最新上海高考数列大题整理
高考数学《数列》大题训练50题含答案解析
一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.(2011•重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;((Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.(2011•重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤a k≤.4.(2011•浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;`(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小.5.(2011•上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,…(1)写出c1,c2,c3,c4;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)求数列{c n}的通项公式.6.(2011•辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10*(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.7.(2011•江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值;(2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由.8.(2011•湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;](II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.9.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(4)证明:对于一切正整数n,2a n≤b n+1+1.10.(2011•安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;—(Ⅱ)设b n=tana n•tana n+1,求数列{b n}的前n项和S n.11.(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.12.(2010•四川)已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;,(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.13.(2010•四川)已知数列{a n}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2a m+n+2(m﹣n)2﹣1(1)求a3,a5;(2)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列;(3)设c n=(a n+1﹣a n)q n﹣1(q≠0,n∈N*),求数列{c n}的前n项和S n.14.(2010•陕西)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.:(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.15.(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列的前n项和S n.16.(2010•江西)正实数数列{a n}中,a1=1,a2=5,且{a n2}成等差数列.…(1)证明数列{a n}中有无穷多项为无理数;(2)当n为何值时,a n为整数,并求出使a n<200的所有整数项的和.17.(2009•陕西)已知数列{a n}满足,,n∈N×.(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;(2)求{a n}的通项公式.18.(2009•山东)等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n),均在函数y=b x+r(b>0)且b≠1,b,r均为常数)的图象上.\(1)求r的值;(2)当b=2时,记b n=n∈N*求数列{b n}的前n项和T n.19.(2009•江西)数列{a n}的通项,其前n项和为S n,(1)求S n;(2),求数列{b n}的前n项和T n.20.(2009•辽宁)等比数列{a n}的前n项和为s n,已知S1,S3,S2成等差数列,-(1)求{a n}的公比q;(2)求a1﹣a3=3,求s n.21.(2009•湖北)已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.22.(2009•福建)等比数列{a n}中,已知a1=2,a4=16((I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n 项和S n.23.(2009•安徽)已知数列{a n}的前n项和S n=2n2+2n,数列{b n}的前n项和Tn=2﹣b n (Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)设c n=a n2•b n,证明:当且仅当n≥3时,c n+1<c n.24.(2009•北京)设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.…(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=3m+2(m∈N*)如果存在,求p和q的取值范围;如果不存在,请说明理由.25.(2008•浙江)已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.|26.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.27.(2008•四川)在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;《(Ⅲ)求数列{a n}的前n项和T n.28.(2008•陕西)已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.29.(2008•辽宁)在数列{a n},{b n}是各项均为正数的等比数列,设.(Ⅰ)数列{c n}是否为等比数列证明你的结论;,(Ⅱ)设数列{lna n},{lnb n}的前n项和分别为S n,T n.若a1=2,,求数列{c n}的前n项和.30.(2008•辽宁)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.答案与评分标准,一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.考点:数列递推式;数列的函数特性。
上海高考数学好题赏析
上海高考数学好题赏析全文共四篇示例,供读者参考第一篇示例:上海高考数学好题赏析上海作为中国最具经济活力和文化魅力的城市之一,其高考数学试题一直备受关注。
上海的高考数学试题以其难度适中,注重考查学生综合运用知识和解决问题的能力而闻名于世。
今天,我们就来一起欣赏一些上海高考数学试题,感受其中的精彩之处。
1. 下列数列中,哪个是等差数列?A. 1, 3, 5, 7, 9这道题考查的是数列的性质,学生需要根据数列中相邻两项的差值来判断是否是等差数列。
通过观察可知,选项A中的数列相邻两项的差值均为2,因此是等差数列,答案是A。
2. 已知等比数列的前四项依次是a,2a,4a,8a,若其首项a为正数,公比为2,求该数列的第n项。
这道题考查的是等比数列的性质,学生需要根据已知条件来求解未知的数列项。
根据等比数列的通项公式an=a*r^(n-1),带入已知条件可得该数列的第n项为a*2^(n-1)。
3. 设函数f(x)=x^2-2x+1,求函数f(x)在定义域内的最小值。
这道题考查的是求函数的最小值,学生需要通过求导数和判断临界点的方法来求解。
对函数f(x)进行求导并令导数为0,可得临界点x=1 。
代入原函数f(x)可得最小值为0。
函数f(x)在定义域内的最小值为0。
4. 若正数a,b,c满足a+b+c=1,求最大值abc的值。
这道题考查了数学中的不等式性质,学生需要通过构造不等式和利用条件求解。
由AM-GM不等式可知,abc≤(a+b+c)/3=(1/3)^3=1/27。
最大值abc的值为1/27。
5. 一辆车从A地开往B地,车速为60km/h;另一辆车从B地开往A地,车速为80km/h。
两车相遇后,分别往各自的目的地开,车速均为80km/h。
假设A地和B地之间的距离为x千米,求两车相遇后再会合的时间。
这道题考查了运动学中的相关性质,学生需要通过距离、速度和时间之间的关系来求解。
首先计算两车相遇时的时间为x/(60+80)=x/140 小时;然后分别计算两车再次相遇的时间,分别为x/(80*2)=x/160 小时和x/(80+x)=x/(80+x)小时。
高考数学试题上海题及答案
高考数学试题上海题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的值域为[0, +∞),则该函数的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3可以写成f(x) = (x - 2)^2 - 1,其最小值为-1,因此值域为[-1, +∞)。
由于值域为[0, +∞),所以函数的零点个数为2。
2. 若复数z = a + bi(a, b ∈ R)满足|z| = √2,且z的实部与虚部的和为0,则a和b的值分别为:A. a = 1, b = -1B. a = -1, b = 1C. a = 1, b = 1D. a = -1, b = -1答案:A解析:由|z| = √2,得√(a^2 + b^2) = √2,即a^2 + b^2 = 2。
又因为z的实部与虚部的和为0,即a + b = 0。
解得a = 1, b = -1。
3. 若直线l的倾斜角为45°,则直线l的斜率为:A. 0B. 1D. √2答案:B解析:直线的倾斜角为45°,根据斜率的定义,斜率k = tan(45°) = 1。
4. 若向量a = (3, -2),向量b = (-1, 2),则向量a与向量b的数量积为:A. 1B. -1C. 3D. -3答案:D解析:向量a与向量b的数量积为a·b = 3*(-1) + (-2)*2 = -3 - 4 = -7。
5. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象是开口向上的抛物线,且f(1) = f(3),则该函数的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:由于抛物线开口向上,且f(1) = f(3),根据抛物线的对称性,对称轴为x = (1 + 3) / 2 = 2。
6. 若等比数列{an}的前n项和为S_n,且S_3 = 7,S_6 = 28,则该数列的公比q为:B. 4C. 3D. 1/2答案:A解析:设等比数列的首项为a1,公比为q,则S_3 = a1(1 - q^3) / (1 - q) = 7,S_6 = a1(1 - q^6) / (1 - q) = 28。
上海市2024年高考二模分类汇编:数列
数列汇编一、题型一:等差数列及其求和1.(23-24高三下·上海浦东新·期中)设()()101100,10Z m m m m m f x a x a x a x a a m m --=++++≠≥∈ ,,记()()1n n f x f x -'=(1,2,,1)n m =-L ,令有穷数列n b 为()n f x 零点的个数()1,2,,1n m =- ,则有以下两个结论:①存在()0f x ,使得n b 为常数列;②存在()0f x ,使得n b 为公差不为零的等差数列.那么()A .①正确,②错误B .①错误,②正确C .①②都正确D .①②都错误2.(2024·上海松江·二模)已知等差数列{}n a 的公差为2,前n 项和为n S ,若35a S =,则使得n n S a <成立的n 的最大值为.3.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.4.(2024·上海杨浦·二模)某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为.5.(2024·上海黄浦·二模)已知数列{}n a 是给定的等差数列,其前n 项和为n S ,若9100a a <,且当0m m =与0n n =时,m n S S -{}()*,|30,m n x x x ∈≤∈N 取得最大值,则00m n -的值为.6.(23-24高三下·上海浦东新·期中)已知等差数列{}n a 满足1612a a +=,47a =,则3a =.7.(2024·上海崇明·二模)若等差数列{}n a 的首项11a =,前5项和525S =,则5a =.8.(2024·上海虹口·二模)已知等差数列{}n a 满足25a =,9672a a +=.(1)求{}n a 的通项公式;(2)设数列{}n b 前n 项和为n S ,且221n n n b a a +=-,若432m S >,求正整数m 的最小值.二、题型二:等比数列及其求和9.(2024·上海松江·二模)设n S 为数列{}n a 的前n 项和,有以下两个命题:①若{}n a 是公差不为零的等差数列且N k ∈,2k ≥,则12210k S S S -⋅= 是120k a a a ⋅= 的必要非充分条件;②若{}n a 是等比数列且N k ∈,2k ≥,则120k S S S ⋅= 的充要条件是10k k a a ++=.那么()A .①是真命题,②是假命题B .①是假命题,①是真命题C .①、②都是真命题D .①、②都是假命题10.(2024·上海普陀·二模)设n S 是数列{}n a 的前n 项和(1,N)n n ≥∈,若数列{}n a 满足:对任意的2n ≥,存在大于1的整数m ,使得()()10m n m n S a S a +--<成立,则称数列{}n a 是“G 数列”.现给出如下两个结论:①存在等差数列{}n a 是“G 数列”;②任意等比数列{}n a 都不是“G 数列”.则()A .①成立②成立B .①成立②不成立C .①不成立②成立D .①不成立②不成立11.(2024·上海青浦·二模)设n S 是首项为1a ,公比为q 的等比数列{}n a 的前n 项和,且202320252024S S S <<,则().A .10a >B .0q >C .1n S a ≤D .n S q<12.(2024·上海长宁·二模)设数列{}n a 的前n 项和为n S ,若存在非零常数c ,使得对任意正整数n ,都有n a c =+,则称数列{}n a 具有性质p :①存在等差数列{}n a 具有性质p ;②不存在等比数列{}n a 具有性质p ;对于以上两个命题,下列判断正确的是()A .①真②真B .①真②假C .①假②真D .①假②假13.(2024·上海普陀·二模)设等比数列{}n a 的公比为(1,N)q n n ≥∈,则“212a ,4a ,32a 成等差数列”的一个充分非必要条件是.14.(2024·上海普陀·二模)设k ,m ,n 是正整数,n S 是数列{}n a 的前n 项和,12a =,11n n S a +=+,若()11ki i i m t S ==-∑,且{0,1}i t ∈,记12()k f m t t t =+++ ,则(2024)f =.15.(2024·上海徐汇·二模)已知数列{}n a 的前n 项和为n S ,若3122n n S a =-(n 是正整数),则5a =.16.(2024·上海杨浦·二模)各项为正的等比数列{}n a 满足:12a =,2312a a +=,则通项公式为n a =.17.(2024·上海静安·二模)已知等比数列的前n 项和为12nn S a ⎛⎫=+ ⎪⎝⎭,则a 的值为.18.(2024·上海金山·二模)设公比为2的等比数列{}n a 的前n 项和为n S ,若202420226S S -=,则2024a =.19.(2024·上海奉贤·二模)已知{}n a 是公差d =2的等差数列,其前5项和为15,{}n b 是公比q 为实数的等比数列,11b =,426b b -=.(1)求{}n a 和{}n b 的通项公式;(2)设()221,na n n cb n n =+≥∈N ,计算1ni i c =∑.三、题型三:数列极限及新定义问题20.(2024·上海虹口·二模)已知等比数列{}n a 是严格减数列,其前n 项和为12,n S a =,若123,2,3a a a 成等差数列,则lim n n S →∞=.21.(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是()A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题22.(2024·上海徐汇·二模)已知各项均不为0的数列{}n a 满足2211n n n n n a a a a a +++=+(n 是正整数),121a a ==,定义函数11()1(0)!nkn k y f x x x k ===+≥∑,e 是自然对数的底数.(1)求证:数列1n n a a +⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记函数()n y g x =,其中()1e ()x n n g x f x -=-.(i )证明:对任意0x ≥,3430()()()≤≤-g x f x f x ;(ii )数列{}n b 满足12n n nb a -=,设n T 为数列{}n b 的前n 项和.数列{}n T 的极限的严格定义为:若存在一个常数T ,使得对任意给定的正实数u (不论它多么小),总存在正整数m 满足:当n m ≥时,恒有n T T u -<成立,则称T 为数列{}n T 的极限.试根据以上定义求出数列{}n T 的极限T .23.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.24.(23-24高三下·上海浦东新·期中)已知函数()y f x =及其导函数()y f x '=的定义域均为D .设0x D ∈,曲线()y f x =在点()()00,x f x 处的切线交x 轴于点()1,0x .当1n ≥时,设曲线()y f x =在点()(),n n x f x 处的切线交x 轴于点()1,0n x +.依此类推,称得到的数列{}n x 为函数()y f x =关于0x 的“N 数列”.(1)若()ln f x x =,{}n x 是函数()y f x =关于01ex =的“N 数列”,求1x 的值;(2)若()24f x x =-,{}n x 是函数()y f x =关于03x =的“N 数列”,记32log 2n n n x a x +=-,证明:{}n a 是等比数列,并求出其公比;(3)若()2xf x a x =+,则对任意给定的非零实数a ,是否存在00x ≠,使得函数()y f x =关于0x 的“N 数列”{}n x 为周期数列?若存在,求出所有满足条件的0x ;若不存在,请说明理由.参考答案一、题型一:等差数列及其求和1.(23-24高三下·上海浦东新·期中)设()()101100,10Z m m m m m f x a x a x a x a a m m --=++++≠≥∈ ,,记()()1n n f x f x -'=(1,2,,1)n m =-L ,令有穷数列n b 为()n f x 零点的个数()1,2,,1n m =- ,则有以下两个结论:①存在()0f x ,使得n b 为常数列;②存在()0f x ,使得n b 为公差不为零的等差数列.那么()A .①正确,②错误B .①错误,②正确C .①②都正确D .①②都错误【答案】C【分析】对于①,列举()0mf x x =验证,对于②,列举()()()()012f x x x x m =--- 验证.【详解】当()0mf x x =时,()()110m f x f x mx '-==,此时11b =,()()()2211m f x f x m m x '-==-,此时21b =,⋯()()()()12122m m f x f x m m m x '--==--⨯⨯ ,此时11m b -=,故存在()0f x ,使n b 为常数列;①正确;设()()()()012f x x x x m =--- ,则()0f x 有m 个零点1,2,3,,m ,则()1f x 在()()()1,2,2,3,,1,m m - 的每个区间内各至少一个零点,故()1f x 至少有1m -个零点,因为是一个1m -次函数,故最多有1m -个零点,因此()1f x 有且仅有1m -个零点,同理,()2f x 有且仅有2m -个零点,L ,()k f x 有且仅有m k -个零点,故n b m n =-,所以{}n b 是公差为1-的等差数列,故②正确.故选:C.2.(2024·上海松江·二模)已知等差数列{}n a 的公差为2,前n 项和为n S ,若35a S =,则使得n n S a <成立的n 的最大值为.【答案】53.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.4.(2024·上海杨浦·二模)某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为.【答案】134【分析】由题设信息,第一层有m根,共有n层,利用等差数列前n项和公式列出关系式,再借助整除的思想分析计算得解.【详解】设第一层有m根,共有n层,则(1)20242nn nS nm-=+=,4(21)404821123n m n+-==⨯⨯,显然n和21m n+-中一个奇数一个偶数,则1121368nm n=⎧⎨+-=⎩或1621253nm n=⎧⎨+-=⎩或23176nm=⎧⎨=⎩,即11179nm=⎧⎨=⎩或16119nm=⎧⎨=⎩或2377nm=⎧⎨=⎩,显然每增加一层高度增加53厘米,当11179nm=⎧⎨=⎩时,10531096.6h=⨯+≈厘米150<厘米,此时最下层有189根;当16119nm=⎧⎨=⎩时,155310139.9h=⨯+≈厘米150<厘米,此时最下层有134根;当2377nm=⎧⎨=⎩时,225310200.52150h=⨯+≈>厘米,超过32米,所以堆放占用场地面积最小时,最下层圆钢根数为134根.故答案为:1345.(2024·上海黄浦·二模)已知数列{}n a是给定的等差数列,其前n项和为n S,若9100a a<,且当m m=与0n n=时,m nS S-{}()*,|30,m n x x x∈≤∈N取得最大值,则00m n-的值为.【答案】21【分析】不妨设数列{}n a的公差大于零,不妨取m n>,则1mm n ii nS S a=+-=∑,设3030910iik S S a==-=∑,再分9,30n m>=和9,30n m<=两种情况讨论,可得出n的值,再讨论30m<,即可求出0m,即可得解.【详解】不妨设数列{}n a的公差大于零,6.(23-24高三下·上海浦东新·期中)已知等差数列{}n a 满足1612a a +=,47a =,则3a =.【答案】5【分析】由等差数列的性质可得.【详解】因为{}n a 是等差数列,所以1634a a a a +=+,则有3127a =+,解得35a =.故答案为:5.7.(2024·上海崇明·二模)若等差数列{}n a 的首项11a =,前5项和525S =,则5a =.【答案】9【分析】根据题意,利用等差数列的求和公式,列出方程,即可求解.【详解】因为等差数列{}n a 的首项11a =,前5项和525S =,由等差数列的求和公式,可得15555()5(1)2522a a a S ⨯+⨯+===,解得59a =.故答案为:9.8.(2024·上海虹口·二模)已知等差数列{}n a 满足25a =,9672a a +=.(1)求{}n a 的通项公式;(2)设数列{}n b 前n 项和为n S ,且221n n n b a a +=-,若432m S >,求正整数m 的最小值.【答案】(1)21n a n =+(2)10【分析】(1)设等差数列{}n a 的公差为d ,依题意根据等差数列通项公式得到关于1a 、d 的方程组,解得即可求出通项公式;(2)由(1)可得22188n n n b a a n +=-=+,利用等差数列求和公式求出n S ,再解不等式即可.【详解】(1)设等差数列{}n a 的公差为d ,则1115872(5)a d a d a d +=⎧⎨++=+⎩,解得132a d =⎧⎨=⎩,故1(1)21n a a n d n =+-=+;(2)由(1)可得123n a n +=+,则22221(23)(21)88n n n b a a n n n +=-=+-+=+,所以18(2)n n b b n --=≥,则数列{}n b 是以116b =为首项,8为公差的等差数列,故()216884122n n n S n n++==+,因为432m S >,所以2412432m m +>,所以4(12)(9)0m m +->,所以9m >或12m <-,因为N*m ∈,所以9m >,所以m 的最小值是10.二、题型二:等比数列及其求和9.(2024·上海松江·二模)设n S 为数列{}n a 的前n 项和,有以下两个命题:①若{}n a 是公差不为零的等差数列且N k ∈,2k ≥,则12210k S S S -⋅= 是120k a a a ⋅= 的必要非充分条件;②若{}n a 是等比数列且N k ∈,2k ≥,则120k S S S ⋅= 的充要条件是10k k a a ++=.那么()A .①是真命题,②是假命题B .①是假命题,①是真命题C .①、②都是真命题D .①、②都是假命题分析得解.10.(2024·上海普陀·二模)设n S 是数列{}n a 的前n 项和(1,N)n n ≥∈,若数列{}n a 满足:对任意的2n ≥,存在大于1的整数m ,使得()()10m n m n S a S a +--<成立,则称数列{}n a 是“G 数列”.现给出如下两个结论:①存在等差数列{}n a 是“G 数列”;②任意等比数列{}n a 都不是“G 数列”.则()A .①成立②成立B .①成立②不成立C .①不成立②成立D .①不成立②不成立【答案】D【分析】由题意可得任意的n ≥2,存在大于1的整数m ,使得1n m n a S a +<<,对命题①,分公差0d >或0d <两种情况讨论可判断结论,对于②,举例如2n n a =,可判断结论.【详解】由“G 数列”的定义,对任意的n ≥2,存在大于1的整数m ,使得1()()0m n m n S a S a +--<,成立,则对任意的n ≥2,存在大于1的整数m ,使得1n m n a S a +<<,对于命题①不成立,理由如下:假设存在11n m n m a S a S ++<<<< ,当0d >时,总存在2k a d >,由于对任意正整数n ,有1n n a a d +-=,所以总存在正整数k ,使得1k S -与1S 2k k S d -->,所以不会存在112n k n k n a S a S a -++<<<<,当0d <时,总存在2k a d <,由于对任意正整数n ,有1n n a a d +-=,所以总存在正整数k ,使得1k S -与1S 2k k S d --<,所以不会存在112n k n k n a S a S a -++<<<<,对于命题②不成立,理由如下:举例说明:如2n n a =,有122n n S +=-,因为1n m n a S a +<<,所以112222n m n ++<-<,可以取m n =,就可以保证不等式成立,综上所述:①不成立,②不成立.故选:D.【点睛】考查新定义题型,考查转化思想与阅读理解能力,以及分类讨论思想的应用.11.(2024·上海青浦·二模)设n S 是首项为1a ,公比为q 的等比数列{}n a 的前n 项和,且202320252024S S S <<,则().A .10a >B .0q >C .1n S a ≤D .n S q<12.(2024·上海长宁·二模)设数列{}n a 的前n 项和为n S ,若存在非零常数c ,使得对任意正整数n ,都有n a c =+,则称数列{}n a 具有性质p :①存在等差数列{}n a 具有性质p ;②不存在等比数列{}n a 具有性质p ;对于以上两个命题,下列判断正确的是()A .①真②真B .①真②假C .①假②真D .①假②假【答案】B【分析】直接构造21n a n =-和()11n n a -=-,说明存在等差数列{}n a 具有性质p ,且存在等比数列{}n a 具有性质p ,从而得到①真②假.【详解】一方面,对21n a n =-,知{}n a 是等差数列.而()211212n S n n n =⋅+-=,令1c =就有22211n n S n n a c ==-+=+,所以{}n a 具有性质p ,这表明存在等差数列{}n a 具有性质p ;另一方面,对()11n n a -=-,知{}n a 是等比数列.当n 为奇数时,1n a =;n 为偶数时,1n a =-.故当n 为奇数时,1n S =;n 为偶数时,0n S =.故当n 为奇数时,22111n n S a ==+=+;n 为偶数时,20111n n S a ==-+=+.这表明21n n S a =+恒成立,再令1c =就有2n n S a c =+,所以{}n a 具有性质p ,这表明存在等比数列{}n a 具有性质p .综上,①正确,②错误,故B 正确.故选:B.【点睛】关键点点睛:构造21n a n =-和()11n n a -=-作为例子,直接判断命题的真假,是判断选项正确性的简单有效的方法.13.(2024·上海普陀·二模)设等比数列{}n a 的公比为(1,N)q n n ≥∈,则“212a ,4a ,32a 成等差数列”的一个充分非必要条件是.【答案】3q =(或2q =-,答案不唯一)【分析】根据已知条件,结合等差数列、等比数列的性质,即可求解.【详解】212a ,4a ,32a 成等差数列,则4232122a a a =+,即26q q =+,解得3q =或2q =-,故“212a ,4a ,32a 成等差数列”的一个充分非必要条件是3q =(或2)q =-.故答案为:3q =(或2q =-,答案不唯一)14.(2024·上海普陀·二模)设k ,m ,n 是正整数,n S 是数列{}n a 的前n 项和,12a =,11n n S a +=+,若()11ki i i m t S ==-∑,且{0,1}i t ∈,记12()k f m t t t =+++ ,则(2024)f =.【答案】7【分析】根据数列递推式求出{}n a 的通项,从而可得i S ,进而可得m ,根据12()k f m t t t =+++ ,即可求出(2024)f .15.(2024·上海徐汇·二模)已知数列{}n a 的前n 项和为n S ,若22n n S a =-(n 是正整数),则5a =.16.(2024·上海杨浦·二模)各项为正的等比数列{}n a 满足:12a =,2312a a +=,则通项公式为n a =.【答案】2n【分析】利用给定条件,求出等比数列{}n a 的公比,再写出通项公式.【详解】设正项等比数列{}n a 的公比为,0q q >,由12a =,2312a a +=,得21112a q a q +=,则260q q +-=,解得2q =,所以112n nn a a q -==.故答案为:2n17.(2024·上海静安·二模)已知等比数列的前n 项和为12nn S a ⎛⎫=+ ⎪⎝⎭,则a 的值为.【答案】1-【分析】根据题意,分别求得112a a =+,214a =-,318a =-,结合2213a a a =,列出方程,即可求解.【详解】由等比数列的前n 项和为12nn S a ⎛⎫=+ ⎪⎝⎭,可得1112a S a ==+,22111()2414a S a S a ==+-=--+,33211()4818a S a S a ==+-=--+,所以2111()()()428a -=+⨯-,解得1a =-,经检验符合题意.故答案为:1-.18.(2024·上海金山·二模)设公比为2的等比数列{}n a 的前n 项和为n S ,若202420226S S -=,则2024a =.【答案】4【分析】根据等比数列的通项公式及前n 项和的概念计算即可得解.【详解】因为20242022202420232023(1)6S S a a a q -=+=⋅+=,所以20232a =,故20242023224a a q =⋅=⨯=.故答案为:419.(2024·上海奉贤·二模)已知{}n a 是公差d =2的等差数列,其前5项和为15,{}n b 是公比q 为实数的等比数列,11b =,426b b -=.(1)求{}n a 和{}n b 的通项公式;(2)设()221,na n n cb n n =+≥∈N ,计算ni c ∑.【答案】(1)23n a n =-,12n n b -=;(2)()5416n-.三、题型三:数列极限及新定义问题20.(2024·上海虹口·二模)已知等比数列{}na 是严格减数列,其前n 项和为12,n S a =,若123,2,3a a a 成等差数列,则lim n n S →∞=.21.(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是()A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题【答案】A【分析】根据题意,结合“T 数列”的定义,举出实例说明①②,即可得出答案.【详解】对于命题①,对于数列{}n a ,令21,12,2n n n a n -=⎧=⎨≥⎩,则11,12,2n n n S n -=⎧=⎨≥⎩,数列{}n S 为公比不为1的等比数列,当1n =时,11S =是数列{}n a 中的项,当2n ≥时,12n n S -=是数列{}n a 中的项,所以对任意的*N n ∈,n S 都是数列{}n a 中的项,故命题①正确;对于命题②,等差数列{}n a ,令1a d =-,则()()112n a a n d n d =+-=-,则()()()123222n n n d n d n a a n n S d ⎡⎤-+-+-⎣⎦===,因为21n -≥-且2Z n -∈,()2313912228n n n -⎛⎫=--≥- ⎪⎝⎭,且()3N*,Z 2n n n -∈∈,所以对任意的*N n ∈,n S 都是数列{}n a 中的项,所以对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”,故命题②正确;故选:A.22.(2024·上海徐汇·二模)已知各项均不为0的数列{}n a 满足2211n n n n n a a a a a +++=+(n 是正整数),121a a ==,定义函数11()1(0)!nkn k y f x x x k ===+≥∑,e 是自然对数的底数.(1)求证:数列1n n a a +⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记函数()n y g x =,其中()1e ()x n n g x f x -=-.(i )证明:对任意0x ≥,3430()()()≤≤-g x f x f x ;(ii )数列{}n b 满足12n n nb a -=,设n T 为数列{}n b 的前n 项和.数列{}n T 的极限的严格定义为:若存在一个常数T ,使得对任意给定的正实数u (不论它多么小),总存在正整数m 满足:当n m ≥时,恒有n T T u -<成立,则称T 为数列{}n T 的极限.试根据以上定义求出数列{}n T 的极限T .再证:343()()()≤-g x f x f x .又434()()4!-=f x f x x ,记334()()4!=-g x h x x ,则()()3333!''=-x h x g x ()3e 13!x x -=-,由0,e 10x x -≥-≤,故()30h x '≤且仅当0x =时等号成立,于是()3h x 在[)0,+∞上是严格减函数,故()()3300h x h ≤=,于是()4304!≤≤x g x ,证毕.(ii )由题意知,()2112221(2)1!2!1!--=++++=- n n n f T n ,下面研究()n y f x =.将(i )推广至一般情形.()111111e !1!n n k k k k xn g x x x k k -=-=⎡⎤⎛⎫'=-⎥⎛+⎢ ⎪⎝⎭⎭⎣ ⎝⎦⎫+⎪∑∑e !n x x n -=,由()*0,N ,e 0,!nxn x x n g x n -'≥∈=≥当且仅当0x =时等号成立,于是()n g x 在[)0,+∞上是严格增函数,故()()00n n g x g ≥=成立.①再证:1()()()n n n g x f x f x +≤-.()11()(1)!n n n f x f x x n ++-=+,记()1!()()1n n n h x g x x n ++=-,则()()!n n n x h x g x n ''=-()1!nx xe n -=-,由*0,N ,e 10x x n -≥∈-≤,故()0nh x '≤当且仅当0x =时等号成立,于是()n h x 在[)0,+∞上是严格减函数,故()()00n n h x h ≤=,于是()()101!n n x g x n +≤≤+,所以,()1101!11e (1)!n nxk k x x k n -+=≤-+≤+∑,即对任意0x ≥,10()()()n n n g x f x f x +≤≤-.于是对2n ≥,110()()()≤≤---n n n g x f x f x ,整理得1(0e e !)-≤-≤n n xxf x x n ,令2x =,得12(2)20e e !-≤-≤n x n n f ,即22e 20e !n n T n ⋅≤-≤,故22e 2e !n n T n ⋅-≤.(方法一)当6n ≥时,(1)(2)5416n n --≥⨯>故44222[1(2)(1)][23(3)](1)!n n n n n n -=⨯<⋅-⋅-⋅⨯⨯⨯-=-…即2(1)!n n <-,23.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.【答案】(1){}n a 是周期为2m 的周期数列,理由见解析(2)答案见解析(3)证明见解析【分析】(1)根据题设定义,利用sin y x =的周期,即可得出结果;(2)分()1πZ a k k =∈与()1πa k k Z ≠∈两种情况讨论,当()1πZ a k k =∈,易得到{}n a 是周期为1的周期数列,当()1πZ a k k ≠∈时,构造()sin f x x x =+,则1()n n a f a +=,利用导数与函数单调性间的关系,可得出{}n a是严格增(或减)数列,从而可得出结果;(3)根据条件,利用充要条件的证明方法,即可证明结果.【详解】(1)因为2ππππππsin (2)sin 2πsin 333n m n n n a n m a mm m +⎛⎫⎛⎫⎛⎫=++=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以{}n a 是周期为2m 的周期数列.(2)①当12a a =时,1sin 0a =,()1πZ a k k =∈,所以当()1πZ a k k =∈时,{}n a 是周期为1的周期数列,②当()1πZ a k k ≠∈时,记()sin f x x x =+,则1()n n a f a +=,()1cos 0f x x '=+≥,当且仅当()()1121πZ x k k =+∈时等号成立,即()1cos 0f x x =+>',所以()f x 在R 上严格增,若12a a <,则12()()f a f a <,即23a a <,进而可得1234a a a a <<<< ,即{}n a 是严格增数列,不是周期数列;同理,若12a a >,可得{}n a 是严格减数列,不是周期数列.综上,当1π()a k k =∈Z 时,{}n a 是周期为1的周期数列;当1π()a k k ≠∈Z 时,{}n a 不是周期数列.(3)必要性:若存在1a ,使得{}n a 是周期数列,设{}n a 的周期为0T ,则00011sin sin n T n T n T n n n b a a a a b +++++=-=-=,所以{}n b 是周期为0T 的周期数列,充分性:若{}n b 是周期数列,设它的周期为T ,记1a x =,则10()a f x x==211()sin a f x b x ==+,是关于x 的连续函数;3221()sin ()a f x b f x ==+,是关于x 的连续函数;…1()T T a f x -=,是关于x 的连续函数;11sin ()T T T a b f x +-=+,令1()sin ()T T g x x b f x -=--,则()g x 是连续函数,且1(2)2sin ()0T T g b f x -+=->,1(2)2sin ()0T T g b f x --=--<,所以()g x 存在零点c ,于是1sin ()0T T c b f c ---=,取1a c =,则111sin ()T T T a b f c c a +-=+==,从而211112sin sin T T T a b a b a a +++=+=+=,322223sin sin T T T a b a b a a +++=+=+=,……一般地,n T n a a +=对任何正整数n 都成立,即{}n a 是周期为T 的周期数列.(说明:关于函数连续性的说明不作要求)【点睛】方法点晴:对于数列的新定义问题,解决问题的关键在于准确理解定义,并结合定义进行判断或转化条件.24.(23-24高三下·上海浦东新·期中)已知函数()y f x =及其导函数()y f x '=的定义域均为D .设0x D ∈,曲线()y f x =在点()()00,x f x 处的切线交x 轴于点()1,0x .当1n ≥时,设曲线()y f x =在点()(),n n x f x 处的切线交x 轴于点()1,0n x +.依此类推,称得到的数列{}n x 为函数()y f x =关于0x 的“N 数列”.(1)若()ln f x x =,{}n x 是函数()y f x =关于01ex =的“N 数列”,求1x 的值;(2)若()24f x x =-,{}n x 是函数()y f x =关于03x =的“N 数列”,记32log 2n n n x a x +=-,证明:{}n a 是等比数列,并求出其公比;(3)若()2x f x a x=+,则对任意给定的非零实数a ,是否存在00x ≠,使得函数()y f x =关于0x 的“N 数列”{}n x 为周期数列?若存在,求出所有满足条件的0x ;若不存在,请说明理由.求出函数的单调区间,进而可得出结论.【详解】(1)由()ln f x x =,得()1f x x'=,因为01ex =,则()()001,e f x f x -'==,所以曲线()y f x =在点()()00,x f x 的切线方程为()11e e y x ⎛⎫--=- ⎪⎝⎭,令0y =,则2ex =,所以12ex =;(2)由()24f x x =-,得()2f x x '=,于是曲线()y f x =在点()(),n n x f x 处的切线方程为()()242n n n y x x x x --=-,令0y =,则2142n n nx x x x ++==,由题意得到2113332142222log log 2log 242222n n n n n n n n n nx x x x a a x x x x +++++++====+---,所以12n n a a +=,又因为0113333102232log 2log 2log 2log 52232x x a x x +++====---,所以数列{}n a 是以32log 5为首项,2为公比的等比数列;(3)由()2x f x a x =+,得()()222a x f x a x -'=+,所以曲线()y f x =在点()(),n n x f x 处的切线方程为()()2222n n n n n x a x y x x a x a x --=-++,令0y =,则3122n n n x x x x a+==-,设特征函数为()322x g x x a =-,则()()()()224222222326x x a x ax g x x a x a -'-==--,情况1:当a<0时,则()(),,x a a ∞∞∈---⋃-+,此时()()()2222230x x a g x x a --'=≥,所以函数()g x 在定义域内为增函数,情况2:当0a >时,x 令()0g x '>,得3x >令()0g x '<,得3a -所以不可能为0,所以数列不可能为周期数列;若k 为奇数,()()121ki j j k k k i j x x x x x x +--==+++++∑ 中,每一个括号内的式子都与k x 是同号的,所以不可能为0,所以数列不可能为周期数列;当()(),,,,33n a a x a a a a ∞∞⎛⎫⎛⎫∈--⋃--⋃⋃+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭时,1n n x x +>,可得得到起初1,n n x x +是正负交替,但是以后会一直为正或负,所以不能成周期数列,故当0a >时,有13a x =±满足条件,使得数列成周期为2的周期数列,此时03a x =±,综上所述,存在03a x =±满足题意.【点睛】方法点睛:等比数列的两种判定方法:(1)定义法:1n na q a +=(常数)()N n *∈⇔数列{}n a 为等比数列;(2)等差中项法:()212N n n n a a a n *++=⋅∈⇔数列{}n a 为等比数列.。
2023高考上海数学理科试卷含详细解答
2023年全国普通高等学校招生统一考试(上海) 数学(理工农医类) 全解全析一 填空(4’×11)1.不等式|1|1x -<地解集是 .【解析】(0,2)【解析】由11102x x -<-<⇒<<.2.若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a = .【解析】2【解析】由{2}, 22A B A B a =⇒⇒= 只有一个公共元素.3.若复数z 满足z =i (2-z)(i 是虚数单位),则z = .【解析】1i+【解析】由2(2)11iz i z z i i=-⇒==++.4.若函数f (x )地反函数为f -1(x )=x 2(x >0),则f (4)= .【解析】2【解析】令12(4)()44(0)2f t ft t t t -=⇒=⇒=>⇒=.5.若向量→ a 、→ b 满足|→ a |=1,|→ b |=2,且→ a 与→ b 地夹角为π3,则|→ a +→b |= .【解析】222||()()2||||2||||cos 7||3a b a b a b a a b b a b a b a b a b π+=++=++=++=⇒+ 6.函数f (x )=3sin x +sin(π2+x )地最大值是 .【解析】2【解析】由max ()cos 2sin()()26f x x x x f x π=+=+⇒=.7.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形地概率是 (结果用分数表示).【解析】34【解析】已知A C E F B C D 、、、共线;、、共线;六个无共线地点生成三角形总数为:36C;可构成三角形地个数为:33364315C C C --=,所以所求概率为:3336433634C C C C --=;8.设函数f (x )是定义在R 上地奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0地x 地取值范围是 .【解析】(1,0)(1,)-+∞ 【解析】 0 ()0 1 ()00 1 x f x x f x x >>⇔><⇔<<当时,;;由f (x )为奇函数得: 0 ()010 ()0 1 x f x x f x x <>⇔-<<<⇔<-⇒当时,;结论;9.已知总体地各个体地值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体地中位数为10.5,若要使该总体地方差最小,则a 、b 地取值分别是 .【解析】10.5,10.5a b ==【解析】根据总体方差地定义知,只需且必须10.5,10.5a b ==时,总体方差最小;10.某海域内有一孤岛,岛四周地海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a ,短轴长为2b 地椭圆,已知岛上甲、乙导航灯地海拔高度分别为h 1、h 2,且两个导航灯在海平面上地投影恰好落在椭圆地两个焦点上,现有船只经过该海域(船只地大小忽略不计),在船上测得甲、乙导航灯地仰角分别为θ1、θ2,那么船只已进入该浅水区地判别条件是 .【解析】1122cot cot 2h h a θθ⋅+⋅≤【解析】依题意, 12||||2MF MF a+≤1122cot cot 2h h a θθ⇒⋅+⋅≤;11.方程x 2+2x -1=0地解可视为函数y =x +2地图像与函数y =1x 地图像交点地横坐标,若x 4+ax -4=0地各个实根x 1,x 2,…,x k(k ≤4)所对应地点(x i,4x i )(i =1,2,…,k )均在直线y =x 地同侧,则实数a 地取值范围是 .【解析】(,6)(6,)-∞-+∞ 【解析】方程地根显然0x ≠,原方程等价于34x a x+=,原方程地实根是曲线3y x a =+与曲线4y x=地交点地横坐标;而曲线3y x a =+是由曲线3y x =向上或向下平移||a 个单位而得到地。
上海市(新版)2024高考数学部编版真题(综合卷)完整试卷
上海市(新版)2024高考数学部编版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,(,为实数),若存在实数,使得对任意恒成立,则实数的取值范围是()A.B.C.D.第(2)题在盲拼字卡游戏中,若拼字人不能感知和触摸出卡片上的汉字,则用标有汉字“一、一、心、意”的卡片能正确拼出成语“一心一意”的概率为()A.B.C.D.第(3)题已知实数x,y满足,若直线经过该可行域,则实数k的最小值为()A.-5B.-C.-D.-第(4)题已知关于的方程有4个不同的实数根,分别记为,则的取值范围为()A.B.C.D.第(5)题已知复数z满足,则复数z在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限第(6)题为了得到函数的图象,只需将正弦函数图象上各点()A.横坐标向右平移个单位长度,纵坐标不变B.横坐标向左平移个单位长度,纵坐标不变C .横坐标向左平移个单位长度,纵坐标不变D .横坐标向右平移个单位长度,纵坐标不变第(7)题已知集合,,若,则的取值范围是()A.B.C.D.第(8)题如图,三棱锥中,平面,,为中点,下列说法中(1);(2)记二面角的平面角分别为;(3)记的面积分别为;(4),正确说法的个数为A.0B.1C.2D.3二、多选题:本题共3小题,每小题6分,共18分 (共3题)已知三棱锥的各顶点都在球上,点分别是的中点,平面,,,则下列结论正确的是()A.平面B.球的体积是C.直线与平面所成角的正弦值是D.平面被球所截的截面面积是第(2)题如图,在等腰梯形ABCD中,,E是BC的中点,连接AE,BD相交于点F,连接CF,则下列说法正确的是()A.B.C.D.第(3)题在一个圆锥中,D为圆锥的顶点,O为圆锥底面圆的圆心,P为线段DO的中点,AE为底面圆的直径,是底面圆的内接正三角形,,则下列说法正确的是()A.BE∥平面PACB.PA⊥平面PBCC.在圆锥侧面上,点A到DB中点的最短距离为D.记直线DO与过点P的平面α所成的角为θ,当时,平面α与圆锥侧面的交线为椭圆三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题下面茎叶图记录了甲、乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为,乙班数据的中位数为,那么的位置应填__________,的位置应填__________.第(2)题在棱长为1 的正方体中,以A为球心半径为的球面与正方体表面的交线长为___________.第(3)题在直三棱柱中,若,则异面直线与所成的角等于_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知向量,记函数.(1)求的对称轴和单调递增区间;(2)在锐角中,角A,B,C的对边为a,b,c,若,求的取值范围.第(2)题已知函数,且.(1)求的值;(2)判断函数在上是增函数还是减函数,并证明.下表为年至年某百货零售企业的线下销售额(单位:万元),其中年份代码年份.年份代码线下销售额(1)已知与具有线性相关关系,求关于的线性回归方程,并预测年该百货零售企业的线下销售额;(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了位男顾客、位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有人、女顾客有人,能否在犯错误的概率不超过的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?参考公式及数据:.第(4)题设,函数.(1)求不等式的解集;(2)若曲线与直线所围成图形的面积为,求.第(5)题已知向量,,且,其中(1)求的值;(2)若,,求的值.。
理数高考试题答案及解析-上海
理数高考试题答案及解析-上海亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!那今天就来小试牛刀吧!注意哦:在答卷的过程中一要认真仔细哦!不交头接耳,不东张西望!不紧张!养成良好的答题习惯也要取得好成绩的关键!祝取得好成绩!一次比一次有进步!上海高考数学试题(理科)答案与解析一.填空题 1.计算:3-i=1+i ( i 为虚数单位). 【答案】 1-2i 【解析】3-i (3-i)(1-i) 2-4i= = =1-2i1+i (1+i)(1-i) 2. 【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可. 2.若集合 } 0 1 2 | { + = x x A , } 2 | 1 || { = x x B ,则 = B A . 【答案】3 ,21 【解析】根据集合 A 2 1 0 x+ ,解得12x ,由 1 2, , 1 3 x x 得到,所以 = 3 ,21B A . 【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决. 3.函数 1 sincos 2) (= xxx f 的值域是 . 【答案】 23,25 【解析】根据题目 2 2 sin212 cos sin ) ( = = x x x x f ,因为1 2 sin 1 x ,所以23) (25 x f . 【点评】本题主要考查1/ 18行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质. 4.若 ) 1 , 2 ( = n 是直线l 的一个法向量,则l 的倾斜角的大小为(结果用反三角函数值表示). 【答案】 2 arctan 【解析】设直线的倾斜角为,则 2 arctan , 2 tan = = . 【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小. 5.在6)2(xx 的二项展开式中,常数项等于 . 【答案】160 【解析】根据所给二项式的构成,构成的常数项只有一项,就是 3 3 34 62C ( ) 160 T xx= = . 【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题. 6.有一列正方体,棱长组成以 1 为首项、21为公比的等比数列,体积分别记为,,,,nV V V2 1,则= + + + ) ( lim2 1 nnV V V . 【答案】78 【解析】由正方体的棱长组成以 1 为首项,21为公比的等比数列,可知它们的体积则组成了一个以 1 为首项,81为公比的等比数列,因此,788111) ( lim21== + + + nnV V V . 【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合. 7.已知函数| |) (a xe x f= ( a 为常数).若 ) (x f 在区间 ) ,1 [ + 上是增函数,则 a 的取值范围是 . 【答案】 ( ] 1 , 【解析】根据函数,( ),x ax ax ae x af x ee x a += =看出当 a x 时函数增函数,而已知函数 ) (x f 在区间 [ ) + , 1上为增函数,所以 a 的取值范围为:( ] 1 , . 【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中. 8.若一个圆锥的侧面展开图是面积为 2 的半圆面,则该圆锥的体积为 . 【答案】33 【解析】根据该圆锥的底面圆的半径为 r ,母线长为 l ,根据条件得到 2212=l ,解得母线长 2 = l ,1 , 2 2 = = = r l r 所以该圆锥的体积为:331 231S312 2= = = h V 圆锥 . 【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题. 9.已知2) ( x x f y + = 是奇函数,且 1 ) 1 ( = f ,若 2 ) ( ) ( + = x f x g ,则 = ) 1 ( g . 【答案】 1 】【解析】因为函数2) ( x x f y + = 为奇函数,所以 , 3 ) 1 ( , 1 ) 1 ( , 2 ) 1 ( ) 1 ( = = + =g f f g 所以,又 1 2 3 2 ) 1 ( ) 1 ( , 3 ) 1 ( = + = + = = f g f . ( 1) (1). f f = 【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数 ) ( x f y = 为奇函数,所以有) ( ) ( x f x f = 这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.3/ 1810.如图,在极坐标系中,过点 ) 0 , 2 ( M 的直线 l 与极轴的夹角 6 = ,若将 l 的极坐标方程写成 ) ( f = 的形式,则 = ) ( f . 【答案】)6sin(1 【解析】根据该直线过点 ) 0 , 2 ( M ,可以直接写出代数形式的方程为:) 2 (21 = x y ,将此化成极坐标系下的参数方程即可,化简得)6sin(1) (= f . 【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中. 11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示). 【答案】32 【解析】一共有 27 种取法,其中有且只有两个人选择相同的项目的取法共有 18 种,所以根据古典概型得到此种情况下的概率为32. 【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题. 12.在平行四边形 ABCD 中,3= A ,边 AB 、 AD 的长分别为 2、1,若 M 、 N 分别是边 BC 、CD 上的点,且满足| || || || |CDCNBCBM= ,则 AN AM 的取值范围是 . 【答案】 [ ] 5 , 2 【解析】以向量 AB 所在直线为 x 轴,以向量 AD 所在直线为 y 轴建立平面直角坐标系,如图所示,因为1 , 2 = = AD AB ,所以 5 1(0,0), (2,0), ( ,1) ( ,1).2 2A B C D 设1 5 1 5 5 1 5 1 5 1( ,1)( ), , - , - , (2 ,( )sin ).2 2 2 2 4 2 8 4 4 2 3N x x BM CN CN x BM x M x x = = = + 则根据题意,有 )83 2 3 5,4 821( ), 1 , (x xAM x AN = = . 所以83 2 3 5)4 821(x xx AN AM+ = 2521x ,所以 2 5. AM AN 64224610 5 5 10ADCBMN 【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中. 13.已知函数 ) ( x f y = 的图象是折线段 ABC ,其中 ) 0 , 0 ( A 、 ) 5 ,21( B 、 ) 0 , 1 ( C ,函数 ) ( x xf y = ( 1 0 x )的图象与 x 轴围成的图形的面积为 . 【答案】45 【解析】根据题意得到,110 ,02( )110 10, 12x xf xx x = + 从而得到22110 ,02( )110 10 , 12x xy xf xx x x = = +所以围成的面积为45) 10 10 ( 101212210= + + =dx x x xdx S ,所以围成的图形的面积为45 . 【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 14.如图, AD 与 BC 是四面体 ABCD 中互相垂直的棱, 2 = BC ,若 c AD 2 = ,且 a CD AC BD AB 2 = + = + ,其中 a 、 c 为常数,则四面体 ABCD 的体积的最大值是 . 【答案】 1322 2 c a c 【解析】据题 a CD AC BD AB 2 = + = + ,也就是说,线段 CD AC BD AB + + 与线段的长度是定值,因为棱AD 与棱 BC 互相垂直,当 ABD BC 平面时,此时有最大值,此时5/ 18最大值为:1322 2 c a c . 【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题. 二、选择题(20 分) 15.若 i 2 1+ 是关于 x 的实系数方程 02= + + c bx x 的一个复数根,则() A. 3 , 2 = = c b B. 3 , 2 = = c b C. 1 , 2 = = c b D. 1 , 2= = c b 【答案】 B 【解析】根据实系数方程的根的特点 1 2 i 也是该方程的另一个根,所以 b i i = = + + 2 2 1 2 1 ,即 2 =b ,c i i = = + 3 ) 2 1 )( 2 1 ( ,故答案选择 B. 【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意. 16.在 ABC 中,若 C B A2 2 2sin sin sin + ,则 ABC的形状是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定【答案】C 【解析】由正弦定理,得 , sin2, sin2, sin2CRcBRbARa= = = 代入得到2 2 2a b c + ,由余弦定理的推理得2 2 2cos 02a b cCab+ = ,所以 C 为钝角,所以该三角形为钝角三角形.故选择 A. 【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题. 17.设44 3 2 110 10 xx x x ,5510 = x ,随机变量1 取值5 4 3 2 1x x x x x 、、、、的概率均为 2 . 0 ,随机变量2 取值2 2 2 2 21 5 5 4 4 3 3 2 21x x x x x x x x x x + + + + +、、、、的概率也均为 2 . 0 ,若记2 1 D D 、分别为2 1 、的方差,则() A.2 1 D D B.2 1 D D = C.2 1 D D D.1 D 与2 D 的大小关系与4 3 2 1x x x x 、、、的取值有关【答案】 A 【解析】由随机变量2 1 , 的取值情况,它们的平均数分别为:1 1234 51( ),5x x x x x x = + + + + ,2 3 3 4 45 5 1 122 11,5 2 2 2 2 2x x x x x x x x x xx x+ + + + + = + + ++ =且随机变量 2 1 , 的概率都为 2 . 0 ,所以有 1 D >2 D . 故选择 A. 【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25sin1 nna n = ,n na a a S + + + = 2 1,在100 2 1, , , S S S 中,正数的个数是() A.25 B.50 C.75 D.100 【答案】C 【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项. 【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的 14 项的和为 0,这就是规律,考查综合分析问题和解决问题的能力. 三、解答题(74分):19.(6+6=12 分)如图,在四棱锥 ABCD P 中,底面 ABCD 是7/ 18矩形, PA 底面 ABCD , E 是 PC 的中点,已知 2 = AB , 2 2 = AD , 2 = PA ,求:(1)三角形 PCD 的面积;(2)异面直线 BC 与 AE 所成的角的大小. 【答案及解析】所以三角形 PCD 的面积为 3 2 3 2 221= ................6 分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修 2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题. 20.(6+8=14 分)已知函数 ) 1 lg( ) ( + = x x f .(1)若 1 ) ( ) 2 1 ( 0 x f x f ,求 x 的取值范围;(2)若 ) ( x g 是以 2 为周期的偶函数,且当 1 0 x 时,有 ) ( ) ( x f x g = ,求函数 ) ( x g y = ( ] 2 , 1 [ x )的反函数. 【答案及解析】,3132 x 【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题. 21.(6+8=14 分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 y 轴正方向建立平面直角坐标系(以 1 海里为单位长度),则救援船恰好在失事船正南方向 12 海里 A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y = ;②定位后救援船即刻沿直线匀速前往救援;③救援船出发 t 小时后,失事船所在位置的横坐标为t 7 .(1)当 5 . 0 = t 时,写出失事船所在位置 P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16 分)在平面直角坐标系 xOy 中,已知双曲线1C :1 22 2= y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及 x 轴围成的三角形的面积;(2)设斜率为 1 的直线 l 交1C 于 P 、 Q 两点,若 l 与圆 12 2= + y x 相切,求证:OQ OP ;(3)设椭圆2C :1 42 2= + y x ,若 M 、 N 分别是1C 、2C 上的动点,且 ON OM ,求证:O 到直线 MN 的距离是定值. 【答案及解析】过点 A与渐近线 x y 2 = 平行的直线方程为22 , 2 1.2y x y x= + = +即 1 = ON ,22= OM ,则 O 到直线 MN 的距离为33. 设 O 到直线 MN 的距离为 d . 【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为 2 ,它的渐近线为 x y = ,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题. 23.(4+6+8=18 分)对于数集 } 1 {2 1 nx x x X ,,,, = ,其中nx x x 2 10 , 2 n ,定义向量集} , ), , ( |9/ 18{ X t X s t s a a Y = = ,若对任意 Y a 1,存在 Y a 2,使得02 1= a a ,则称 X 具有性质 P .例如 } 2 , 1 , 1 { 具有性质P .(1)若 2 x ,且 } , 2 , 1 , 1 { x 具有性质 P ,求 x 的值;(2)若 X 具有性质 P ,求证:X 1 ,且当 1 nx 时, 11= x ;(3)若 X 具有性质 P ,且 11= x 、 q x =2( q 为常数),求有穷数列nx x x ,,, 2 1的通项公式. 【答案及解析】必有形式 ) , 1 ( b 显然有2a 满足 02 1= a a 【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义 X 具有性质 P 这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!怎样调整好考试心态心态就是一个人的心情。
上海高考中的数列问题
上海高考中数列解答题分析数列问题上海数学高考中常常作为押轴题之一出现。
数列题的困难主要体现在:1数列呈现的背景多样,可能是纯粹的数列,也可能从函数,解析几何,向量以及生活实际中来,提炼出核心的数列是关键。
2问题及方法多样化。
除了基本的求和、求通项方法较多外,问题还常与解不等式,求最大项,对参数讨论等,都有较高的难度。
现在还经常作为研究性学习、探究能力、创新能力的考察载体。
(2010—23春)已知首项为1x 的数列{}n x 满足11nn n ax x x +=+(a 为常数) (1) 若对任意的11x ≠-,有2n n x x +=对任意的*n N ∈都成立,求a 的值; (2) 当1a =时,若10x >,数列{}n x 是递增数列还是递减数列?请说明理由;(3) 当a 确定后,数列{}n x 由其首项1x 确定.当2a =时,通过对数列{}n x 的探究,写出“{}n x 是有穷数列”的一个真命题(不必证明)说明:对于第(3)题,将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分.(2009-23秋)已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列。
(1)若31n a n =+,是否存在*,m k N ∈,有1m m k a a a ++=?说明理由;(2)找出所有数列{}n a 和{}n b ,使对一切*1,n n na n Nb a +∈=,并说明理由; (3)若115,4,3a d b q ====,试确定所有的p ,使数列{}n a 中存在某个连续p 项的和是数列{}n b 中的一项,请证明。
(2009—17春)已知数列{}n a 的前n 项和为n S ,11a =且1323n n a S ++=(n 为正整数) (1)求数列{}n a 的通项公式;(2)记12n S a a a =++++ ,若对任意正整数n ,n kS S ≤恒成立,求实数k 的最大值。
上海市(新版)2024高考数学统编版考试(提分卷)完整试卷
上海市(新版)2024高考数学统编版考试(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题设集合,则=A.B.C.D.第(2)题已知是数列的前项和,,,不等式对任意的恒成立,则实数的取值范围为()A.B.C.D.第(3)题在下列函数中,值域为的偶函数是()A.B.C.D.第(4)题已知,,,则、、的大小关系为()A.B.C.D.第(5)题为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B .向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度第(6)题已知等差数列的前项和为,若,则()A.4B.C.D.6第(7)题已知两个全等的矩形与所在的平面相互垂直,,,点为线段(包括端点)上的动点,则三棱锥的外接球的半径可以为()A.B.C.D.第(8)题已知向量,,若,则()A.B.1C.D.2二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点,椭圆的短轴与半圆的直径重合.若直线与半圆交于点A,与半椭圆交于点,则下列结论正确的是()A.椭圆的离心率是B.线段长度的取值范围是C.面积的最大值是D.的周长存在最大值第(2)题已知定义在上的函数满足:对,且,则以下结论正确的为()A.B.C.D.第(3)题在棱长为1的正方体中,分别为线段上的动点(均不与点重合),则下列说法正确的是()A.存在使得平面B.存在使得C.当平面时,三棱锥与体积之和最大值为D.记与平面所成的角分别为,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,,,则的最小值为________.第(2)题某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为,乙、丙科目合格的概率均为,且3个科目是否合格相互独立.设小张3科中合格的科目数为X,则___________;___________.第(3)题已知椭圆C:的右顶点为A,经过原点的直线l交椭圆C于P,Q两点,且点P在以OA为直径的圆上,则C的离心率为_____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)求的单调区间;(2)若对任意恒成立,求实数的取值范围.第(2)题已知双曲线的左、右顶点分别为A,B,过点的直线l交双曲线于P,Q两点(不与A,B重合),直线,分别与y轴交于M,N两点.(1)记直线,的斜率分别为,,求;(2)记,的面积分别为,,当时,求直线l的方程.第(3)题已知函数f(x)=2e x(x+1)-x sin x-kx-2,k∈R.(1)若k=0,求曲线y=f(x)在x=0处切线的方程;(2)讨论函数f(x)在[0,+∞)上零点的个数.第(4)题已知数列{a n}是等比数列,S n为数列{a n}的前n项和,a3=3,S3=9.(1)求数列{a n}的通项公式;(2)设,{b n}为递增数列,若,求证:c1+c2+c3+…+c n<1.第(5)题已知平行六面体中,底面和侧面都是边长为2的菱形,平面平面,.(1)求证:四边形是正方形;(2)若,求二面角的余弦值.。
上海市闵行区高三数学复习专题——数列部分1
数列1. 观察法例1. 写出下列数列的一个通项公式,使它的前几项分别是下列各数:(1)9910,638,356,154,32,…; (2)9933,6317,359,31,1---,…;(3)0,71,0,51,0,31,0,1--,…;(4)7,77,777,7777,…;(5)1,3,6,10,15,…; (6)a ,b ,a ,b ,…。
2. 累差法例2. 已知数列{}n a 的前几项依次是:6,9,14,21,30,…,求其通项公式。
3. 待定系数法例3. 已知{a n }为等差数列,23a ,3a 62==,求a n 。
4. 公式法例4. 如果数列{}n a 的前n 项和为3a 23S n n -=,求这个数列的通项公式n a 。
5. 叠代法 例5. 已知1a ,a 1n na 1n 1n =⋅+=+,求数列{}n a 的通项公式n a 。
解递推关系式常见方法1. 公式法:利用熟知的公式求通项公式的方法称为公式法。
常用的公式有)2n (S S a 1n n n ≥-=-,等差数列和等比数列的通项公式。
2. 归纳法:由数列前几项用不完全归纳法猜测出数列的通项公式,再用数学归纳法证明其正确性。
这种方法叫做归纳法。
3. 累加法:利用恒等式)a a ()a a (a a 1n n 121n --+⋯+-+=求通项公式的方法称为累加法。
累加法是求型如)n (f a a n 1n +=+的递推数列通项公式的基本方法(其中数列{f(n)}可求前n 项和)。
4. 累乘法:利用恒等式)0a (a aa a a a a a n 1n n 23121n ≠⋯⋅⋅=-求通项公式的方法称为累乘法。
累乘法是求型如n 1n a )n (g a =+的递推数列通项公式的基本方法(数列g{n}可求前n 项积)。
例1. 设{}n a 是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与1的等差中项等于S n 与1的等比中项,求数列{}n a 的通项公式。
2024年上海市15区数学高考一模试题汇编 专题5 数列(四大类型题)含详解
专题05数列(四大类型题)15区新题速递学校:___________姓名:___________班级:___________考号:___________一、等差数列11.(2023·上海崇明·统考一模)已知()sin (R,0)f x mx x m m =+∈≠.(1)若函数()y f x =是实数集R 上的严格增函数,求实数m 的取值范围;(2)已知数列{}n a 是等差数列(公差0d ≠),()n n b f a =.是否存在数列{}n a 使得数列{}n b 是等差数列?若存在,请写出一个满足条件的数列{}n a ,并证明此时的数列{}n b 是等差数列;若不存在,请说明理由;(3)若1m =,是否存在直线y kx b =+满足:①对任意的x ∈R 都有()f x kx b ≥+成立,②存在0x ∈R 使得00()f x kx b =+?若存在,请求出满足条件的直线方程;若不存在,请说明理由.二、等比数列(2)若数列{}n a 是首项为2的“()H t 数列”,数列{}n b 是等比数列,且{}n a 与{}n b 满足212321log ni n n i a a a a a b ==+∑ ,求t的值和数列{}n b 的通项公式;(3)若数列{}n a 是“()H t 数列”,n S 为数列{}n a 的前n 项和,11a >,0t >,试比较ln n a 与1n a -的大小,并证明1e n S n n n t S S -+>--.三、等差、等比系列综合四、数列新定义专题05数列(四大类型题)15区新题速递学校:___________姓名:___________班级:___________考号:___________一、等差数列-二、等比数列12.(2023·上海金山·统考一模)设集合{1,2,,100}A = ,X 、Y 均为A 的非空子集(允许X Y =).X 中的最大元素与Y 中的最小元素分别记为M m 、,则满足M m >的有序集合对(,)X Y 的个数为().,即可得到结果【点睛】关键点睛:本题考查了等差数列和等比数列的综合应用,意在考查学生的计算能力,转化能力和综合应用能力,其中根据特殊例子确定3m =满足条件,再考虑4m ≥时不成立,是解题的关键.19.(2023·上海普陀·统考一模)若存在常数t ,使得数列{}n a 满足1123n n a a a a a t +-⋅⋅⋅=(1n ≥,n ∈N ),则称数列{}n a 为“()H t 数列”.(1)判断数列:1,2,3,8,49是否为“()1H 数列”,并说明理由;(2)若数列{}n a 是首项为2的“()H t 数列”,数列{}n b 是等比数列,且{}n a 与{}n b 满足212321log ni n n i aa a a ab ==+∑ ,求t的值和数列{}n b 的通项公式;(3)若数列{}n a 是“()H t 数列”,n S 为数列{}n a 的前n 项和,11a >,0t >,试比较ln n a 与1n a -的大小,并证明1e n S n n n t S S -+>--.【答案】(1)不是“()1H ”数列(2)1t =-,12n n b +=(3)ln 1n n a a <-,证明见解析【分析】(1)根据“()H t 数列”的定义进行判断,说明理由;(2)根据{}n a 是首项为2的“()H t 数列”,求出23,a a ,由{}n b 是等比数列,设公比为q ,由212321log ni n n i a a a a a b ==+∑ ,可得212321111log n n n i n i a a a a a a b +=++=+∑ ,作差可得()2211132121log log n n n n n a a a a a b b a +++--=+ ,利用{}n b 前三项数列,可以求解t 和q ,进而求解等比数列{}n b 的通项公式;(3)根据题意构造函数()ln 1f x x x =-+,求导并判断()f x 在()1,+∞上单调递增,由{}n a 是“()H t 数列”与11,0a t >>,反复利用1231n n a a a a t a +=+ ,可得对于任意的1,n n ≥∈N ,1n a >,进而得到ln 1n n a a <-,推出()12ln n n a a a S n <- ,再利用ln y x =在()0,x ∈+∞上单调递增,得到12e n S n n a a a -< ,通过已知条件变形推出1e n S n n n t S S -+>--.【详解】(1)根据“()H t 数列”的定义,则1t =,故11231n n a a a a a +-= ,因为211a a -=成立,3211a a a -=成立,432181238621a a a a -=-⨯⨯=-=≠不成立,所以1,2,3,8,49不是“()1H 数列”.(2)由{}n a 是首项为2的“()H t 数列”,则22a t =+,334a t =+,由{}n b 是等比数列,设公比为q ,相加可得1212ln ln ln n n a a a a a a n +++<+++- ,则()12ln n n a a a S n <- ,又因为ln y x =在()0,x ∈+∞上单调递增,所以12e n S nn a a a -< ,又1231n n a a a a t a +-= ,所以1e n S nn a t -+-<,即1e n S nn n S S t -+--<,故1en S nn n t S S -+>--.【点睛】关键点睛:本题主要数列的新定义题型,紧扣题意进行求解,同时构造函数,利用导数判断单调是证明不等式的关键.三、等差、等比系列综合,四、数列新定义(2)设21n n n m b b b b +++-=,结合10n n b b +-<以及等差数列的概念可解.【详解】(1)对于任意*21N n n n n x x x ++∈+-,仍为数列n x 中的项,则称数列{}n x 为“回归数列”.己知()*3N n n a n =∈,则212133373n n n n n n n a a a +++++-=+-=⋅,显然73n ⋅不是数列{}n a 中的项,故:数列{}n a 不为“回归数列”.(2)由题意知:N n ∀∈,必存在*N m ∈,使得:21n n n m b b b b +++-=由题意可知:10n n b b +-<,210n n b b ++->,故2n m n b b b +<<因此1m n =+,即:211n n n n b b b b ++++-=整理得:211n n n n b b b b +++-=-,则数列{}n b 为等差数列.。
2023年上海市高考数学试卷(解析版)
2023年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)不等式|x﹣2|<1的解集为 (1,3) .【答案】(1,3).【解答】解:由|x﹣2|<1可得,﹣1<x﹣2<1,解得1<x<3,即不等式的解集为(1,3).故答案为:(1,3).2.(4分)已知向量=(﹣2,3),=(1,2),则•= 4 .【答案】4.【解答】解:∵向量=(﹣2,3),=(1,2),∴•=﹣2×1+3×2=4.故答案为:4.3.(4分)已知首项为3,公比为2的等比数列,设等比数列的前n项和为S n,则S6= 189 .【答案】189.【解答】解:∵等比数列的首项为3,公比为2,∴S6==189.故答案为:189.4.(4分)已知tanα=3,则tan2α= ﹣ .【答案】﹣.【解答】解:∵tanα=3,∴tan2α===﹣.故答案为:﹣.5.(4分)已知函数f(x)=,则函数f(x)的值域为 [1,+∞) .【答案】[1,+∞).【解答】解:当x≤0时,f(x)=1,当x>0时,f(x)=2x>1,所以函数f(x)的值域为[1,+∞).故答案为:[1,+∞).6.(4分)已知复数z=1﹣i(i为虚数单位),则|1+iz|= .【答案】.【解答】解:∵z=1﹣i,∴|1+iz|=|1+i(1﹣i)|=|2+i|=.故答案为:.7.(5分)已知圆x2+y2﹣4x﹣m=0的面积为π,则m= ﹣3 .【答案】﹣3.【解答】解:圆x2+y2﹣4x﹣m=0化为标准方程为:(x﹣2)2+y2=4+m,∵圆的面积为π,∴圆的半径为1,∴4+m=1,∴m=﹣3.故答案为:﹣3.8.(5分)已知△ABC中,角A,B,C所对的边a=4,b=5,c=6,则sin A= .【答案】.【解答】解:a=4,b=5,c=6,由余弦定理得,cos A===,又∵A∈(0,π),∴sin A>0,∴sin A===.故答案为:.9.(5分)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为 946(亿元) .【答案】946(亿元).【解答】解:设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,∵中位数与平均数相同,∴,∴x+y=473,∴该地一年的GDP为232+x+y+241=946(亿元).故答案为:946(亿元).10.(5分)已知(1+2023x)100+(2023﹣x)100=a0+a1x+a2x2+⋯+a99x99+a100x100,若存在k∈{0,1,2,⋯,100}使得a k<0,则k的最大值为 49 .【答案】49.【解答】解:二项式(1+2023x)100的通项为=•2023r•x r,r∈{0,1,2,…,100},二项式(2023﹣x)100的通项为=•2023100﹣r•(﹣1)r•x r,r∈{0,1,2,…,100},∴a k=+=[2023k+2023100﹣k•(﹣1)k],k∈{0,1,2,⋯,100},若a k<0,则k为奇数,此时a k=(2023k﹣2023100﹣k),∴2023k﹣2023100﹣k<0,∴k<100﹣k,∴k<50,又∵k为奇数,∴k的最大值为49.故答案为:49.11.(5分)某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m消耗的体力为(1.025﹣cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= arccos .【答案】arccos.【解答】解:斜坡的长度为l=,上坡所消耗的总体力y=×(1.025﹣cosθ)=,函数的导数y′==,由y′=0,得4﹣4.1cosθ=0,得cosθ=,θ=arccos,由f′(x)>0时cosθ<,即arccos<θ<时,函数单调递增,由f′(x)<0时cosθ>,即0<θ<arccos时,函数单调递减,即θ=arccos,函数取得最小值,即此时所消耗的总体力最小.故答案为:θ=arccos.12.(5分)空间中有三个点A、B、C,且AB=BC=CA=1,在空间中任取2个不同的点D,E(不考虑这两个点的顺序),使得它们与A、B、C恰好成为一个正四棱锥的五个顶点,则不同的取法有 9 种.【答案】9.【解答】解:如图所示,设任取2个不同的点为D、E,当△ABC为正四棱锥的侧面时,如图,平面ABC的两侧分别可以做ABDE作为圆锥的底面,有2种情况,同理以BCED、ACED为底面各有2种情况,所以共有6种情况;当△ABC为正四棱锥的截面时,如图,D、E位于AB两侧,ADBE为圆锥的底面,只有一种情况,同理以BDCE、ADCE为底面各有1种情况,所以共有3种情况;综上,共有6+3=9种情况.故答案为:9.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(4分)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A.{1}B.{2}C.{3}D.{1,2,3}【答案】A【解答】解:∵P={1,2},Q={2,3},M={x|x∈P,x∉Q},∴M={1}.故选:A.14.(4分)根据所示的散点图,下列说法正确的是( )A.身高越大,体重越大B.身高越大,体重越小C.身高和体重成正相关D.身高和体重成负相关【答案】C【解答】解:根据散点图的分布可得:身高和体重成正相关.故选:C.15.(5分)已知a∈R,记y=sin x在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A.s a>0,t a>0B.s a<0,t a<0C.s a>0,t a<0D.s a<0,t a>0【答案】D【解答】解:由给定区间可知,a>0.区间[a,2a]与区间[2a,3a]相邻,且区间长度相同.取a=,则[a,2a]=[],区间[2a,3a]=[],可知s a>0,t a>0,故A可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a>0,t a<0,故C可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a<0,t a<0,故B可能.结合选项可得,不可能的是s a<0,t a>0.故选:D.16.(5分)已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q 使得|MP|•|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A.①成立,②成立B.①成立,②不成立C.①不成立,②成立D.①不成立,②不成立【答案】B【解答】解:∵椭圆是封闭的,总可以找到满足题意的M点,使得|MP|•|MQ|=1成立,故①正确,在双曲线中,|PM|max→+∞,而|QM|min是个固定值,则无法对任意的P∈C,都存在Q∈C,使得|PM||QM|=1,故②错误.故选:B.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知直四棱柱ABCD﹣A1B1C1D1,AB⊥AD,AB∥CD,AB=2,AD=3,CD=4.(1)证明:直线A1B∥平面DCC1D1;(2)若该四棱柱的体积为36,求二面角A1﹣BD﹣A的大小.【答案】(1)证明见解答;(2)arctan.【解答】解:(1)证明:根据题意可知AB∥DC,AA1∥DD1,且AB∩AA1=A,∴可得平面A1ABB1∥平面DCC1D1,又直线A1B⊂平面A1ABB1,∴直线A1B∥平面DCC1D1;(2)设AA1=h,则根据题意可得该四棱柱的体积为=36,∴h=4,∵A1A⊥底面ABCD,在底面ABCD内过A作AE⊥BD,垂足点为E,则A1E在底面ABCD内的射影为AE,∴根据三垂线定理可得BD⊥A1E,故∠A1EA即为所求,在Rt△ABD中,AB=2,AD=3,∴BD==,∴AE===,又A1A=h=4,∴tan∠A1EA===,∴二面角A1﹣BD﹣A的大小为arctan.18.(14分)已知a,c∈R,函数f(x)=.(1)若a=0,求函数的定义域,并判断是否存在c使得f(x)是奇函数,说明理由;(2)若函数过点(1,3),且函数f(x)与x轴负半轴有两个不同交点,求此时c的值和a的取值范围.【答案】(1)a=0时,f(x)的定义域为{x|x≠0},不存在c使得f(x)是奇函数.(2)(,)∪(,+∞).【解答】解:(1)若a=0,则f(x)==x++1,要使函数有意义,则x≠0,即f(x)的定义域为{x|x≠0},∵y=x+是奇函数,y=1是偶函数,∴函数f(x)=x++1为非奇非偶函数,不可能是奇函数,故不存在实数c,使得f(x)是奇函数.(2)若函数过点(1,3),则f(1)===3,得3a+2+c=3+3a,得c=3﹣2=1,此时f(x)=,若数f(x)与x轴负半轴有两个不同交点,即f(x)==0,得x2+(3a+1)x+1=0,当x<0时,有两个不同的交点,设g(x)=x2+(3a+1)x+1,则,得,得,即a>,若x+a=0即x=﹣a是方程x2+(3a+1)x+1=0的根,则a2﹣(3a+1)a+1=0,即2a2+a﹣1=0,得a=或a=﹣1,则实数a的取值范围是a>且a≠且a≠﹣1,即(,)∪(,+∞).19.(14分)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到红色外观的模型,事件B为小明取到棕色内饰的模型,求P(B)和P(B|A),并判断事件A和事件B是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望.【答案】(1)P(A)=,P(B)=.P(B|A)=.事件A和事件B不独立.(2)EX=277(元).【解答】解:(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率P(A)==,若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率P(B)===.取到红色外观的模型同时是棕色内饰的有12个,即P(AB)=,则P(B|A)====.∵P(A)P(B)==≠,∴P(A)P(B)≠P(AB),即事件A和事件B不独立.(2)由题意知X=600,300,150,则外观和内饰均为同色的概率P===,外观和内饰都异色的概率P==,仅外观或仅内饰同色的概率P=1﹣﹣=,∵>>,∴P(X=150)=,P(X=300)==,P(X=600)=,则X的分布列为:X150300600P则EX=150×+300×+600×=277(元).20.(18分)已知抛物线Γ:y2=4x,在Γ上有一点A位于第一象限,设A的纵坐标为a(a >0).(1)若A到抛物线Γ准线的距离为3,求a的值;(2)当a=4时,若x轴上存在一点B,使AB的中点在抛物线Γ上,求O到直线AB的距离;(3)直线l:x=﹣3,P是第一象限内Γ上异于A的动点,P在直线l上的投影为点H,直线AP与直线l的交点为Q.若在P的位置变化过程中,|HQ|>4恒成立,求a的取值范围.【答案】(1);(2);(3)(0,2].【解答】解:(1)抛物线Γ:y2=4x的准线为x=﹣1,由于A到抛物线Γ准线的距离为3,则点A的横坐标为2,则a2=4×2=8(a>0),解得;(2)当a=4时,点A的横坐标为,则A(4,4),设B(b,0),则AB的中点为,由题意可得,解得b=﹣2,所以B(﹣2,0),则,由点斜式可得,直线AB的方程为,即2x﹣3y+4=0,所以原点O到直线AB的距离为;(3)如图,设,则,故直线AP的方程为,令x=﹣3,可得,即,则,依题意,恒成立,又,则最小值为,即,即,则a2+12>a2+4a+4,解得0<a<2,又当a=2时,,当且仅当t=2时等号成立,而a≠t,即当a=2时,也符合题意.故实数a的取值范围为(0,2].21.(18分)已知f(x)=lnx,在该函数图像Γ上取一点a1,过点(a1,f(a1))做函数f (x)的切线,该切线与y轴的交点记作(0,a2),若a2>0,则过点(a2,f(a2))做函数f(x)的切线,该切线与y轴的交点记作(0,a3),以此类推a3,a4,⋯,直至a m≤0停止,由这些项构成数列{a n}.(1)设a m(m≥2)属于数列{a n},证明:a m=lna m﹣1﹣1;(2)试比较a m与a m﹣1﹣2的大小关系;(3)若正整数k≥3,是否存在k使得a1、a2、a3、⋯、a k依次成等差数列?若存在,求出k的所有取值;若不存在,请说明理由.【答案】(1)证明过程见解答;(2)a m≤a m﹣1﹣2;(3)k=3.【解答】解:(1)证明:,则过点(a m﹣1,f(a m﹣1))的切线的斜率为,由点斜式可得,此时切线方程为,即,令x=0,可得y=lna m﹣1﹣1,根据题意可知,a m=lna m﹣1﹣1,即得证;(2)先证明不等式lnx≤x﹣1(x>0),设F(x)=lnx﹣x+1(x>0),则,易知当0<x<1时,F′(x)>0,F(x)单调递增,当x>1时,F′(x)<0,F(x)单调递减,则F(x)≤F(1)=0,即lnx≤x﹣1(x>0),结合(1)可知,a m=lna m﹣1﹣1≤a m﹣1﹣1﹣1=a m﹣1﹣2;(3)假设存在这样的k符合要求,由(2)可知,数列{a n}为严格的递减数列,n=1,2,3,…,k,由(1)可知,公差d=a n﹣a n﹣1=lna n﹣1﹣a n﹣1﹣1,2≤n≤k,先考察函数g(x)=lnx﹣x﹣1,则,易知当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,则g(x)=d至多只有两个解,即至多存在两个a n﹣1,使得g(a n﹣1)=d,若k≥4,则g(a1)=g(a2)=g(a3)=d,矛盾,则k=3,当k=3时,设函数h(x)=ln(lnx﹣1)﹣2lnx+x+1,由于h(e1.1)=ln0.1﹣2.2+e1.1+1=e1.1﹣ln10﹣1.2<0,h(e2)=﹣3+e2>0,则存在,使得h(x0)=0,于是取a1=x0,a2=lna1﹣1,a3=lna2﹣1,它们构成等差数列.综上,k=3.。
2024年上海市高考数学试卷
2024年上海市高考数学试卷(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000道题,C题库有3000道题.小申已完成所有题,他A题库的正确率是0.92,B题库的正确率是答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],a n a n q n -1a n a n +1a 1q n -1a 1q nA.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n +1a n a 2a 1q n -1a 21q n -21q n -2(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:AA.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )D.存在f(x)在x=-1处取到极小值答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,√2所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√A -A P 2O 2V圆锥131332√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;x 2y 2b2(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.2√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,√3√2√3√33解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A 1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b2Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2m 210b2m 210b 210310310√3√33(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n a n q n -1a n a n +1a 1q n -1a 1q n a n +1a n a 2a 1q n -1a 21q n -21q n -2A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:A解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412A.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数D.存在f(x)在x=-1处取到极小值(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,√2√A -A P 2O 2V圆锥131332因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.x 2y 2b22√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,].√3√2√3√3√303解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b24m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,m 210b2m 210b 210310310√3√33(2024•上海)对于一个函数f(x)和一个点M(a,b),定义s(x)=(x-a)2+(f(x)-b)2,若存在P(x 0,f(x 0)),使s(x 0)是s(x)的最小值,则称点P是函数f(x)到点M的“最近点”.(1)对于f (x )=(x>0),求证:对于点M(0,0),存在点P,使得点P是f(x)到点M的“最近点”;(2)对于f(x)=e x ,M(1,0),请判断是否存在一个点P,它是f(x)到点M的“最近点”,且直线MP与f(x)在点P处的切线垂直;(3)已知f(x)存在导函数f′(x),函数g(x)恒大于零,对于点M 1(t-1,f(t)-g(t)),点M 2(t+1,f(t)+g(t)),若对任意t∈R,存在点P同时是f(x)到点M 1与点M 2的“最近点”,试判断f(x)的单调性.1x答案:(1)证明过程见解析;(2)存在,P(0,1);(3)f(x)严格单调递减.解析:(1)代入M(0,0),利用基本不等式即可;(2)由题得s(x)=(x-1)2+e 2x ,利用导函数得到其最小值,则得到P,再证明直线MP与切线垂直即可;(3)根据题意得到s 1'(x 0)=s 2'(x 0)=0,对两等式化简得f ′()=-,再利用“最近点”的定义得到不等式组,即可证明x 0=t,最后得到函数单调性.x 01g (t )解答:解:(1)当M(0,0)时,s (x )=(x -0+(-0=+≥22,当且仅当=即x=1时取等号,故对于点M(0,0),存在点P(1,1),使得该点是M(0,0)在f(x)的“最近点”;(2)由题设可得s(x)=(x-1)2+(e x -0)2=(x-1)2+e 2x ,则s'(x)=2(x-1)+2e 2x ,因为y=2(x-1),y=2e 2x 均为R上单调递增函数,则s'(x)=2(x-1)+2e 2x 在R上为严格增函数,而s'(0)=0,故当x<0时,s'(x)<0,当x>0时,s'(x)>0,故s(x)min =s(0)=2,此时P(0,1),而f'(x)=e x ,k=f'(0)=1,故f(x)在点P处的切线方程为y=x+1,而==-1,故k MP •k=-1,故直线MP与y=f(x)在点P处的切线垂直.(3)设(x )=(x -t +1+(f (x )-f (t )+g (t ),(x )=(x -t -1+(f (x )-f (t )-g (t ),而s 1'(x)=2(x-t+1)+2(f(x)-f(t)+g(t))f'(x),s 2'(x)=2(x-t-1)+2(f(x)-f(t)-g(t))f'(x),若对任意的t∈R,存在点P同时是M 1,M 2在f(x)的“最近点”,设P(x 0,y 0),则x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,因为两函数的定义域均为R,则x 0也是两函数的极小值点,则存在x 0,使得s 1'(x 0)=s 2'(x 0)=0,即s 1'(x 0)=2(x 0-t+1)+2f′(x 0)[f(x 0)-f(t)+g(t)]=0,①s 2'(x 0)=2(x 0-t-1)+2f′(x 0)[f(x 0)-f(t)-g(t)]=0,②由①②相等得4+4g(t)•f'(x 0)=0,即1+f'(x 0)g(t)=0,即f ′()=-,又因为函数g(x)在定义域R上恒正,则f ′()=-<0恒成立,接下来证明x 0=t,因为x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,则s 1(x 0)≤s(t),s 2(x 0)≤s(t),即 (-t +1+(f ()-f (t )+g (t )≤1+(g (t ),③(-t -1+(f ()-f (t )-g (t )≤1+(g (t ),④③+④得2(-t +2+2[f ()-f (t )+2(t )≤2+2(t ),即(-t +(f ()-f (t )≤0,因为(-t ≥0,(f ()-f (t )≥0)21x )2x 21x 2x 21x 2k MP 0-11-0s 1)2)2s 2)2)2x 01g (t )x 01g (t )x 0)2x 0)2)2x 0)2x 0)2)2x 0)2x 0]2g 2g 2x 0)2x 0)2x 0)2x 0)2则,解得x 0=t,则f ′(t )=-<0恒成立,因为t的任意性,则f(x)严格单调递减.{-t =0f ()-f (t )=0x 0x 01g (t )。
2024年高考真题汇总 数列(解析版)
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
高考数学压轴专题上海备战高考《数列》单元汇编及解析
【最新】数学《数列》专题解析(1)一、选择题1.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( )A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.2.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题3.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192C .1119892D .1120192 【答案】C 【解析】 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892.故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.4.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.5.执行下面程序框图输出S 的值为( )A .2542B .3764C .1730D .67【答案】A 【解析】 【分析】模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当6i =,满足5i >,退出循环,输出运行的结果111111324354657S =++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知, 第1次循环时113S =⨯,2i =,否; 第2次循环111324S =+⨯⨯,3i =,否; 第3次循环时111132435S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546S =++⨯⨯⨯⨯+,5i =,否;第5次循环时111111324354657S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出111111324354657S =++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 1111251226742⎛⎫=+--=⎪⎝⎭ 故选:A. 【点睛】本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.6.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++L 的值 A .1n n- B .1n n+ C .11n n -+ D .1n n + 【答案】A 【解析】分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111na a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=,则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以1111(1)1n a n n n n==--- 所以231111111111(1)()()12231n n a a a n n n n-+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.7.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.8.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C. 【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.9.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.10.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a = ∴1999()272a a S ⨯+== 故选D.11.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.在等比数列{}n a 中,已知259,243a a ==,那么{}n a 的前4项和为( ). A .81 B .120C .121D .192【答案】B 【解析】 【分析】 根据352a q a =求出公比,利用等比数列的前n 项和公式即可求出. 【详解】Q 35227a q a ==, ∴ 3q =∴ 4414(1)3(13)120113a q S q --===--.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n 项和,属于中档题.14.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30C .44D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16, 得810216a q a ==,得q 2=2. ∴4624a a q ==,即a 6=b 6=4,又S n 为等差数列{b n }的前n 项和, ∴()1111161111442b b S b+⨯===.故选:C. 【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n 项和的求法,是中档题.15.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( )A .11S aB .88S aC .55S aD .99S a【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.16.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.17.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,11111133323222222a a a d a a a ⎛⎫=--=-+≤-⋅=- ⎪⎝⎭,当且仅当13a =时等号成立;当10a <时,111133232222a a d a a ⎛⎫⎛⎫=--≥-⋅-= ⎪ ⎪⎝⎭⎝⎭,当且仅当13a =-时等号成立; ∴实数d 的取值范围为(,3][3,)-∞-⋃+∞.故选:D.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.18.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d <②110S <③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( )A .2B .3C .4D .5【答案】B【解析】【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定.【详解】 Q 等差数列{}n a 中,6S 最大,且675S S S >>,∴10a >,0d <,①正确;Q 675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大, ∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>,∴③⑤正确,②错误.故选:B .【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.20.设函数()221x f x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( )A .9B .11C .92D .112【答案】B【解析】【分析】先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值.【详解】 ()221x f x =+Q ,()()()22222212121221xx x x x x f x f x --⋅∴+-=+=+++++()2122222211221x x x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++,则()()()()()54045S f f f f f =+++++-+-L L ,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =.故选:B.【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.。
上海高考数学真题专题- 数列专题
第四部 数列专题【考点1】等差数列与等比数列1. 等差数列等差数列{}n a 的通项公式:1(1)n a a n d *()n N . 等差数列{}n a 的递推公式:1n n a a d (2)n . 等差数列{}n a 的前n 项和公式:11()(1)22n n n a a n n S na d na 中. 等差数列{}n a 的性质: ① ()n m a a n m d .② 若m n p q ,则m n p q a a a a .③ k a 、k m a 、2k m a 、 成等差数列,公差为md .④ n S 、2n n S S 、32n n S S 、43n n S S 、 成等差数列,公差为2n d .⑤ 数列{}n a 成等差数列n a pn q ,112n n n a a a ,2n S An Bn .⑥ 若数列{}n a 是等差数列,则{}n ac 为等比数列,0c .⑦ n S 是前n 项和,S 奇表示奇数项的和,S 偶表示偶数项的和,则n S S S 奇偶. 当n 为偶数时,2n S S d偶奇. 当n 为奇数时,S S a 奇偶中,11S n S n 奇偶,S S n S S 奇偶奇偶. ⑧ 设n S 和n T 分别表示等差数列{}n a 、{}n b 的前n 项和,则2121n n n n a S b T. ⑨ 若p a q ,q a p ,p q ,则0p q a ,1d . 若p S q ,q S p ,p q ,则()p q S p q . 若p q S S ,p q ,则0p q S .1.(2018年6)记等差数列{}n a 的前n 项和为n S ,若30a ,6714a a ,则7S2.(2014春7)已知等差数列{}n a 的首项为1,公差为2,则该数列的前n 项和n S3.(2013春11)若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n S4.(2018春5)已知{}n a 是等差数列,若2810a a ,则357a a a5.(2017春6)若等差数列{}n a 的前5项的和为25,则15a a6.(2013文2)在等差数列{}n a 中,若123430a a a a ,则23a a7.(2012春13)已知等差数列{}n a 的首项及公差均为正数,令n b (*n N ,2012n ),当k b 是数列{}n b 的最大项时,k8.(2017年15)已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c ,*n N , 则“存在*k N ,使得100k x 、200k x 、300k x 成等差数列”的一个必要条件是( ) A. 0a B. 0b C. 0c D. 20a b c9.(2015春附3)已知数列{}n a 满足413n n n n a a a a ()n *N ,那么( )A. {}n a 是等差数列B. 21{}n a 是等差数列C. 2{}n a 是等差数列D. 3{}n a 是等差数列10.(2015春21)若无穷等差数列{}n a 的首项10a ,公差0d ,{}n a 的前n 项和为n S , 则( )A. n S 单调递减B. n S 单调递增C. n S 有最大值D. n S 有最小值 2. 等比数列等比数列{}n a 的通项公式:11n n a a q*()n N .等比数列{}n a 的递推公式:1n n a a q (2)n .等比数列{}n a 的前n 项和公式:11(1)11n n n a a qa q S qq (1)q ,1n S na (1)q .等比数列{}n a 的性质: ① n mn m a a q.② 若m n p q ,则m n p q a a a a .③ k a 、k m a 、2k m a 、 成等比数列,公比为mq .④ n S 、2n n S S 、32n n S S 、43n n S S 、 成等比数列,公比为nq . ⑤ 数列{}n a 成等比数列211n n n a a a ,n n a p q ,(1)n n S A q .⑥ 若数列{}n a 是等比数列,则{log }c n a 为等差数列,0n a .⑦ n S 是前n 项和,S 奇表示奇数项的和,S 偶表示偶数项的和,则n S S S 奇偶. 当n 为偶数时,S q S 偶奇. 当n 为奇数时,1S a q S 奇偶. ⑧ 设n T 是前n 项积,T 奇表示奇数项的积,T 偶表示偶数项的积,则n T T T 奇偶. 当n 为偶数时,2n T q T 偶奇. 当n 为奇数时,T a T 奇中偶. 11.(2011春8)若n S 为等比数列{}n a 的前n 项和,2580a a ,则63S S12.(2014春22)已知数列{}n a 是以q 为公比的等比数列,若2n n b a ,则数列{}n b 是 ( )A. 以q 为公比的等比数列B. 以q 为公比的等比数列C. 以2q 为公比的等比数列D. 以2q 为公比的等比数列13.(2011理18)设{}n a 是各项为正数的无穷数列,i A 是边长为i a 、1i a 的矩形面积 (1,2,i ),则{}n A 为等比数列的充要条件是( ) A. {}n a 是等比数列B. 1321,,,,n a a a 或242,,,n a a a 是等比数列C. 1321,,,,n a a a 和242,,,n a a a 均是等比数列D. 1321,,,,n a a a 和242,,,n a a a 均是等比数列,且公比相同14.(2015理17)记方程①:2110x a x ;方程②:2210x a x ;方程③: 2310x a x ;其中1a 、2a 、3a 是正实数,当1a 、2a 、3a 成等比数列时,下列选项中, 能推出方程③无实数根的是( )A. 方程①有实根,且②有实根B. 方程①有实根,且②无实根C. 方程①无实根,且②有实根D. 方程①无实根,且②无实根15.(2014文23)已知数列{}n a 满足1133n n n a a a ,*n N ,11a .(1)若22a ,3a x ,49a ,求x 的取值范围;(2)设{}n a 是等比数列,且11000m a ,求正整数m 的最小值,以及m 取最小值时相 应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.16.(2014理23)已知数列{}n a 满足1133n n n a a a ,*n N ,11a .(1)若22a ,3a x ,49a ,求x 的取值范围;(2)设{}n a 是公比为q 的等比数列,12n n S a a a ,若1133n n n S S S ,*n N ,求q 的取值范围;(3)若12,,,k a a a 成等差数列,且121000k a a a ,求正整数k 的最大值, 以及k 取最大值时相应数列12,,,k a a a 的公差.17.(2013文22)已知函数()2||f x x ,无穷数列{}n a 满足1()n n a f a ,*n N . (1)若10a ,求2a 、3a 、4a ;(2)若10a ,且1a 、2a 、3a 成等比数列,求1a 的值;(3)是否存在1a ,使得12,,,,n a a a 成等差数列?若存在,求出所有这样的1a ; 若不存在,说明理由.【考点2】数列通项与数列求和1. 求数列通项方法(1)公式法:等差数列通项1(1)n a a n d ,等比数列通项11n n a a q .(2)累加法(累乘法):1()n n a a f n ,1()nn a f n a ,2n . (3)作差法(作商法):若123n n S a a a a ,则1n n n a S S ,2n . 若123n n T a a a a ,则1nn n T a T,2n . (4)构造法:1n n a Aa B ,1n n a Aa Bn C ,1nn n a Aa B .1q n n a pa ,11n n n a a ka b,11n n n a pa qa ,其他类型.(5)数学归纳法:对数列通项进行归纳猜想,然后按数学归纳法步骤进行证明. 2. 数列求和方法(1)求和公式法:等差数列前n 项和公式:11()(1)22n n n a a n n S na d na中. 等比数列前n 项和公式:11(1)11n n n a a qa q S qq (1)q .22221123(1)(21)6n n n n (3333221)123(1)4n n n ….(2)倒序相加法:首尾距离相等的两项有共性或数列的通项与组合数相关联. (3)错位相减法:数列通项由等差数列与等比数列相乘构成.(4)裂项相消法:将数列中的每项进行分解,然后重新组合,达到消项的目的.111(1)1n n n n ,1111()()n n k k n n k, 1111[](1)(2)2(1)(1)(2)n n n n n n n ,1k,11(1)!!(1)!n n n n ,sin1tan(1)tan cos cos(1)n n n n.(5)分组求和法:将通项中有共同规律的部分进行分组,分别求和.(6)数学归纳法:对数列前n 项和进行归纳猜想,然后按数学归纳法步骤进行证明. 18.(2019年8)已知数列{}n a 前n 项和为n S ,且满足2n n S a ,则5S 19.(2017年10)已知数列{}n a 和{}n b ,其中2n a n ,*n N ,{}n b 的项是互不相等的正 整数,若对于任意*n N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b20.(2016理11)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*N ,{2,3}n S ,则k 的最大值为21.(2013春12)36的所有正约数之和可按如下方法得到:∵223623 ,∴36所有正约 数之和22222222(133)(22323)(22323)(122)133)91 (, 参照上述方法,可求得2000的所有正约数之和为 22.(2012文14)已知函数1()1f x x,各项均为正数的数列{}n a 满足11a , 2()n n a f a ,若20102012a a ,则2011a a 的值是23.(2013理17)在数列{}n a 中,21n n a .若一个7行12列的矩阵的第i 行第j 列 的元素,i j c i j i j a a a a (1,2,,7i ;1,2,,12j ),则该矩阵元素能取到的不同 数值的个数为( )A. 18B. 28C. 48D. 6324.(2016春19)用数学归纳法证明等式2123...22n n n ()n *N 的第(ii )步中,假设n k 时原等式成立,那么在1n k 时,需要证明的等式为( ) A. 22123...22(1)22(1)(1)k k k k k k B. 2123...22(1)2(1)(1)k k k kC. 22123...2(21)2(1)22(1)(1)k k k k k k kD. 2123...2(21)2(1)2(1)(1)k k k k k 25.(2016春28)已知数列{}n a 是公差为2的等差数列. (1)若1a 、3a 、4a 成等比数列,求1a 的值;(2)设119a ,数列{}n a 的前n 项和为n S ,数列{}n b 满足11b ,11(2n n n b b ,记12n n n n c S b ()n *N ,求数列{}n c 的最小值0n c .(即0n n c c 对任意n *N 成立)26.(2012春22)已知数列{}n a 、{}n b 、{}n c 满足11()()n n n n n a a b b c (*n N ). (1)设36n c n ,{}n a 是公差为3的等差数列,当11b 时,求2b 、3b 的值; (2)设3n c n ,28n a n n ,求正整数k ,使得一切*n N 均有n k b b ;(3)设2nn c n ,1(1)2nn a,当11b 时,求数列{}n b 的通项公式.27.(2011文23)已知数列{}n a 和{}n b 的通项公式分别为36n a n ,27n b n (*n N ),将集合**{|,}{|,}n n x x a n x x b n N N 中的元素从小到大依次排列, 构成数列1c ,2c ,3c , ,n c , .(1)求三个最小的数,使它们既是数列{}n a 中的项,又是数列{}n b 中的项; (2)数列1c ,2c ,3c , ,40c 中有多少项不是数列{}n b 中的项?请说明理由; (3)求数列{}n c 的前4n 项和4n S (*n N ).28.(2011理22)已知数列{}n a 和{}n b 的通项公式分别为36n a n ,27n b n (*n N ),将集合**{|,}{|,}n n x x a n x x b n N N 中的元素从小到大依次排列, 构成数列1c ,2c ,3c , ,n c , . (1)求1c ,2c ,3c ,4c ;(2)求证:在数列{}n c 中,但不在数列{}n b 中的项恰为2a ,4a , ,2n a , ; (3)求数列{}n c 的通项公式.【考点3】数列单调性常结合函数性质分析数列单调性,或根据1n n a a 的大小分析数列单调性29.(2018春15)设n S 为数列{}n a 的前n 项和,“{}n a 是递增数列”是“{}n S 是递增数列” 的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【考点4】数列极限三个常用极限:① lim n C C(C 为常数). ② 1lim0n n. ③ 当||1q ,lim 0n n q .我们把||1q 的无穷等比数列的前n 项和n S 当n 时的极限叫做无穷等比数列各项的 和,并用符号S 表示,即11a S q(||1)q . 30.(2019春2)计算:22231lim 41n n n n n31.(2015春4)计算:223lim 2n n n n32.(2018春2)计算:31lim 2n n n33.(2013理1)计算:20lim313n n n34.(2011文2)计算3lim(13n nn35.(2017春8)已知数列{}n a 的通项公式为3nn a ,则123lim nn na a a a a36.(2016春9)无穷等比数列{}n a 的首项为2,公比为13,则{}n a 的各项和为 37.(2012理6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,,,n V V V ,则12lim()n n V V V38.(2014理8)设无穷等比数列{}n a 的公比为q ,若134lim()n n a a a a,则q39.(2018年10)设等比数列{}n a 的通项公式为1n n a q (n *N ),前n 项和为n S , 若11lim 2n n n S a ,则q40.(2011理14)已知点(0,0)O 、0(0,1)Q 和点0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR ,记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR 依次下去,得到12,,,,n P P P ,则0lim ||n n Q P41.(2017年14)在数列{}n a 中,1()2n n a ,*n N ,则lim n n a( )A. 等于12B. 等于0C. 等于12D. 不存在42.(2015年18)设(,)n n n P x y 是直线21nx y n ()n *N 与圆222x y 在第一象限 的交点,则极限1lim1n n n y x( ) A. 1 B. 12C. 1D. 243.(2013文18)记椭圆221441x ny n围成的区域(含边界)为(1,2,)n n ,当点 (,)x y 分别在1 、2 、 上时,x y 的最大值分别是1M 、2M 、 ,则lim n n M( )A. 0B. 14C. 2D.44.(2016理17)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S,下列条件中,使得2n S S (n *N )恒成立的是( )A. 10a ,0.60.7qB. 10a ,0.70.6qC. 10a ,0.70.8qD. 10a ,0.80.7q45.(2013春27)已知数列{}n a 的前n 项和为2n S n n ,数列{}n b 满足2n an b ,求12limn n b b b().46.(2019春18)已知数列{}n a 中,13a ,前n 项和为n S . (1)若{}n a 为等差数列,且415a ,求n S ;(2)若{}n a 为等比数列,且lim 12n n S,求公比q 的取值范围.【考点5】数列应用题47.(2016春附6)小明用数列{}n a 记录某地区2015年12月份31天中每天是否下过雨, 方法为:当第k 天下过雨时,记1k a ,当第k 天没下过雨时,记1k a (131)k ; 他用数列{}n b 记录该地区该月每天气象台预报是否有雨,方法为:当预报第k 天有雨时, 记1k b ,当预报第k 天没有雨时,记1k b (131)k ;记录完毕后,小明计算出1122333131...a b a b a b a b 25 ,那么该月气象台预报准确的总天数为48.(2017年19)根据预测,某地第n *()n N 个月共享单车的投放量和损失量分别为n a和n b (单位:辆),其中4515,1310470,4n n n a n n ,5n b n ,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n (单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【考点6】数列新定义题型49.(2019年21)数列{}n a ()n *N 有100项,1a a ,对任意[2,100]n ,存在n i a a d ,[1,1]i n ()n *N ,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a ,2d ,求4a 所有可能的值;(2)若{}n a 不是等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,请用a 、d 、c 表示12100a a a .50.(2018春21)若{}n c 是递增数列,数列{}n a 满足:对任意n *N ,存在m *N ,使 得10m nm n a c a c ,则称{}n a 是{}n c 的“分隔数列”.(1)设2n c n ,1n a n ,证明:数列{}n a 是{}n c 的分隔数列;(2)设4n c n ,n S 是{}n c 的前n 项和,32n n d c ,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;(3)设1n n c aq ,n T 是{}n c 的前n 项和,若数列{}n T 是{}n c 的分隔数列,求实数a 、q 的取值范围.51.(2018年21)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意n *N ,都有||1n n b a ,则称{}n b 与{}n a “接近”.(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a ,n *N ,判断数列{}n b 是 否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:11a ,22a ,34a ,48a ,{}n b 是一个与{}n a 接近的数列,记集合{|,1,2,3,4}i M x x b i ,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b ,32b b , ,201200b b 中至少有100个为正数,求d 的取值范围.52.(2016理23)无穷数列{}n a 满足:只要p q a a (,p q *N ),必有11p q a a , 则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且11a ,22a ,43a ,52a ,67821a a a ,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ,5181b c ,n n n a b c ,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知1sin n n n a b a (n *N ),求证:“对任意1a ,{}n a 都具 有性质P ”的充要条件为“{}n b 是常数列”.53.(2016文22)对于无穷数列{}n a 与{}n b ,记{|,}n A x x a n *N ,{|,}n B x x b n *N ,若同时满足条件:① {}n a ,{}n b 均单调递增;②A B 且A B *N ,则称{}n a 与{}n b 是无穷互补数列.(1)若21n a n ,42n b n ,判断{}n a 与{}n b 是否为无穷互补数列,并说明理由; (2)若2nn a 且{}n a 与{}n b 是无穷互补数列,求数列{}n b 的前16项的和;(3)若{}n a 与{}n b 是无穷互补数列,{}n a 为等差数列,且1636a ,求{}n a 与{}n b 的通 项公式.54.(2016春附7)对于数列{}n a 与{}n b ,若对数列{}n c 的每一项k c ,均有k k c a 或k k c b ,则称数列{}n c 是{}n a 与{}n b 的一个“并数列”.(1)设数列{}n a 与{}n b 的前三项分别为11a ,23a ,35a ,11b ,22b ,33b , 若数列{}n c 是{}n a 与{}n b 的一个“并数列”,求所有可能的有序数组123(,,)c c c ; (2)已知数列{}n a 、{}n c 均为等差数列,{}n a 的公差为1,首项为正整数t ,{}n c 的前 10项和为30 ,前20项和为260 ,若存在唯一的数列{}n b ,使得{}n c 是{}n a 与{}n b 的 一个“并数列”,求t 的值所构成的集合.55.(2015理23)对于定义域为R 的函数()g x ,若存在正常数T ,使得cos ()g x 是以T 、为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期;已知()f x 是以T 为余 弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,(0)0f ,()4f T . (1)验证()sin3xh x x 是以6 为余弦周期的余弦周期函数; (2)设a b ,证明对任意[(),()]c f a f b ,存在0[,]x a b ,使得0()f x c ; (3)证明:“0u 为方程cos ()1f x 在[0,]T 上的解”的充要条件是“0u T 为方程cos ()1f x 在[,2]T T 上的解”,并证明对任意[0,]x T 都有()()()f x T f x f T .56.(2012文23)对于项数为m 的有穷数列{}n a ,记12max{,,...,}k k b a a a(1,2,...,k m ),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列, 如1、3、2、5、5的控制数列是1、3、3、5、5.(1)若各项均为正整数的数列{}n a 的控制数列为2、3、4、5、5,写出所有的{}n a ; (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C (C 为常数,1,2,...,k m ), 求证:k k b a (1,2,...,k m ); (3)设100m ,常数1(,1)2a ,若(1)22(1)n n n a an n ,{}n b 是{}n a 的控制数列,求1122100100()()()b a b a b a .57.(2012理23)对于数集12{1,,,,}n X x x x ,其中120n x x x ,2n ,定义向量集{|(,),,}Y a a s t s X t X,若对任意1a Y ,存在2a Y ,使得120a a ,则称X 具有性质P ,例如{1,1,2} 具有性质P .(1)若2x ,且{1,1,2,}x 具有性质P ,求x 的值;(2)若X 具有性质P ,求证:1X ,且当1n x 时,11x ;(3)若X 具有性质P ,且11x 、2x q (q 为常数),求有穷数列12,,,n x x x 的 通项公式.【考点7】数列综合题型58.(2015春29)已知函数2()|22|x f x ()x R . (1)解不等式()2f x ;(2)数列{}n a 满足()n a f n ()n *N ,n S 为{}n a 的前n 项和,对任意的4n ,不等式12n n S ka恒成立,求实数k 的取值范围.59.(2019春21)若{}n a 是等差数列,公差(0,]d ,数列{}n b 满足:sin()n n b a ,n *N ,记{|,}n S x x b n *N .(1)设10a ,23d ,求集合S ; (2)设12a,试求d 的值,使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,且n T n b b ,其中T 为不超过7的正整数,求T 所有可能值.60.(2017春21)已知函数21()log 1xf x x. (1)解方程()1f x ;(2)设(1,1)x ,(1,)a ,证明:1(1,1)ax a x ,且11(()()ax f f x f a xa ; (3)设数列{}n x 中,1(1,1)x ,1131(1)3n nn nx x x ,n *N ,求1x 的取值范围, 使得3n x x 对任意n *N 成立.61.(2011春23)对于给定首项0x 0a ),由递推式11(2n n x x (*n N )得到数列{}n x ,且对于任意的*n N,都有n x,用数列{}n x的近似值.(1)取05x ,100a ,计算1x 、2x 、3x 的值(精确到0.01), 并且归纳出n x 、1n x 的大小关系; (2)当1n 时,证明:111()2n n n n x x x x; (3)当0[5,10]x 时,用数列{}n x41||10n n x x , 请你估计n ,并说明理由.62.(2013理23)给定常数0c ,定义函数()2|4|||f x x c x c ,数列123,,,a a a ,满足1()n n a f a ,*n N .(1)若12a c ,求2a 及3a ;(2)求证:对任意*n N ,1n n a a c ;(3)是否存在1a ,使得12,,,,n a a a 成等差数列?若存在,求出所有这样的1a ; 若不存在,说明理由.63.(2015年22)已知数列{}n a 与{}n b 满足112()n n n n a a b b ,n *N .(1)若35n b n ,且11a ,求{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a ()n *N ,求证{}n b 的第0n 项是最大项;(3)(文)设130a ,n n b ()n *N ,求 的取值范围,使得对任意m 、n *N ,0n a ,且1(,6)6m na a . (3)(理)设10a ,nn b ()n *N ,求 的取值范围,使得{}n a 有最大值M 与最小值m ,且(2,2)Mm.。
2024年上海高考数学试题(含答案)
2024年普通高等学校招生全国统一考试(上海卷)数学 试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将案写在题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、填空题1.设全集{}1,2,3,4,5U =,集合{}2,4A =,则A =.2.已知()0,1,0x f x x >=≤⎪⎩则()3f =.3.已知,x ∈R 则不等式2230x x --<的解集为.4.已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .5.已知()(),2,5,6,k ab k ∈==R ,且//a b,则k 的值为.6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为.7.已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.8.某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是.9.已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为.10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值.11.已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠=(精确到0.1度)12.无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.二、单选题13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势14.下列函数()f x 的最小正周期是2π的是()A .sin cos x x +B .sin cos x x C .22sin cos x x+D .22sin cos x x-15.定义一个集合Ω,集合中的元素是空间内的点集,任取123,,ΩP P P ∈,存在不全为0的实数123,,λλλ,使得1122330OP OP OP λλλ++=.已知(1,0,0)Ω∈,则(0,0,1)Ω∉的充分条件是()A .()0,0,0∈ΩB .()1,0,0-∈ΩC .()0,1,0∈ΩD .()0,0,1-∈Ω16.已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是()A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x -处取到极小值三、解答题17.如图为正四棱锥,P ABCD O -为底面ABCD 的中心.(1)若5,AP AD ==,求POA 绕PO 旋转一周形成的几何体的体积;(2)若,AP AD E =为PB 的中点,求直线BD 与平面AEC 所成角的大小.18.若()log (0,1)a f x x a a =>≠.(1)()y f x =过()4,2,求()()22f x f x -<的解集;(2)存在x 使得()()()12f x f ax f x ++、、成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩[)0,0.5[)0.5,1[)1,1.5[)1.5,2[)2,2.5优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d -=++++χ其中n a b c d =+++,()2 3.8410.05P χ≥≈.)20.已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.21.对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”;(2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ',且函数()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ∈R ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.参考答案及解析注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
最新上海高考数列大题整理
(2012春)22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{}{}{}n n n a b c 、 、 满足*11()()().n n n n n a a b b c n N ++--=∈ (1)设36,{}n n c n a =+是公差为3的等差数列.当11b =时,求23b b 、的值;(2)设32,8.n n c n a n n ==-求正整数,k 使得一切*,n N ∈均有;n k b b ≥(3)设1(1)2,.2nnn n c n a +-=+=当11b =时,求数列{}n b 的通项公式.22、(18分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n N ∈),将集合**{|,}{|,}n n x x a n N x x b n N =∈=∈中的元素从小到大依次排列,构成数列123,,,,,n c c c c 。
⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ;⑶ 求数列{}n c 的通项公式。
22、⑴ 12349,11,12,13c c c c ====; ⑵ ① 任意*n N ∈,设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即2132n n a b --=② 假设26627n k a n b k =+==+⇔*132k n N =-∈(矛盾),∴ 2{}n n a b ∉ ∴ 在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a 。
⑶ 32212(32)763k k b k k a --=-+=+=,3165k b k -=+,266k a k =+,367k b k =+∵ 63656667k k k k +<+<+<+∴ 当1k =时,依次有111222334,,,b a c b c a c b c =====,……∴ *63(43)65(42),66(41)67(4)n k n k k n k c k N k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012春)22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{}{}{}n n n a b c 、 、 满足*11()()().n n n n n a a b b c n N ++--=∈ (1)设36,{}n n c n a =+是公差为3的等差数列.当11b =时,求23b b 、的值;(2)设32,8.n n c n a n n ==-求正整数,k 使得一切*,n N ∈均有;n k b b ≥(3)设1(1)2,.2nnn n c n a +-=+=当11b =时,求数列{}n b 的通项公式.22、(18分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n N ∈),将集合**{|,}{|,}n n x x a n N x x b n N =∈=∈中的元素从小到大依次排列,构成数列123,,,,,n c c c c 。
⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ;⑶ 求数列{}n c 的通项公式。
22、⑴ 12349,11,12,13c c c c ====; ⑵ ① 任意*n N ∈,设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即2132n n a b --=② 假设26627n k a n b k =+==+⇔*132k n N =-∈(矛盾),∴ 2{}n n a b ∉ ∴ 在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a 。
⑶ 32212(32)763k k b k k a --=-+=+=,3165k b k -=+,266k a k =+,367k b k =+∵ 63656667k k k k +<+<+<+∴ 当1k =时,依次有111222334,,,b a c b c a c b c =====,……∴ *63(43)65(42),66(41)67(4)n k n k k n k c k N k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩。
23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分, 第3小题满分6分.对于给定首项)00x a >>,由递推式112n n x x +⎛=+ ⎝()n +∈N 得到数列{}n x ,且对于任意的n +∈N ,都有n x >,用数列{}n x(1) 取05x =,100a =,计算123,,x x x 的值(精确到0.01),归纳出n x ,1n x +的大小关系;(2) 当1n ≥时,证明()1112n n n n x x x x +--<-; (3) 当[]05,10x ∈时,用数列{}n x4110n n x x -+-<,请你估计n ,并说明理由.【解】(1) 1234.74, 4.67, 4.65x x x ===,猜想1n n x x +<; (2) ()1112n n n n x x x x +----1111222n n n n x x x x -⎛=-+-+ ⎝112n n x x -=111122n n x x --⎛=- ⎝==, ①因为n x ,所以11110222n n n n n x x x x x +⎛⎛-=-+=-=> ⎝⎝, 所以1n n x x +>. 由①式,()11102n n n n x x x x +----=<,所以()1112n n n n x x x x +--<-. (3) 由(2)()()()()1121120121111102222n n n n n n n n x x x x x x x x x x +----<-<-<-<<-<-, 所以只要()4011102n x x--<即可, 于是()401210n x x >-,因为01012x x x ⎛⎫-= ⎝,所以42log 1015.1n ⎛>≈ ⎝⎭. 所以16n =.20. (本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。
已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出n 为何值时,n S 取得最小值,并说明理由。
解析:(1) 当n =1时,a 1=-14;当n ≥2时,a n =S n -S n -1=-5a n +5a n -1+1,所以151(1)6n n a a --=-,又a 1-1=-15≠0,所以数列{a n -1}是等比数列; (2) 由(1)知:151156n n a -⎛⎫-=-⋅ ⎪⎝⎭,得151156n n a -⎛⎫=-⋅ ⎪⎝⎭,从而1575906n n S n -⎛⎫=⋅+- ⎪⎝⎭(n ∈N*);解不等式S n <S n +1,得15265n -⎛⎫<⎪⎝⎭,562log 114.925n >+≈,当n ≥15时,数列{S n }单调递增; 同理可得,当n ≤15时,数列{S n }单调递减;故当n =15时,S n 取得最小值.23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。
已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列。
(1) 若31n a n =+,是否存在*m k N ∈、,有1?m m k a a a ++=说明理由;(2) 找出所有数列{}n a 和{}n b ,使对一切*n N ∈,1n n na b a +=,并说明理由; (3) 若115,4,3,a d b q ====试确定所有的p ,使数列{}n a 中存在某个连续p 项的和是数列{}n b 中的一项,请证明。
23.[解法一](1)由1m m k a a a ++=,得6531m k +=+, ......2分 整理后,可得423k m -=,m 、k ∈N *,∴2k m -为整数,∴不存在m 、k ∈N *,使等式成立。
......5分(2)若1n n a b a +=,即1111(1)n a ndb q a n d-+=+-, (*) (ⅰ)若0,d =则111n n b q b -==。
当{n a }为非零常数列,{n b }为恒等于1的常数列,满足要求。
......7分 (ⅱ)若0d ≠,(*)式等号左边取极限得11lim1(1)n a nda n d →∞+=+-,(*)式等号右边的极限只有当1q =时,才能等于1。
此时等号左边是常数,0d ∴=,矛盾。
综上所述,只有当{n a }为非零常数列,{n b }为恒等于1的常数列,满足要求。
......10分 【解法二】设{}1,,n n n n na a nd cb b a +=+=若且为等比数列 则*221211/,n n n n n n na a q n N a a qa a a +++++=∈=对都成立,即 2()(2)()dn c dn d c q dn d c ∴+++-++*22....7n N a qd ∈∴=对都成立,分(i ) 若d=0,则*0,1,n n a c b n N =≠∴=∈(ii )若0,d ≠则q=1,n b m ∴=(常数)即dn d cm dn c++=+,则d=0,矛盾综上所述,有n nn n n b a a N b c a =∈=≠=+1*,n ,1,0使对一切, 10分 (3)*,3,14N n b n a nn n ∈=+=设N m N k p b a a k k p m m m ∈∈==+⋯⋯+++++,,3a *21、.k p p m m 321)(41)1(4=+++++,N s p N p pp m k∈=∴∈=++∴,3*,k ,33245、 . 13分取,03)14(2)14(33234,232222 --⨯--=-⨯-=+=++s s s s m s k 15分由二项展开式可得正整数M 1、M 2,使得(4-1)2s+2=4M 1+1,,2)1(8)14(22s s M -+=-⨯().,21)1()2(4421满足要求存在整数m M M m s ∴+---=∴故当且仅当p=3s ,s ∈N 时,命题成立.说明:第(3)题若学生从以下角度解题,可分别得部分分(即分步得分) 若p 为偶数,则a m+1+a m+2+……+a m+p 为偶数,但3k 为奇数 故此等式不成立,所以,p 一定为奇数。
当p=1时,则a m+1=b k ,即4m+5=3k , 而3k =(4-1)k=,,)1(4)1()1(4)1(4411110Z M M C C C C kk k k k k k k k k k ∈-+=-⋅+-⋅⋅+⋯⋯+-⋅⋅+⋅---当k为偶数时,存在m,使4m+5=3k 成立 1分 当p=3时,则a m+1+a m+2+a m+3=b k ,即3a m+2-b k , 也即3(4m+9)=3k ,所以4m+9=3k-1,4(m+1)+5=3k-1由已证可知,当k-1为偶数即k 为奇数时,存在m, 4m+9=3k 成立 2分 当p=5时,则a m+1+a m+2+……+a m+5=b k ,即5a m+3=b k也即5(4m+13)=3k ,而3k 不是5的倍数,所以,当p=5时,所要求的m 不存在 故不是所有奇数都成立. 2分 17. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知数列{}n a 的前n 项和为n S ,11=a ,且3231=++n n S a (n 为正整数). (1)求数列{}n a 的通项公式;(2)记 ++++=n a a a S 21.若对任意正整数n ,n S kS ≤恒成立,求实数k 的最大值.解: (1) 3231=++n n S a , ①∴ 当2≥n 时,3231=+-n n S a . ② 潜在的知识与方法需求(数列与函数的关系) 由 ① - ②,得02331=+-+n n n a a a . 数学模式识别能力()21--=≥n n n S S a n 时 311=∴+n n a a )2(≥n . 准备知识需求(等式的性质)又 11=a ,32312=+a a ,解得 312=a . 能力需求(计算能力) ∴ 数列{}n a 是首项为1,公比为31=q 的等比数列. 显现的知识与方法需求(等比数列的定义)11131--⎪⎭⎫ ⎝⎛==∴n n n qa a (n 为正整数). 显现的知识与方法需求(等比数列的通项公式)(2)由(1)知,23311111=-=-=qa S , 显现的知识与方法需求(无穷等比数列各项和)()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=--=nnn n q q a S 31123311311111. 显现的知识与方法需求(等比数列前n 项和)由题意可知,对于任意的正整数n ,恒有⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-≤nk 3112323,解得 n k ⎪⎭⎫⎝⎛-≤311.准备知识(不等式性质)数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛-n311单调递增,∴ 当1=n 时,数列中的最小项为32,潜在的知识与方法需求(数列与函数的关系)∴ 必有32≤k ,即实数k 的最大值为32. 数学模式识别能力(等式恒成立的条件)21.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分。