8年级数学(上)专题复习三
人教版八年级数学上名校课堂练习章末复习(三)(含答案)
章末复习 (三 )轴对称基础题知识点 1轴对称与轴对称图形1.(日照中考)下边四个图形分别是节能、节水、低碳和绿色食品标记,在这四个标记中,是轴对称图形的是()2.图中有暗影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?知识点 2 线段的垂直均分线3.(遂宁中考)如图,在△ABC的周长是 7 cm,则 BC 的长为中,AC = 4 cm,线段 ( )AB的垂直均分线交AC于点N ,△ BCNA . 1 cm B. 2 cmC.3 cm D . 4 cm 知识点3画轴对称图形4.请作出图中四边形ABCD 对于直线 a 的轴对称图形,要求:不写作法,但一定保存作图印迹.知识点 4等腰三角形5.(湘西中考)如图,等腰△ABC中,AB=AC,BD均分∠ABC,∠A=36°,则∠1的度数为()A .36°B. 60°C.72° D . 108°6.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角均分线,则图中的等腰三角形有()A.5个B.4 个C.3 个D.2 个知识点5等边三角形7.以下图,△ABC是等边三角形,且BD = CE,∠ 1= 15°,则∠ 2 的度数为()A .15°B. 30°C.45°D. 60°8.(义乌中考)因为木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,而后套进衣服后松开即可.如图1,衣架杆 OA = OB=18 cm,若衣架收拢时,∠AOB = 60°,如图2,则此时 A , B 两点之间的距离是________cm.知识点 630°角的直角三角形的性质9.以下图,△ABC中,∠C=90°,∠ABC=60°,BD均分∠ABC,若AD=6,则CD=________.10.以下图,△ABC是等边三角形,AD∥BC,CD⊥AD,若AD=2 cm,则△ABC的周长为________cm.知识点 7最短路径问题11.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直均分BC,点 P 为直线 EF 上的任一点,则AP+ BP 的最小值是 ()A . 3B. 4C.5 D . 6中档题12.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延伸线上一点,∠ABC与∠ACE 的均分线订交于点D,则∠ D 的度数为 ()A .15°B. 17.5°C.20° D . 22.5°13.如图,点 A 、 C、B 在同向来线上,△DAC 和△ EBC 均是等边三角形,AE 与 BD 交于点 O,AE 、BD 分别与 CD 、CE 交于点 M 、N,有以下结论:① AE = BD ;②△ ACM ≌△ DCN ;③ EM = BN ;④ MN ∥ BC ;⑤∠ DOA =60°,此中,正确的结论个数是()A.5个B.4 个C.3 个D.2 个14.如图,△ABC与△A1B1C1对于直线l对称.若∠B1=35°,∠A=40°,则∠C的度数为 ________.15.如图,在平面直角坐标系中,A(1 , 2), B(3 ,1), C( - 2,- 1).(1)在图中作出△ABC 对于 y 轴对称的△ A 1B1C1;(2)△ A 1B 1C1的面积为 ________ .16.以下图,若MP 和 NQ 分别垂直均分AB 和 AC.(1) 若△APQ 的周长为 12,求 BC 的长;(2)∠ BAC = 105°,求∠ PAQ 的度数.综合题17.如图1,在等边三角形A BC 中,点 E 为边 AB 上随意一点,点 D 在边 CB 的延伸线上,且 ED= EC.(1)当点 E 为 AB 的中点时 (如图 1),则有 AE________DB( 填“>”“<”或“=”);(2)猜想 AE 与 DB 的数目关系,并证明你的猜想.参照答案1.D 2.1和3,是,两条. 3.C 4.图略. 5.C 6.A 7.D8.18 9.3 10.12 11.B 12.A 13.A14.105° 15.(1)图略:△A1B1C1即为所求.(2)4.516.(1)∵MP和NQ分别垂直均分AB 和 AC ,∴ AP =BP, AQ = CQ,∴△ APQ 的周长为AP+ PQ+ AQ =BP+PQ+CQ= BC.∵△ APQ 的周长为12,∴ BC = 12.(2) ∵AP =BP ,AQ =CQ,∴∠ B=∠ BAP ,∠ C=∠ CAQ.∵∠BAC =105°,∴∠BAP +∠CAQ =∠B +∠C=180°-∠BAC =180°-105°=75° . ∴∠ PAQ=∠ BAC - (∠ BAP +∠ CAQ) = 105°- 75°= 30° . 17.(1) = (2) 当点 E 为AB 上随意一点时, AE 与 DB 的大小关系不会改变.原因以下:过 E 作 EF∥ BC 交 AC 于 F,∵△ABC 是等边三角形,∴∠ ABC =∠ ACB =∠ A =60°, AB =AC = BC. ∴∠ AEF =∠ ABC=60°,∠ AFE =∠ ACB = 60°,即∠ AEF =∠ AFE =∠ A = 60° .∴△ AEF 是等边三角形.∴ AE = EF= AF.∵∠ ABC =∠ ACB =∠ AFE = 60°,∴∠ DBE =∠ EFC= 120°,∠ D +∠ BED =∠ FCE+∠ ECD = 60° .∵ DE= EC,∴∠ D =∠ ECD. ∴∠ BED =∠ ECF.在△DEB ∠DEB =∠ ECF,和△ ECF 中,∠ DBE=∠ EFC,∴△ DEB≌△ ECF(AAS).∴ BD=EF=AE,即AE=BD.DE= CE,。
八年级数学上第三章第二节《平面直角坐标系》复习题
第二节《平面直角坐标系》复习题作者:李老师答题者:2017.9.1一.选择题1.在平面直角坐标系中,点A(-2,3)位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,下列各点在第四象限的是( )A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1)3.点M(1,2)关于x轴对称的点的坐标为( )A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)4.下列说法正确的是( )A.若点P是直角坐标系中x轴上一点,且坐标为(a,b),那么a=0B.若点P是直角坐标系中y轴上一点,且坐标为(a,b),那么a=0C.若点P的横坐标为0,那么点P一定在x轴上D.若点P的坐标为(a,b),只要a、b中有一个为0,点P就一定在y轴上5.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限6.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在( )A.第一象限B.第二象限C.第三象限D.第四象限7.如果P(a,b)的坐标满足a×b=0,则P点在( )A.在x轴上B.在y轴上C.在原点D.在坐标轴上8.在第二象限内,点M(a,b)到y轴的距离为( )A.aB.bC.-aD.-b9.矩形ABCD的顶点A、B、C、D按顺时针方向排列,若在平面直角坐标系内,B、D两点对应的坐标分别是(2,0),(0,0),且A、C两点关于y轴对称,则点C的坐标是( )A.(1,1)B.(1,-1)C.(1,-2)D.10.若点P(m,2)与点Q(3,n)关于原点对称,则m、n的值分别是( )A.-3,2B.3,-2C.-3,-2D.3,211.在平面直角坐标系中,点P(-1,1)关于x轴的对称点在( )A.第一象限B.第二象限C.第三象限D.第四象限12.在平面直角坐标系中,点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A1,则点A和A1的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向轴方向平移1个单位长度13.若A的坐标为(3,0),B的坐标为(0,2),C的坐标为(x0,y0),以O、A、B、C四点确定矩形的四个顶点,则( )A.x0=3,y0=2B.x2=2,y0=3C.x0=-3,y0=-2D.x0=-2,y0=-314.若点P的坐标是(0,3),则距P 3个单位长的点Q的坐标是( )A.(0,0)B.(0,6)C.(0,0)或(0,6)D.无法确定15.A和B是平行于x轴的一条直线上的不同两点,记A的坐标为(x1,y1),B的坐标为(x2,y2).则必有( )A.x1=x2B.y1=y2C.x1=y1D.x2=y216.下列语句中不正确的是( )A.在平面内,两条互相垂直的数轴的垂足是原点B.若a≠b,则(a,b)和(b,a)是两个不同点的坐标C.点A(2,0)在横轴上,点B(0,-2)在纵轴上D.仅有两条互相垂直的直线,不能组成平面直角坐标系17.如右图所示,下列说法中正确的是( )A.A与D的横坐标相同B.A与B的横坐标相同C.B与C的纵坐标相同D.C与D的纵坐标相同18.如右图所示,OABC为一菱形,且OA=OC=AC=2,则点B坐标为( )A.(2,) B.(3,) C.(,2)D.(,3)19.x轴上的点到点A(-1,1)和点B(2,3)的距离之和的最小值是( )A.5B.+C.1+3D.+20.若点M(x,-4)位于点A(0,8)和点B(-4,0)连线的延长线上,则x等于( )A.-2B.-6C.-8D.621.如果点P(x,-y)在第二象限,Q(x+y,-xy)在( )A.第一象限B.第二象限C.第三象限D.第四象限22.若点P(2x-1,3x+2)是x轴上的点,则( )A.x=1/2B.x=-1/2C.x=-2/3D.x=-3/223.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限24.若+(b+2)2=0,则点M(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限25.若点P(a,-5)与Q(-3,b)是同一点,则a、b的值分别为( )A.-3,-3B.-3,-5C.-5,-5D.-5,-326.若点P(m,-2)的横坐标与纵坐标互为相反数,则点P一定在( )A.第一象限B.第二象限C.第三象限D.第四象限27.如右图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样的点P共有( )A.2个B.4个C.6个D.8个二.填空题28.在平面内,两条互相垂直且有_____________的数轴组成____________________.29.点P(2,-6)横坐标是____,纵坐标是_____,到x轴的距离是____,到y轴的距离是____.30.x轴上点的纵坐标为____,y轴上点的横坐标为_____.31.平面直角坐标系内任意两点M(x1,y1)、N(x2,y2)的距离公式为____________________.32.平面直角坐标系内有A(2,-6)、B(-4,3)两点,则AB的距离为________.33.过点A(1,-5)且垂直于y轴的直线交y轴于点B,则B点坐标为__________.34.已知点M(3,1/2m)关于原点对称的坐标在第三象限,那么m的取值范围是_________.35.已知点P到x轴的距离为3,到y轴的距离为2,则在平面直角坐标系中这样的点P有_____个,它们的坐标分别为____________________,它们分别所在的象限为____________________.36.若ab<0,a<0,则点P(a,b)在第象限内.37.已知点A(3,a),点B(b,-4)都在第一、三象限的角平分线上,则a+b= .38.已知点M在第二象限,它的横坐标与纵坐标的和为1,点M的坐标可以是_______.(写出一个符合条件的即可)40.以A(3,0)为圆心,以1.5为半径画圆,那么这个圆与x轴的交点坐标为_______.41.若点(-2,m)在第二象限内两条坐标轴夹角的平分线上,则m=____,若点B(-n,5)在第一象限内两条坐标轴夹角平分线上,则n=_____.42.如图1所示,△ABC是一个正三角形,B的坐标为(2,0),将△ABC沿AC边平移,使A点到C点,△ABC变换为△DCE,则它们的点对应坐标分别为A______,B______,C______,D______,E______.43.已知点A(4,x),B(y,-3),若AB∥x轴.且线段AB的长为5,则x= ,y= .44.已知点M在y轴上,点P(3,-2),若线段MP=5,则M的坐标是.45.如图2所示,若菱形OABC的对角线AC=10,且AC与x轴成30°角,则菱形的面积是.46.若ab<0,a<0,则点P(a,b)在第象限内.47.如图3所示,△ABO为等腰三角形,边AB=4,∠ABO=30°,则点A的坐标是,点B的坐标是.48.在平面直角坐标系内,如果点P(3a-9,1-a)在第三象限内,且横坐标、纵坐标都是整数,则P的坐标是.49.已知点M(3p-15,3-p)是第三象限的整点(横纵坐标均为整数),则点M的坐标为.50.如右图所示,图中不规则四边形ABCD的面积是.51.已知点P(x,y)在第三象限,且| x|=1 ,|y|=2,则点P关于原点对称点的坐标为.52.已知a<0,那么点P(-a2-2,2-a)关于x轴的对称点P/在第象限.53.将平行四边形ABCD的对角线交点与直角坐标系的原点重合,且点A、B的坐标分别为(-2,-1),(0.5,-1),则点C和D的坐标分别为____________________.54.点P(a+5,a-2),到x轴的距离为,则a= .55.若点P(a,b)位于y轴左方,x轴下方,且=3.| b-1|=4,则P的坐标为.56.点A(x,x)到原点的距离是2,则x= .57.如右图,若在象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点_________.三.解答题58.写出图4中A、B、C、D四点坐标,并说明你发现的规律.59.写出图5中△ABC各顶点的坐标,并求出此三角形的面积.60.如图6所示,已知ABCD的对角线AC、BD相交于坐标原点O,AC与x轴夹角∠COF=30°,DC∥横轴,AC=8,BD=6,求平行四边形四个顶点的坐标.61.在一次敌我双方交战中,我军已经找到了坐标(2,-4)和(2,4)的两个敌军据点,并且知道敌军的主力部队的坐标为(5,5),除此之外不知道其他信息.我军欲一举歼灭敌军主力,如何确定直角坐标系找到敌军主力部队?62.如图所示,已知正三角形的边长为3,在下列建立的平面直角坐标系中,求出各顶点的坐标.63.根据指令[S,A](S≥0,0°<A<360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离S,现在机器人在平面直角坐标系的原点,且面对x轴的负方向,为使其移动到点(2,-2),应下的指令是什么?64.如图8所示,在平面直角坐标系中有A(-3,4),B(-1,2),O为原点.求(1)OA的长;(2)求S△AOB.。
人教版八年级数学上册专题复习证明三角形全等的常见题型
证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。
而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。
在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。
一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。
例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。
在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。
∴ AF=DE(全等三角形对应边相等)。
2.证已知边的另一邻角对应相等,再用ASA证全等。
例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。
在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。
例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。
二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。
例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。
求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。
例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN,BM=DN。
人教版八年级数学上册第11章第2---3节期末复习题(含答案)
11.2三角形-与三角形有关的角一、选择题1.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()。
A.50°B.60°C.70°D.80°3.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是( )A.1000B.1100C.1150D.12004.在△ABC中,∠ABC和∠ACB平分线交于点O,且∠BOC=110°,则∠A度数是( ).A.70°B.55°C.40°D.35°5.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为( ).A.50°B.60°C.70°D.80°6.如图,下列说法正确的是().A.∠B>∠2B.∠2+∠D<180°C.∠1>∠B+∠DD.∠A>∠17.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于( )A.60°B.70°C. 80°D. 90°8.已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形( ).A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形9.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于( )A.130°B.210°C.230°D.310°10.如图,AD=AB=BC,那么∠1和∠2之间的关系是().A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°二、填空题11.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB=________.12.△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是三角形.13.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.14.△ABC的三个外角的度数之比为2:3:4,此三角形最小的内角等于°.15.如图,∠C、∠l、∠2之间的大小关系是____________16.如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为________三、解答题17.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.18.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.19.如图,已知△ABC中,∠A=70°,∠ABC=48°,BD⊥AC于D,CE是∠ACB的平分线,BD与CE交于点F,求∠CBD、∠EFD的度数.20.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE度数.21.如图,已知∠A=60°,∠B=30°,∠C=20°,求∠BDC的度数.22.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,并证明你的结论.参考答案1.B2.B3.C4.C.5.C6.B7.C8.A.9.C10.D11.答案为:70.12.答案为:直角.13.答案为:90°;50°.14.答案为:20.15.答案为:∠1>∠2>∠C16.答案为:6,与它不相邻的两个内角,360017.解:∵AC⊥DE∴∠APE=90°∵∠1=∠A+∠APE,∠A=20°∴∠1=110°∵∠1+∠B+∠D=180°, ∠B=27°∴∠D=43°18.解:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,∴∠A=×180°=40°,∠ACB=×180°=80°∵CD是∠ACB平分线,∴∠ACD=0.5∠ACB=40°∴∠CDB=∠A+∠ACD=40°+40°=80°19.∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣70°﹣48°=62°.∵BD⊥AC,∴∠BDC=90°.∴∠CBD=90°﹣∠ACB=90°﹣62°=28°;∵CE是∠ACB的平分线,∴∠ACE=∠ACB=×62°=31°.∴∠EFD=∠ACE+∠BDC=31°+90°=121°.故答案为:∠CBD、∠EFD的度数分别为28°,121°.20.解:21.解:∠BDC=110°;22.11.3 多边形及其内角和一、选择题(本大题共10道小题)1. 若正多边形的内角和是540°,则该正多边形的一个外角为A.45°B.60°C.72°D.90°2. 八边形的内角和等于( )A.360°B.1080°C.1440°D.2160°3. 从九边形的一个顶点出发可以引出的对角线的条数为( )A.3 B.4 C.6 D.94. 如图,足球图片正中的黑色正五边形的内角和是A.180°B.360°C.540°D.720°5. 若一个正多边形的每一个外角都等于40°,则它是( )A.正九边形B.正十边形C.正十一边形D.正十二边形6.若一个多边形的一个顶点处的所有对角线把多边形分成4个三角形,则这个多边形的边数为( )A.3 B.4C.5 D.67. 下列哪一个度数可以作为某一个多边形的内角和 ( )A.240°B.600°C.540°D.2180°8. 一个正多边形的每个外角不可能等于( )A.30°B.50°C.40°D.60°9.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A.7 B.7或8C.8或9 D.7或8或910. 如图,已知长方形ABCD,一条直线将长方形ABCD分割成两个多边形.若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共7道小题)11. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.12. 如图,若A表示四边形,B表示正多边形,则阴影部分表示________.13. 已知一个多边形的内角和是外角和的,则这个多边形的边数是.14.如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.15. 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A处行走的路程是.16. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.17. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则∠1=________°.三、解答题(本大题共4道小题)18.如图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF ,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?19. 某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?21.如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学11.3 多边形及其内角和同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.故选C.2. 【答案】B3. 【答案】 C [解析] 从九边形的一个顶点出发,可以向与这个顶点不相邻的6个顶点引对角线,即能引出6条对角线.4. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°,故选C.5. 【答案】 A [解析]由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.6. 【答案】D [解析] 设这个多边形的边数为n,则n-2=4,解得n=6.7. 【答案】C [解析] ∵多边形内角和公式为(n-2)×180°,∴多边形内角和一定是180°的倍数.∵540°=3×180°,∴540°可以作为某一个多边形的内角和.8. 【答案】 B [解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.9. 【答案】 D [解析] 设内角和为1080°的多边形的边数为n,则(n-2)×180°=1080°,解得n=8.则原多边形的边数为7或8或9.故选D.10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况有以下三种:(1)直线不经过原长方形的顶点,如图①②,此时长方形被分割为一个五边形和一个三角形或两个四边形,∴M+N=540°+180°=720°或M+N=360°+360°=720°;(2)直线经过原长方形的一个顶点,如图③,此时长方形被分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;(3)直线经过原长方形的两个顶点,如图④,此时长方形被分割为两个三角形,∴M+N=180°+180°=360°.二、填空题(本大题共7道小题)11. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n ,则(n -2)×180°=135°×n ,解得n =8. 方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.12. 【答案】正方形13. 【答案】 514. 【答案】120 [解析] 由题意得360°÷36°=10,则他第一次回到出发地点A 时,一共走了12×10=120(米).故答案为120.15. 【答案】30米 [解析] 360°÷24°=15,利用多边形的外角和等于360°,可知机器人回到A 处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2=30(米).16. 【答案】16 [解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8,则所走的路程是4×8=32(cm),故所用的时间是32÷2=16(s).17. 【答案】67.5三、解答题(本大题共4道小题)18. 【答案】解:(1)六边形DEFGMN的各个内角都是120°.理由:∵△ADN,△BEF,△CGM都是正三角形,∴它们的每个内角都是60°,即六边形DEFGMN的每个外角都是60°.∴六边形DEFGMN的每个内角都是120°.(2)六边形DEFGMN不是正六边形.理由:∵三个小正三角形(即△ADN,△BEF,△CGM)的边长均不相等,∴DN,EF,GM均不相等.∴六边形DEFGMN不是正六边形.19. 【答案】解:(1)设这个多边形的一个内角的度数是x°,则与其相邻的外角度数是x°+12°.由题意,得x+x+12=180,解得x=140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是=9.20. 【答案】解:(1)∵n边形的内角和是(n-2)×180°,∴多边形的内角和一定是180°的整倍数.∵2020÷180=11……40,∴多边形的内角和不可能为2020°.(2)设小华求的是n边形的内角和,这个内角为x°,则0<x<180.根据题意,得(n-2)×180°-x+(180°-x)=2020°,解得n=12+2x+40 180.∵n为正整数,∴2x+40必为180的整倍数.又∵0<x<180,∴40180<2x+40180<400180.∴n=13或14.∴小华求的是十三边形或十四边形的内角和.21. 【答案】解:延长ED,BC相交于点G.在四边形ABGE中,∠G=360°-(∠A+∠B+∠E)=50°,∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=12∠G=12×50°=25°.。
八年级数学上学期全等三角形全章复习与巩固(基础)知识讲解——含课后作业与答案
全等三角形全章复习与巩固(基础)责编:杜少波【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【高清课堂:388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASAAAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等. 一般三角形 直角三角形 判定 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 边边边(SSS ) 两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL ) 性质 对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等) 备注 判定三角形全等必须有一组对应边相等2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△A DG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠ D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠ C【答案】证明:过点A 作AD ⊥BC在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL )∴∠B =∠C.(2).倍长中线法:【高清课堂:388614 全等三角形单元复习,例8】3、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x< 6B.5 <x< 7C.2 <x< 12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、(2016秋•诸暨市期中)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.【思路点拨】过点P作PE⊥BA于E,根据角平分线上的点到角的两边距离相等可得PE=PF,然后利用HL证明Rt△PEA与Rt△PFC全等,根据全等三角形对应角相等可得∠PAE=∠PCB,再根据平角的定义解答.【答案与解析】证明:如图,过点P作PE⊥BA于E,∵∠1=∠2,PF⊥BC于F,∴PE=PF,∠PEA=∠PFB=90°,在Rt△PEA与Rt△PFC中,∴Rt△PEA≌Rt△PFC(HL),∴∠PAE=∠PCB,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.求证:BD=2CE.【答案】解:如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【思路点拨】因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.【答案与解析】证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.【巩固练习】一.选择题1. 如图所示,若△ABE≌△ACF,且AB =5,AE =2,则EC 的长为( )A .2B .3C .5D . 2.52.(2015春•平顶山期末)请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是( )A.SAS B.A SA C.A AS D.SSS3. (2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5. 如图,点C、D分别在∠AOB的边OA、OB上,若在线段CD上求一点P,使它到OA,OB的距离相等,则P点是().A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()组.A.1组 B.2组 C.3组 D.4组7. 如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A. 相等B.不相等C.互补D.相等或互补8. △ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( )A.45°B.20°C.、30°D.15°二.填空题9. 已知'''ABC A B C △≌△,若△ABC 的面积为10 2cm ,则'''A B C △的面积为________2cm ,若'''A B C △的周长为16cm ,则△ABC 的周长为________cm .10. △ABC 和△ADC 中,下列三个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC .将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11.(2015春•成都校级期末)如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC ,CD=2cm ,则BD 的长是 .12. 下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是_____.13. 如右图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .14.(2016秋•扬中市月考)如图,AC ⊥AB ,AC ⊥CD ,要使得△ABC ≌△CDA .(1)若以“SAS ”为依据,需添加条件 ;(2)若以“HL ”为依据,需添加条件 .15. 如图,△ABC 中,H 是高AD 、BE 的交点,且BH =AC ,则∠ABC =________.16. 在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC ,DE ⊥AB 于E.若AB =20cm ,则△DBE的周长为_________.三.解答题17. 已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:∠ACD=∠ADC.18.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB 于D.求证: AC=AD19. 已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:BE=CF.20.(2015•北京校级模拟)感受理解如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是自主学习事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等学以致用参考上述学到的知识,解答下列问题:如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.【答案与解析】一.选择题1. 【答案】B;【解析】根据全等三角形对应边相等,EC=AC-AE=5-2=3;2. 【答案】D;【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.3. 【答案】D;【解析】∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC ≌△DEF;故选D.4. 【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5. 【答案】D;【解析】角平分线上的点到角两边的距离相等.6. 【答案】C;【解析】(1)(2)(3)能使两个三角形全等.7. 【答案】A;【解析】高线可以看成为直角三角形的一条直角边,进而用HL定理判定全等.8. 【答案】D;【解析】由题意可得∠B=∠DAC=60°,∠C=30°,所以∠DAE=60°-45°=15°.二.填空题9. 【答案】10,16;【解析】全等三角形面积相等,周长相等.10.【答案】①②③;11.【答案】4cm;【解析】解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=×60°=30°,∴AD=2CD=2×2=4cm,又∵∠B=∠ABD=30°,∴AD=BD=4cm .故答案为:4cm.12.【答案】①③【解析】②不正确是因为存在两个全等的三角形与某一个三角形不全等的情况.13.【答案】ab 21; 【解析】由角平分线的性质,D 点到AB 的距离等于CD =b ,所以△ADB 的面积为ab 21. 14.【答案】AB=CD ;AD=BC【解析】(1)若以“SAS ”为依据,需添加条件:AB=CD ;△ABC ≌△CDA (SAS );(2)若以“HL ”为依据,需添加条件:AD=BC ;Rt △ABC ≌Rt △CDA (HL ).15.【答案】45°;【解析】Rt △BDH ≌Rt △ADC ,BD =AD.16.【答案】20cm ;【解析】BC =AC =AE ,△DBE 的周长等于AB.三.解答题17.【解析】证明:∵∠BAE =∠CAD ,∴∠BAE -∠CAE =∠CAD -∠CAE ,即∠BAC =∠EAD .在△ABC 和△AED 中,BAC EAD B E BC ED ∠∠⎧⎪∠∠⎨⎪⎩=,=,=, ∴△ABC ≌△AED . (AAS )∴AC =AD .∴∠ACD =∠ADC .18.【解析】证明:∵AC⊥BC,CE⊥AB∴∠CAB +∠1=∠CAB +∠3=90°,∴∠1=∠3又∵FD∥BC∴∠2=∠3,∴∠1=∠2在△CAF 与△DAF 中CAF=DAF 1=2AF=AF ∠∠⎧⎪∠∠⎨⎪⎩∴△CAF 与△DAF (AAS )∴AC =AD.19.【解析】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,(已知)∴DE=DF(角平分线上的点到角两边距离相等)又∵BD=CD∴△BDE≌△CDF(HL)∴BE=CF20.【解析】解:感受理解EF=FD.理由如下:∵△ABC是等边三角形,∴∠BAC=∠BCA,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠DAC=∠ECA,∠BAD=∠BCE,∴FA=FC.∴在△EFA和△DFC中,,∴△EFA≌△DFC,∴EF=FD;学以致用:证明:如图1,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,∴∠BAC+∠ACB=180°﹣60°=120°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠2=∠BAC,∠3=∠ACB,∴∠2+∠3=(∠BAC+∠ACB)=×120°=60°,∴∠AFE=∠CFD=∠AFG=60°.∴∠CFG=180°﹣∠AFG﹣∠CFD=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,∵CE是∠BCA的平分线,∴∠3=∠4,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD.。
成华区第一中学八年级数学上册 第2章 三角形 章末复习三 实数课件新版湘教版
x+y=500,
x=300,
依题意得25x+35y=14500, 解得y=200.
答:购进甲矿泉水 300 箱,购进乙矿泉水 200 箱
(2)(35-25)×300+(48-35)×200=5600(元). 答:该商场售完这 500 箱矿泉水,可获利 5600 元
11.(2019·呼和浩特)滴滴快车是一种便捷的出行工具 , 计价规那么如下表 :
3x+y=17, 6.(2019·铁岭)若 x,y 满足方程组x-y=3,
则__x_+__y_=___7__.
7.解下列方程组: 2x+5=y,
(1)3x+y=10; 解:xy==17
3x-4y=4, (2)3x-2y=8; 解:xy==42
(3)4x+y2=4, 3x-2y=16;
x=8 解:(3)y=4
mx+y=n,
x=0,
3.(2019·朝阳)关于 x,y 的二元一次方程组x-ny=2m 的解是y=2,
则 m+n 的值为( D )
A.4 B.2 C.1 D.0
4.已知方程 3x+y=12 有很多解, x=6
请你写出互为相反数的一组解是___y_=__-__6___.
3x-2y=1, 5.(2019·荆门)已知实数 x,y 满足方程组x+y=2, 则 x2-2y2 的值为( A ) A.-1 B.1 C.3 D.-3
解 : 原式=4-(-3)-5=2
(2)2 7 -53 2 -(3 2 -3 7 ). 解:原式=2 7 -53 2 -3 2 +3 7 =5 7 -63 2
【核心素养】 11.(数形结合)如图,一只蚂蚁从点 A 沿数轴向右爬了 2 个单位长度 到达点 B,点 A 表示- 2 ,设点 B 所表示的数为 m. (1)实数 m 的值是________; (2)求|m+1|+|m-1|的值; (3)在数轴上还有 C,D 两点分别表示实数 c 和 d, 且有|2c+d|与 d2-16 互为相反数,求 2c-3d 的平方根.
浙教版初中数学八年级上册第三章《直棱柱》单元复习试题精选 (198)
浙教版初中数学试卷2019-2020年八年级数学上册《直棱柱》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)将一个立方体沿某些棱展开后,能够得到的平面图形是()A.B.C.D.2.(2分)直三棱柱、多面体和棱柱之间的包含关系,可以用图形表示为()A.B.C. D.3.(2分)下列说法中,正确的是()A.棱柱的侧面可以是三角形B.由六个大小一样的正方形所组成的图形是立方体的表面展开图C.立方体的各条棱长度都相等D.棱柱的各条校长度都相等4.(2分)画一个物体的三视图时,一般的顺序是()A.主视图、左视图、俯视图B.主视图、俯视图、左视图C.俯视图、主视图、左视图D.左视图、俯视图、主视图5.(2分)一个几何体的三视图如下图所示,则这个几何体应该是()A.B. C. D.6.(2分)下列图形中是四棱柱的侧面展开图的是()A.B.C.D.7.(2分)图中几何体的左视图是()8.(2分)下列各图中,是正方体展开图的是()A.B.C.D.9.(2分)一个几何体的三视图如图所示,则这个几何体是()A.长方体B.六棱锥C.六棱柱D.圆柱10.(2分)一个几何体的主视图,左视图和俯视图都是正方形,那么这个几何体可以是()A.圆锥B.立方体C.圆柱D.直六棱柱11.(2分)如图所示的几何体的主视图是()A. B.C.D.12.(2分)下面的四个展开图中,如图所示的正方体的展开图是()A. B.C.D.13.(2分)下图中经过折叠可以围成一个三棱注的有()A.B.C.D.14.(2分)下列说法中正确的是()A.直四棱柱是四面体B.直棱柱的侧棱长不一定相等C直五棱柱有五个侧面D.正方体是直四棱柱,长方体不是直四棱柱15.(2分)下列说法正确的是()A.直棱柱的底面是四边形B.直棱柱的侧棱平行且相等C.直棱柱的侧面可能是三角形D.直棱柱的侧面一定是正方形评卷人得分二、填空题16.(2分)一张桌子上摆放着若干个碟子,从三个方向上看,三视图如图所示,则这张桌子上共有个碟子.17.(2分)如图是由一些形状相同的长方体搭成的几何体的三视图,则此几何体共由块长方体搭成.18.(2分)竖直放着的圆柱的主视图是,左视图是,俯视图是.19.(2分)下图是由一些相同的小正方体构成的几何体的三视图,则这个几何体共有小正方体个.20.(2分)如图,这个几何体的名称是 , 它是由个面,条棱,个顶点组成.21.(2分)一个印有“祝你学习愉快”字样的立方体纸盒有面展开图如图所示,则与“你”字面相对的面上是“”字.22.(2分)生活中有很多直棱柱的形象,请举例两个直四棱柱的事物.评卷人得分三、解答题23.(7分)在数学探究活动中,王老师为了加强直观教学,拿出若干个相同的小立方体骰子组合成不同的几何体,让同学们分别画出对应的三视图.如图所示的图形是小聪画的某个组合体的三视图. 从这组三视图推测,小聪说王老师摆放了 6个骰子. 你同意小聪的说法吗?请说明理由.24.(7分)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥放置在圆柱上底面的正中间)摆在讲桌上,请画出这个几何体的三视图.25.(7分)如图,请画出该几何体的三视图.26.(7分)一个木模的三视图如图所示.(1)描述这木模的形状;(2)求这个木模的表面积;(3)如果每m2的木模需用2.5kg的油漆,那么油漆这个木模共需要这种油漆多少kg(结果保留2个有效数字)?27.(7分)如图是一所房子的三视图.(1)用线把表示房子的同一部分的图形连起来;(2)从哪个图上能大约看出房子的占地面积?(3)请画出这个房子的简图.28.(7分)如图所示,是一个三棱柱的模型,其底面是边长为3 cm的等边三角形,侧棱长为5 cm,若给你一张长为12 cm,宽为5 cm的长方形纸片,能否糊出一个有底无盖符合条件的三棱柱模型?若能,按l:2的比例画出下料图;若不能,请说明理由.29.(7分)已知一个正方体的表面展开图如图所示,请在没有数字的方格内各填入1个数,使得复原以后相对两面的数之和为零.30.(7分)把一个正方体沿图①所示的粗线剪开后再展开,得到的图形如图②所示,图中所示的较粗的线段在原正方体中是同一条棱,请你找出展开图中还有哪些线段在原正方体中是同一条棱,并请在图②中标出.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.A3.C4.A5.D6.A7.A8.C9.C10.B11.C12.B13.D14.C15.B二、填空题16.1217.418.长方形,长方形,圆19.520.五棱柱,7,15,1021.愉22.如火柴盒,电视机盒三、解答题23.不同意小聪的说法.理由:结果有如下两种情况,答案一:有8个骰子;答案二:有9个骰子.24.略25.略26.(1) 三个长方体叠在一起 (2)2503cm2 (3)0.63 kg 27.略28.能,理由略29.从左到右依次为9,-7,830.略。
初中八年级数学上册专题及期末复习(附答案解析)
小专题(一) 构造全等三角形的方法技巧类型1 连结线段构造全等三角形【例1】 如图,已知AB =AD ,BC =CD ,求证:∠B =∠D.证明:连结AC ,在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ). ∴∠B =∠D.【方法归纳】 通过连结两点,构造出三角形,再证明两个三角形全等,然后利用全等三角形的性质说明角相等或边相等.1.如图,已知AB ∥CD ,AD ∥BC ,求证:∠A =∠C.证明:连结BD , ∵AB ∥CD , ∴∠ABD =∠CDB. ∵AD ∥BC , ∴∠ADB =∠CBD. 又∵BD =DB ,∴△ABD ≌△CDB(ASA ).∴∠A =∠C.2.如图,在△ABC 中,AB =AC ,点M 为BC 中点,MD ⊥AB 于点D ,ME ⊥AC 于点E.求证:MD =ME.证明:连结AM.在△ABM 和△ACM 中,⎩⎨⎧AB =AC ,AM =AM ,BM =CM ,∴△ABM ≌△ACM(SSS ). ∴∠BAM =∠CAM.∵MD ⊥AB ,ME ⊥AC ,∴MD =ME.类型2 利用“截长补短”构造全等三角形【例2】 如图,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB.求证:CD =AD +BC.证明:在CD 上截取DF =DA ,连结FE.在△ADE 和△FDE 中,⎩⎨⎧AD =FD ,∠ADE =∠FDE ,DE =DE ,∴△ADE ≌△FDE. ∴∠A =∠DFE.又∵AD ∥BC ,∴∠A +∠B =180°. ∵∠DFE +∠EFC =180°. ∴∠B =∠EFC.在△EFC 和△EBC 中,⎩⎨⎧∠EFC =∠B ,∠ECF =∠ECB ,EC =EC ,∴△EFC ≌△EBC. ∴FC =BC.∴CD =DF +FC =AD +BC.【方法归纳】 遇到证明线段的和差倍分问题时,通常利用截长法或补短法,具体的作法是在某条线段上截取一条线段与特定线段相等,或者延长某条线段,使之与特定线段相等,再利用三角形全等的有关性质解决.3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明.解:BC =BE +CD.证明:在BC 上截取BF =BE ,连结OF. ∵BD 平分∠ABC , ∴∠EBO =∠FBO. 又∵BO =BO , ∴△EBO ≌△FBO.∴∠EOB =∠FOB.∵∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,∴∠BOC =180°-∠OBC -∠OCB =180°-12∠ABC -12∠ACB =180°-12(180°-∠A)=120°.∴∠EOB =∠DOC =60°.∴∠BOF =60°,∠FOC =∠DOC =60°. ∵CE 平分∠DCB ,∴∠DCO =∠FCO.又∵CO =CO ,∴△DCO ≌△FCO.∴CD =CF.∴BC =BF +CF =BE +CD.4.(德州中考)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.点E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG.先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是EF =BE +DF ;(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.解:EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连结AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG.在△ABE 和△ADG 中,⎩⎨⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG(SAS ). ∴AE =AG ,∠BAE =∠DAG . ∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF. ∴∠EAF =∠GAF.在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF(SAS ).∴EF =FG .∵FG =DG +DF =BE +DF ,∴EF =BE +DF.类型3 利用“中线倍长”构造全等三角形【例3】 如图,在△ABC 中,AD 是BC 边上的中线,AC>AB ,求证:AB +AC>2AD>AC -AB.证明:延长AD 至E ,使AD =DE ,并连结CE , ∵D 是BC 上的中点,∴CD =BD.又∵AD =DE ,∠ADB =∠CDE , ∴△ADB ≌△EDC(SAS ). ∴AB =CE.∵AC +CE>2AD>AC -CE ,∴AB +AC>2AD>AC -AB.【方法归纳】 当题目中出现中线时,常常延长中线,使所延长部分与中线的长度相等,然后连结相应的端点,便可以得到全等三角形.5.已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD.求证:AE =12AC.证明:延长AE 至F ,使EF =AE ,连结DF. ∵AE 是△ABD 的中线, ∴BE =DE.又∵∠AEB =∠FED ,∴△ABE ≌△FDE.∴∠B =∠BDF ,AB =DF. ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF.∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC.∵AD 是△ABC 的中线, ∴BD =CD. ∴DF =CD. 又∵AD =AD ,∴△ADF ≌△ADC(SAS ). ∴AC =AF =2AE ,即AE =12AC.6.如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,求证:DE =2AM.证明:延长AM至点N,使MN=AM,连结BN,∵M为BC中点,∴BM=CM.又∵AM=MN,∠AMC=∠NMB,∴△AMC≌△NMB(SAS).∴AC=BN,∠C=∠NBM.∴∠ABN=∠ABC+∠NBM=∠ABC+∠C=180°-∠BAC=∠EAD. ∵AD=AC,AC=BN,∴AD=BN.又∵AB=AE,∴△ABN≌△EAD(SAS).∴DE=NA.又∵AM=MN,∴DE=2AM.小专题(二) 等腰三角形中的分类讨论类型1 对顶角和底角的分类讨论对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°; ②若已知的这个角为底角,则一腰上的高与底边的夹角为38°. 故所求的一腰上的高与底边的夹角为26°或38°.类型2 对腰长和底长的分类讨论在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边. 2.(1)已知等腰三角形的一边长等于6 cm ,一边长等于7 cm ,求它的周长;(2)等腰三角形的一边长等于8 cm ,周长等于30 cm ,求其他两边的长. 解:(1)周长为19 cm 或20 cm .(2)其他两边的长为8 cm ,14 cm 或11 cm ,11 cm .3.若等腰三角形一腰上的中线分周长为9 cm 和12 cm 两部分,求这个等腰三角形的底和腰的长.解:如图,由于条件中中线分周长的两部分,并没有指明哪一部分是9 cm 、哪一部分是12 cm ,因此,应有两种情形.设这个等腰三角形的腰长为x cm ,底边长为y cm ,根据题意,得⎩⎨⎧x +12x =9,12x +y =12或⎩⎨⎧x +12x =12,12x +y =9.解得⎩⎨⎧x =6,y =9,或⎩⎪⎨⎪⎧x =8,y =5.故腰长是6 cm ,底边长是9 cm 或腰长是8 cm ,底边长是5 cm .类型3 几何图形之间的位置关系不明确的分类讨论4.已知C 、D 两点在线段AB 的中垂线上,且∠ACB =50°,∠ADB =80°,求∠CAD 的度数.解:①如图1,当C 、D 两点在线段AB 的同侧时, ∵C 、D 两点在线段AB 的垂直平分线上,∴CA =CB.∴△CAB 是等腰三角形. 又∵CE ⊥AB ,∴CE 是∠ACB 的平分线.∴∠ACE =∠BCE. ∵∠ACB =50°,∴∠ACE =25°. 同理可得∠ADE =40°,∴∠CAD =∠ADE -∠ACE =40°-25°=15°;图1 图2②如图2,当C 、D 两点在线段AB 的两侧时,同①的方法可得∠ACE =25°,∠ADE =40°,∴∠CAD =180°-(∠ADE +∠ACE)=180°-(40°+25°)=180°-65°=115°. 故∠CAD 的度数为15°或115°.类型4 运动过程中等腰三角形中的分类讨论5.(下城区校级期中)在Rt △ABC 中,∠C =90°,BC =8 cm ,AC =6 cm ,在射线BC 上一动点D ,从点B 出发,以2厘米每秒的速度匀速运动,若点D 运动t 秒时,以A 、D 、B 为顶点的三角形恰为等腰三角形,则所用时间t 为258或5或8秒. 解析:①当AD =BD 时,在Rt △ACD 中,根据勾股定理,得AD 2=AC 2+CD 2,即BD 2=(8-BD)2+62, 解得BD =254cm .则t =2542=258(秒);②当AB =BD 时,在Rt △ABC 中,根据勾股定理,得 AB =AC 2+BC 2=62+82=10(cm ), 则t =102=5(秒);③当AD =AB 时,BD =2BC =16 cm ,则t =162=8(秒).综上所述,t 的值可以是:258,5,8.6.(杭州期中)如图,已知△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1 cm ,点Q 从点B 开始沿B →C 方向运动,且速度为每秒2 cm ,它们同时出发,设出发的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求出发时间为几秒时,△PQB 是等腰三角形?(3)若Q 沿B →C →A 方向运动,则当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.解:(1)BQ =2×2=4(cm ),BP =AB -AP =8-2×1=6(cm ), ∵∠B =90°,∴PQ =BQ 2+BP 2=42+62=213(cm ). (2)根据题意,得BQ =BP , 即2t =8-t , 解得t =83.∴出发时间为83秒时,△PQB 是等腰三角形.(3)分三种情况:①当CQ =BQ 时,如图1所示, 则∠C =∠CBQ , ∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°. ∴∠A =∠ABQ. ∴BQ =AQ.∴CQ =AQ =5 cm . ∴BC +CQ =11 cm . ∴t =11÷2=5.5(秒).②当CQ =BC 时,如图2所示, 则BC +CQ =12 cm . ∴t =12÷2=6(秒).③当BC =BQ 时,如图3所示, 过B 点作BE ⊥AC 于点E , 则BE =AB·BC AC =6×810=4.8(cm ).∴CE =BC 2-BE 2=3.6 cm .∴CQ =2CE =7.2 cm . ∴BC +CQ =13.2 cm . ∴t =13.2÷2=6.6(秒).由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.小专题(三) 利用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题1.如图所示,有一张直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为(A )A .1 cmB .1.5 cmC .2 cmD .3 cm第1题图 第2题图2.如图,长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,已知AB =6,△ABF 的面积是24,则FC 等于(B )A .1B .2C .3D .43.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为(D )A .252cmB .152cm C .254cmD .154cm第3题图 第4题图4.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C′处,BC ′交AD 于点E ,则线段DE 的长为(B )A .3B .154C .5D .1525.(上城区期末)在矩形纸片ABCD 中,AB =3,AD =5,如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在线段AB 、AD 边上移动,则点A′在BC 边上可移动的最大距离为(B )A .1B .2C .3D .4解析:如图1,当点D 与点Q 重合时,根据翻折对称性可得 A′D =AD =5.在Rt △A ′CD 中,A ′D 2=A′C 2+CD 2, 即52=(5-A′B)2+32,解得A′B =1.如图2,当点P 与点B 重合时,根据翻折对称性可得A′B =AB =3. ∵3-1=2,∴点A′在BC 边上可移动的最大距离为2. 故选B .6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为7.第6题图 第7题图7.如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,AC =8 cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,那么△ADC′的面积是6_cm 2.8.如图,长方形ABCD 中,CD =6,BC =8,E 为CD 边上一点,将长方形沿直线BE 折叠,使点C 落在线段BD 上C′处,求DE 的长.解:∵在长方形ABCD 中,∠C =90°,DC =6,BC =8, ∴BD =62+82=10.由折叠可得BC ′=BC =8,EC ′=EC ,∠BC ′E =∠C =90°, ∴C ′D =2,∠DC ′E =90°. 设DE =x ,则C ′E =CE =6-x . 在Rt △C ′DE 中,x 2=(6-x )2+22, 解得x =103.∴DE 的长为103.类型2 利用勾股定理解决立体图形的最短路径问题9.如图是一个封闭的正方体纸盒,E 是CD 中点,F 是CE 中点,一只蚂蚁从一个顶点A 爬到另一个顶点G ,那么这只蚂蚁爬行的最短路线是(C )A .A ⇒B ⇒C ⇒G B .A ⇒C ⇒G C .A ⇒E ⇒GD .A ⇒F ⇒G10.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和场地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m .(精确到0.01 m )第10题图第11题图11.(凉山中考)如图,圆柱形玻璃杯,高为18 cm,底面周长为24 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为20cm.12.一位同学要用彩带装饰一个长方体礼盒.长方体高6 cm,底面是边长为4 cm的正方形,从顶点A到顶点C′如何贴彩带用的彩带最短?最短长度是多少?解:把长方体的面DCC′D′沿棱CD展开至面ABCD上,如图.构成矩形ABC′D′,则A到C′的最短距离为AC′的长度,连结AC′交DC于O,易证△AOD≌△C′OC.∴OD=OC,即O为DC的中点.由勾股定理得AC′2=AD′2+D′C′2=82+62=100,∴AC′=10 cm.即从顶点A沿直线到DC中点O(或A′B′中点O′),再沿直线到顶点C′,贴的彩带最短,最短长度为10 cm.13.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.解:(1)如图,木柜的表面展开图是两个矩形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97;蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89. ∵l1>l2,∴最短路径的长是89.小专题(四) 全等三角形的基本模型类型1 平移型把△ABC 沿着某一条直线l 平行移动,所得到△DEF 与△ABC 称为平移型全等三角形.图1,图2是常见的平移型全等三角形.在证明平移型全等的试题中,常常要碰到移动方向的边加(减)公共边.如图1,若BE =CF ,则BE +EC =CF +CE ,即BC =EF.如图2,若BE =CF ,则BE -CE =CF -CE ,即BC =EF.1.如图,已知EF ∥MN ,EG ∥HN ,且FH =MG ,求证:△EFG ≌NMH.证明:∵EF ∥MN ,EG ∥HN , ∴∠F =∠M ,∠EGF =∠NHM. ∵FH =MG ,∴FH +HG =MG +HG , 即GF =HM.在△EFG 和△NMH 中,⎩⎨⎧∠F =∠M ,GF =HM ,∠EGF =∠NHM ,∴△EFG ≌△NMH(ASA ).2.(金华六校10月联考)如图,A 、B 、C 、D 四点在同一直线上,请你从下面四项中选出三个选项作为条件,余下一个作为结论,构成一个真命题,并进行证明.①AB =CD ;②∠ACE =∠D ;③∠EAG =∠FBG ;④AE =BF. 你选择的条件是:①②③,结论是:④.(填写序号)证明:∵∠EAG =∠FBG , ∴∠EAD =∠FBD. ∵AB =CD ,∴AB +BC =BC +CD , 即AC =BD.在△ACE 和△BDF 中,⎩⎨⎧∠ACE =∠D ,AC =BD ,∠EAD =∠FBD ,∴△ACE ≌△BDF(ASA).类型2翻折型将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件,即公共边或公共角相等.3.(下城区校级期中)如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连结CD、EB.(1)不添加辅助线,找出图中其他的全等三角形;(2)求证:CF=EF.解:(1)图中其他的全等三角形为:△ACD≌△AEB,△DCF≌△BEF.(2)证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD.∴∠CAB-∠DAB=∠EAD-∠DAB,即∠CAD=∠EAB.∴△CAD≌△EAB.∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.类型3旋转型将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图1,涉及对顶角相等;如图2,涉及等角加(减)等角的条件.4.已知:如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE.证明:∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∠BAD=∠CAE,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE.5.如图,△ABC ,△CDE 是等边三角形,B ,C ,E 三点在同一直线上.(1)求证:AE =BD ;(2)若BD 和AC 交于点M ,AE 和CD 交于点N ,求证:CM =CN ; (3)连结MN ,猜想MN 与BE 的位置关系,并加以证明. 解:(1)证明:∵△ABC 和△DCE 均为等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°. ∴∠BCD =∠ACE =120°.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS ). ∴AE =BD.(2)证明:∵△ACE ≌△BCD ,∴∠CBD =∠CAE.∵∠ACN =180°-∠ACB -∠DCE =60°, ∴∠BCM =∠ACN.在△BCM 和△ACN 中,⎩⎨⎧∠CBM =∠CAN ,CB =CA ,∠BCM =∠ACN ,∴△BCM ≌△ACN(ASA ). ∴CM =CN.(3)MN ∥BE.证明:∵CM =CN ,∠MCN =60°, ∴△MCN 为等边三角形. ∴∠CMN =60°. ∴∠CMN =∠ACB. ∴MN ∥BE.类型4 双垂型基本图形如图:此类图形通常告诉BD ⊥DE ,AB ⊥AC ,CE ⊥DE ,那么一定有∠B =∠CAE. 6.如图,AD ⊥AB 于点A ,BE ⊥AB 于点B ,点C 在AB 上,且CD ⊥CE ,CD =CE.求证:AD =CB.证明:∵AD ⊥AB ,BE ⊥AB , ∴∠A =∠B =90°. ∴∠D +∠ACD =90°. ∵CD ⊥CE ,∴∠ACD +∠BCE =180°-90°=90°. ∴∠D =∠BCE .在△ACD 和△BEC 中,⎩⎨⎧∠A =∠B ,∠D =∠BCE ,CD =CE ,∴△ACD ≌△BEC (AAS). ∴AD =CB . 7.如图,△ABC 为等腰直角三角形,∠ACB =90°,直线l 经过点A 且绕点A 在△ABC 所在平面内转动,作BD ⊥l ,CE ⊥l ,D 、E 为垂足.求证:DA +DB =2DE.证明:在l 上截取FA =DB ,连结CD 、CF.∵△ABC 为等腰直角三角形,∠ACB =90°,BD ⊥l , ∴AC =BC ,∠BDA =90°.∴∠CBD +∠CAD =360°-∠BDA -∠ACB =360°-90°-90°=180°. 又∵∠CAF +∠CAD =180°, ∴∠CBD =∠CAF.在△CBD 和△CAF 中,⎩⎨⎧CB =CA ,∠CBD =∠CAF ,BD =AF ,∴△CBD ≌△CAF(SAS ). ∴CD =CF. ∵CE ⊥l ,∴DE =EF =12DF =12(DA +FA)=12(DA +DB).∴DA +DB =2DE.小专题(五) 一元一次不等式(组)的解法1.解下列不等式(组):(1)(金华金东区期末)5x +3<3(2+x); 解:去括号,得5x +3<6+3x. 移项,得5x -3x <6-3. 合并同类项,得2x <3. 系数化为1,得x <32.(2)(黄冈中考)x +12≥3(x -1)-4;解:去分母,得x +1≥6(x -1)-8. 去括号,得x +1≥6x -6-8. 移项,得x -6x ≥-6-8-1. 合并同类项,得-5x ≥-15. 两边都除以-5,得x ≤3.(3)⎩⎪⎨⎪⎧x +1≥2,①3(x +1)>x +5;② 解:由①,得x ≥1. 由②,得x>1.所以,不等式组的解集为x>1.(4)(莆田中考)⎩⎪⎨⎪⎧x -3(x -2)≥4,①1+2x 3>x -1;②解:由①,得x ≤1.由②,得x <4.所以原不等式组的解集为x ≤1.(5)(金华金东区期末)⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -1≤7-32x.② 解:解不等式①,得x >52.解不等式②,得x ≤4. 故不等式组的解集为52<x ≤4.2.(苏州中考)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.解:去分母,得4x -2>3x -1. 移项,得4x -3x >2-1. 合并同类项,得x >1.将不等式解集表示在数轴上如图:3.(萧山区校级月考)解不等式x3<1-x -36,并求出它的非负整数解.解:去分母,得2x<6-(x -3).去括号,得2x<6-x +3. 移项,得x +2x<6+3. 合并同类项,得3x<9. 系数化为1,得x<3.所以,非负整数解为0,1,2.4.(杭州经济开发区期末)解不等式组⎩⎪⎨⎪⎧x -4≥3(x -2),①x +113-1>-x.②并把它的解在数轴上表示出来.解:解不等式①,得x ≤1.解不等式②,得x >-2. ∴原不等式组的解为-2<x ≤1. 在数轴上表示为:5.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x >-52.解不等式②,得x ≤1. 所以-52<x ≤1.故满足条件的整数有-2、-1、0、1.小专题(六) 一元一次不等式的实际应用1.建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想,强调相关各国要打造互利共赢的“利益共同体”和共同发展繁荣的“命运共同体”.某国有企业在“一带一路”的战略合作中,向东南亚销售A 、B 两种外贸产品共6万吨.已知A 种外贸产品每吨800元,B 种外贸产品每吨400元.若A 、B 两种外贸产品销售额不低于3 200万元,则至少销售A 产品多少万吨?解:设销售A 产品x 万吨.根据题意,得 800x +400(6-x)≥3 200. 解得x ≥2.答:至少销售A 产品2万吨.2.(来宾中考)已知购买一个足球和一个篮球共需130元,购买2个足球和一个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4 000元,问最多可买多少个篮球? 解:(1)设每个足球的售价为x 元,每个篮球的售价为y 元.根据题意,得⎩⎪⎨⎪⎧x +y =130,2x +y =180. 解得⎩⎪⎨⎪⎧x =50,y =80. 答:每个足球和每个篮球的售价分别为50元、80元. (2)设可购买z 个篮球.根据题意,得 50(54-z)+80z ≤4 000.解得z ≤1303.∵z 取整数,∴z 最大可取43.答:最多可买43个篮球.3.2017年的5月20日是第17个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,这份快餐最多含有多少克的蛋白质?信 息1.快餐成分:蛋白质、脂肪、碳水化合物和其他. 2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x 克的蛋白质.根据题意,得x +4x ≤400×70%.解得x ≤56.答:这份快餐最多含有56克的蛋白质.4.(玉林中考)蔬菜经营户老王近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少钱?(2)今天因进价不变,老王仍用10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)解:(1) 设老王批发青菜x 市斤,西兰花y 市斤,根据题意,得⎩⎪⎨⎪⎧x +y =200,2.8x +3.2y =600.解得⎩⎪⎨⎪⎧x =100,y =100. (4-2.8)×100+(4.5-3.2)×100=250(元). 答:当天售完后老王一共能赚250元钱. (2)设青菜的售价定为a 元,根据题意,得 100×(1-10%)a +4.5×100-600≥250. 解得a ≥409≈4.44.答:青菜售价至少定为4.5元/市斤.小专题(七) 一次函数的图象与性质类型1 一次函数的图象与字母系数的关系1.在平面直角坐标系中,正比例函数y =kx(k<0)的图象可能是(C )2.(怀化中考)一次函数y =kx +b(k ≠0)在平面直角坐标系中的图象如图所示,则k 和b 的取值范围是(C )A .k >0,b >0B .k <0,b <0C .k <0,b >0D .k >0,b <0第2题图 第3题图3.(江山期末)已知一次函数y =kx +b 的图象如图所示,则下列语句中不正确的是(B )A .函数值y 随x 的增大而增大B .当x >0时,y >0C .k +b =0D .kb <04.已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是(C )5.已知一次函数y =(2k -1)x +b -1的图象经过第一、二、四象限,则k ,b 的取值范围为(B )A .k>12,b>1B .k<12,b>1C .k>12,b<1D .k<12,b<16.对于一次函数y =kx +b ,其中b 实际是该函数的图象与y 轴交点的纵坐标.在画图实践中我们发现当k>0,b>0时,其图象经过第一、二、三象限.请你随意画几个一次函数的图象继续探究:(1)当b>0时,图象与y 轴的交点在x 轴上方;当b<0时,图象与y 轴的交点在x 轴下方;(2)当k 、b 取何值时,图象经过第一、三、四象限?第一、二、四象限?第二、三、四象限?请写出你的探究结论和同伴交流.解:当k>0,b<0时,图象经过第一、三、四象限; 当k<0,b>0时,图象经过第一、二、四象限; 当k<0,b<0时,图象经过第二、三、四象限.7.一次函数y =mx +n 的图象如图所示.(1)试化简代数式:m 2-|m -n|;(2)若点(-2,a),(3,b)在函数图象上,比较a ,b 的大小.解:(1)由图象可知,m <0,n >0, 所以m -n<0.所以m 2-|m -n|=-m +m -n =-n.(2)因为一次函数y =mx +n 的图象从左往右逐渐下降, 所以y 随x 的增大而减小.又因为点(-2,a),(3,b)在函数图象上,且-2<3,所以a >b.类型2 一次函数图象上点的坐标特征8.(遂宁中考)直线y =2x -4与y 轴的交点坐标是(D )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)9.一次函数y =5x -2的图象经过点A(1,m),如果点B 与点A 关于y 轴对称,那么点B 所在的象限是(B )A .第一象限B .第二象限C .第三象限D .第四象限10.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =-3x +2上,则y 1,y 2,y 3的大小关系是(A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 3>y 1D .y 3>y 2>y 111.(钦州中考)一次函数y =kx +b(k ≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.12.(株洲中考)已知直线y =2x +(3-a)与x 轴的交点在A(2,0),B(3,0)之间(包括A ,B 两点),则a 的取值范围是7≤a ≤9.类型3 一次函数表达式的确定13.(金华金东区期末)将直线y =2x 向右平移2个单位长度所得的直线的表达式是(C )A .y =2x +2B .y =2x -2C .y =2(x -2)D .y =2(x +2)14.如图,A 、B 两点在坐标平面上,已知A(-3,0),B(0,-4),那么直线AB 关于y 轴对称的直线表达式为(B )A .y =-43x -4B .y =43x -4C .y =43x +4D .y =-43x +415.(江山期末)一次函数的图象经过M(3,2),N(-1,-6)两点.(1)求函数表达式;(2)请判定点A(1,-2)是否在该一次函数图象上,并说明理由. 解:(1)设y =kx +b(k ≠0),将点(3,2)(-1,-6)代入,得⎩⎨⎧2=3k +b ,-6=-k +b ,解得⎩⎪⎨⎪⎧k =2,b =-4. ∴y =2x -4.(2)当x =1时,y =2×1-4=-2, ∴点A(1,-2)在一次函数图象上.16.(益阳中考)如图,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位长度,再向上平移2个单位长度得到像点P 2,点P 2恰好在直线l 上.(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位长度,再向上平移6个单位长度得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k ≠0). 因为点P 1(2,1),P 2(3,3)在直线l 上,所以⎩⎨⎧2k +b =1,3k +b =3,解得⎩⎪⎨⎪⎧k =2,b =-3.所以直线l 所表示的一次函数的表达式为y =2x -3.(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9). 因为2×6-3=9, 所以点P 3在直线l 上.小专题(八) 一次函数与方程、不等式的综合应用类型1 一次函数与一元一次方程的综合应用 1.方程2x +12=0的解是直线y =2x +12(C )A .与y 轴交点的横坐标B .与y 轴交点的纵坐标C .与x 轴交点的横坐标D .与x 轴交点的纵坐标2.已知方程kx +b =0的解是x =3,则函数y =kx +b 的图象可能是(C )A B C D3.一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =0的解为(A )A .x =-1B .x =2C .x =0D .x =3第3题图 第4题图4.如图,已知直线y =3x +b 与y =ax -2的交点的横坐标为-2,则关于x 的方程3x +b =ax -2的解为x =-2. 5.已知方程3x +9=0的解是x =-3,则函数y =3x +9与x 轴的交点坐标是(-3,0),与y 轴的交点坐标是(0,9).类型2 一次函数与二元一次方程组的综合应用6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(B )A .⎩⎪⎨⎪⎧x =-2y =-4B .⎩⎪⎨⎪⎧x =-4y =-2 C .⎩⎪⎨⎪⎧x =2y =-4D .⎩⎪⎨⎪⎧x =-4y =2第6题图 第7题图7.如图,两条直线l 1和l 2的交点坐标可以看作下列哪个方程组中的解(B )A .⎩⎪⎨⎪⎧y =2x +1y =x +2B .⎩⎪⎨⎪⎧y =-x +3y =3x -5C .⎩⎪⎨⎪⎧y =-2x +1y =x -1D .⎩⎪⎨⎪⎧y =-2x +1y =x +1 8.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y)恰好是两条直线的交点坐标,则这两条直线的表达式是(C )A .y =x +9与y =23x +223B .y =-x +9与y =23x +223C .y =-x +9与y =-23x +223D .y =x +9与y =-23x +2239.利用一次函数的图象解二元一次方程组:⎩⎪⎨⎪⎧x +y =1,2x -y =5.解:根据图象可得出方程组⎩⎪⎨⎪⎧y =-x +1,y =2x -5的解是⎩⎪⎨⎪⎧x =2,y =-1.10.在平面直角坐标系中,直线l 1经过点(2,3)和点(-1,-3),直线l 2经过原点O ,且与直线l 1交于点P(-2,a).(1)求a 的值;(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设直线l 1与y 轴交于点A ,试求出△APO 的面积. 解:(1)设直线l 1的表达式为y =kx +b , ∵直线l 1经过(2,3)和(-1,-3),∴⎩⎪⎨⎪⎧2k +b =3,-k +b =-3.解得⎩⎪⎨⎪⎧k =2,b =-1. ∴直线l 1的表达式为y =2x -1.把P(-2,a)代入y =2x -1,得a =2×(-2)-1=-5.(2)设直线l 2的表达式为y =mx ,把P(-2,-5)代入,得-5=-2m ,解得m =52.∴直线l 2的表达式为y =52x.∴(-2,-5)可以看作是二元一次方程组⎩⎪⎨⎪⎧y =2x -1,y =52x 的解.(3)对于y =2x -1,令x =0,解得y =-1,则A 点坐标为(0,-1). ∴S △APO =12×2×1=1.11.(青岛中考)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y(m )与甲跑步的时间x(s )之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?解:设l 2的关系式为y 2=kx +b(k ≠0),根据题意,可得方程组⎩⎪⎨⎪⎧10=b ,22=2k +b.解得⎩⎪⎨⎪⎧k =6,b =10.∴y 2=6x +10.当y 1=y 2时,8x =6x +10,解得x =5.答:甲追上乙用了5 s .类型3 一次函数与不等式的综合应用12.一次函数y =kx +b(k ≠0)的图象如图所示,当kx +b <0时,x 的取值范围是(D )A .x <0B .x >0C .x <2D .x >2第12题图 第14题图 13.对于函数y =-x +4,当x >-2时,y 的取值范围是(D )A .y <4B .y >4C .y >6D .y <614.如图,函数y =2x -4与x 轴、y 轴分别交于点(2,0),(0,-4),当-4<y <0时,x 的取值范围是(C )A .x <-1B .-1<x <0C .0<x <2D .-1<x <215.(杭州开发区期末)一次函数y =kx +b(k ≠0)的图象如图所示,当y <0时,自变量x 的取值范围是(A )A .x <-2B .x >-2C .x >2D .x <2第15题图 第16题图16.(绍兴五校联考期末)直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b<k 2x +c 的解集为x<1.17.已知函数y 1=kx -2和y 2=-3x +b 相交于点A(2,-1).(1)求k 、b 的值,在同一坐标系中画出两个函数的图象;(2)利用图象求出:当x 取何值时有:①y 1<y 2;②y 1≥y 2;(3)利用图象求出:当x 取何值时有:①y 1<0且y 2<0;②y 1>0且y 2<0. 解:(1)k =12,b =5.图象略.(2)①当x<2时,y 1<y 2. ②当x ≥2时,y 1≥y 2.(3)①当53<x<4时,y 1<0且y 2<0.②当x>4时,y 1>0且y 2<0.小专题(九)分段函数1.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是(A )第1题图第2题图2.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费(A )A.0.4元B.0.45 元C.约0.47元D.0.5元3.如图是某工程队在一项修筑公路的工程中,修筑的公路长度y(米)与时间x(天)之间的关系函数(图象为折线).根据图象提供的信息,可知到第七天止,该工程队修筑的公路长度为(D )A.630米B.504米C.480米D.450米第3题图第4题图4.(绍兴五校联考期末)小波、小威从学校出发到青少年宫参加书法比赛,小波步行一段时间后,小威骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小波出发时间t(分)之间的函数关系如图所示.下列说法:①小威先到达青少年宫;②小威的速度是小波速度的2.5倍;③a=24;④b=480.其中正确的是(B ) A.①②③B.①②④C.①③④D.①②③④5.(江山期末)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.。
八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案
《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
北师大版数学八年级上册期末考试考前复习高频考点专题练习一遍过:《平行线性质》(三)
八年级上册期末考试考前复习高频考点专题练习一遍过:《平行线性质》(三)1.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC=°;(2)如图②,若∠BEC=140°,求∠BE1C的度数;(3)猜想:若∠BEC=α度,则∠BE n C=°.2.如图,现有一块含有30°的直角三角板ABC,且l1∥l2,其中∠ABC=30°.(1)如图(1),当直线l1和l2分别过三角板ABC的两个顶点时,且∠1=35°,则∠2=°.(2)如图(2),当∠ADE=80°时,求∠GFB的度数.(3)如图(3),点Q是线段CD上的一点,当∠QFC=2∠CFN时,请判断∠ADE和∠QFG的数量关系,并说出理由.3.问题情境:如图1,已知AB ∥CD ,∠APC =108°.求∠PAB +∠PCD 的度数.经过思考,小敏的思路是:如图2,过P 作PE ∥AB ,根据平行线有关性质,可得∠PAB +∠PCD = .问题迁移:如图3,AD ∥BC ,点P 在射线OM 上运动,∠ADP =∠α,∠BCP =∠β. (1)当点P 在A 、B 两点之间运动时,∠CPD 、∠α、∠β之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β之间的数量关系.问题拓展:如图4,MA 1∥NA n ,A 1﹣B 1﹣A 2﹣…﹣B n ﹣1﹣A n 是一条折线段.依据此图信息,把你所发现的结论,用简洁的数学式子表达为 .4.已知△ABC,过点B作DE⊥BC于点B,过点C作FH∥DE.(1)BC与FH的位置关系是;(2)如图1,点M在直线DE和FH之间,连接BM,CM.若∠ABM=∠ABD,∠ACM=∠ACF,∠BAC=72°,求∠BMC的度数;(3)若∠ABE和∠ACH的平分线交于点N,在图2中补全图形,用等式表示∠BNC与∠BAC 的数量关系,并证明.5.如图,直线AB∥CD,点E、F分别是AB、CD上的动点(点E在点F的右侧),点M为线段EF上的一点,点N为射线FD上的一点,连接MN.(1)如图1,若∠BEF=150°,MN⊥EF,则∠MNF=;(2)作∠EMN的角平分线MQ,且MQ∥CD.求∠MNF与∠AEF之间的数量关系;(3)在(2)的条件下,连接EN.且EN恰好平分∠BEF,∠MNF=2∠ENM,求∠EMN的度数.6.已知AB∥CD,点M、N分别是AB、CD上两点,点E在AB、CD之间,连接EM、EN.(1)如图1,已知∠EMB=30°,∠END=40°,求∠MEN的度数;(2)如图2,若点P是AB上方一点,EN平分∠CNP,AM平分∠EMP,已知∠CNE=25°,求∠MEN+∠P的度数;(3)如图3,若点P是CD下方一点,连接PM、PN,且EN的延长线NF平分∠DNP,PM 平分∠EMB,2∠P+∠MEN=105°,求∠DNP的度数.7.如图,已知AB∥CD,现将直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当直角三角形PMN所放位置如图①所示时,∠PFD与∠AEM存在怎样的数量关系?请说明理由.(2)当直角三角形PMN所放位置如图②所示时,请直接写出∠PFD与∠AEM之间存在的数量关系.(3)在(2)的条件下,若MN与CD交于点O,且∠AEM=40°,∠DON=20°,则∠N的度数为.8.如图,已知AM∥BN,∠A=58°,点P是射线AM上一动点(与点A不重合),BC、BD 分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是度;②∵AM∥BN,∴∠ACB=∠.(2)求∠CBD的度数.(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.(直接写出结果)9.(1)已知AB∥CD,点M为平面内一点.如图1,BM⊥CM,小颖说过点M作MP∥AB,很容易说明∠ABM和∠DCM互余.请你帮小颖写出具体的思考过程;(2)如图2,AB∥CD,点M在射线ED上运动,当点M移动到点A与点D之间时,试判断∠BMC与∠ABM,∠DCM的数量关系,并说明理由;(3)在(2)的条件下,当点M在射线ED上的其他地方运动时(点M与E,A,D三点不重合),请直接写出∠BMC与∠ABM,∠DCM之间的数量关系.10.如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;(3)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE 于N,交BC于G.当H在BC上运动时(不与B点重合),试判断∠BAD+∠DMH与∠DNG 的数量关系,并说明理由.参考答案1.解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE=75°;(2)如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠BE1C=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC=70°;(3)如图2,∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;∵∠ABE 2和∠DCE 2的平分线,交点为E 3,∴∠BE 3C =∠ABE 3+∠DCE 3=∠ABE 2+∠DCE 2=∠CE 2B =∠BEC ; …以此类推,∠E n =∠BEC ,∴当∠BEC =α度时,∠BE n C 等于()°.故答案为:75°;().2.解:(1)∵l 1∥l 2,∴∠2+∠CAB +∠1+∠ABC =180°, ∵∠1=35°, ∴∠2=55°. 故答案为:55;(2)∵∠ADE =80°,∠A =60°,∴∠AED=40°,∵l1∥l2,∴∠AGF=40°,∴∠GFB=10°;(3)3∠ADE=∠QFG+90°.∵∠ADE+∠CFN=∠C=90°,设∠CFN=x,则∠QFC=2x,∴∠ADE=90°﹣x,∠QFG=180°﹣3x,∴3∠ADE=∠QFG+90°.3.解:如图2,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°,∵∠APC=108°,∴∠PAB+∠PCD=360°﹣108°=252°;故答案为:252°;(1)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD =∠DPE +∠CPE =∠α+∠β;(2)当P 在BA 延长线时,∠CPD =∠β﹣∠α;理由: 如图3﹣1,过P 作PE ∥AD 交CD 于E , ∵AD ∥BC , ∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE , ∴∠CPD =∠CPE ﹣∠DPE =∠β﹣∠α; 当P 在BO 之间时,∠CPD =∠α﹣∠β.理由: 如图3﹣2,过P 作PE ∥AD 交CD 于E , ∵AD ∥BC , ∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE , ∴∠CPD =∠DPE ﹣∠CPE =∠α﹣∠β.问题拓展:分别过A 2,A 3…,A n ﹣1作直线∥A 1M ,过B 1,B 2,…,B n ﹣1作直线∥A 1M , 由平行线的性质和角的和差关系得∠A 1+∠A 2+…+∠A n =∠B 1+∠B 2+…+∠B n . 故答案为:∠A 1+∠A 2+…+∠A n =∠B 1+∠B 2+…+∠B n .4.解:(1)∵DE⊥BC,∴∠DBC=90°,∵FH∥DE,∴∠BCF=180°﹣90°=90°,∴BC⊥FH;(2)∵∠BAC=72°,∴∠ABC+∠ACM=108°,∵FH∥DE,∴∠ABD+∠ACF=72°,∵∠ABM=∠ABD,∠ACM=∠ACF,∴∠ABM+∠ACM=18°,∴∠BMC=180°﹣108°﹣18°=54°;(3)2∠BNC+∠BAC=360°.如图,∠ABE=∠ABC+90°,∠ACH=∠ACB+90°,∵∠ABE和∠ACH的平分线交于点N,∴∠ABN+∠ACN=∠ABE+∠ACH=(∠ABC+∠ACB+180°)=(180°﹣∠BAC+180°)=180°﹣∠BAC,∵∠ABN+∠ACN=∠ABC+∠NBC+∠ACB+∠NCB=180°﹣∠BAC+180°﹣∠BNC,∴180°﹣∠BAC=180°﹣∠BAC+180°﹣∠BNC,∴2∠BNC+∠BAC=360°.故答案为:BC⊥FH.5.解:(1)∵AB∥CD,∠BEF=150°,∴∠DEF=30°,∵MN⊥EF,∴∠FMN=90°,∴∠MNF=60°;(2)如图,∵AB∥CD,MQ∥CD,∴MQ∥AB,∴∠MNF=∠NMQ,∠EMQ=∠AEF,∵MQ是∠EMN的角平分线,∴∠NMQ=∠EMQ,∴∠MNF=∠AEF;(3)∵AB∥CD,∴∠ENF=∠BEN,∵EN平分∠BEF,∴∠BEN=∠FEN,∴∠ENF=∠FEN,∵∠MNF=∠AEF,∠MNF=2∠ENM,∴8∠ENM=180°,解得∠ENM=22.5°,∴∠EMN=2∠MNF=4∠ENM=90°.故答案为:60°.6.解:(1)如图1中,作EQ∥AB.∵AB∥CD,EQ∥AB,∴EQ∥CD∥AB,∴∠EMB=∠QEM,∠END=∠QEN,∴∠MEN=∠QEM+∠QEN=∠EMB+∠END=30°+40°=70°.(2)如图2中,设∠AMP=∠AME=x,∵∠ENC=∠ENP=25°,∴∠E=x+25°,∴x=∠E﹣25°,∵∠P+2x=∠E+25°,∴∠P+2∠E﹣50°=∠E+25°,∴∠P+∠E=75°.(3)如图3中,设∠PME=∠PMB=x,∠FND=∠FNP=y.则有,∴2(x﹣2y)+180°﹣2x+y=105°,∴y=25°,∴∠DNP=2y=50°.7.解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD﹣∠AEM=90°;理由如下:∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD﹣∠AEM=90°;(3)∵∠P=90°,∠PEB=∠AEM=40°,∴∠PHE=90°﹣∠PEB=90°﹣40°=50°,∵AB∥CD,∴∠HFO=∠PHE=50°,∵∠DON=20°,∴∠N=∠HFO﹣∠DON=30°.故答案为:30°.8.解:(1)①∵AM∥BN,∠A=58°,∴∠A+∠ABN=180°,∴∠ABN=122°;②∵AM∥BN,∴∠ACB=∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣58°=122°,∴∠ABP+∠PBN=122°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=122°,∴∠CBD=∠CBP+∠DBP=61°;(3)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=122°,∠CBD=61°,∴∠ABC+∠DBN=61°,∴∠ABC=30.5°.故答案为:122,CBN;30.5°.9.解:(1)如图1,过M作MP∥AB,则∠BMP=∠ABM,又∵AB∥CD,∴MP∥CD,∴∠PMC=∠MCD,又∵BM⊥CM,∴∠BMP+∠PMC=90°,∴∠ABM+∠MCD=90°,∴∠ABM和∠DCM互余;(2)∠ABM+∠DCM=∠BMC,理由如下:如图2,过M作MF∥AB,交BC于F,则∠ABM=∠BMF,又∵AB∥CD,∴MF∥CD,∴∠DCM=∠FMC,∴∠ABM+∠DCM=∠BMF+∠CMF=∠BMC;(3)当点M在E、A两点之间时,如图3,∠BMC=∠DCM﹣∠ABM;当点M在AD的延长线上时,如图4,∠BMC=∠ABM﹣∠DCM.10.(1)证明:AD∥BC,∠ADC+∠BCD=180,∵DE平分∠ADB,∠BDC=∠BCD,∴∠ADE=∠EDB,∠BDC=∠BCD,∵∠ADC+∠BCD=180°,∴∠EDB+∠BDC=90°,∴∠1+∠2=90°;(2)解:∠FBD+∠BDE=90°﹣∠F=35°,∵DE平分∠ADB,BF平分∠ABD,∴∠ADB+∠ABD=2(∠FBD+∠BDE)=70°,又∵四边形ABCD中,AD∥BC,∴∠DBC=∠ADB,∴∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,即∠ABC=70°;(3)解:在△BMF中,∠BMF=∠DMH=180°﹣∠ABD﹣∠BFH,又∵∠BAD=180°﹣(∠ABD+∠ADB),∴∠DMH+∠BAD=(180°﹣∠ABD﹣∠BFH)+(180°﹣∠ABD﹣∠ADB)=360°﹣∠BFH ﹣2∠ABD﹣∠ADB,∴∠DNG=∠FNE=180°﹣∠BFH﹣∠AED=180°﹣∠BFH﹣∠ABD﹣∠ADB=(∠DMH+∠BAD),即∠BAD+∠DMH=2∠DNG.。
人教版八年级数学上册全等三角形期末复习专题试卷及答案
2016-2017学年度第一学期八年级数学期末复习专题全等三角形姓名:_______________班级:_______________得分:_______________一选择题:1.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是1000,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对5.要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使,,在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角6.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE7.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( )A.△ABD≌△AFDB.△AFE≌△ADCC.△AEF≌△ACBD.△ABC≌△ADE8.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.410.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( )A.5B.4C.3D.211.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为().A. B. 1 C.2 D.512.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③13.如图所示,△ABC是等边三角形,AQ=PQ, PR⊥AB于R点,PS⊥AC于S点,PR=PS.则四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的结论是( )A.①②③④B.只有①②C.只有②③D.只有①③14.如图,AC=AD,BC=BD,连结CD交AB于点E,F是AB上一点,连结FC,FD,则图中的全等三角形共有()A.3对B.4对C.5对D.6对15.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.416.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有( )A.4个B.3个C.2个D.1个17.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )A.10B.12C.14D.1618.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )A.1个B.2个C.3个D.4个19.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:⑴BP=CM;⑵△ABQ≌△CAP;⑶∠CMQ的度数始终等于60°;⑷当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.420.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1B.2C.3D.4二填空题:21.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.22.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.23.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.24.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO.下列结论:①AC ⊥BD;②CB=CD;③△ABC ≌△ADC;④DA=DC.其中所有正确结论的序号 是 .25.如图,△ABC 的角平分线交于点P ,已知AB ,BC ,CA 的长分别为5,7,6,则S △ABP ∶S △BPC ∶S △APC =___________.26.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB=6,BC=8.若S △ABC =28,则DE= .27.如图,OP 平分∠AOB ,PB ⊥OB ,OA=8cm ,PB=3cm ,则△POA 的面积等于 cm 2.28.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.29.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC 上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.30.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为.31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,判断 EC与BF的关系,并说明理由.32.如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.33.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.34.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC 于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.35.如图,在△ABC中,AD为BC边上的中线,E为AC上的一点,BE交AD于点F,已知AE=EF. 求证:AC=BF.36.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.37.如图(1)边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1)当点D运动到AB的中点时,求AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半.38.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1、B2、B3、A4、D5、B6、D7、D8、C9、D 10、B 11、C 12、D 13、A 14、D 15、C 16、A 17、D.18、C 19、C 20、C 21、2 块. 22、55° 23、4 .24、①②③25、5∶7∶6 26、4; 27、12 cm2.28、9cm .29、1或4 30、2∠α+∠A=180°.31、平行且相等32、【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE.33、1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.34、35、证:延长AD到G,使得DG=AD.(1分)在△ADC和△GDB中∴△ADC≌△GDB ∴AC=BG 且∠CAD=∠G∵AE=EF∴∠EFA=∠EAF∴∠G=∠EFA∵∠EFA=∠BFG∴∠G=∠BFG∴BG=BF∵AC=BG∴BF=AC36、(1)证明:连结AD.∵AB=AC ∠BAC=90° D为BC的中点∴∠B=∠BAD=∠DAC=45°,AD⊥BC∴BD=AD, ∠BDA=90°又BE=AF∴△BDE≌△ADF (SAS)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形(2)△DEF仍为等腰直角三角形证明:连结AD∵AB=AC ∠BAC=90° D为BC的中点∴∠DAC=∠BAD=∠ABD=45°,AD⊥BC∴BD=AD, ∠BDA=90°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (SAS)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形37、(1)AE=(2)设AD=x,则CF=x,BD=6-x,BF=6+x∵∠B=60°,∠BDF=90°∴BF=2BD 即6+x=2×(6-x)∴x=2即AD=2 ∴BD=4,DF==×4×=∴S△BDF(3)不变过F作FM⊥AG延长线于M由AD=CF,∠AED=∠FMC=90°,∠A=∠FCM=60°可得FM=DE易知△DEG≌△FMG由全等可得CM=AE,FG=GM即AC=AE+EC=CM+CE=EG+GM=2GE38、(1)延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论应是EF=BE+DF ;(2)如图,连接EF,延长AE、BF相交于点C,∵∠AOB=40°+90°+(90°﹣80°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣40°)+(80°+50°)=180°,延长FB到G,使BG=AE,连接OG,先证明△AOE≌△BOG,再证明△OEF≌△OGF,可得出结论应是EF=AE+BF ;即EF=2×(50+70)=240海里.答:此时两舰艇之间的距离是240海里.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
苏科版八年级数学上学期期中复习专题3 全等三角形的判定(含解析) - 副本
初中数学苏科版八年级上学期期中复习专题3全等三角形的判定一、选择题1.如图,CA=CB,AD=BD,M、N分别为CA、CB的中点,∠ADN=80°,∠BDN=30°,则∠CDN 的度数为()A. 40°B. 15°C. 25°D. 30°2.如图,点E,点F在直线AC上,AE=CF,AD=CB,下列条件中不能判断△ADF≌△CBE的是()A. AD//BCB. BE//DFC. BE=DFD. ∠A=∠C3.如图,△ABC中,AB=AC ,点D,E分别在AB,AC上,添加下列条件后,不能判定△ABE≌△ACD的是( )A. AD=AEB. BE=CDC. ∠ADC=∠AEBD. ∠DCB=∠EBC4.如图,已知,,添加下列条件仍不能证明的是()A. B. C. D.5.下列条件中能判定的是()A. B.C. D.6.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )A. 甲B. 乙与丙C. 丙D. 乙7.如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A. ①或③B. ①或④C. ②或④D. ②或③8.如图,△中,、的角平分线、交于点,延长、,,,则下列结论中正确的个数是()①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB④若PM⊥BE,PN⊥BC,则AM+CN=AC;A. 1个B. 2个C. 3个D. 4个9.如图,已知等边和等边,点在的延长线上,的延长线交于点M,连,若,则()A. B. C. D.10.如图,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连接AD,AC,BC,BD,若AD=AC=AB,则下列结论:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等边三角形,④∠BCD 的度数为150°,其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题11.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是________.(只填一个即可)12.如图,AB=AD,只需添加一个条件________,就可以判定△ABC≌△ADE.13.如图,已知AC与BF相交于点E,AB∥CF,点E为BF中点,若CF=6,AD=4,则BD=________.14.如图,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以带那一块________.15.如图,在Δ中,已知点为中点,点在线段上以每秒的速度由点向点运动,同时点在线段上由点向点运动。
人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质
专题三角形及其性质☞解读考点☞2年中考【题组】(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()1.A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,2.则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D.考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a (a>0)【答案】A.【解析】试题分析:A.∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B.∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D.∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C. 7或9 D.9或12【答案】B.【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选B.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【答案】B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°【答案】C.【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C 的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.考点:三角形内角和定理.8.(广州)已知2是关于x的方程的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【答案】B.考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的()A.内心 B.外心 C.中心 D.重心【答案】D.【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D.考点:三角形的重心.10.(百色)下列图形中具有稳定性的是()A.正三角形 B.正方形 C.正五边形 D.正六边形【答案】A.【解析】试题分析:∵三角形具有稳定性,∴A正确,B.C、D错误.故选A.考点:三角形的稳定性.11.(百色)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4 B.4或5 C.5或6 D.6【答案】B.【解析】试题分析:设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=,b=,c=,又∵a﹣b<c<a+b,∴,即,解得3<h<6,∴h=4或h=5,故选B.考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE是△ABC的高的是()A. B.C.D.【答案】D.考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是()A.正方形 B.矩形 C.平行四边形 D.直角三角形【答案】D.【解析】试题分析:直角三角形具有稳定性.故选D.考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A.【解析】试题分析:为△ABC中BC边上的高的是A选项.故选A.考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A.B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A. B. C. D.【答案】A.考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A. B. C. D.【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是.【答案】1<c<5.【解析】试题分析:由题意得,,,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.(南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,20.∠B=40°,则∠ACE的大小是度.【答案】60.【解析】试题分析:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE平分∠ACD,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有个.【答案】10.【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10.考点:三角形三边关系.(广东省)如图,△ABC三边的中线AD、BE、CF的公共点为G,若,22.则图中阴影部分的面积是.【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.【答案】5.【解析】试题分析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD 与CE相交于点O,则= .【答案】2.【解析】试题分析:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简,并求值,其中a与2、3构成△ABC 的三边,且a为整数.【答案】,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4 【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145° B.152° C.158° D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB 再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB =4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC 于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A.120° B.135° C.150° D.180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A. B. C. D.【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5 两种,故取出的三条线段为边能构成钝角三角形的概率是.考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知==,==,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。
浙教版2020-2021学年八年级上册数学期末复习试题3(含答案)
2020-2021学年浙教新版八年级上册数学期末复习试题一.选择题1.在平面直角坐标系中,将点(﹣2,﹣4)向下平移3个单位长度后得到的点的坐标是()A.(﹣2,﹣1)B.(﹣5,﹣4)C.(1,﹣4)D.(﹣2,﹣7)2.直线y=﹣2x+6与两坐标轴围成的三角形的面积是()A.8B.6C.9D.23.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.4.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A.90×3+2x≥480B.90×3+2x≤480C.90×3+2x<480D.90×3+2x>4805.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°6.点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于()A.5B.3C.﹣3D.﹣17.若不等式组的解集为x<﹣a,则下列各式中正确的是()A.a+b≤0B.a+b≥0C.a﹣b<0D.a﹣b>08.如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换,你认为在滑动对称变换过程中,对应点不在变换直线上的两个对应三角形的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行9.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图中s和t分别表示路程和时间,根据图象判定跑260米时,快者比慢者少用多少秒()A.6秒B.6.5秒C.7秒D.7.5秒10.下列命题中是真命题的有()①面积相等的两个三角形全等;②平方根是它本身的数有1和0;③10的平方根是;④在数轴上可以找到表示的点;⑤已知直角三角形中两边长为3和4,则第三边长为5;⑥若(x﹣y)2+A=(x+y)2成立,则A=4xy.A.1个B.2个C.3个D.4个二.填空题11.请写出适合不等式x<﹣1的一个整数解.12.将点A(2,1)变换到点B(2,﹣1),写出一种轴对称或平移方法:.13.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠C=40°,则∠CDO+∠CFO的度数为.14.已知一次函数y=kx﹣3的图象与x轴的交点坐标为(x0,0),且2≤x0≤3,则k的取值范围是.15.如图,在△ABC中,AB=AC,∠A=50°,EF垂直平分AB,则∠FBC的度数为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.三.解答题17.已知不等式组的解集为﹣1<x<1,求(a+1)(b﹣1)的值.18.已知∠O及其两边上点A和B(如图),用直尺和圆规作一点P,使点P到∠O的两边距离相等,且到点A,B的距离也相等,并保证其距离最短.(不写作法,保留作图痕迹)19.如图,每个小正方形的边长为1,△ABC经过平移得到△A′B′C′.根据下列条件,利用网格点和直尺画图:(1)补全△A′B′C′;(2)作出中线CD;(3)画出BC边上的高线AE;(4)△ABC的面积为.20.若直线y1=k1x+b1(k1≠0),y2=k2x+b2(k2≠0),则称直线y=(k1+k2)x+b1b2为这两条直线的友好直线.(1)直线y=3x+2与y=﹣4x+3的友好直线为.(2)已知直线l是直线y=﹣2x+m与y=3mx﹣6(m≠0)的友好直线,且直线l经过第一、三、四象限.①求m的取值范围;②若直线l经过点(3,12),求m的值.21.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=,则该三角形的面积为;(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连结CD,AD.若△ABD为“方倍三角形”,且AP=,求△PDC的面积.22.已知一次函数y1=2x+m(m为常数)和y2=﹣x+1.(1)当m=2时,若y1>y2,求x的取值范围;(2)当x1>1时,y1>y2;当x1<1时,y1<y2,则m的值是.(3)判断函数y=y1•y2的图象与x轴的交点个数情况,并说明理由.23.在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=时,求的值.参考答案与试题解析一.选择题1.解:将点(﹣2,﹣4)向下平移3个单位长度,所得到的点的坐标是(﹣2,﹣7),故选:D.2.解:在直线y=﹣2x+6中,当x=0时,y=6;当y=0时,x=3;∴直线y=﹣2x+6与坐标轴交于(0,6),(3,0)两点,∴直线y=﹣2x+6与两坐标轴围成的三角形面积=×6×3=9.故选:C.3.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.4.解:设张飞后2天平均听课时长为x分钟,根据题意,得:3×90+2x≥480,故选:A.5.解:当∠A=∠C时,∠C=70°;当∠A=∠B=70°时,∠C=180°﹣∠A﹣∠B=40°;当∠B=∠C时,∠C=∠B=(180°﹣∠A)=55°;即∠C的度数可以是70°或40°或55°,故选:C.6.解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,则3a﹣b=﹣2.∴6a﹣2b+1=2(3a﹣b)+1=﹣4+1=﹣3故选:C.7.解:∵不等式组的解集为x<﹣a,∴﹣a≤b,∴a+b≥0.故选:B.8.解:两个对应三角形的对应点所具有的性质是对应点连线被对称轴平分.故选:B.9.解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),快者跑260米所用的时间为(m/s),慢者跑260米所用的时间为(m/s),∴快者比慢者少用的时间为(秒).故选:D.10.解:①面积相等的两个三角形全等,是假命题;②平方根是它本身的数有1和0,是假命题;③10的平方根是,是真命题;④在数轴上可以找到表示的点,是真命题;⑤已知直角三角形中两边长为3和4,则第三边长为5,是假命题;⑥若(x﹣y)2+A=(x+y)2成立,则A=4xy,是真命题.真命题共3个,故选:C.二.填空题11.解:适合不等式x<﹣1的一个整数解为﹣2(答案不唯一),故答案为:﹣2.12.解:将点A(2,1)向下平移2个单位得到点B(2,﹣1),点A关于x轴的对称点为B(2,﹣1),故答案为向下平移2个单位或关于x轴对称13.解:∵将△ABC沿DE,EF翻折,顶点A,B均落在点O处,∴∠A=∠DOE,∠B=∠EOF,∴∠DOF=∠A+∠B,∵∠A+∠B+∠C=180°,∴∠A+B=180°﹣∠C,∵∠DOF=∠C+∠CDO+∠CFO=180°﹣∠C,∴∠CDO+∠CFO+40°=180°﹣40°,∴∠CDO+∠CFO=100°,故答案为:100°.14.解:将(2,0)代入y=kx﹣3得:0=2k﹣3,∴k=.将(3,0)代入y=kx﹣3得:0=3k﹣3∴k=1.∵一次函数y=kx﹣3过定点(0,﹣3),函数图象与x轴的交点坐标为(x0,0),且2≤x0≤3,∴1≤k≤.故答案为:1≤k≤.15.解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°.∵EF垂直平分AB,∴AF=BF,∴∠ABF=∠A=50°.∴∠FBC=∠ABC﹣∠ABF=65°﹣50°=15°.故答案为:15°.16.解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).三.解答题17.解:由2x﹣a<1得:x<由x﹣2b>3得:x>3+2b∴不等式组的解集为:3+2b<x<又∵﹣1<x<1∴∴,∴(a+1)(b﹣1)=(1+1)(﹣2﹣1)=﹣6.18.解:如图,点P即为所求.19.解:(1)如图,△A′B′C′即为所求.(2)如图线段CD即为所求.(3)如图,线段AE即为所求.=×4×4=8.(4)S△ABC故答案为8.20.解:(1)直线y=3x+2与y=﹣4x+3的友好直线为:y=(3﹣4)x+2×3=﹣x+6,故答案为:y=﹣x+6;(2)①∵直线l是直线y=﹣2x+m与y=3mx﹣6(m≠0)的友好直线,∴直线l的解析式为:y=(﹣2+3m)x﹣6m,∵直线l经过第一、三、四象限,∴,解得;②∵直线l经过点(3,12),∴3(﹣2+3m)﹣6m=12,∴m=6.21.解:(1)对于①等边三角形,三边相等,设边长为a,则a2+a2=2a2,根据“方倍三角形”定义可知:等边三角形一定是“方倍三角形”;对于②直角三角形,三边满足关系式:a2+b2=c2,根据“方倍三角形”定义可知:直角三角形不一定是“方倍三角形”;故选A.故答案为:A;(2)设Rt△ABC其余两条边为a,b,则满足a2+b2=3,根据“方倍三角形”定义,还满足:a2+3=2b2,联立解得,则Rt△ABC的面积为:;故答案为:;(3)由题意可知:△ABP≌△DBP,∴BA=BD,∠ABP=∠DBP,根据“方倍三角形”定义可知:BA2+BD2=2AD2=2BA2,∴AD=AB=BD,∴△ABD为等边三角形,∠BAD=60°,∴∠ABP=∠DBP=30°,∴∠PBC=90°,∵∠CPB=45°,∴∠APB=180°﹣45°=135°,∴∠DPC=90°,∵∠ABC=120°,∠ACB=45°,∴∠BAC=15°,∴∠CAD=45°,∴△APD为等腰直角三角形,∴AP=DP=,∴AD=2,延长BP交AD于点E,如图,∵∠ABP=∠PBD,∴BE⊥AD,PE=AD=AE=1,∴BE===,∴PB=BE﹣PE=﹣1,∵∠CPB=∠PCB=45°,∴△PBC为等腰直角三角形,∴PC=PB=﹣,=PC•PD=(﹣)×=﹣1.∴S△PDC22.解:(1)当m=2时,y1=2x+2,∵y1>y2,y2=﹣x+1,∴2x+2>﹣x+1,解得x>﹣;(2)如果y1>y2,那么2x+m>﹣x+1,解得x>,如果y1<y2,那么2x+m<﹣x+1,解得x<,∵当x1>1时,y1>y2;当x1<1时,y1<y2,∴=1,解得m=﹣2.故答案为:﹣2;(3)y=y1•y2=(2x+m)(﹣x+1),令y=0,则(2x+m)(﹣x+1)=0,解得x1=﹣,x2=1,当﹣=1,即m=﹣2时,该方程有两个相等的实数根,则函数图象与x轴只有一个交点;当﹣≠1,即m≠﹣2时,该方程有两个不相等的实数根,则函数图象与x轴有两个交点.23.(1)证明:∵CA=CB,EB=ED,∠ABC=∠DBE=60°,∴△ABC和△DBE都是等边三角形,∴AB=BC,DB=BE,∠A=60°.∵∠ABC=∠DBE=60°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS).∴∠A=∠ECB;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴,∴,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=DC=2a,∵tan∠DEC=,∴ME=2DM,∴CE=a,∴,∵CE∥DN,∴△CEF∽△NDF,∴.。
浙教版-学年初中数学八年级上学期期末复习专题3 全等三角形的性质、判定与应用 解析版
浙教版2019-2020学年初中数学八年级上学期期末复习专题3 全等三角形的性质、判定与应用一、单选题1.下列图形是全等图形的是()A. B. C. D.2.下列选项中表示两个全等的图形的是( )A. 形状相同的两个图形B. 周长相等的两个图形C. 面积相等的两个图形D. 能够完全重合的两个图形3.下列不是利用三角形的稳定性的是()A. 伸缩晾衣架B. 三角形房架C. 自行车的三角形车架D. 矩形门框的斜拉条4.如右图,△ABC≌△CDA,AB=4,BC=5,AC=6,则AD的长为()A. 4B. 5C. 6D. 不能确定5.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A. SASB. AASC. ASAD. SSS6.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是( )A. 1B. 2C. 3D. 47.在下列条件中,不能说明△ABC≌△A′B′C'的是( )A. ∠A=∠A′,∠C=∠C′,AC=A'C'B. ∠B=∠B′,∠C=∠C′,AB=A′B'C. ∠A=∠A′,AB=A′B′,BC=B'C'D. AB=A′B′,BC=B'C,AC=A′C'8.如图中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若点E,B,D到直线AC的距离分别为6、3、2,则图中实线所围成的阴影部分面积S是( )A. 50B. 44C. 38D. 329.如图,有A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A. 在AC,BC两边高线的交点处B. 在AC,BC两边中线的交点处C. 在AC,BC两边垂直平分线的交点处D. 在∠A,∠B内角平分线的交点处10.如图,AD是∆ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7 ,DE=2,AB=4,则AC的长是()A. 3B. 4C. 5D. 6二、填空题11.如图,已知△ABC≌△DEC,∠E=40°,∠ACB=110°,则∠D的度数为________.12.如图,已知AB∥CF,点E为DF的中点,若AB=9 cm,CF=5 cm,则BD=________cm.13.如图:有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到离A的距离等于________时,ΔABC和ΔPQA 全等.14.如图,方格纸中△DEF的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则与△DEF全等的格点(顶点在每个小格的顶点上)三角形能画________个.15.如图,△ABC中∠ABC=∠ACB,AB的垂直平分线交AC于点D.若∠A=40°,则∠DBC=________16.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=15,BD:CD=3:2,则点D到AB的距离是________.三、解答题17.如图,已知△ABC(AC<AB<BC),请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)在边BC上确定一点P,使得PA+PC=BC;(2)作出一个△DEF,使得:①△DEF是直角三角形;②△DEF的周长等于边BC的长.18.如图所示,已知点P是△ABC三条角平分线的交点,PD⊥AB,若PD=5,△ABC的周长为20,求△ABC的面积.19.已知,如图,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN 于点E;试猜测线段DE、AD、BE之间的数量关系,并说明理由.20.如图,已知AB∥CF,DE=EF(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.21.如图:在△ABC中,己知∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M连接MD,过点D作DN⊥MD,交BM于点N.(1)求证:△DBN≌△DCM;(2)设CD与BM相交于点E,若点E是CD的中点,试探究线段NE、ME、CM之间的数量关系,并证明你的结论.22.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;(2)设,.①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.23.阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化到△ADF中即可判断.(1)AB、AD、DC之间的等量关系为________;(2)完成(1)的证明.问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.24.如图(1)如图①,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;(2)如图②,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)如图③,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.答案解析部分一、单选题1. C解:A、两个圆不一样大,不是全等图形,不符合题意;B、两个三角形最大角分别是直角和钝角,不符合题意;C、两个图形放置的方位不一致,但图形的大小一样,形状相同,是全等图形,符合题意;D、两个正方形的大小不一样,不是全等图形;故答案为:C .【分析】只有形状相同,大小相等的两个图形才全等, 据此分别分析和判断.2.D解:A、形状相同的两个图形大小不一定相等,所以,不是全等图形,不符合题意;B、周长相等的两个图形形状、大小都不一定相同,所以,不是全等图形,不符合题意;C、面积相等的两个图形形状、大小都不一定相同,所以,不是全等图形,不符合题意;D、能够完全重合的两个图形是全等图形,符合题意.故答案为:D【分析】全等形的定义,能够完全重合的两个图形是全等形。
专题三 全等三角形的判定-浙教版八年级数学上册期中复习专题训练
浙教版数学(八上)期中复习专题三全等三角形一、选择题1. 下列命题中:①形状相同的两个三角形是全等形;①在两个全等三角形中,相等的角是对应角相等的边是对应边;①全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命的个数为( )。
A.3个B.2个C.1个D.0个【答案】C2. 在下列的条件中,不能说明①ABC①①AB'C'的是( )。
A.①A=①A',①C=①C',AC=A'CB.①A=①A',AB=A'B',BC=B′C′C.①B=①B',①C=①C',AB=A'B′D. AB=A′B′,BC=B′C′,AC=A′C′【答案】B3. 有下列说法:①有一个外角是钝角的三角形是锐角三角形;①有两条边和一个角对应相等的两个三角形全等;①若三条线段ab,满足a≥b≥c,且a<b+C,则这三条线段必能组成一个三角形;①有两个角和一条边彼此相等的两个三角形全等。
其中正确的个数是( )。
A.4个B.3个C.2个D.1个【答案】D4.用尺规作一个角的平分线的示意图如图所示,则能说明①AOC=①BOC的依据是( )。
A. SSSB. ASAC. AASD.角平分线上的点到角两边距离相等【答案】A5.如图所示,点B、C、E在同一条直线上,①ABC与①CDE都是等边三角形则下列结论不一定成立的是( )。
A.①ACE①①BCDB.①BGC①①AFCC.①DCG①①ECFD.①ADB①①CEA【答案】D6.如图,已知①1=①2,则不一定能使①ABD①①ACD的条件是( )。
A. AB=ACB. BD=CDC.①B=①CD.①BDA=①CDA7. 要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明①EDC①①ABC,得ED=AB,因此测得ED的长就是AB的长,判定①EDC①①ABC最恰当的理由是( )。
人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)
人教版八年级数学上册期末复习:全等三角形常考基础专题复习一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=度.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.参考答案与试题解析部分一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答即可.【解答】解:∵∠D=80°,∠DOC=70°,∴∠C=180°﹣∠D﹣∠DOC=30°,∵△ABO≌△DCO,∴∠B=∠C=30°,故选:B.2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;C、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;故选:D.5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF【分析】根据AB∥DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC ≌△DEF.【解答】解:∵AB∥DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故选:C.6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加AC=AC,根据SS,不能判定△ABC≌△ADC,故本选项错误;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故本选项正确;C、添加∠BCA=∠DCA时,根据SSA不能判定△ABC≌△ADC,故本选项错误;D、添加∠B=∠D,根据SSA不能判定△ABC≌△ADC,故本选项错误;故选:B.7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,再根据等腰直角三角形的性质求出AC=BC=AE,然后求出△DBE的周长=AB,代入数据即可得解.【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DE=CD,又∵AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB=6cm,∴△DBE的周长=6cm.故选:A.9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选:A.10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm【分析】过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知P A=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,P A⊥ON,∴PQ=P A=2,故选:B.二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是18.【分析】作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质得到OE=OF=OD=4,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,由题意得,×AB×OE+×CB×OD+×AC×OF=36,解得,AB+BC+AC=18,则△ABC的周长是18,故答案为:18.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为4.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB 的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC=∠DCB,BC=CB,①AB=CD,根据SAS可以判定△ABC≌△DCB.②AC=DB,无法判断△ABC≌△DCB.③∠A=∠D,根据AAS可以判定△ABC≌△DCB.④∠ACB=∠DBC,根据ASA可以判定△ABC≌△DCB.故答案为:①③④.16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=3cm.【分析】易证△ABC≌△CED,可得AB=CE,BC=DE,可以求得BE的值.【解答】解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=100°.【分析】根据全等三角形的性质求出∠B,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=35°.【分析】根据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=90°.【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=90°,可得∠1+∠3=90°.【解答】解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,故答案为:90°.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=30度.【分析】根据△ABC≌△ADE,可得∠CAB=∠EAD,由于∠EAB是公共角,可得∠EAC =∠BAD,即可得解.【解答】解:∵△ABC≌△ADE,∵∠EAB是公共角,∴∠CAB﹣∠EAB=∠EAD﹣∠EAB,即∠EAC=∠BAD,已知∠EAC=30°,∴∠BAD=30°.故答案填:30.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.【分析】(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.【解答】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD=AB•DE=×10×3=1524.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.【分析】(1)根据角平分线的性质得到CD=DE,根据全等三角形的判定和性质即可得到结论;(2)根据角平分线的定义可得∠CAD=∠BAD,根据等边对等角可得∠B=∠BAD,再根据三角形的内角和定理列出方程求解即可.【解答】证:(1)∵DE⊥AB于E,∠C=90°,AD是△ABC的角平分线,∴CD=DE,在Rt△ACD与Rt△AED中,∴Rt△ACD≌Rt△AED,∴AC=AE,∵AC=BE,∴AE=BE,∴AD=BD;(2)∵AD是△ABC的角平分线,∴∠CAD=∠BAD,∵AD=BD,∴∠B=∠BAD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴∠CAD+∠BAD+∠B=90°,∴∠B=30°.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作DE⊥AB于E,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【解答】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB×DE=×10×4=20cm2.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.【分析】(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠F AP=∠EAP,那么点P在∠BAC的平分线上.【解答】证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠F AP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.【分析】先由CE=BF,可得BC=EF,继而利用SAS可证明结论.【解答】解:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.【分析】利用平行线的性质可得∠ABE=∠BED,根据等式的性质可得EF=BC,然后利用ASA判定△ABC≌△DEF即可.【解答】解:∵AB∥ED∴∠ABE=∠BED,∴EC﹣FC=BF﹣FC,∴EF=BC,在△ABC和△DEF中,∴△ABC≌△DFE(SAS).30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,即∠OCB=∠OBC,所以有OB=OC.【解答】证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.【分析】欲证BD、CE两边相等,只需证明这两边所在的△ABD与△ACE全等,这两个三角形,有一对直角相等,公共角∠A,AB=AC,所以两三角形全等.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.【分析】要证角相等,可先证明全等.即证Rt△ABC≌Rt△ADC,进而得出角相等.【解答】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形,在Rt△ABC和Rt△ADC中,∵AB=AD,AC为公共边,∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18年级数学(上)专题复习三 ——数学思想方法选讲数学思想是数学内容的进一步提炼和概括,是对数学内容的一种本质认识;数学方法是实施有关数学思想的一种方式、途径、手段;数学思想方法是数学发现、发明的关键和动力。
抓住数学思想方法,善于运用数学思想方法,是提高解题能力根本之所在。
因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.初中数学的主要数学思想有:分类讨论思想、数形结合思想、转化的思想、函数与方程的思想、数学建模的思想等.一、分类讨论思想当数学问题不宜统一方法处理时,我们常常根据研究对象性质的差异,按照一定的分类方法或标准,将问题分为全而不重,广而不漏的若干类,然后逐类分别讨论,再把结论汇总,得出问题的答案的思想。
这就是主要考查了分类讨论的数学思想方法。
【要点梳理】数学问题比较复杂时,有时可以将其分割成若干个小问题或一系列步骤,从而通过问题的局部突破来实现整体解决,正确应用分类思想,是完整接替的基础。
而在期末考试中,分类讨论思想也贯穿其中,命题者经常利用分类讨论题来加大试卷的区分度,很多压轴题也都设计分类讨论。
由此可见分类思想的重要性,在数学中,我们常常需要根据研究队形性质的差异,分个中不同情况予以观察,这种分类思考的方法是一种重要的数学思想方法的解题策略,掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分级问题、解决问题的能力都是十分重要的。
【典型例题】1.在平面直角坐标系内,已知点A (2,1),O 为坐标原点.请你在坐标上确定点P ,使得△AOP 成为等腰三角形,在给出坐标系中把所有这样的点P 都找出来,画上实心点,并在旁边标上P 1,P 2,P 3……(不必写出画法)。
2.一次函数y=kx+b 的自变量取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤2。
则这个一次函数的解析式为________.3.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )个。
A .4 B .5 C .7 D .84.已知等边△ABC 所在平面上有点P ,使△PAB ,△PBC ,△P AC 都是等腰三角形,问具有这样性质的点P 有多少个?请你分别画出来。
二、数形结合思想把问题中的数量关系与形象直观的几何图形有机的结合起来,并充分利用这种结合寻找解题的思路,使问题得到解决的思想方法,在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法。
【要点梳理】数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等。
【典型例题】1.两个二元一次方程中的x 和y 项的系数均不为零,它们组成的方程组的解是⎩⎨⎧-==3,1y x试写出一个这样的方程组⎩⎨⎧ . 2.如图,数轴上A 、B两点表示的数分别为-1和3,点B 关于点A 的对称点为C , 则点C 所表示的数为( ) A .―2― 3 B .―1― 3 C .―2+ 3 D . 1+ 3 3.某村办工厂今年前5个月生产某种产品的总量 c (件)关于时间t (月)的图象如图所示,则该厂对这种产品来说( )。
A.1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月均停止生产D.1月至 3月每月生产总量不变,4、5两月均停止生产4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元每 加1分钟加收1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如图所示 ,正确的是( )5. 如图3-1-10,把一个面积为1的正方形等分成两个 面积为12 的矩形,接着把面积为12的矩形等分成两个面积为14的正方形,再把面积为14 的正方形等分成两个面积为 18的矩形,如此进行下去……试利用图形揭示的规律计 算:11111111+++++++=_____248163264128256.6.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么2 个小时时血液中含药最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时 时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化 如图所示.当成人按规定剂量服药后.(1)分别求出x≤2和x≥2时y 与x 的函数解析式; (2)如果每毫升血液中含量为4微克或4微克以上时 ,在治疗疾病时是有效的,那么这个有效时间有多长?三、转化的思想转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常 是将未知的问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问 题转化为具体的问题,将实际问题转化为数学问题等,我们也常常在不同的数学问 题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。
【要点梳理】所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方 程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化 的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等。
将未知解法或难以解决的问题,通过观察、分析、类比、联想等思想的过程,选择 运用的数学方法进行交换,化归为在已知知识范围内已经解决或容易解决的问题思 想叫做转化与化归的思想,转化与化归思想的实质是揭示联系,实现转化。
除简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的,化归与转化思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程,数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,空间向平面的转化,多元向一元转化,函数与方程的转化,无限向有限的转化等,都是转化思想的体现。
【典型例题】 1.函数x 的取值范围是 。
2.一次函数y=kx +b 的图象经过点A (0,-2)和B (-3,6)两点,那么该函数的表达式是( )。
8.26 .23A yx B y x =-+=--8.8 6 .23C y xD y x =--=--3.设一个三角形的三边长为3,l -2m ,8,则m 的取值范围是( )。
A .0<m <12 B. -5<m - 2 C .-2<m <5 D .-72 <m <-l4.求直线y=3x +1与y=1-5x 的交点坐标是 。
5.已知点(3,0)(0,3)(1,)A B C m -,,在同一条直线上,则m= ____________ 。
6.如图①,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A 在第二象限内.点B 、点C 在x 轴的负半轴上, ∠CAO=30°,OA=4.(1)求点C 的坐标;(2)如图②,将△ABC 绕点C 按顺时针方向旋转30°到△A'CB'的位置, 其中A'C 交知线OA 与点E,A'B'分别交直线OA,CA 与点F,G,则除△A'B'C ≌△AOC 外,还有哪几对全等的三角形,请直接写出答案(不再另外添加辅助线)。
四、函数与方程的思想函数思想就是用运动、变化的观点分析和研究现实中的数量关系,通过问题所提供的数量特征及关系建立函数关系式,然后运用有关的函数知识解决问题。
如果问题中的变量关系可以用解析式表示出来,则可把关系式看作一个方程,通过对方程的分析使问题获解。
所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。
函数与方程思想是中学数学中最常用、最重要的数学思想。
1.初中函数知识网络C2 审题2.平面直角坐标系知识要点:(1)平面直角坐标系中,每一个点都与有序实数对一一对应;象限与坐标符号如图1。
(2)特殊位置上点的坐标特点: ①点P(x ,y)在x 轴上y=0; 点P(x ,y)在y x=0;②点P(x ,y)x=y ; 点P(x ,y)在第二、x+y=0; ③点P(x ,y)关于x 轴对称的点的坐标是(x ,-y); 点P(x ,y)关于y 轴对称的点的坐标是(-x ,y); 点P(x ,y)关于原点对称的点的坐标是(-x ,-y); 3.一次函数知识要点:(1)一般地,如果y=kx+b (k 、b 是常数,k ≠0),那么,y 叫做x 的一次函数。
k 、b 是常数的含义是,对于一个特定的函数式,k 和b 的值是固定的。
k ≠0这个条件不能省略不写,若k=0,则y=kx+b 变形为y=b ,b 是关于x 的0次式,因此不是一次函数。
特别地,当b=0时,一次函数y=kx+b 就成为y=kx (k 是常数,k ≠0),这时y 叫做x 的正比例函数。
正比例函数是一次函数的特例。
(2)一次函数的图象是一条直线。
由几何知识可得,要画一条直线只要知道两点就可以了。
所以一次函数图象的方法是:只要先描出两点,再连成直线就可以了。
画正比例函数y=kx 的图象,通常取(0,0)和(1,k )两点连成直线。
画一次函数y=kx+b (k 、b 是常数,k ≠0)的图象,通常选取)0(b ,和)0,(b k -两点连成直线。
通常,我们把一次函数y=kx+b 的图象叫做直线y=kx+b 。
直线的倾斜形态与k 的关系如下:(1)k>0时,直线的倾斜形态“/”;(2)k<0时,直线的倾斜形态“\”。
要树立“数形结合”的数学思想方法。
由k 的数值(正、负)决定出直线的倾斜形态,反之,由直线的倾斜形态能确定k 的正、负。
y =kx +b (k ≠0)与y =kx (k ≠0)的图象是两直平行线。
直线所经过的象限与k 、b 的关系:(3)一次函数的性质:一般地,正比例函数y=kx 和一次函数y=kx+b 都有下列性质:(1)当k >0时,y 随x 的增大而增大;(2)当k <0时,y 随x 的增大而减小。
(4)一次函数解析式的确定:在正比例函数y=kx (k≠0)中,只要求出k 的数值,这个正比例函数解析式就求得。
所以求y=kx (k≠0)所需条件是一个点坐标。
由于一次函数y=kx+b (k≠0)中需要求出k 与b 的数值,所以需要两个点的坐标(或说两个相互独立的条件),代入解析式中,得到关于k 与b 的二元一次方程组,通过解方程组求出k 与b 的数值。