6,7,﹣5.32,﹣2009…考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:正有理数集合:1.5,7,2,0.…负分数集合:﹣,﹣5.32…整数集合:0,﹣6,7,2,﹣2009…非正数集合:﹣,0,﹣6,7,﹣5.32,﹣2009…故答案为:1.5,7,2,0.;﹣,﹣5.32;0,﹣6,7,2,﹣2009;﹣,0,﹣6,7,﹣5.32,﹣2009.点评:考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.25.有10盒巧克力豆,以100粒为标准,超过的粒数为正,不足的粒数为负,每盒记录如下:+3,﹣1,﹣3,+2,0,﹣2,﹣3,+4,﹣2,﹣3,这10盒巧克力共有多少粒巧克力豆?考点:正数和负数.分析:将所有数相加可得出超过或不足的数量,将各盒子的数量相加可得出答案.解答:解:3﹣1﹣3+2+0﹣2﹣3+4﹣2﹣3=﹣5,10×100﹣5=995,这10盒巧克力共有995粒巧克力豆.点评:本题考查正数和负数问题,关键是根据有理数的加减混合运算进行计算.26.一辆出租车在一条南北方向的公路上行驶,从A地出发,司机记录了出租车所行驶的路程:(向北为正方向,单位:千米)﹣10,9,4,﹣8,9,10.然后车停下来休息.(1)此时出租车在A地的什么方向?距A地多远?(2)出租车距A地最远有多少千米?(3)已知出租车每千米耗油0.1升,在此过程中共耗油多少升?考点:正数和负数.分析:(1)把行驶记录的所有数据相加,然后根据结果进行判断即可;(2)根据行驶记录的数据相加得出绝对值最大即可;(3)求出行驶记录的绝对值的和,然后转化为千米,再乘以0.1即可得解.解答:解:(1)﹣10+9+4﹣8+9+10=14,在A地的北方,距离A地14千米;(2)因为|14|最大,所以出租车距A地最远有14千米;(3)10+9+4+8+9+10=50,50×0.1=5,在此过程中共耗油5升.点评:本题考查了“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,(2)要注意单位转换.11。
2015—2016学年度第一学期九年级数学月考卷(含答案)
2015—2016学年度第一学期九年级数学月考卷一、选择题(每题3分,共24分):1.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形2.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AC=8,BD=6,则菱形的边长AB 等于( )A .10B .7C . 6D .53.已知关于x 的一元二次方程x 2-kx -4=0的一个根为2,则另一根是( )A .4B .1C .2D .-24.某城市2007年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2009年底增加到363公顷。
设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .363)1(300=+xB .363)1(3002=+xC .363)21(300=+xD .300)1(3632=-x5.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球在放回去,再摸出1个球,那么这两个球上的数字之和为奇数的概率为( )A .32B .95C .94 D .31 6.如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为( )A .2∶3B .2∶5C .4∶9 D.2∶ 37.菱形的周长等于40㎝,两对角线的比为3∶4,则两对角线的长分别是( )A .2㎝,16㎝B .6㎝,8㎝C .3㎝,4㎝D .24㎝,32㎝8.将方程x 2+4x+1=0配方后,原方程变形为( )A .(x+2)2=3B .(x+4)2=3C .(x+2)2 = -3D .(x+2)二.填空题(每题3分,共21分)9.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是________cm 2.10.如图ABCD 中,E 、F 分别为BC 、AD 边上的点,要使BF=DE 需添加一个条件: .第10题 图 第11题图,11.如图,矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =_________。
天津初三初中数学月考试卷带答案解析
天津初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、单选题1.下列图案是几种名车标志,其中属于中心对称图形的是()A.1个B.2个C.3个D.4个2.用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(x+2)2=1B.(x-2)2=1C.(x+2)2=9D.(x-2)2=93.下列事件为必然事件的是 ( )A.任意掷一枚均匀的硬币,正面朝上;B.篮球运动员投篮,投进篮筐;C.一个星期有七天;D.打开电视机,正在播放新闻。
4.下列说法中正确的是 ()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等,所对的圆心角相等5.如图,正方形ABCD的四个顶点分别在⊙O上,点P在CD上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60°C.75°D.90°6.要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为( )A.B.C.D.7.关于x的一元二次方程 (a-1)x2+x+ a2-1=0的一个根是0,则a的值为()A.1B.-1C.1、 -1D.8.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能()A.4个B.6个C.34个D.36个9.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)10.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( )A.B.C.D.11.如图点O是△ABC的内心,过O作EF∥AB,与AC、BC分别交于点E、F,则()A. EF>AE+BFB. EF<AE+BFC. EF=AE+BFD. 无法确定12.已知二次函数y=ax2+b x+c(a≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是A.0B.1C.2D.3二、填空题1.点M(-3,2)关于原点对称的点的坐标是 __________________.2.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为___________3.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是___________.4.一个正六边形的半径为R ,则这个正六边形的边心距为____________5.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠ B=60°,则CD的长为___________6.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为2,则a的值是___________.三、解答题1.解方程:(1) x2-6x+3=0 (2)7x(x-2)=3(x-2)2.如图,点A、B的坐标分别为(0,0)、(4,0),将△ABC绕点A按逆时针方向旋转90º得到△AB′C′.(1)在所给的平面直角坐标系中画出旋转后的△AB′C′;(2)求BB′的长。
天津 九年级(上)第一次月考数学试卷
九年级(上)第一次月考数学试卷一、选择题(本大题共20小题,共60.0分)1.下列方程中,是一元二次方程的有()①8x2+x=20;②2x2-3xy+4=0;③x2-1x=4;④x2=0;⑤x2-3x-4=0A. 2个B. 3个C. 4个D. 5个2.方程x(x+12)=0的根是()A. x1=0,x2=12B. x1=0,x2=−12C. x1=0,x2=−2D. x1=0,x2=23.关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A. k>−1B. k≥−1C. k≠0D. k>−1且k≠04.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A. 10%B. 15%C. 20%D. 25%5.下列函数中,y关于x的二次函数是()A. y=ax2+bx+cB. y=x(x−1)C. y=1x2D. y=(x−1)2−x26.抛物线y=3(x-1)2+1的顶点坐标是()A. (1,1)B. (−1,1)C. (−1,−1)D. (1,−1)7.二次函数y=3(x-2)2-5与y轴交点坐标为()A. (0,2)B. (0,−5)C. (0,7)D. (0,3)8.设二次函数y=(x-3)2-4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A. (1,0)B. (3,0)C. (−3,0)D. (0,−4)9.若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A. 1或−1B. 1C. −1D. 010.将抛物线y=-5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A. y=−5(x+1)2−1B. y=−5(x−1)2−1C. y=−5(x+1)2+3D. y=−5(x−1)2+311.抛物线y=2x2-22x+1与坐标轴的交点个数是()A. 0B. 1C. 2D. 312.已知抛物线y=-x2+2x+k上三点(1,y1)、(2,y2)、(5,y3),则y1、y2、y3的大小关系是()A. y1>y2>y3B. y2>y1>y3C. y3>y1>y2D. y3>y2>y113.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A. b2<4acB. ac>0C. 2a−b=0D. a−b+c=014.已知一次函数y=ba x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A. B.C. D.15.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A. m=3B. m>3C. m≥3D. m≤316.下列说法错误的是()A. 二次函数y=3x2中,当x>0时,y随x的增大而增大B. 二次函数y=−6x2中,当x=0时,y有最大值0C. 抛物线y=ax2(a≠0)中,a越大图象开口越小,a越小图象开口越大D. 不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点17.若关于x的一元二次方程x2+bx+c=0的两个根分别为x1=1,x2=2,那么抛物线y=x2+bx+c的对称轴为直线()A. x=1B. x=2C. x=32D. x=−3218.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A. ①②③B. ①③④C. ③④⑤D. ②③⑤19.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0.其中正确结论的个数是()A. 2个B. 3个C. 4个D. 5个20.已知函数y=-(x-m)(x-n)+3,并且a,b是方程(x-m)(x-n)=3的两个根,则实数m,n,a,b的大小关系可能是()A. m<a<b<nB. m<a<n<bC. a<m<b<nD. a<m<n<b二、填空题(本大题共6小题,共18.0分)21.已知函数y=(m−1)xm2+1+5x+3是关于x的二次函数,则m的值为______.22.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为______.23.已知二次函数y=ax2+bx+c(a≠0),其中a,b,c满足a+b+c=0和9a-3b+c=0,则该二次函数图象的对称轴是直线________.24.如图,已知函数y=-3x与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的不等式bx+3x>−ax2的解集为______.25.函数y=(a+1)x2+2x+a-1的图象与x轴只有一个交点,则常数a=______.26.如图,有若干个边长为2的正方形,若正方形的一个顶点是正方形Ⅰ的中心O1,如图所示,类似的正方形Ⅲ的一个顶点是正方形Ⅱ的中心O2,并且正方形Ⅰ与正方形Ⅲ不重叠,如果若干个正方形都按这种方法拼接,需要m个正方形能使拼接处的图形的阴影部分的面积等于一个正方形的面积.现有一拋物线y=mx2+nx+3,其顶点在x轴上,则该抛物线的对称轴为______.三、计算题(本大题共2小题,共22.0分)27.如图抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)求S△ABC的面积.28.某种水果进价为每千克20元,市场调查发现,该水果每天的销售量y(千克)与售价x(元/千克)有如下关系:y=-2x+80,设这种水果每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该水果售价定为每千克多少元时,每天销售利润最大?最大利润是多少元?(3)如果商家为“薄利多销”,规定这种水果售价每千克不高于28元,则商家要想每天获利150元的销售利润,售价应定为每千克多少元?四、解答题(本大题共2小题,共20.0分)29.已知二次函数y=2x2-4x-6.(1)用配方法y=2x2-4x-6将化成y=a(x-h)2+k的形式,并写出对称轴和顶点坐标;(2)当x取何值时,y随x的增大而减小.30.如图,经过点A(0,-4)的抛物线y=12x2+bx+c与x轴相交于点B(-2,0)和C,O为坐标原点.(1)求抛物线解析式;(2)将抛物线y=12x2+bx+c向上平移72个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围.答案和解析1.【答案】B【解析】解:①8x2+x=20符合一元二次方程;②2x2-3xy+4=0含有两个未知数,不符合一元二次方程定义;③x2-=4不是整式方程,不符合一元二次方程的定义;④x2=0符合一元二次方程;⑤x2-3x-4=0符合一元二次方程;故选:B.根据一元二次方程的定义解答.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.【答案】B【解析】解:方程x(x+)=0,可得x=0或x+=0,解得:x1=0,x2=-.故选:B.方程利用两数之积等于0,两数至少有一个为0求出解即可.此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.3.【答案】D【解析】解:根据题意得k≠0且△=22-4k×(-1)>0,所以k>-1且k≠0.故选:D.根据一元二次方程的定义和判别式的意义得到k≠0且△=22-4k×(-1)>0,然后解两个不等式求出它们的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.4.【答案】C【解析】解:设平均每月的增长率为x,根据题意得:200(1+x)2=288,(1+x)2=1.44,x1=0.2=20%,x2=-2.2(舍去),答:平均每月的增长率为20%.故选:C.设平均每月的增长率为x,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.本题是一元二次方程的应用,属于增长率问题;增长率问题:增长率=增长数量原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.5.【答案】B【解析】解:A、当a=0时,y=bx+c不是二次函数;B、y=x(x-1)=x2-x是二次函数;C、y=不是二次函数;D、y=(x-1)2-x2=-2x+1为一次函数.故选:B.根据二次函数的定义,逐一分析四个选项即可得出结论.本题考查了二次函数的定义,牢记二次函数的定义是解题的关键.6.【答案】A【解析】解:∵抛物线y=3(x-1)2+1是顶点式,∴顶点坐标是(1,1).故选A.已知抛物线顶点式y=a(x-h)2+k,顶点坐标是(h,k).本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.7.【答案】C【解析】解:∵y=3(x-2)2-5∴当x=0时,y=7,即二次函数y=3(x-2)2-5与y轴交点坐标为(0,7),故选:C.根据题目中的函数解析式,令x=0,求出相应的y的值,即可解答本题.本题考查二次函数图象上点的坐标特征,解答本题的关键是明确二次函数与y轴交点的横坐标等于0.8.【答案】B【解析】解:∵二次函数y=(x-3)2-4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选:B.根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M 的横坐标一定为3,从而选出答案.本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x-h)2+k 的顶点坐标为(h,k),对称轴是x=h.9.【答案】C【解析】解:把(0,0)代入y=(a-1)x2+3x+a2-1,得a2-1=0,解得a=1或a=-1,因为a-1≠0,所以a≠1,即a=-1.故选:C.先把原点坐标代入二次函数解析式得到a的方程,解方程得到a=1或a=-1,根据二次函数的定义可判断a=-1.本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)图象上的点的坐标满足其解析式,同时考查了二次函数的定义.10.【答案】A【解析】解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选:A.直接利用二次函数图象与几何变换的性质分别平移得出答案.此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.11.【答案】C【解析】解:抛物线y=2x2-2x+1,显然抛物线与y轴有一个交点,令y=0,得到2x2-2x+1=0,∵△=8-8=0,∴抛物线与x轴有一个交点,则抛物线与坐标轴的交点个数是2,故选:C.对于抛物线解析式,分别令x=0与y=0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数.此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点.12.【答案】A【解析】解:∵抛物线y=-x2+2x+k的对称轴x=1,a=-1<0,∴抛物线开口向下,点(1,y 1)、(2,y2)、(,y3)在抛物线的对称轴的右侧,∵1<2<,∴y3<y2<y1,故选:A.求出抛物线的对称轴,根据点的位置,利用函数的增减性即可判断;本题考查二次函数图象上点的特征,函数的增减性等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.【答案】D【解析】解:∵抛物线与x轴有两个交点,∴b2-4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴-=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(-1,0),∴a-b+c=0,所以D选项正确;故选:D.根据抛物线与x轴有两个交点有b2-4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(-1,0),所以a-b+c=0,则可对D选项进行判断.本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.14.【答案】A【解析】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=->0,与y轴的交点在y轴负正半轴.故选:A.根据一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=->0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.本题考查了一次函数的图象以及二次函数的图象,根据一次函数图象经过的象限,找出<0、c>0是解题的关键.15.【答案】C【解析】【分析】本题考查了二次函数图象的性质.解答该题时,须熟知二次函数的系数与图象的关系、二次函数的顶点式方程y=(k-h)x2-b中的h,b的意义.根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.【解答】解:∵二次函数的解析式y=(x-m)2-1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,-1),∴该二次函数图象在[-∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x-m≤0,∴m≥3.故选:C.16.【答案】C【解析】解:A、二次函数y=3x2中,当x>0时,y随x的增大而增大,说法正确,不符合题意;B、二次函数y=-6x2中,当x=0时,y有最大值0,说法正确,不符合题意;C、抛物线y=ax2(a≠0)中,|a|越大图象开口越小,|a|越小图象开口越大,说法错误,符合题意;D、不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点,说法正确,不符合题意.故选:C.根据抛物线的性质即可进行判断.本题考查了二次函数y=ax2(a≠0)的性质,是基础知识,需熟练掌握.17.【答案】C【解析】解:∵方程x2+bx+c=0的两个根分别为x1=1、x2=2,∴抛物线y=x2+bx+c与x轴的交点坐标为(1,0)、(2,0),∴抛物线y=x2+bx+c的对称轴为直线x==.故选:C.根据方程的两根即可得出抛物线与x轴的两个交点坐标,再利用抛物线的对称性即可得出抛物线的对称轴.本题考查了抛物线与x轴的交点以及二次函数的性质,根据抛物线与x轴的交点横坐标找出抛物线的对称轴是解题的关键.18.【答案】C【解析】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=-1时,y=a-b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=-=1,即a=-,代入得9(-)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤正确.综上所述,③④⑤正确.故选:C.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.考查二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴的交点、抛物线与x轴交点的个数确定.19.【答案】B【解析】解:∵由抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴b>0,∴ab<0,所以①正确;∵点(0,1)和(-1,0)都在抛物线y=ax2+bx+c上,∴c=1,a-b+c=0,∴b=a+c=a+1,而a<0,∴0<b<1,所以②错误,④正确;∵a+b+c=a+a+1+1=2a+2,而a<0,∴2a+2<2,即a+b+c<2,∵抛物线与x轴的一个交点坐标为(-1,0),而抛物线的对称轴在y轴右侧,在直线x=1的左侧,∴抛物线与x轴的另一个交点在(1,0)和(2,0)之间,∴x=1时,y>0,即a+b+c>0,∴0<a+b+c<2,所以③正确;∵x>-1时,抛物线有部分在x轴上方,有部分在x轴下方,∴y>0或y=0或y<0,所以⑤错误.故选:B.利用抛物线开口方向得a<0,利用对称轴在y轴的右侧得b>0,则可对①进行判断;根据二次函数图象上点的坐标特征得c=1,a-b+c=0,则b=a+c=a+1,所以0<b<1,于是可对②④进行判断;由于a+b+c=a+a+1+1=2a+2,利用a<0可得a+b+c<2,再根据抛物线的对称性得到抛物线与x轴的另一个交点在(1,0)和(2,0)之间,则x=1时,函数值为正数,即a+b+c>0,由此可对③进行判断;观察函数图象得到x>-1时,抛物线有部分在x轴上方,有部分在x 轴下方,则可对⑤进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.20.【答案】D【解析】解:函数y=-(x-m)(x-n)+3,令y=0,根据题意得到方程(x-m)(x-n)=3的两个根为a,b,∵当x=m或n时,y=3>0,∴实数m,n,a,b的大小关系为a<m<n<b.故选:D.令抛物线解析式中y=0,得到方程的解为a,b,即为抛物线与x轴交点的横坐标为a,b,再由抛物线开口向下得到a<x<b时y大于0,得到x=m与n时函数值大于0,即可确定出m,n,a,b的大小关系.此题考查了抛物线与x轴的交点,熟练掌握抛物线的性质是解本题的关键.21.【答案】-1【解析】解:根据题意得:,解得:m=-1.故答案是:-1.根据二次函数的定义列出不等式求解即可.本题考查二次函数的定义,注意到m-1≠0是关键.22.【答案】m>0【解析】【分析】此题考查二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),以及各个象限点的坐标特征.直接利用顶点形式得出顶点坐标,结合第一象限点的特点列出不等式组解答即可.【解答】解:∵抛物线y=(x-m)2+(m+1),∴顶点坐标为(m,m+1),∵顶点在第一象限,∴m>0,m+1>0,∴m的取值范围为m>0.故答案为m>0.23.【答案】x=-1【解析】解:方程9a-3b+c=0减去方程a+b+c=0,可得8a-4b=0,根据对称轴公式整理得:对称轴为x==-1.故该二次函数图象的对称轴是直线x=-1.解方程求出a,b的值,再根据对称轴公式即可求出该二次函数图象的对称轴.解决此题的关键是根据对称轴公式的特点巧妙整理方程,运用技巧不但可以提高速度,还能提高准确率.24.【答案】x<-3或x>0【解析】解:由不等式bx+得到,ax2+bx>-,观察图象可知,P(-3,1),不等式的解为:x<-3或x>0.故答案为x<-3或x>0.由不等式bx+得到,ax2+bx>-,利用图象法,二次函数的图象在反比例函数的图象上方,写出对应的自变量的取值范围即可.本题考查二次函数与不等式,解题的关键是灵活运用所学知识解决问题,学会利用图象法解决取值问题.25.【答案】-1,2,-2【解析】解:当函数为一次函数时,a+1=0,得到a=-1,此时函数为:y=2x-2,与x轴只有一个交点;当函数为二次函数时,因为函数图象与x轴只有一个交点,所以4-4(a+1)(a-1)=0,得到a=,所以常数a=-1.分别取函数为二次函数和一次函数时,函数与x轴只有一个交点,然后根据函数性质求出a的值.本题主要考查对于二次函数图象与x轴交点的个数的判定,即b2-4ac跟0的等量关系,然后解出a的值,同时要注意题中所给函数还可以是一次函数.26.【答案】直线x=±155【解析】解:过O1作正方形的边AN、MN的垂线O1F、O1E,垂足分别为F、E,连接O1N、O1M.∵O1为正方形Ⅰ的中心,∴O1N=O1M,∠O1NC=∠O1MD=45°,∠NO1M=90°,S△NO1M=S,正方形1∵∠CO1N+∠NO1D=∠CO1D=90°,∠DO1M+∠NO1D=∠NO1M=90°,∴∠CO1N=∠DO1M.在△NCO1与△MDO1中,,∴△NCO1≌△MDO1(ASA),∴S=S,∴S=S△NO1M,四边形NCO1D即正方形Ⅰ与正方形Ⅱ重合部分的阴影部分面积为正方形面积的,∴需要5个小正方形能使拼接出的图形的阴影部分面积等于一个小正方形的面积,∴m=5,∵拋物线y=mx2+nx+3的顶点在x轴上,∴y==0,即=0,∴n2=60,∴n=±2,x=-=±∴该抛物线的对称轴为直线x=±,故答案为直线x=±.根据正方形的性质得出S△NO1M=S正方形1,再利用全等三角形性质得出S四边形NCO1E=S△NO1M,同理可得各阴影面积与正方形关系,即可得出m的值,然后个顶点在x轴上的特点,求得的值,根据对称轴x=-求得即可..此题主要考查了二次函数的性质、正方形的性质以及全等三角形的判定与性质等知识,利用已知得出△NCO1≌△MDO1是解题关键.27.【答案】解:(1)当x=0时,y=x-3=-3,则B(0,-3);当y=0时,x-3=0,解得x=3,则A(3,0),把A(3,0),B(0,-3)代入y=x2+bx-c得9+3b−c=0−c=−3,解得b=−2c=3,∴抛物线的解析式为y=x2-2x-3;(2)当y=0时,x2-2x-3=0,解得x1=-1,x2=3,则C(-1,0),∴S△ABC=12×(3+1)×3=6.【解析】(1)先利用一次函数解析式确定A、B的坐标,然后利用待定系数法确定抛物线解析式;(2)通过解方程x2-2x-3=0得到C点坐标,然后利用三角形面积公式计算S△ABC的面积.题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.28.【答案】解:(1)由题意得出:w=(x-20)∙y=(x-20)(-2x+80)=-2x2+120x-1600,故w与x的函数关系式为:w=-2x2+120x-1600;(2)w=-2x2+120x-1600=-2(x-30)2+200,∵-2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程-2(x-30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【解析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.本题考查了二次函数的运用.关键是根据题意列出函数关系式,运用二次函数的性质解决问题.29.【答案】解:(1)∵y=2x2-4x-6=2(x2-2x)-6=2(x-1)2-8,∴抛物线的对称轴为直线x=1,顶点坐标为(1,-8).(2)∵a=2>0,∴抛物线开口向上,又∵抛物线的对称轴为直线x=1,∴当x≤1时,y随x的增大而减小.【解析】(1)利用配方法将二次函数解析式变形为顶点式,进而即可找出抛物线的对称轴及顶点坐标;(2)由a=2>0,可得出抛物线开口向上,结合抛物线的对称轴为直线x=1,利用二次函数的性质即可找出当y随x的增大而减小时x的取值范围.本题考查了二次函数的性质以及二次函数的三种形式,解题的关键是:(1)利用配方法将二次函数解析式由一般式变形为顶点式;(2)利用二次函数的性质找出当y随x的增大而减小时x的取值范围.30.【答案】解:(1)将A(0,-4)、B(-2,0)代入抛物线y=12x2+bx+c中,得:0+c=−412×4−2b+c=0,解得:b=−1c=−4,故抛物线的解析式:y=12x2-x-4.(2)由题意,新抛物线的解析式可表示为:y=12(x+m)2-(x+m)-4+72,即:y=12x2+(m-1)x+12m2-m-12;它的顶点坐标P:(1-m,-1);由(1)的抛物线解析式可得:C(4,0);设直线AC的解析式为y=kx+b(k≠0),把x=4,y=0代入,∴4k+b=0,b=-4,∴y=x-4.同理直线AB:y=-2x-4;当点P在直线AB上时,-2(1-m)-4=-1,解得:m=52;当点P在直线AC上时,(1-m)-4=-1,解得:m=-2;∴当点P在△ABC内时,-2<m<52;又∵m>0,∴符合条件的m的取值范围:0<m<52.【解析】(1)该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.(2)首先根据平移条件表示出移动后的函数解析式,进而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m 的取值范围.考查了二次函数综合题,涉及到的知识点比较多:抛物线与x轴的交点,待定系数法确定函数解析式,二次函数图象与几何变换,二次函数的性质等.综合性比较强,解答(2)题时,需要分类讨论.。
天津初三初中数学月考试卷带答案解析
天津初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、单选题1.下列方程中,一元二次方程的是()A.B.C.D.2.方程的解是()A.B.C.D.3.抛物线y=−x2不具有的性质是()A.开口向上B.对称轴是y轴C.在对称轴的左侧,y随x的增大而增大D.最高点是原点4.抛物线y=ax2过点(1,−1),则a的值为()A.1B.−1C.D.−5.用配方法解一元二次方程,则方程可变形为()A.B.C.D.6.已知关于的一元二次方程有两个相等的实数根,则的值是()A.1B.-1C.D.7.已知是方程的一个根,则方程的另一个根是()A.1B.2C.-2D.-18.方程2x(x-1)=x-1的解是()A.x1=,x2=1B.x1=-,x2=1C.x1=-,x2=1D.x1=,x2=-19.长春市企业退休人员王大爷2013年的工资是每月2100元,连续两年增长后,2015年大王大爷的工资是每月2541元,若设这两年平均每年的增长率为,根据题意可列方程()A.B.C.D.10.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A .B .C .D .11.二次函数y=x 2+2x-7的函数值是8,那么对应的x 的值是( ) A .5 B .3 C .3或-5D .-3或512.二次函数y=-6x 2,当x 1>x 2>0时,y 1与y 2的大小关系为__________.二、选择题有两个一元二次方程:M :N :,其中,以下列四个结论中,错误的是( ) A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根; B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同; C .如果5是方程M 的一个根,那么是方程N 的一个根; D .如果方程M 和方程N 有一个相同的根,那么这个根必是三、填空题1.若抛物线开口向下,则m= .2.若x 2+a x +9是一个完全平方式,则a 的值是________________;3.当___________时,代数式与的值相等.4.设、是一元二次方程的两实数根,则的值为_______.5.设、是一元二次方程的两实数根,则的值为_______.四、解答题1.用适当的方法解方程 (1) (2)(3)(4)2.二次函数y=ax 2与直线y=2x-1的图象交于点P(1,m). (1)求a 、m 的值;(2)写出二次函数的表达式,并指出x 取何值时,该表达式的y 随x 的增大而增大? (3)指出抛物线的顶点坐标和对称轴.3.关于x 的方程kx 2+(k+1)x+=0有两个相等的实数根.求k 的值,并求出此时一元二次方程的根。
天津和平区九年级一月考数学试卷
天津2015-2016-1九年级一月考数学试卷一、选择题(每小题3分,共36分)1. 关于x 的一元二次方程()01122=-++-m x x m 的一个根是0,则m 的值为 A. 1 B. 1或-1 C. -1D. 0.5 2. 一元二次方程()()()3333+=-+x x x 的根是 A. x=3B. x=6C. 6,321=-=x xD. 3,621=-=x x 3. 已知二次函数m x x y +-=42(m 为常数)的图像与x 轴的一个交点为(1,0),则关于x 的一元二次方程042=+-m x x 的两实数根是A. 1,121-==x xB. 2,121==x xC. 0,121==x xD. 3,121==x x4. 关于x 的方程0122=---m mx x 的根的情况是A. 有两个不相等的实数根B. 有两个相等的实数根C. 有两个实数根D. 没有实数根 5. 在同一平面直角坐标系中,函数bx ax y +=2与a bx y +=的图像可能是 A. B. C. D.6. 要将抛物线322++=x x y 平移后得到抛物线2x y =,下列平移方法正确的是A. 向左平移1个单位,再向上平移2个单位B. 向左平移1个单位,再向下平移2个单位C. 向右平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向下平移2个单位7. 某服装店原计划每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元,若两次降价折扣率相同,则每次降价率为A. 8%B. 18%C. 20%D. 25% 8. 若抛物线()()12++-=m m x y 的顶点在第一象限,则m 的取值范围为A. m>1B. m>0C. m>-1D. -1<m<09. 如图,在Rt△ABC 中,∠C =90°,D 为BC 上一点,∠DAC =30°,BD=2,AD=32,则AC 的长为A. 3B. 22C. 3D. 32310. 直线11+=x y 与直线322+-=x y 的图像如图,当y1>y2时,x 的取值范围为A. x<-2B. x>1C. -2<x<1D. x<-2或x>111. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点p 的运动时间t 的函数图像大致为A. B. C. D.12. 如图,正方形OCAB 的顶点A 、C 分别在y 轴、x 轴上,正方形的边长为4,抛物线c bx ax y ++=2的图像经过A 、B 两点,下列说法中正确的个数有①abc>0;②4a+b=0;③54->a ;④方程42=++c bx ax 的解为4,021==x x ;⑤()()0242<+-+bm am b a (m ≠2)A. 2个B. 3个C. 4个D. 5个 二、填空题(每小题3分,共18分) 13. 抛物线322+--=x x y 的顶点坐标是14. 请写出一个图像的对称轴是直线x=1,且经过(0,1)点的二次函数的表达式15. 已知2是关于x 的方程0322=+-m mx x 的一个根,并且这个方程的两个跟恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为16. 如图将抛物线L1:322++=x x y 向下平移10个单位得L2,而L1,L2的表达式分别是L1:x=-2,L2:21=x ,则图中阴影部分的面积是17. 设a ,b 是方程020152=-+x x 的两个实数根,则b a a ++22的值为18. 对于二次函数322--=mx x y ,有下列说法①如果当x ≤1时y 随x 的增大而减小,则m=1②如果它的图像与x 轴的两交点的距离是4,则m=±1;③如果将它的图像向左平移3个单位后的函数的最小值是-4,则m=-1;④如果当x=1时的函数值与x=2015时的函数值相等,则当x=2016时的函数值为-3 其中正确的说法是 三、解答题(共66分)19. 解下列关于x 的一元二次方程(1)0452=+-x x (配方法) (2)06262=--x x20. 利用一面墙(墙的长度不限),另三边用58m 长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽21. 已知关于x 的一元二次方程()011222=-+++m x m x(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x1,x2,且满足()2122116x x x x -=-,求实数m 的值22. 如图,是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面宽度为多少米23. 九年级数学兴趣小组市场对某种运动服销售情况调查,运动服的进价为60元,平均每月可售出280件,精调查发现,如果每件运动服增加10元,平均每月可少售出20件,设售价为x 元(1)请用含x 的式子表示:①销售该运动服每件的利润是 元;②月销量是 件(直接写出结果)(2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?24. 如图,在直角坐标系中,点A 的坐标为(-2,0),点B 的坐标为()31-,,已知抛物线c bx ax y ++=2(a ≠0)经过三点A 、B 、O (O 为原点)(1)求抛物线的解析式、对称轴和顶点坐标(2)在抛物线的对称轴上,是否存在点C ,使△BOC 的周长最小,若存在,求出点C 的坐标,若不存在,请说明理由(3)如果点P 是该抛物线桑x 轴上方的一个动点,那么△PAB 是否有最大面积,若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得
.所以直线 BC 函数关系式 y=﹣x+3.当 x=1 时 y=﹣1+3=2,∴E(1,2) .
2
当 x=m 时,y=﹣m+3,∴P(m,﹣m+3) .在 y=﹣x +2x+3 中,当 x=1 时,y=4. 2 2 ∴D(1,4) ,当 x=m 时,y=﹣m +2m+3,∴F(m,﹣m +2m+3) ,∴线段 DE=4﹣2=2, 2 2 线段 PF=﹣m +2m+3﹣(﹣m+3)=﹣m +3m,∵PF∥DE,∴当 PF=ED 时,四边形 PEDF 2 为平行四边形.由﹣m +3m=2,解得 m1=2,m2=1(不合题意,舍去) . 因此,当 m=2 时,四边形 PEDF 为平行四边形. ②设直线 PF 与 x 轴交于点 M,由 B(3,0) ,O(0,0) ,可得 OB=OM+MB=3. ∵S=S△ BPF+S△ CPF 即 S= PF•BM+ PF•OM= PF•(BM+OM)= PF•OB. ∴S= ×3(﹣m +3m)=﹣ m + m(0≤m≤3) .
2 2
4.C
5.D
7.B
8.D
9.D
10.D
11.D
12.D
(2)点 D 为抛物线顶点,由顶点坐标(﹣
,
)得,D(1,4) ,
∵对称轴与 x 轴交于点 E,∴DE=4,OE=1,∵B(﹣1,0) ,∴BO=1,∴BE=2, 在 Rt△ BED 中,根据勾股定理得:BD=
2
=
=2
2
.
21.解: (1)将点 A(1,0)代入 y=(x﹣2) +m 得(1﹣2) +m=0,解得 m=﹣1, 2 所以二次函数解析式为 y=(x﹣2) ﹣1;当 x=0 时,y=4﹣1=3,所以 C 点坐标(0,3) , 由于 C 和 B 关于对称轴对称,而抛物线的对称轴为直线 x=2,所以 B 点坐标(4,3) , 将 A(1,0) 、B(4,3)代入 y=kx+b 得 (2)当 kx+b≥(x﹣2) +m 时,1≤x≤4.
2015-2016 初三海河中学月考答案 一、选择题 1.C 2.B 3.B 二、填空题 13.k≤4 14.2π 15. x1 0, x2 2 16.0 17.0<x<4 18. S 2 x2 30 x 三、解答题 19.(1)图象略 (2)x=-1 或 x=3 时,函数值为 0 (3)对称轴 x=1,顶点(1,-4) 20. 解: (1)∵抛物线 y=ax +2x+c 经过点 A(0,3) ,B(﹣1,0) ,∴将 A 与 B 坐标代入 得 ,解得 ,则抛物线解析式为 y=﹣x +2x+3;
2
,解得
,所以 y=x﹣1;
22.解: (1)0(0,0) ,A(6,0) ,M(3,3) . (2) 设抛物线的关系式为 y=a (x﹣3) +3, 因为抛物线过点 (0, 0) , 所以 0=a (0﹣3) +3, 解得 a=﹣ ,所以 y=﹣ (x﹣3) +3=﹣ x +2x,要使木板堆放最高,依据题意,得 B 点 应是木板宽 CD 的中点, 把 x=2 代入 y=﹣ x +2x, 得 y= , 所以这些木板最高可堆放 米.
2 2
2
时 w 有最大值.
又 x<60,w 随 x 的增大而增大.∴当 x=55 元时,w 的最大值为 1125 元. ∴当每箱苹果的销售价为 55 元时,可以获得 1125 元的最大利润.
25.解: (1)A(﹣1,0) ,B(3,0) ,C(0,3) .抛物线的对称轴是:直线 x=1. (2)①设直线 BC 的函数关系式为 y=kx+b.把 B(3,0) ,C(0,3)代入得
对称轴为直线 x= ,当 x= 时,y= ,则 P 坐标为( , ) .
24.解: (1)由题意得 y=90﹣3(x﹣50) ,化简得 y=﹣3x+240; 2 (2)由题意得 w=(x﹣40)y=(x﹣40) (﹣3x+240)=﹣3x +360x﹣9600; (3) w=﹣3x +360x﹣9600, ∵a=﹣3<0, ∴抛物线开口向下.
2 2 2 2 2
23.解: (1) ∵OA=2, OC=3, ∴A (﹣2, 0) , C (0, 3) , 代入抛物线解析式得
2
,
解得 b= ,c=3,则抛物线解析式为 y=﹣ x + x+3; (2)连接 AD,交对称轴于点 P,则 P 为所求的点,设直线 AD 解析式为 y=mx+n(m≠0) , 把 A(﹣2,0) ,D(2,2)代入得 ,解得 m= ,n=1,∴AD 解析式 y= x+1,