高三第一轮复习 集合与充要条件学生

合集下载

高三数学一轮复习课件--集合与常用逻辑用语

高三数学一轮复习课件--集合与常用逻辑用语
[答案] B [题后悟道] 该题是集合新定义的问题,定义了 集合中元素的性质,此类题目只需准确提取信息并加 工利用,便可顺利解决.
2.创新集合新运算
创新集合新运算问题是按照一定的数学规则和要求
给出新的集合运算规则,并按照此集合运算规则和要求
结合相关知识进行逻辑推理和计算等,从而达到解决问
题的目的.
1.在进行集合的运算时要尽可能地借助Venn图 和数轴使抽象问题直观化.一般地,集合元素离散时 用Venn图表示;集合元素连续时用数轴表示,用数轴 表示时注意端点值的取舍.
2.在解决有关A∩B=∅,A⊆B等集合问题时,一 定先考虑A或B是否为空集,以防漏解.另外要注意分 类讨论和数形结合思想的应用.
3.常见集合的符号表示:
集合 表示
自然 数集
N
正整数集 整数集 有理数集 实数集
N*或N+ Z
Q
R
4.集合的表示法: 列举法 、 描述法 、 韦恩图 .
二、集合间的基本关系
描述 关系
文字语言
符号语言
相 集合A与集合B中的所有元素都
等 相同
A=B
集合

间的 集 A中任意一元素均为B中的元素 A⊆B 或 B⊇A
解析:因为∁RB={x|x>3,或x<-1},所以A∩(∁RB) ={x|3<x<4}.
答案:B
3.(教材习题改编)A={1,2,3},B={x∈R|x2-ax+1=0,
a∈A},则A∩B=B时a的值是
()
A.2
B.2或3
C.1或3
D.1或2
解析:验证a=1时B=∅满足条件;验证a=2时B={1}
也满足条件.
答案:D
4.(2012·盐城模拟)如图,已知U={1,2,3,4, 5,6,7,8,9,10},集合A={2,3,4,5,6,8},B ={1,3,4,5,7},C={2,4,5,7,8,9},用列举 法写出图中阴影部分表示的集合为________. 解析:阴影部分表示的集合为A∩C∩(∁UB)={2,8}. 答案: {2,8}

第2讲充分条件与必要条件+课件——2025届高三数学一轮复习

第2讲充分条件与必要条件+课件——2025届高三数学一轮复习

5.已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件
,那么r是q的__充__要____条件,p是q的___必__要___条件.
【解析】因为q⇒s⇒r⇒q,所以r是q的充要条件.又q⇒s⇒r⇒p,所以p是q的必要条 件.
聚焦知识
1.充分条件、必要条件与充要条件
如果“p⇒q”,那么称 p 是 q 的__充__分____条件,也称 q 是 p 的__必__要____条件
变式 求证:方程 mx2-2x+3=0(m≠0)有两个同号且不相等的实根的充要条件是 0
<m<13. 【解答】先证充分性:若 0<m<13,设方程的两个实根为 x1,x2,则 x1+x2=m2 >0, x1·x2=m3 >0,Δ=4-12m>0,故方程 mx2-2x+3=0(m≠0)有两个同号且不相等的实 根.
C.充要条件
D.既不充分又不必要条件
【解析】如2<2.9,但2>2.9-1,所以由“a<b”推不出“a<b-1”;由a<b-1可得a <b-1<b,所以由“a<b-1”能推出“a<b”.所以“a<b”是“a<b-1”的必要不充分 条件.
2.“θ=kπ±π3 (k∈Z)”是“θ=k3π(k∈Z)”的
第一章 集合与常用逻辑用语、不等式
第2讲 充分条件与必要条件
激活思维
1.“一元二次方程ax2+bx+c=0有实数根”是“b2-4ac≥0(a≠0)”的 (
C) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
2.“x∈A”是“x∈A∩B”的
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
故若关于 x 的方程 mx2-2x+3=0(m≠0)有两个同号且不相等的实根,则 m 的取值范

高考数学一轮复习第一章集合常用逻辑用语及不等式3命题及其关系充要条件课件新人教A版22

高考数学一轮复习第一章集合常用逻辑用语及不等式3命题及其关系充要条件课件新人教A版22
D.若a+b+c≥3,则a+b+c=3
关闭
(2)已知命题“若x=5,则x2-8x+15=0”,则它的逆命题、否命题与逆
(1)否命题是指条件和结论都否.“≥”的否定是“<”.
否命题这三个命题中,真命题有(
)
2-8x+15=0”为真命题,又当x2-8x+15=0时,x=3或x=5,
(2)原命题“若x=5,则x
C.逆否命题“周期函数是单调函数”
D.命题的否定“存在单调函数是周期函数”
)
关闭
由逆命题、否命题、逆否命题的定义知A,B,C错.
关闭
D
解析
答案
-9知识梳理
双基自测
1
2
3
4
5
4.设a∈R,则“a>1”是“a2>a”的( A )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
-10知识梳理
③“若q≤-1,则x2+x+q=0有实根”的逆否命题;
x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假
④若ab是正整数,则a,b都是正整数.
命题;③原命题为真命题,所以它的逆否命题也为真命题,故③为真命题;④
其中真命题是
.(只填序号)
ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.
∵“x∈A”是“x∈B”的必要条件,
∴B⊆A.
∴b-a的最小值是3-0=3.
π
6
1
∈ - ,1 .
2
-24-
思想方法——等价转化思想在充要条件中的应用

高考数学第一轮复习《集合与常用逻辑用语》考情分析

高考数学第一轮复习《集合与常用逻辑用语》考情分析

第一轮复习《集合与常用逻辑用语》 一、题型分析近几年高考题《集合与常用逻辑用语》板块无论是全国卷还是四川卷对的出题,都是以选择填空为主,出选择题比较多一些,也有时候出大题。

一般是两道题,所占分值为10分。

选择题中很多是考查充要条件的,大题一般是集合的求解。

二、考点梳理1、集合的概念(1)元素特征:确定性、互异性、无序性。

(2)分类:按个数:有限集,无限集;按特征:点集,数集。

(3)表示:列举法,描述法,图示法,区间法(不能表示空集、单元素集)。

2、两类关系(1)元素与集合的关系:a ∈A 或a ∉A 。

(2)集合与集合的关系:A ⊆B (A ⊂B 与A=B ) 3、集合的运算(1){}A B x x A x B =∈∈且,{}A B x x A x B =∈∈或,{}AU x x U x A C =∈∉且。

(2)运算律:()()()()()()()()()A B A B U U U A B A B UU U A B C A B A C C C C C C C === 4、逻辑联结词与四种命题(1)量词:∀∃,(2)基本逻辑联结词:或∨,且∧,非⌝(3)复合命题真值表:p q ∨同假为假,p q ∧同真为真,p ⌝一真一假。

5、充要条件(1)概念:,p q q p ⇒≠,则p 是q 的充分不必要条件。

,p q q p ≠⇒,则p 是q 的必要不充分条件。

p ,q q p ⇒⇒,则p 、q 互为充要条件。

(2)与集合的关系:若p q ⊂,则p 是q 的充分不必要条件。

若p q ⊆,则p 是q 的充分条件。

若p=q ,则p 与q 互为充要条件。

二、易错考点针对训练例1:(关注∅)设A 、B 为两个集合,对于A B ⊆,下列说法正确的是( ) 0:,A x A x B ∃∈∈使 :B B A ⊆一定不成立:C B 不可能是空集 00:D x A x B ∈∈是的充分条件例2:(关注边界)设集合{}0M x x m =-≤,{}21,x N y y x R ==-∈,若M N =∅,则实数m 的取值范围是( ):1A M ≥- :1B M - :m 1C ≤- :m1D - 例3:(关注特殊元素)集合{}{}1,1,M x x N x ax MN M =====,则实数a 的可能集合为( )A {1,-1}B {1}C {0,1}D {-1,0,1}例4:(关注元素特征)设集合{}{}2211,20,,A P P N B q q N A B M =+∈=+∈=若则M 中元素的个数为( )A 0B 1C 2D 至少3个注:A B M =转化为222211209p q p q +=+⇒-=p+q=9p+q=313p q p q ⎧⎧⇒⎨⎨-=-=⎩⎩或 得p 5p 340q q ==⎧⎧⎨⎨==⎩⎩或 例5:(利用特定范围,化简解题过程)已知+,x R y R ∈∈,集合{}21,,1,,,12y A x x x x B y y ⎧⎫=++---=--+⎨⎬⎩⎭,且A=B ,则22x y +的值为( )A 1B 2C 3D 4注:y R +∈,则B 中元素二负一正且大小确定,而A 中210x x ++>,故有2111122x x y x x y y y x ⎧⎪++=+=⎧⎪--=-⇒⎨⎨=⎩⎪⎪-=-⎩例6(关注数形结合)下列四个命题1011:(0,),()23x x p x ∃∈+∞<有() 201123:(0,1),log log p x x x ∃∈>有 3121:(0,),2x p x x ∀∈+∞都有()>log 41311:(0,),log 32x p x x ∀∈<都有() 其中真命题是( )例7(关注集合关系与充要条件的转化)集合{}1x 0,11x A B x x a x ⎧-⎫=<=-<⎨⎬+⎩⎭,则a=1是A B =∅的( )条件A 充分不必要B 必要不充分C 充要D 既不充分也不必要三、复习中的一些措施:1、提前布置复习内容,督促学生课前动手、思考和记忆。

高考数学一轮复习2 第2讲 充分条件与必要条件、全称量词与存在量词

高考数学一轮复习2 第2讲 充分条件与必要条件、全称量词与存在量词

第2讲充分条件与必要条件、全称量词与存在量词最新考纲考向预测1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定.命题趋势含有一个量词的命题的否定和充分必要条件的判定是高考的重点,一般多与集合、函数、不等式、立体几何结合,考查考生的推理能力,考查形式以基础题为主,低档难度.核心素养逻辑推理、数学抽象1.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒/pp是q的必要不充分条件p⇒/q且q⇒p p是q的充要条件p⇔q p是q的既不充分也不必要条件p⇒/q且q⇒/p时,才有“p⇒q”,即“p⇒q”⇔“若p,则q”为真命题.2.全称命题和特称命题(1)全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、∃有些、某些等(2)全称命题和特称命题名称形式全称命题特称命题结构对M中任意一个x,有p(x)成立存在M中的一个x 0,使p(x0)成立简记∀x∈M,p(x)∃x0∈M,p(x0)否定∃x0∈M,﹁p(x0)∀x∈M,﹁p(x) 常用结论1.集合与充要条件:设p,q成立的对象构成的集合分别为A,B,(1)p是q的充分不必要条件⇔A B;(2)p是q的必要不充分条件⇔A B;(3)p是q的充要条件⇔A=B.2.全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.(2)否定结论:对原命题的结论进行否定.常见误区1.命题的条件与结论不明确致误;2.含有大前提的命题的否命题易出现否定大前提而致误;3.对充分必要条件判断不明致误.1.判断正误(正确的打“√”,错误的打“×”)(1)当q是p的必要条件时,p是q的充分条件.()(2)q不是p的必要条件时,“p⇒/q”成立.()(3)写特称命题的否定时,存在量词变为全称量词.()(4)∃x0∈M,p(x0)与∀x∈M,﹁p(x)的真假性相反.()答案:(1)√(2)√(3)√(4)√2.(多选)下列命题的否定是全称命题且为真命题的有()A.∃x∈R,x2-x+14<0B.所有的正方形都是矩形C.∃x∈R,x2+2x+2=0D.至少有一个实数x,使x3+1=0解析:选AC.由条件可知:原命题为存在性命题且为假命题,所以排除BD;又因为x2-x+14=⎝⎛⎭⎪⎫x-122≥0,x2+2x+2=(x+1)2+1>0,所以AC均为存在性命题且为假命题,故选AC.3.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C.由x>y推不出x>|y|,由x>|y|能推出x>y,所以“x>y”是“x>|y|”的必要不充分条件.4.(易错题)命题“全等三角形的面积一定都相等”的否定是__________________________.答案:存在两个全等三角形的面积不相等5.已知p:x=2,q:x-2=2-x,则p是q的________条件.解析:当x-2=2-x时,两边平方可得(x-2)2=2-x,即(x-2)(x-1)=0,解得x1=2,x2=1.当x=1时,-1=1,不成立,故舍去,则x=2.所以p是q的充要条件.答案:充要全称命题与特称命题[题组练透]1.下列命题中的假命题是( ) A .∀x ∈R ,e x >0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin π2x 0=1解析:选B.对于B.当x =0时,x 2=0,因此B 中命题是假命题.2.(2021·沈阳市教学质量监测(一))命题p :∀x ∈(0,+∞),x 13≠x 15,则﹁p 为( )A .∃x 0∈(0,+∞),x 013=x 015B .∀x ∈(0,+∞),x 13=x 15 C .∃x 0∈(-∞,0),x 013=x 015 D .∀x ∈(-∞,0),x 13=x 15解析:选A.由全称命题的否定为特称命题知,﹁p 为∃x 0∈(0,+∞),x 013=x 015,故选A.3.(多选)(2021·海南海口第四中学期中)下列关于二次函数y =(x -2)2-1的说法正确的是( )A .∀x ∈R ,y =(x -2)2-1≥1B .∀a >-1,∃x 0∈R ,y =(x 0-2)2-1<aC .∀a <-1,∃x 0∈R ,y =(x 0-2)2-1=aD .∃x 1≠x 2,(x 1-2)2-1=(x 2-2)2-1解析:选BD.对于二次函数y =(x -2)2-1,其图象开口向上,对称轴为直线x =2,最小值为-1,所以∀x ∈R ,y =(x -2)2-1≥-1,所以A 项错误;B 项,∀a >-1,∃x 0∈R ,y =(x 0-2)2-1<a 正确;C 项,∀a <-1,∃x 0∈R ,y =(x 0-2)2-1=a 错误;D项,∃x1≠x2,(x1-2)2-1=(x2-2)2-1正确.4.(2020·宁夏石嘴山期中)若命题“∃t∈R,t2-2t-a<0”是假命题,则实数a的取值范围是____________.解析:因为命题“∃t∈R,t2-2t-a<0”为假命题,所以命题“∀t∈R,t2-2t-a≥0”为真命题,所以Δ=(-2)2-4×1×(-a)=4a+4≤0,即a≤-1.答案:(-∞,-1]全称命题与特称命题真假的判断方法命题名称真假判断方法一判断方法二全称命题真所有对象使命题为真否定为假假存在一个对象使命题为假否定为真特称命题真存在一个对象使命题为真否定为假假所有对象使命题为假否定为真[提醒]因为命题p与﹁p的真假性相反,因此不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.充分条件、必要条件的判断(1)(2021·山东烟台一模)设x∈R,则“|x-2|<1”是“x2+2x-3>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2020·高考浙江卷)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】(1)解不等式|x-2|<1,即-1<x-2<1,解得1<x<3.解x2+2x-3>0即(x-1)(x+3)>0,得x<-3或x>1.记P={x|1<x<3},Q={x|x<-3或x>1}.显然P Q,所以“|x-2|<1”是“x2+2x-3>0”的充分不必要条件.故选A.(2)由m,n,l在同一平面内,可能有m,n,l两两平行,所以m,n,l可能没有公共点,所以不能推出m,n,l两两相交.由m,n,l两两相交且m,n,l不经过同一点,可设l∩m=A,l∩n=B,m∩n=C,且A∉n,所以点A和直线n确定平面α,而B,C∈n,所以B,C∈α,所以l,m⊂α,所以m,n,l在同一平面内,故选B.【答案】(1)A(2)B充分条件、必要条件的两种判断方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,适用于命题中涉及字母的范围的推断问题.1.(2020·高考天津卷)设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由a2>a得a>1或a<0,反之,由a>1得a2>a,则“a>1”是“a2>a”的充分不必要条件,故选A.2.(2021·开封市第一次模拟考试)若a,b是非零向量,则“a·b>0”是“a与b的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选 B.因为a ,b 为非零向量,a ·b >0,所以由向量数量积的定义知,a 与b 的夹角为锐角或a 与b 方向相同;反之,若a 与b 的夹角为锐角,由向量数量积的定义知,a ·b >0成立.故“a ·b >0”是“a 与b 的夹角为锐角”的必要不充分条件.故选 B.充分条件、必要条件的探求及应用已知条件p :集合P ={x |x 2-8x -20≤0},条件q :非空集合S ={x |1-m ≤x ≤1+m }.若p 是q 的必要条件,求m 的取值范围.【解】 由x 2-8x -20≤0,得-2≤x ≤10, 所以P ={x |-2≤x ≤10}, 由p 是q 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m≤1+m ,1-m≥-2,1+m≤10,所以0≤m ≤3. 所以当0≤m ≤3时,p 是q 的必要条件, 即所求m 的取值范围是[0,3]. 【引申探究】1.(变问法)本例条件不变,若x ∈P 的必要条件是x ∈S ,求m 的取值范围. 解:由例题知P ={x |-2≤x ≤10},若x ∈P 的必要条件是x ∈S ,即x ∈S 是x ∈P 的必要条件,所以P ⊆S ,所以可以得到⎩⎪⎨⎪⎧1-m≤1+m ,1-m≤-2,1+m≥10,解得m ≥9.故m 的取值范围是[9,+∞).2.(变问法)本例条件不变,是否存在实数m ,使x ∈P 是x ∈S 的充要条件?解:不存在实数m ,使x ∈P 是x ∈S 的充要条件.由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,所以⎩⎪⎨⎪⎧1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9,故满足题意的m 不存在.利用充要条件求参数的关注点(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍.1.命题“∀x ∈[1,3],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥9 B .a ≤9 C .a ≥10D .a ≤10解析:选 C.命题∀x ∈[1,3],x 2-a ≤0⇔∀x ∈[1,3],x 2≤a ⇔9≤a .则“a ≥10”是命题“∀x ∈[1,3],x 2-a ≤0”为真命题的一个充分不必要条件.故选C.2.(2021·武汉质检)关于x 的方程ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是________.解析:ax 2+bx +c =0(a ≠0)有一个正根和一个负根的充要条件是⎩⎨⎧Δ=b2-4ac>0,ca <0.即ac <0. 答案:ac <0核心素养系列2 逻辑推理——突破双变量“存在性或任意性”问题逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程.包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要有演绎.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x ,g (x )=196x -13,若对任意x 1∈[-1,1],总存在x 2∈[0,2],使得f ′(x 1)+2ax 1=g (x 2)成立,求实数a 的取值范围.【解】 由题意知,g (x )在[0,2]上的值域为⎣⎢⎡⎦⎥⎤-13,6.令h (x )=f ′(x )+2ax =3x 2+2x -a (a +2), 则h ′(x )=6x +2,由h ′(x )=0得x =-13.当x ∈⎣⎢⎡⎭⎪⎫-1,-13时,h ′(x )<0;当x ∈⎝ ⎛⎦⎥⎤-13,1时,h ′(x )>0,所以[h (x )]min =h ⎝ ⎛⎭⎪⎫-13=-a 2-2a -13.又由题意可知,h (x )的值域是⎣⎢⎡⎦⎥⎤-13,6的子集,所以⎩⎪⎨⎪⎧h (-1)≤6,-a2-2a -13≥-13,h (1)≤6,解得实数a 的取值范围是[-2,0].(1)理解全称量词与存在量词的含义是求解本题的关键.此类问题求解的策略是“等价转化”,即“函数f (x )的值域是g (x )的值域的子集”,从而利用包含关系构建关于a 的不等式组,求得参数的取值范围.(2)解决双变量“存在性或任意性”问题关键就是将含有全称量词和存在量词的条件“等价转化”为两个函数值域之间的关系(或两个函数最值之间的关系),目的在于培养学生的逻辑推理素养和良好的数学思维品质.1.已知函数f (x )=x 2-2x +3,g (x )=log 2x +m ,对任意的x 1,x 2∈[1,4]有f (x 1)>g (x 2)恒成立,则实数m 的取值范围是________.解析:f (x )=x 2-2x +3=(x -1)2+2,当x ∈[1,4]时,f (x )min =f (1)=2,g (x )max =g (4)=2+m ,则f (x )min >g (x )max ,即2>2+m ,解得m <0,故实数m 的取值范围是(-∞,0).答案:(-∞,0)2.已知函数f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________.解析:当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m .由f (x )min ≥g (x )min ,得0≥14-m .所以m ≥14.答案:⎣⎢⎡⎭⎪⎫14,+∞[A 级 基础练]1.(2021·全国统一考试)设命题p :所有正方形都是平行四边形,则綈p 为( ) A .所有正方形都不是平行四边形 B .有的平行四边形不是正方形 C .有的正方形不是平行四边形D .不是正方形的四边形不是平行四边形解析:选 C.全称量词命题的否定为特称量词命题,即“有的正方形不是平行四边形”.2.(2021·开封市模拟考试)已知命题p :∃n ∈N ,n 2>2n ,则﹁p 为( ) A .∀n ∈N ,n 2>2n B .∃x ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选 C.因为特称命题的否定是把存在量词改为全称量词,同时否定结论,所以﹁p :∀n ∈N ,n 2≤2n ,故选C.3.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ” 是“A ∩B=∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.由A ⊆C ,B ⊆∁U C ,易知A ∩B =∅,但A ∩B =∅时未必有A ⊆C ,B ⊆∁U C ,如图所示,所以“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充分不必要条件.4.已知f (x )=sin x -x ,命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 B .p 是假命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 C .p 是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是真命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 解析:选C.由已知得,f ′(x )=cos x -1<0,所以f (x )在⎝ ⎛⎭⎪⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0,故选C.5.(2021·西安五校联考)“ln(x +1)<0”是“x 2+2x <0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.由ln(x +1)<0得0<x +1<1,-1<x <0,由x 2+2x <0得-2<x <0,所以“ln(x +1)<0”是“x 2+2x <0”的充分不必要条件,故选A.6.(2021·山东潍坊一模)“a <1”是“∀x >0,x2+1x ≥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.当x >0时,x2+1x =x +1x ,由均值不等式可得x +1x ≥2x×1x =2,当且仅当x =1x ,即x =1时等号成立.所以x2+1x ≥a 的充要条件为a ≤2.(实质就是条件的等价转化)显然“a <1”是“a ≤2”的充分不必要条件,所以“a <1”是“∀x >0,x2+1x ≥a ”的充分不必要条件.故选A.7.(多选)已知a ,b ,c 是实数,则下列结论中正确的是( )A .“a 2>b 2”是“a >b ”的充分条件B .“a 2>b 2”是“a >b ”的必要条件C .“ac 2>bc 2”是“a >b ”的充分条件D .“|a |>|b |”是“a >b ”的既不充分也不必要条件解析:选CD.对于A ,当a =-5,b =1时,满足a 2>b 2,但是a <b ,所以充分性不成立;对于B ,当a =1,b =-2时,满足a >b ,但是a 2<b 2,所以必要性不成立;对于C ,由ac 2>bc 2得c ≠0,则有a >b 成立,即充分性成立,故正确;对于D ,当a =-5,b =1时,|a |>|b |成立,但是a <b ,所以充分性不成立,当a =1,b =-2时,满足a >b ,但是|a |<|b |,所以必要性也不成立,故“|a |>|b |”是“a >b ”的既不充分也不必要条件.故选CD.8.(多选)下列说法正确的是( )A .“x =π4”是“tan x =1”的充分不必要条件B .定义在[a ,b ]上的偶函数f (x )=x 2+(a +5)x +b 的最大值为30C .命题“∃x 0∈R ,x 0+1x0≥2”的否定是“∀x ∈R ,x +1x >2”D .函数y =sin x +cos x -2无零点解析:选AB.由x =π4,得tan x =1,但有tan x =1推不出x =π4,所以“x =π4”是“tan x =1”的充分不必要条件,所以A 是正确的;若定义在[a ,b ]上的函数f (x )=x 2+(a +5)x +b 是偶函数,则⎩⎪⎨⎪⎧a +5=0,a +b =0,得⎩⎪⎨⎪⎧a =-5,b =5,则f (x )=x 2+5,在[-5,5]上的最大值为30,所以B 是正确的;命题“∃x 0∈R ,x 0+1x0≥2”的否定是“∀x ∈R ,x +1x<2”,所以C 是错误的;当x =π4时,y =sin x +cos x -2=0,故D 是错误的. 9.若命题p 的否定是“∀x ∈(0,+∞),x >x +1”,则命题p 可写为____________________.解析:因为p 是﹁p 的否定,所以只需将全称量词变为存在量词,再对结论否定即可.答案:∃x 0∈(0,+∞),x0≤x 0+110.在△ABC 中,“A =B ”是“tan A =tan B ”的________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z .因为0<A <π,0<B <π,所以A =B ,故“A =B ”是“tan A =tan B ”的充要条件.答案:充要11.条件p :x >a ,条件q :x ≥2.(1)若p 是q 的充分不必要条件,求a 的取值范围;(2)若p 是q 的必要不充分条件,求a 的取值范围.解:设A ={x |x >a },B ={x |x ≥2},(1)因为p 是q 的充分不必要条件,所以A B ,所以a ≥2,所以a 的取值范围是[2,+∞).(2)因为p 是q 的必要不充分条件,所以B A ,所以a <2.所以a 的取值范围是(-∞,2).12.已知集合A ={x |a -2<x <a +2},B ={x |x ≤-2或x ≥4},求A ∩B =∅的充要条件.解:A ∩B =∅⇔⎩⎪⎨⎪⎧a +2≤4,a -2≥-2⇔0≤a ≤2. 所以A ∩B =∅的充要条件是0≤a ≤2.[B 级 综合练]13.(多选)(2021·山东德州夏津第一中学月考)已知两条直线l ,m 及三个平面α,β,γ,则α⊥β的充分条件是( )A .l ⊂α,l ⊥βB .l ⊥α,m ⊥β,l ⊥mC .α⊥γ,β∥γD .l ⊂α,m ⊂β,l ⊥m解析:选ABC.由面面垂直的判定定理可以判断A ,B ,C 项均符合题意;对于D 项,由l ⊂α,m ⊂β,l ⊥m 也可以得到α∥β,所以D 项不符合题意.故选ABC.14.设p :-m +12<x <m -12(m >0);q :x <12或x >1,若p 是q 的充分不必要条件,求实数m 的取值范围.解:因为p 是q 的充分不必要条件,又m >0,所以m -12≤12,所以0<m ≤2.所以实数m 的取值范围是(0,2].[C 级 创新练]15.若a ,b 都是实数,试从①ab =0;②a +b =0;③a (a 2+b 2)=0;④ab >0中选出适合的条件,用序号填空.(1)“a ,b 都为0”的必要条件是________;(2)“a ,b 都不为0”的充分条件是________;(3)“a ,b 至少有一个为0”的充要条件是________.解析:①ab =0⇔a =0或b =0,即a ,b 至少有一个为0;②a +b =0⇔a ,b 互为相反数,则a ,b 可能均为0,也可能为一正一负;③a (a 2+b 2)=0⇔a =0或⎩⎪⎨⎪⎧a =0,b =0;④ab >0⇔⎩⎨⎧a>0,b>0或⎩⎪⎨⎪⎧a<0,b<0,则a ,b 都不为0. 答案:(1)①②③ (2)④ (3)①16.一学校开展小组合作学习模式,高二某班某组王小一同学给组内王小二同学出题如下:若“∃x ∈R ,x 2+2x +m ≤0”是假命题,求实数m 的取值范围.王小二略加思索,反手给了王小一一道题:若“∀x ∈R ,x 2+2x +m >0”是真命题,求实数m 的取值范围.你认为,两位同学题中实数m 的取值范围是否一致?并说明理由.解:两位同学题中实数m 的取值范围是一致的.因为“∃x ∈R ,x 2+2x +m ≤0”的否定是“∀x ∈R ,x 2+2x +m >0”,而“∃x ∈R ,x 2+2x +m ≤0”是假命题,则其否定“∀x ∈R ,x 2+2x +m >0”是真命题.所以两位同学题中实数m 的取值范围是一致的.。

[精]高三第一轮复习全套课件1集合与简易逻辑第4课时 充要条件

[精]高三第一轮复习全套课件1集合与简易逻辑第4课时  充要条件

4.对于集合M,N和P,“PM且PN”是“PM∩N” 的( ) (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 5.已知P:|2x-3|>1;q:1/(x2+x-6)>0,则┐p 是┐q的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 答案: (4) C
第4课时 充要条件
要点·疑点·考点
课 前 热 身
能力·思维·方法
延伸·拓展
误 解 分 析
要点·疑点·考点
1.若A=>B且B推不出A,则A是B的充分非必要条件 2.若A推不出B且B=>A,则A是B的必要非充分条件 3.若A=>B且B=>A,则A是B的充要条件 4.若A推不出B且B推不出A,则A既不是B的充分条件, 也不是B的必要条件.
2.求证:关于x的方程ax2+bx+c=0有一个根为-1的 充要条件是a-b分两步:证充分 性即证A =>B,证必要性即证B=>A一定要使题目与 证明中的叙述一致
返回
延伸·拓展
3.求关于x的方程ax2+2x+1=0至少有一个负的实根 的充要条件.
【解题回顾】本题解答时,一是容易漏掉讨论方程 二次项系数是否为零,二是只求必要条件忽略验证 充分条件.即以所求的必要条件代替充要条件.
返回
课前热身
1.已知p是q的必要而不充分条件,那么┐p是┐q的 ___ 2.若A是B的必要而不充分条件,C是B的充要条件,D 是C的充分而不必要条件,那么D是A的________ 3.关于x的不等式:|x|+|x-1|>m的解集为R的 充要条件是( ) (A)m<0 (D)m≤1 答案: (1)充分不必要条件 (2)充分不必要条件 (3)C (B)m≤0 (C)m<1

2023年《师说》高考数学一轮复习 学生用书 第1章 集合与常用逻辑用语

2023年《师说》高考数学一轮复习 学生用书 第1章 集合与常用逻辑用语

第一节集合课程标准1.了解集合的含义.理解元素与集合的属于关系,能用自然语言、图形语言、符号语言刻画集合.2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义.3.理解集合间的交、并、补的含义,能求两个集合的并集与交集,能求给定子集的补集.4.能使用Venn图表达集合间的基本关系及基本运算.体会图形对理解抽象概念的作用.考情分析2020(Ⅰ)第1题考查了无限集合的并集运算;2021(Ⅰ)第1题考查了无限集与有限集的交集运算;2021(Ⅱ)第2题考查了有限集的交、补运算.核心素养直观想象数学运算教材回扣·夯实“四基”基础知识1.元素与集合(1)集合中元素的三个特性:确定性、________、无序性.(2)元素与集合的关系是________或________,表示符号分别为∈和∉.(3)集合的三种表示方法:________、________、图示法.(4)常用数集及其记法:集合自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中任意一个元素都是集合B中的元素(即若x∈A,则x∈B)________________真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中________________集合相等集合A,B中的元素相同或集合A,B互为子集________【微点拨】空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算文字语言符号语言图形语言记法交集属于A____属于B的所有元素组成的集合{x|x∈A,________x∈B}________并集所有属于A________属于B的元素组成的集合{x|x∈A,________x∈B}________补集全集U中________A的所有元素组成的集合{x|x∈U,且x______A}________【微点拨】用集合运算表示区域[常用结论]1.任何一个集合是它本身的子集.2.若有限集A中有n个元素,则A 的子集有2n个,真子集有(2n-1)个,非空真子集有(2n-2)个.3.子集的传递性:A ⊆B,B⊆C⇒A⊆C.4.A⊆B⇔A=A⇔A=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.5.A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;(∁U A)∩(∁U B)=∁U(A;(∁U A)∪(∁U B)=∁U(A基本技能、思想、活动经验题组一思考辨析(正确的打“√”,错误的打“×”)1.集合{x2+x,0}中的实数x可取任意值.()2.{x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()3.对任意集合A,B,一定有A.()4.若A=A则B=C.()题组二教材改编5.若集合A={x∈N|x≤},a=2,则下面结论中正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A6.已知集合A={x|x2-2x-3≤0},B={x|0<x≤4},则=()A.[-1,4] B.(0,3]C.(-1,0]题组三易错自纠7.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1} B.{1}C.{-1,1} D.{-1,0,1}8.已知集合A={x|y=x2-1},B={(x,y)|y=x2-1},则=()A.R B.{x|y2=x2-1}C.{(x,y)|y=x2-1} D.∅题型突破·提高“四能”题型一集合及其表示[例1](1)[2022·淄博实验中学月考]集合A={x∈N*},用列举法可以表示为()A.B.C.D.(2)[2022·广东实验中学月考]若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=()A.B.C.0 D.0或[听课记录]类题通法与集合中元素有关问题的求解策略[巩固训练1](1)[2022·江苏模拟]设集合A={1,2,3,4},B={5,6},C={x+y|x∈A,y∈B},则C中元素的个数为()A.3 B.4C.5 D.6(2)设a,b∈R,集合{1,a+b,a}=,则b-a=()A.1 B.-1C.2 D.-2题型二集合间的基本关系[例2](1)[2022·福建厦门二中月考]集合M=,N={x =,n∈Z},则下列关系正确的是()A.M⊆N B.M=∅C.N⊆M D.M=Z(2)[2022·重庆蜀都中学月考]已知集合M=,N=(1,4),且M⊆N,则实数a的取值范围是()A.(-∞,2] B.(-∞,0]C.D.[听课记录]类题通法判断集合间关系的常用方法[巩固训练2](1)[2022·海南海口模拟]已知集合A=,B=,则下列判断正确的是()A.B∈A B.A=∅C.A⊆B D.B⊆A(2)[2022·北京师范大学附属中学模拟]已知集合A=,则集合A的子集的个数是()A.2 B.3C.4 D.5题型三集合的基本运算角度1 交、并、补运算[例3](1)[2022·湖北恩施模拟]设集合A=,B=,则A=()A.B.C.D.(2)已知集合U=R,集合A=,B=,则∁U=()A.或B.或C.且D.或[听课记录]类题通法求集合交集、并集或补集的步骤[巩固训练3](1)[2021·新高考Ⅰ卷]设集合A=,B=,则=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}(2)[2022·湖南师大附中月考]已知全集U=,集合A=,B=,则A=()A.B.C.D.角度2 利用集合运算求参数[例4](1)设集合A={x|x2-4≤0},B={x|2x+a≤0},且A={x|-2≤x≤1},则a=()A.-4 B.-2C.2 D.4(2)已知集合A=,集合B={x|2m<x<1-m}.若A=∅,则实数m 的取值范围是()A.≤m<B.m≥0C.m≥D.<m<[听课记录]类题通法利用集合的运算求参数的方法[巩固训练4](1)[2022·山东泰安模拟]集合A=,B=.若A=,则a=()A.±1 B.±2C.±3 D.±4(2)已知集合A={x|x<a},B={x|1<x<2},且A∪(C R B)=R,则实数a的取值范围是()A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}❶集合的新定义问题一、集合的新定义问题的解决方法1.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.2.按新定义的要求,逐条分析、验证、运算,使问题得以解决.3.对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.二、常见的命题角度角度1创新集合新定义创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以创新,结合相应的数学知识,来解决创新集合的新定义问题.[典例1]若一个集合是另一个集合的子集,称两个集合构成“全食”;若两个集合有公共元素,但互不为对方子集,则称两个集合构成“偏食”.对于集合A=,B={x|ax2=1,a≥0},若两个集合构成“全食”或“偏食”,则a的值为________.【解析】因为B={x|ax2=1,a≥0},所以若a=0,则B=∅,满足B为A的真子集,此时A与B构成“全食”;若a>0,则B==,若A与B构成“全食”或“偏食”,则=1或=,解得a=1或a=4.综上,a的值为0或1或4.【答案】0或1或4角度2创新集合新运算创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.[典例2](1)(多选)[2022·山东烟台模拟]若非空集合G和G上的二元运算“⊕”满足:①∀a,b∈G,a ⊕b∈G;②∃I∈G,对∀a∈G,a ⊕I=I ⊕a=a;③∃I∈G,使∀a∈G,∃b ∈G,有a ⊕b=I=b ⊕a;④∀a,b,c∈G,(a ⊕b)⊕c=a ⊕(b ⊕c),则称(G,⊕)构成一个群.下列选项对应的(G,⊕)构成一个群的是()A.集合G为自然数集,“⊕”为整数的加法运算B.集合G为正有理数集,“⊕”为有理数的乘法运算C.集合G={-1,1,-i,i}(i为虚数单位),“⊕”为复数的乘法运算D.集合G={0,1,2,3,4,5,6},“⊕”为求两整数之和被7除的余数【解析】A.G=N时,不满足③,若I=0,则由1+b=0得b=-1∉G,若I∈N*⊆N,则在G中设a>I,由a+b=I得b=I-a<0∉G,所以(N,⊕)不能构成群;B.G为正有理数集,①任意两个正有理数的积仍然为正有理数,②显然1∈G,对任意a∈G,a⊕1=a=1⊕a,③对任意正有理数a,也是正有理数,且a⊕=1=⊕a,即I=1,④有理数的乘数满足结合律,B中可构成群;C.G={-1,1,-i,i}(i为虚数单位),①可验证G中任意两数(可相等)的乘积仍然属于G;②I=1,满足任意a∈G,有a ⊕1=1 ⊕a;③I=1,满足任意a∈G,存在b∈G,有a ⊕b=b ⊕a=1,实质上有-1×(-1)=1×1=i×(-i)=1;④复数的乘法运算满足结合律,C中可构成群;D.G={0,1,2,3,4,5,6},①任意两个整数的和不是整数,它除以7的余数一定属于G,②I=0,满足对任意a∈G,a ⊕I=I ⊕a,③I=1,I=0,0+0=0,1+6=2+5=3+4=7除以7的余数为0;④加法满足交换律,又a+b除以7的余数等于a除以7的余数加b除以7的余数的和再除以7所得余数,因此∀a,b,c∈G,(a ⊕b)⊕c=a ⊕(b ⊕c),D 中可构成群;故选BCD.【答案】BCD(2)[2022·湖北联考]对于任意两集合A,B,定义A-B={x|x∈A且x∉B },A *B=(A-B)记A={y|y≥0},B={x|-3≤x≤3},则A*B=________.【解析】由题意知A-B={x|x>3},B-A={x|-3≤x<0},所以 A *B=[-3,0)【答案】[-3,0)角度3创新集合新性质创新集合新性质问题是利用创新集合中给定的定义与性质来处理问题,通过创新性质,结合相应的数学知识来解决有关的集合性质的问题.[典例3][2022·北京东城区模拟]设A是非空数集,若对任意x,y∈A,都有x +y∈A,xy∈A,则称A具有性质P.给出以下命题:①若A具有性质P,则A可以是有限集;②若A1,A2具有性质P,且A1则A1具有性质P;③若A1,A2具有性质P,则A1具有性质P;④若A具有性质P,且A≠R,则∁R A不具有性质P.其中所有真命题的序号是________.【解析】对于①,取集合A=具有性质P,故A可以是有限集,故①正确;对于②,取x,y∈A1则x∈A1,x∈A2,y∈A1,y∈A2,又A1,A2具有性质P,∴x+y∈A1, xy∈A1,x+y∈A2, xy∈A2,∴x+y∈A1所以A1具有性质P,故②正确;对于③,取A 1=,A2=,2∈A1,3∈A2,但2+3∉A1故③错误;对于④,假设∁R A具有性质P,即对任意x,y∈∁R A,都有x +y∈∁R A,xy∈∁R A ,即对任意x,y∉A,都有x +y∉A,xy∉A,举反例A=,取1∉A,3∉A,但1+3=4∈A,故假设不成立,故④正确.【答案】①②④第一章集合与常用逻辑用语第一节集合教材回扣夯实“四基”基础知识1.(1)互异性(2)属于不属于(3)列举法描述法2.A⊆B(或B⊇A)A B(或B A)A=B3.且且A或或A不属于∉∁U A基本技能、思想、活动经验1.× 2.× 3.× 4.×5.解析:因为2不是自然数,所以a∉A.故选D.答案:D6.解析:A={x|x2-2x-3≤0}={x|-1≤x≤3},所以A={x|-1≤x≤4}.故选A.答案:A7.解析:∵B⊆A,当B≠∅,即a≠0时,B=,∴-∈A,即a=±1;当B=∅,即a=0时,满足条件.综上可知实数a所有可能取值的集合是{-1,0,1}.答案:D8.解析:因为集合A的代表元素是实数,而集合B的代表元素是图象上的点,故A=∅.答案:D题型突破提高“四能”例1解析:(1)因为∈Z且x∈N*,所以x的可取值有:1,2,4,5,6,9,所以列举法表示集合为:,故选B.(2)集合A={x∈R|ax2-3x+2=0}中只有一个元素,当a=0时,可得x=,集合A只有一个元素为:.当a≠0时,方程ax2-3x+2=0只有一个解,即Δ=9-8a=0,可得:a=.故选D.答案:(1)B(2)D巩固训练1解析:(1)因集合A={1,2,3,4},B={5,6},又x∈A,y∈B,则当y=5时,x+y的值有:6,7,8,9,当y=6时,x+y的值有:7,8,9,10,于是得C={6,7,8,9,10},所以C中元素的个数为5.故选C.(2)因为{1,a+b,a}=,a≠0,所以a+b=0,则=-1,所以a =-1,b=1,所以b-a=2.故选C.答案:(1)C(2)C例2解析:(1)M=,N=,n+2表示整数,2n+1表示奇数,故N⊆M,故A错误,B错误,C正确,而M中的元素有分数,故D错误.故选C.(2)因M⊆N,而∅⊆N,所以M=∅时,即2a≤1-a,则a≤,M≠∅时,M⊆N,则⇒,无解,综上得a≤,即实数a的取值范围是.故选C.答案:(1)C(2)C巩固训练2解析:(1)∵A==,B=,∴B⊆A,A=B=,故选D.(2)∵A==,有2个元素,则集合A的子集的个数是22=4.故选C.答案:(1)D(2)C例3解析:(1)因集合A=,则A=,又B=,所以A={1,2,3}.故选C.(2)因为A==,B=,则A =或,因此,∁U=或.故选D.答案:(1)C(2)D巩固训练3解析:(1)由题设有A=,故选B .(2)U==,因为B={3,4,5},可得∁U B=,因为A={1,2,3,5},所以A={1,2},故选C.答案:(1)B(2)C例4解析:(1)由已知可得A={x|-2≤x≤2},B=,又∵A={x|-2≤x≤1},∴-=1,∴a=-2.故选B.(2)由A=∅,得:①若2m≥1-m,即m≥时,B=∅,符合题意;②若2m<1-m,即m<时,由A=∅,则或,解得0≤m<,综上可得:m≥0,所以实数m的取值范围是m≥0.故选B.答案:(1)B(2)B巩固训练4解析:(1)由A=知,,解得a=±2.故选B.(2)因为B={x|1<x<2},所以∁R B={x|x≤1或x≥2},又∵A∪(∁R B)=R,∴a≥2.故选C.答案:(1)B(2)C第二节常用逻辑用语课程标准考情分析核心素养1.必要条件、充分条件、充要条件2020和2021年新高考未单独考查,只是在2020年(Ⅱ)卷逻辑推理数学运算基础知识1.充分条件、必要条件与充要条件的概念【微点拨】1.A是B的充分不必要条件是指:A⇒B且BD⇒A.2.A的充分不必要条件是B是指:B⇒A且AD⇒B,在解题中要弄清它们的区别,以免出现错误.2.全称量词和存在量词【微点拨】含有一个量词的命题的否定规律是“改量词、否结论”.[常用结论]1.集合与充要条件:设p ,q 成立的对象构成的集合分别为A ,B , (1)p 是q 的充分不必要条件⇔AB ;(2)p 是q 的必要不充分条件⇔A B ; (3)p 是q 的充要条件⇔A =B .2.若p 是q 的充分不必要条件,则¬q 是¬p 的充分不必要条件.基本技能、思想、活动经验在量词命题.( )2.命题“对顶角相等”的否定是“对顶角不相等”.( ) 3.当q 是p 的必要条件时,p 是q 的充分条件.( )4.“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) 题组二 教材改编5.“(x -1)(x +2)=0”是“x =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.(多选)下列命题为真命题的是( ) A .任意实数的平方大于或等于0B .对任意实数a ,二次函数y =x 2+a 的图象关于y 轴对称C .存在整数x ,y ,使得2x +4y =3D .存在一个无理数,它的立方是有理数 题组三 易错自纠7.下面四个条件中,使a >b 成立的充分不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 38.命题“∃x <1,1x<1”的否定是________________________________________________________________________.题型突破·提高“四能”[例1] (1)[2022·广东韶关模拟]命题p :x 2-x -2<0是命题q :0<x <1的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件(2)[2022·河北石家庄模拟]a >2是a +2a>3的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 [听课记录]类题通法充分、必要条件的两种常用判断方法[巩固训练1] (1)[2022·湖南长郡中学模拟]设a ,b ∈R ,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件(2)[2022·山东济南模拟]△ABC 中,“sin A =12 ”是“A =π6”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件题型二 充分条件、必要条件的应用[例2] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m },若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.[听课记录]变式探究 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.类题通法利用充分、必要条件求参数的两点提醒[巩固训练2] [2022·山东日照模拟]若不等式()x -a 2<1成立的充分不必要条件是1<x <2,则实数a 的取值范围是________.题型三 全称量词命题与存在量词命题角度1 全称量词命题、存在量词命题的真假判断[例3] [2022·江苏盐城模拟]下列4个命题中,真命题的是( )A .∃x ∈()0,+∞ ,⎝⎛⎭⎫14 x <⎝⎛⎭⎫15 xB .∀x ∈⎝⎛⎭⎫0,15 ,⎝⎛⎭⎫15 x <log 15x C .∀x ∈()0,+∞ ,⎝⎛⎭⎫14 x>log 14xD .∃x ∈()1,+∞ ,log 14x >log 15x[听课记录]类题通法判断全称量词命题、存在量词命题真假的思路[巩固训练3] 下列四个命题中的假命题是( ) A .∀x ∈R ,x 2≥0B .∀x ∈R ,2x -1>0 C .∃x ∈R ,lg x <1D .∃x ∈R ,sin x +cos x =2角度2 全称量词命题和存在量词命题的否定[例4] (1)[2022·湖北武汉模拟]命题“∃x ≥0,2x +x -a ≤0”的否定是( ) A .∀x ≤0,2x +x -a ≤0 B .∀x ≥0,2x +x -a >0 C .∃x ≤0,2x +x -a >0 D .∃x ≥0,2x +x -a >0(2)[2022·山东潍坊模拟]命题“∀a >0,a +1a≥2”的否定是( )A .∃a ≤0,a +1a <2B .∃a >0,a +1a <2C .∀a ≤0,a +1a ≥2D .∀a >0,a +1a<2[听课记录]类题通法对全称量词命题与存在量词命题进行否定的步骤[巩固训练4] (1)[2022·山东德州模拟]已知命题p :∀x >0,ln ()x +1 >0,则¬p 为( ) A .∀x >0,ln ()x +1 ≤0 B .∃x >0,ln ()x +1 ≤0 C .∀x <0,ln ()x +1 ≤0 D .∃x ≤0,ln ()x +1 ≤0 (2)[2022·北京二中月考]已知命题p :∃x >0,ln x <0,则¬p 为________.角度3由全称(存在)量词命题的真假求参数的范围[例5][2022·福建上杭一中月考]已知命题p:∃x∈R,mx2+2≤0;命题q:∀x∈R,x2-2mx+1>0.若p、q都为假命题,则实数m的取值范围是()A.[1,+∞) B.(-∞,-1]C.(-∞,-2] D.[-1,1][听课记录]类题通法根据全称(存在)量词命题的真假求参数的一般步骤[巩固训练5][2022·湖北襄阳模拟]若“∃x∈R,x2-2x-a=0”是假命题,则实数a的取值范围为________.温馨提示:请完成课时作业2第二节常用逻辑用语教材回扣夯实“四基”基础知识1.充分必要充分不必要必要不充分充要既不充分也不必要2.∀∃3.∀x∈M∃x∈M∃x∈M∀x∈M基本技能、思想、活动经验1.× 2.× 3.√ 4.√5.解析:若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x-1)(x+2)=0,则x的值也可能为-2.故选B.答案:B6.解析:A、B为真命题;C为假命题,因为2x+4y=2(x+2y)必为偶数;D为真命题,如x=,x3=2∈Q.故选ABD.答案:ABD7.解析:选项A中,a>b+1>b,所以充分性成立,但必要性不成立,所以“a>b+1”为“a>b”成立的充分不必要条件.故选A.答案:A8.解析:存在量词命题的否定是全称量词命题,否定时,既改量词,又否结论,“<1”的否定是“0≤x≤1”.答案:∀x<1,0<x≤1题型突破提高“四能”例1解析:x2-x-2<0⇔-1<x<2,所以pDq,反之q⇒p.故p是q的必要不充分条件.故选B.答案:B解析:由不等式a+>3,即a+-3==>0,解得0<a<1或a>2,即不等式的解集为{a|0<a<1或a>2},所以a>2是a+>3的充分不必要条件.故选C.答案:C巩固训练1解析:若a=0,b=-2,则a2<b2,故不充分;若a=-2,b=0,则a2>b2,而a<b,故不必要,故选D.答案:D解析:在△ABC中,若sin A=,则A=或,因为,因此,“sin A=”是“A=”的必要不充分条件.故选C.答案:C例2解析:由x2-8x-20≤0得-2≤x≤10.∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.又∵S≠∅,如图所示.则,∴0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].答案:[0,3]变式探究解析:若x∈P是x∈S的充要条件,则P=S,∴,∴,∴不存在实数m,使x∈P是x∈S的充要条件.答案:不存在实数m,使x∈P是x∈S的充要条件巩固训练2解析:由2<1得a-1<x<a+1,因为1<x<2是不等式2<1成立的充分不必要条件,∴满足且等号不能同时取得,即,解得1≤a≤2.答案:例3解析:因为∀x∈,x<x,故A为假命题;∀x∈,x<0==1,即x,故B为真命题;取x=,则=<0=1,所以,故C为假命题;∀x∈,log4x>log5x>0,所以-log4x<-log5x<0,即x,故D为假命题.故选B.答案:B巩固训练3解析:A显然正确;由指数函数的性质知2x-1>0恒成立,所以B正确;当0<x<10时,lg x<1,所以C正确;因为sin x+cos x=sin ,所以-≤sin x+cos x≤,所以D错误.故选D.答案:D例4解析:由存在量词命题的否定为全称量词命题可得,命题“∃x≥0,2x+x-a≤0”的否定是“∀x≥0,2x+x-a>0”故选B.答案:B解析:命题“∀a>0,a+≥2”为全称量词命题,则其的否定为∃a>0,a+<2,故选B.答案:B巩固训练4解析:对命题否定时,全称量词改成存在量词,即∃x>0,ln ≤0;故选B.答案:B解析:根据题意,命题p:∃x>0,ln x<0是存在量词命题,则¬p:∀x>0,ln x≥0.答案:∀x>0,ln x≥0例5解析:p,q都是假命题.由p:∃x∈R,mx2+2≤0为假命题,得∀x∈R,mx2+2>0,∴m≥0.由q:∀x∈R,x2-2mx+1>0为假命题,得∃x∈R,x2-2mx+1≤0为真命题∴Δ=(-2m)2-4≥0,得m≤-1或m≥1.∴m≥1.故选A.答案:A巩固训练5解析:若“∃x∈R,x2-2x-a=0”是假命题,则其否定若“∀x∈R,x2-2x-a≠0”是真命题,所以Δ=(-2)2-4×1×(-a)=4+4a<0,解得a<-1,故实数a的取值范围为(-∞,-1).答案:(-∞,-1)。

高三第一轮复习数学 充分条件与必要条件

高三第一轮复习数学   充分条件与必要条件

高三第一轮复习数学---充分条件与必要条件一、教学目标:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.二、教学重点:充要条件关系的判定.三、教学过程:(一)主要知识:(一)充分条件、必要条件和充要条件1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。

2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必A⇒要条件。

B3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。

(二)充要条件的判断A⇒成立则A是B成立的充分条件,B是A成立的必要条件。

1若BA⇒且B A,则A是B成立的充分且不必要条件,B是A成立必要且非充分条2.若B件。

A⇔成立则A、B互为充要条件。

3.若B证明A是B的充要条件,分两步:(1)充分性:把A当作已知条件,结合命题的前提条件推出B;(2)必要性:把B当作已知条件,结合命题的前提条件推出A。

(三)给定两个命题,p、q, 可以考虑集合A={x︱x满足p},B={x︱x满足q},则有1.若A⊆B,则p 是q的充分条件。

2.若A⊇B,则p 是q的必要条件。

3.若A=B,则p 是q的充要条件。

记住:小范围能推出大范围,大范围不能推出小范围。

(二)主要方法:1.判断充要关系的关键是分清条件和结论;⇒是否正确的本质是判断命题“若p,则q”的真假;2.判断p q3.判断充要条件关系的三种方法:①定义法;②利用原命题和逆否命题的等价性;③用数形结合法(或图解法).4.说明不充分或不必要时,常构造反例.(三)例题分析:例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?(1)在△ABC中,p:A>B q:BC>AC;(2)对于实数x、y,p:x+y≠8 q:x≠2或y≠6;(3)在△ABC中,p:SinA>SinB q:tanA>tanB;(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0解:(1)p是q的充要条件(2)p是q的充分不必要条件(3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是(C )A、x<0B、x<0或x>4C、│x-1│>1D、│x-2│>3例2.填空题qq⌝⇒若pp⌝是;______)1(条件的则;______00,_______00)2(条件的是条件的是≥≥>>ba ab b a ab (3)若A 是B 的充分条件,B 是C 的充要条件,D 是C 的必要条件,则A 是D 的 条件. 答案:(1)必要条件 (2)充要、必要不充分 (3)A => B <=> C => D 故填充分不必要。

高三第一轮复习课件命题及其关系充分条件与必要条件

高三第一轮复习课件命题及其关系充分条件与必要条件

a2-b2=0, ab=1,
解得a=b=1
或a=b=-1,即必要性不成立,故选A.
答案:A
第一章 第2讲
第29页
金版教程 ·高三一轮总复习 ·理科数学
记牢3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
3. 设a,b为实数,则“0<ab<1”是“b<1a”的( )
A. 充分不必要条件 B. 必要不充分条件
答案:C
第一章 第2讲
第26页
金版教程 ·高三一轮总复习 ·理科数学
记牢3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
判断充分、必要条件时应注意的问题 (1)要弄清先后顺序:“A的充分不必要条件是B”是指B能 推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A 能推出B,且B不能推出A; (2)要善于举出反例:如果从正面判断或证明一个命题的正 确或错误不易进行,那么可以通过举出恰当的反例来说明.
() A. x>1 C. x>3
B. x<1 D. x<3
解析:x>2⇒x>1,但x>1⇒/ x>2. 答案:A
第一章 第2讲
第13页
金版教程 ·高三一轮总复习 ·理科数学
记牢3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
5. [课本改编]已知下列命题:
①已知集合A,B,若a∈A,则a∈(A∩B);
考点3 充分条件与必要条件
限时规范特训
第一章 第2讲
第8页
金版教程 ·高三一轮总复习 ·理科数学
记牢3个必备考点 突破3个热点考向

高中数学一轮复习(全)

高中数学一轮复习(全)
解: 的值域是 的定义域 , 的值域 ,故 ,而A ,故 .
11.常用变换:
① .
②满足 ,或 ,若 时, .
8.对称变换:①y=f(x)
②y=f(x)
③y=f(x)
9.判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:
在进行讨论.
10.外层函数的定义域是内层函数的值域.
例如:已知函数f(x)=1+ 的定义域为A,函数f[f(x)]的定义域是B,则集合A与集合B之间的关系是.
§01.集合与简易逻辑知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一)集合
1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.
2.集合的表示法:列举法、描述法、图形表示法.
集合元素的特征:确定性、互异性、无序性.
集合的性质:
4、四种命题的形式:
原命题:若P则q;逆命题:若q则p;
否命题:若┑P则┑q;逆否命题:若┑q则┑p。
(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
例:①若 应是真命题.
解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.
② .
解:逆否:x+y=3 x=1或y=2.
,故 是 的既不是充分,又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围.
3.例:若 .
4.集合运算:交、并、补.
5.主要性质和运算律

2023版高考数学一轮总复习第一章集合与常用逻辑用语不等式第二讲充分条件与必要条件课件

2023版高考数学一轮总复习第一章集合与常用逻辑用语不等式第二讲充分条件与必要条件课件

解析:因为 S4+S6>2S5⇔4a1+4×2 3d+6a1+6×2 5d> 25a1+5×2 4d⇔6d+15d>20d⇔d>0,所以“d>0”是 “S4+S6>2S5”的充要条件.
答案:C
【反思感悟】“交汇型”充分、必要条件的问题通常 是选取合适的数学背景,把新交汇考点巧妙地融入试题中, 虽然它的构思巧妙、题意新颖,但是,它考查的还是基本 知识和基本技能.解这类题的关键在于用慧眼去找寻“交 汇点”,用心灵去感受题意以及科学合理地运算推理.
题组三 真题展现 4.(2021 年天津)已知 a∈R,则“a>6”是“a2>36” 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:A
5.(2021 年浙江)已知非零向量 a,b,c,则“a·c=b·c” 是“a=b”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B
②反之,若 A⊆(C-B)∪(B-C),则由于(C-B)∪ (B-C)=Ⅰ∪Ⅱ∪Ⅳ,A=Ⅰ∪Ⅳ∪Ⅴ,所以(Ⅰ∪Ⅳ∪Ⅴ) ⊆(Ⅰ∪Ⅱ∪Ⅳ),所以Ⅴ=∅,所以 A∩B∩C=∅,
故“A⊆(C-B)∪(B-C)”是“A∩B∩C=∅”的充要 条件.故选 A.
答案:A
结合指数函数和对数函数的单调性可得 a>1,又因为 (2,+∞) (1,+∞),所以“a>2”是“函数f(x)=ax+ logax(a>0,a≠1)在(0,+∞)上单调递增”的充分不必要 条件.故选 A.
答案:A
2.(2021 年浦东期中)定义 A-B={x|x∈A 且x B},设 A,B,C 是某集合的三个子集,且满足(A-B)∪(B-A)⊆ C,则“A⊆(C-B)∪(B-C)”是“A∩B∩C=∅”的( )

高三数学一轮复习知识点讲解1-2全称量词与存在量词、充要条件

高三数学一轮复习知识点讲解1-2全称量词与存在量词、充要条件

高三数学一轮复习知识点讲解专题1.2 全称量词与存在量词、充要条件【考纲解读与核心素养】1.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.2.全称量词与存在量词(1)理解全称量词与存在量词的意义. (2)能正确地对含有一个量词的命题进行否定.3.培养学生数学抽象、逻辑推理、数学运算、直观想象能力.【知识清单】1. 充分条件与必要条件(1)若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)若p ⇒q ,且q ⇒/p ,则p 是q 的充分不必要条件; (3)若p ⇒/q 且q ⇒p ,则p 是q 的必要不充分条件; (4)若p ⇔q ,则p 是q 的充要条件;(5)若p ⇒/q 且q ⇒/p ,则p 是q 的既不充分也不必要条件. 2. 全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示. (2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为,()x M p x ∀∈,读作“对任意x 属于M ,有p (x )成立”.2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示. (2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M 中的一个x 0,使p (x 0)成立”可用符号简记为00,()x M p x ∃∈,读作“存在M 中的元素x 0,使p (x 0)成立”. 3.全称命题与特称命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)“p 或q ”的否定为:“非p 且非q ”;“p 且q ”的否定为:“非p 或非q ”. (3)含有一个量词的命题的否定命题命题的否定,()x M p x ∀∈ 00,()x M p x ∃∈⌝00,()x M p x ∃∈,()x M p x ∀∈⌝【典例剖析】高频考点一 充要条件的判定例1.(2019年高考浙江)若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.例2.(2018年浙江卷)已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】A 【解析】 因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.【思路点拨】一般地,充分、必要条件判断方法有三种.本题难度较小,根据线面平行的判定定理可得充分性成立,而由无法得到m 平行于平面内任一直线,即必要性不成立.例3.(2019·北京高考真题(理))设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件, 故选C. 【规律方法】充要关系的几种判断方法(1)定义法:若 ,p q q p ⇒≠> ,则p 是q 的充分而不必要条件;若,p q q p ≠>⇒ ,则p 是q 的必要而不充分条件;若,p q q p ⇒⇒,则p 是q 的充要条件; 若,p q q p ≠>≠> ,则p 是q 的既不充分也不必要条件.(2)等价法:即利用p q ⇒与q p ⌝⌝⇒;q p ⇒与p q ⌝⌝⇒;p q ⇔与q p ⌝⌝⇔的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3) 集合关系法:从集合的观点理解,即若满足命题p 的集合为M ,满足命题q 的集合为N ,则M 是N 的真子集等价于p 是q 的充分不必要条件,N 是M 的真子集等价于p 是q 的必要不充分条件,M =N 等价于p 和q 互为充要条件,M ,N 不存在相互包含关系等价于p 既不是q 的充分条件也不是q 的必要条件 【变式探究】1.(2019年高考天津理)设x ∈R ,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.2.(2019·北京高考真题(文))设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】时,,为偶函数;为偶函数时,对任意的恒成立,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.3.(2017·浙江省高考真题)已知等差数列{}n a 的公差为d,前n 项和为n S ,则“d>0”是465"+2"S S S >的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C . 高频考点二:充分条件与必要条件的应用例4.(江西省新八校2019届高三第二次联考)若“3x >”是“x m >”的必要不充分条件,则m 的取值范围是________. 【答案】3m >因为“3x >”是“x m >”的必要不充分条件, 所以(),m +∞是()3,+∞的真子集,所以3m >, 故答案为3m >. 【规律方法】1.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.2.把握探求某结论成立的充分、必要条件的3个方面 (1)准确化简条件,也就是求出每个条件对应的充要条件;(2)注意问题的形式,看清“p 是q 的……”还是“p 的……是q”,如果是第二种形式,要先转化为第一种形式,再判断;(3)灵活利用各种方法判断两个条件之间的关系,充分、必要条件的判断常通过“⇒”来进行,即转化为两个命题关系的判断,当较难判断时,可借助两个集合之间的关系来判断. 【变式探究】(安徽省江南片2019届高三开学联考)设p :实数x 满足(3)()0x a x a --<,q :实数x 满足302x x +>+. (Ⅰ)当1a =时,若p q ∨为真,求实数x 的取值范围;(Ⅱ)当0a <时,若p 是q ⌝的必要条件,求实数a 的取值范围. 【答案】(1)()(),32,-∞--+∞;(2)()2,1--. 【解析】(Ⅰ)当1a =时,p :13x <<,q :3x <-或2x >-. 因为p q ∨为真,所以p ,q 中至少有一个真命题. 所以13x <<或3x <-或2x >-, 所以3x <-或2x >-,所以实数x 的取值范围是()(),32,-∞-⋃-+∞. (Ⅱ)当0a <时,p :3a x a <<,由302x x +>+得:q :3x <-或2x >-, 所以q ⌝:32x -≤≤-,因为p 是q ⌝的必要条件,所以{|32}{|3}x x x a x a -≤≤-⊆<<, 所以332a a <-⎧⎨>-⎩,解得21a -<<-,所以实数a 的取值范围是()2,1--. 【特别警示】根据充要条件求解参数范围的方法及注意点(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)注意点:区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的错误. 高频考点三:全称量词与存在量词例5.(2018贵州凯里一中模拟)命题p :0x R ∃∈,()02f x ≥,则p ⌝为( ) A . x R ∀∈, ()2f x < B . x R ∀∈, ()2f x ≥ C . 0x R ∃∈, ()2f x ≤ D . 0x R ∃∈, ()2f x < 【答案】A【解析】根据特称命题的否定,易知原命题的否定为: (),2x R f x ∀∈<,故选A . 例6.(2013·重庆高考真题(文))命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<0【答案】D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .例7. 有下列四个命题,其中真命题是( ). A.n ∀∈R ,2n n ≥B.n ∃∈R ,m ∀∈R ,m n m ⋅=C.n ∀∈R ,m ∃∈R ,2m n <D.n ∀∈R ,2n n <【答案】B 【解析】对于选项A ,令12n =,则2111242⎛⎫=< ⎪⎝⎭,故A 错;对于选项B ,令1n =,则m ∀∈R ,1⋅=m m 显然成立,故B 正确; 对于选项C ,令1n =-,则21<-m 显然无解,故C 错; 对于选项D ,令1n =-,则2(1)1-<-显然不成立,故D 错. 故选:B 【规律方法】1.全称命题真假的判断方法(1)要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p (x )成立; (2)要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p (x 0)不成立即可. 2.特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.3.全称命题与特称命题真假的判断方法汇总命题名称 真假 判断方法一 判断方法二 全称命题真所有对象使命题真否定为假假 存在一个对象使命题假 否定为真 特称命题真存在一个对象使命题真否定为假假所有对象使命题假否定为真4.常见词语的否定形式有:原语句 是 都是 > 至少有一个 至多有一个 对任意x ∈A 使p (x )真 否定形式不是不都是≤一个也没有至少有两个存在x 0∈A 使p (x 0)假【变式探究】1.(2015·全国高考真题(理))设命题2:,2nP n N n ∃∈>,则P 的否定为( )A .2,2n n N n ∀∈>B .2,2n n N n ∃∈≤C .2,2n n N n ∀∈≤D .2,2n n N n ∃∈=【答案】C 【解析】根据否命题的定义,即既否定原命题的条件,又否定原命题的结论,特称命题的否定为全称命题,所以命题的否命题应该为2,2nn N n ∀∈≤,即本题的正确选项为C.2.(2019·江苏省如东高级中学高三月考)命题“20,0x x ∀><都有”的否定是________.【答案】20,0x x ∃<≤有 【解析】全称量词改存在,再否定结论,即“20,0x x ∀><都有”的否定是:20,0x x ∃<≤有 故答案为:20,0x x ∃<≤有 3.给出下列命题:(1)x ∀∈R ,20x >;(2)x ∃∈R ,210x x ++≤;(3)a ∃∈RQ ,Rb ∈Q ,使得a b +∈Q .其中真命题的个数为______. 【答案】1 【解析】对于(1),当0x =时,20x =,所以(1)是假命题;对于(2),2213310244x x x ⎛⎫++=++≥> ⎪⎝⎭,所以(2)是假命题;对于(3),当22a =,32b =+时,5a b +=,所以(3)是真命题. 所以共有1个真命题, 故填:1. 【易错提醒】1.命题的否定与否命题的区别:“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.2.弄清命题是全称命题还是特称命题是写出命题否定的前提.3.注意命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定.。

高考数学一轮复习集合简单逻辑公式归纳

高考数学一轮复习集合简单逻辑公式归纳

高考数学一轮复习集合简单逻辑公式归纳集合(简称集)是数学中一个差不多概念,它是集合论的研究对象。

以下为查字典数学网整理的集合简单逻辑公式归纳,期望对考生复习有关心。

任一xA xB,记作A BA B,B A A=BA B={x|xA,且xB}A B={x|xA,或xB}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件1.集合元素具有①确定性②互异性③无序性2.集合表示方法①列举法②描述法③韦恩图④数轴法3.集合的运算⑴AC)=(A(AC)⑵Cu(AB)=CuACuBCu(AB)=CuACuB家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高专门快。

4.集合的性质⑴n元集合的子集数:2n真子集数:2n-1;非空真子集数:2n-2那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录同时阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。

如此下去,除假期外,一年便能够积存40多则材料。

假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?集合简单逻辑公式归纳的全部内容确实是这些,更多杰出内容请考生连续关注查字典数学网。

【精品】高考数学一轮复习必备第06课时:第一章集合与简易逻辑-充要条件教案

【精品】高考数学一轮复习必备第06课时:第一章集合与简易逻辑-充要条件教案

例 2.设 x, y R ,则 x2 y2 2 是 | x | | y | 2 的(
)、是 | x | | y | 2 的(

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 解:由图形可以知道选择 B,D.(图略)
例 3.若命题甲是命题乙的充分非必要条件, 命题丙是命题乙的必要非充分条件, 命题丁是命题丙的充要条
第 06 课时:第一章 集合与简易逻辑——充要条件
一.课题:充要条件 二.教学目标:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系. 三.教学重点:充要条件关系的判定. 四.教学过程: (一)主要知识: 1.充要条件的概念及关系的判定; 2.充要条件关系的证明. (二)主要方法: 1.判断充要关系的关键是分清条件和结论;
得 | xy | xy 所以 xy 0 故必要性成立,
综上,原命题成立.
11 例 5.已知数列 { an } 的通项 an n 3 n 4
1
an
log2t (t
1)
11
log
2 (t
1) t
2n 3,为了使不等式
20
对任意
n N * 恒成立的充要条件.
解:
an 1 an
1
1
1 (1
1 )( 1
1)0
即只须 t
1
1

log
2 t
(t
1)
9
log
2 t
(
t
20
1)
11 20
0

解得 1 log t (t 1) t(t 1) ,
1
0
t 1 t(t 2)
即t

第11讲:数学高考一轮总复习(集合、充分条件)

第11讲:数学高考一轮总复习(集合、充分条件)

第1讲集合思维导图知识梳理1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性(2)集合的三种表示方法:列举法、描述法、图示法.(3)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(4)五个特定的集合及其关系图:N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称A是B 的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A是集合B的子集,但集合B中至少有一个元素不属于A,则称A是B的真子集.(3)集合相等:如果A⊆B,并且B⊆A,则A=B.(4)空集:不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B ,即A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A ,即∁U A ={x |x ∈U ,且x ∉A }.核心素养分析在高中数学课程中,集合是刻画一类事物的语言和工具。

本单元的学习,可以帮助学生使用集合的语言简洁、准确地表述数学的研究对象,学会用数学的语言表达和交流,积累数学抽象的经验。

能够在现实情境或数学情境中,概括出数学对象的一般特征,并用集合语言予以表达。

初步学会用三种语言(自然语言、图形语言、符号语言)表达数学研究对象,并能进行转换。

掌握集合的基本关系与基本运算在数学表达中的作用。

重点提升数学抽象和数学运算素养。

题型归纳题型1集合的基本概念【例1-1】(2020•东湖区校级模拟)设集合{2A =,1a -,22}a a -+,若4A ∈,则(a =)A .3-或1-或2B .3-或1-C .3-或2D .1-或2【例1-2】(2020·山东校级模拟)设a ,b ∈R ,集合{1,a +b ,a },ba,b -a =()A .1B .-1C .2D .-2【跟踪训练1-1】(2019秋•徐汇区校级期末)已知复数a ,b 满足集合{a -,2}{b a =,1}b +,则ab =.【跟踪训练1-2】(2020•大连模拟)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为()A .3B .4C .5D .6【跟踪训练1-3】(2020•徐汇区校级模拟)已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x =.【名师指导】与集合中的元素有关问题的求解策略(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)集合元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.题型2集合的基本关系【例2-1】(2020•成都模拟)已知集合{0A =,}x ,{0B =,2,4},若A B ⊆,则实数x 的值为()A .0或2B .0或4C .2或4D .0或2或4【例2-2】(2020春•金凤区校级期中)已知集合22{|340A x x ax a =-->,(0)}a >,{|2}B x x =>,若B A ⊆,则实数a 的取值范围是.【例2-3】已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________.【跟踪训练2-1】(多选)(2019秋•宿迁期末)已知集合[2A =,5),(,)B a =+∞.若A B ⊆,则实数a 的值可能是()A .3-B .1C .2D .5【跟踪训练2-2】(2020春•海淀区校级期中)设集合{|||1A x x a =-<,}x R ∈,{|15B x x =<<,}x R ∈,若A B Ü,则a 的取值范围为.【跟踪训练2-3】已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R },若B ⊆A ,则实数m 的取值范围为________.【名师指导】根据两集合的关系求参数的方法已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;(2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.题型3集合的基本运算【例3-1】2020•新课标Ⅱ)已知集合U ={﹣2,﹣1,0,1,2,3},A ={﹣1,0,1},B ={1,2},则∁U (A ∪B )=()A .{﹣2,3}B .{﹣2,2,3)C .{﹣2,﹣1,0,3}D .{﹣2,﹣1,0,2,3}【例3-2】(2020•新课标Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为()A .2B .3C .4D .6【例3-3】(2019•巢湖市一模)已知集合{|3}A x x =<,{|}B x x a =>,若A B ≠∅ ,则实数a 的取值范围为()A .[3,)+∞B .(3,)+∞C .(,3)-∞D .(-∞,3]【例3-4】定义集合的商集运算为AB =,,m x x m A n B n ⎧⎫=∈∈⎨⎬⎩⎭丨,已知集合A ={2,4,6},B =|x =k 2-1,k ∈B 中的元素个数为()A .6B .7C .8D .9【跟踪训练3-1】(2020•新课标Ⅰ)已知集合A ={x |x 2﹣3x ﹣4<0},B ={﹣4,1,3,5},则A ∩B =()A .{﹣4,1}B .{1,5}C .{3,5}D .{1,3}【跟踪训练3-2】(2020•海南)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【跟踪训练3-3】(2020•新课标Ⅰ)设集合A ={x |x 2﹣4≤0},B ={x |2x +a ≤0},且A ∩B ={x |﹣2≤x ≤1},则a =()A .﹣4B .﹣2C .2D .4【跟踪训练3-4】(2020•毕节市模拟)已知全集U R =,集合{1A =,2,3,4,5},{|(3)}B x R y lg x =∈=-,则图中阴影部分表示的集合为()A .{1,2,3,4,5}B .{1,2,3}C .{1,2}D .{3,4,5}【跟踪训练3-5】(2020•镇江三模)已知集合{1A =,2},{1B =-,2}a ,若{}A B a = ,则实数a =.【跟踪训练3-6】(2019秋•闵行区校级期中)任意两个正整数x 、y ,定义某种运算()():x y x y x y x yx y ⎧+⎪⊗⊗=⎨⨯⎪⎩与奇偶相同与奇偶不同,则集合{(,)|6M x y x y ==⊗,x ,*}y N ∈中元素的个数是.【名师指导】1.根据集合的运算结果求参数值或范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.2.解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.第2讲充分条件与必要条件、全称量词与存在量词思维导图知识梳理1.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.2.全称量词与全称命题(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫作全称量词.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示:形如“对M中的任意一个x,有p(x)成立”的命题,用符号简记为∀x∈M,p(x).3.存在量词与特称命题(1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在量词.(2)特称命题:含有存在量词的命题.(3)特称命题的符号表示:形如“存在M中的元素x0,使p(x0)成立”的命题,用符号简记为∃x0∈M,p(x0).核心素养分析常用逻辑用语是数学语言的重要组成部分,是数学表达和交流的工具,是逻辑思维的基本语言。

2023年高考数学一轮考点复习第一章集合、常用逻辑用语、不等式第2讲充分条件与必要条件

2023年高考数学一轮考点复习第一章集合、常用逻辑用语、不等式第2讲充分条件与必要条件
第一章 集合、常用逻辑用语、不等式
高考一轮总复习 • 数学
返回导航
[解析] (4)当 α=β=π2时,tan α、tan β 都无意义.因此不能推出 tan α =tan β,当 tan α=tan β 时,α=β+kπ,k∈Z,不一定 α=β,因此是既不 充分也不必要条件.
(5)在△ABC 中,由 A>B,则 a>b,由正弦定理 sin A>sin B,反之也 成立.
p 是 q 的__充__分__不__必__要___条件
p⇒q 且 q p
p 是 q 的__必__要__不__充__分___条件
p q 且 q⇒p
p 是 q 的__充__要___条件
p⇔q
p 是 q 的__既__不__充__分__也__不__必__要___条件
p q且q p
第一章 集合、常用逻辑用语、不等式
第一章 集合、常用逻辑用语、不等式
高考一轮总复习 • 数学
返回导航
题组一 走出误区 1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)p是q的充分不必要条件等价于q是p的必要不充分条件.( √ ) (2)已知集合A,B,则(A∪B)⊆(A∩B)的充要条件是A=B.( √ ) (3)若已知p:x>1和q:x≥1,则p是q的充分不必要条件.( √ ) (4)“α=β”是“tan α=tan β”的充分不必要条件.( × ) (5)在△ABC中,A>B是sin A>sin B的充要条件.( √ )
第一章 集合、常用逻辑用语、不等式
高考一轮总复习 • 数学
返回导航
[解析] 解法一:由 sin x=1,得 x=2kπ+π2(k∈Z),则 cos2kπ+π2= cos π2=0,故充分性成立;又由 cos x=0,得 x=kπ+π2(k∈Z),而 sinkπ+π2 =1 或-1,故必要性不成立.所以“sin x=1”是“cos x=0”的充分不 必要条件,故选 A.

高考数学一轮复习 第一章 集合与常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式练习题(含解

高考数学一轮复习 第一章 集合与常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式练习题(含解

高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1)的全部内容。

充分条件、必要条件与命题的四种形式一、选择题1.“a=2”是“直线(a2-a)x+y=0和直线2x+y+1=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析因为两直线平行,则(a2-a)×1-2×1=0,解得a=2或-1,所以选A.答案A2.已知命题p:∃n∈N,2n>1 000,则綈p为( ).A.∀n∈N,2n≤1 000 B.∀n∈N,2n>1 000C.∃n∈N,2n≤1 000 D.∃n∈N,2n<1 000解析特称命题的否定是全称命题.即p:∃x∈M,p(x),则綈p:∀x∈M,綈p(x).故选A。

答案A3.与命题”若a M∉"等价的命题是( )∈,则b MA。

若a M∉∉,则b MB。

若b M∈∉,则a MC.若a M∈∉,则b MD。

若b M∉∈,则a M解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D. 答案 D4.“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π"的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析函数y=cos2ax-sin2ax=cos2ax的最小正周期为π⇔a=1或a=-1,所以“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件.故选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三第一轮复习 集合与充要条件【要点精讲】1.集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。

2.集合的包含关系:(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂);集合相等:构成两个集合的元素完全一样。

若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ;若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作A B ;(2)简单性质:1)A ⊆A ;2)Φ⊆A ;3)若A ⊆B ,B ⊆C ,则A ⊆C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;(2)若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集;(3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:(1)一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集。

交集}|{B x A x x B A ∈∈=⋂且。

(2)一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集。

}|{B x A x x B A ∈∈=⋃或并集注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。

5.集合的简单性质:(1);,,A B B A A A A A ⋂=⋂Φ=Φ⋂=⋂ (2);,A B B A A A ⋃=⋃=Φ⋃ (3));()(B A B A ⋃⊆⋂(4)B B A B A A B A B A =⋃⇔⊆=⋂⇔⊆;;(5)S C (A ∩B )=(S C A )∪(S C B ),S C (A ∪B )=(S C A )∩(S C B )。

【思维总结】集合知识可以使我们更好地理解数学中广泛使用的集合语言,并用集合语言表达数学问题,运用集合观点去研究和解决数学问题。

1.学习集合的基础能力是准确描述集合中的元素,熟练运用集合的各种符号,如∈、∉、⊆、、=、S C A 、∪,∩等等;2.强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用Venn 图解题方法的训练,加强两种集合表示方法转换和化简训练;解决集合有关问题的关键是准确理解集合所描述的具体内容(即读懂问题中的集合)以及各个集合之间的关系,常常根据“Venn 图”来加深对集合的理解,一个集合能化简(或求解),一般应考虑先化简(或求解);3.确定集合的“包含关系”与求集合的“交、并、补”是学习集合的中心内容,解决问题时应根据问题所涉及的具体的数学内容来寻求方法。

① 区别∈与、与⊆、a 与{a }、φ与{φ}、{(1,2)}与{1,2}; ② A ⊆B 时,A 有两种情况:A =φ与A ≠φ③若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有真子集的个数是n 2-1, 所有非空真子集的个数是22-n④区分集合中元素的形式:如}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ;}12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==;}12|)',{(2++==x x y y x F ;},12|{2xyz x x y z G =++==。

⑤空集是指不含任何元素的集合。

}0{、φ和}{φ的区别;0与三者间的关系。

空集是任何集合的子集,是任何非空集合的真子集。

条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。

⑥符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系 ;符号“,⊄Ø”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。

【典例解析】 题型1:集合的概念某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为___例1.已知全集,集合和的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )U R ={212}M x x =-≤-≤{21,1,2,}N x x k k ==-=A. 3个B. 2个C. 1个D. 无穷多个题型2:集合的性质例2.集合,,若,则的值为( ) A.0 B.1 C.2 D.4随堂练习1.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为 ( )A .{2}B .{3}C .{-3,2}D .{-2,3} 2. 已知集合A={y|y 2-(a 2+a+1)y+a(a 2+1)>0},B={y|y 2-6y+8≤0},若A ∩B ≠φ,则实数a 的取值范围为 .例4.已知全集32{1,3,2}S x x x =--,A={1,21x -}如果}0{=A C S ,则这样的实数x 是否存在?若存在,求出x ,若不存在,说明理由变式题:已知集合2{,,2},{,,}A m m d m dB m m q m q =++=,0m ≠其中,A B =且,求q 的值。

{}0,2,A a ={}21,B a ={}0,1,2,4,16A B = a题型3:集合的运算 例5.已知函数的定义域集合是A,函数的定义域集合是B (1)求集合A 、B(2)若A U B=B,求实数的取值范围.例6.已知集合,则( ) A. B. C. D. 题型4:图解法解集合问题例7. 设全集R =⋃,函数)1)(1|1lg(|)(<-++=a a x x f 的定义域为A ,集合}1cos |{==x x B π,若B A C ⋂⋃)(恰好有2个元素,求a 的取值集合。

例9.向50名学生调查对A 、B 两事件的态度,有如下结果 赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人。

问对A 、B 都赞成的学生和都不赞成的学生各有多少人?()f x =22()lg[(21)]g x x a x a a =-+++a }{{}1,3,5,7,9,0,3,6,9,12A B ==N A C B =I }{1,5,7}{3,5,7}{1,3,9}{1,2,3例10.设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围。

例12.已知{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,nS n )|n ∈N *},B ={(x ,y )|41x 2-y 2=1,x ,y ∈R }。

试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明:(1)若以集合A 中的元素作为点的坐标,则这些点都在同一条直线上; (2)A ∩B 至多有一个元素;变式题:解答下述问题:(Ⅰ)设集合},0|{},0422|{2<==++-=x x B m x x x A ,φ≠⋂B A 若,求实数m 的取值范围.分析:关键是准确理解≠⋂B A 的具体意义,首先要从数学意义上解释≠⋂B A 的意义,然后才能提出解决问题的具体方法。

题型6:集合的子交并补及空集的运算 10.已知集合A={x ∈R||x+3|+|x ﹣4|≤9},B=,则集合A ∩B= .11.已知集合A={x∈R||x﹣1|<2},Z为整数集,则集合A∩Z中所有元素的和等于.12.设集合A={﹣1,1,3},B={a+2,a2+4},A∩B={3},则实数a=.13.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是.14.若U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=15.已知集合A={x|log2x≤2},B=(﹣∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=.16.设集合A={x|log2x<1},B={x|<0},则A∩B=.17.若集合A={x|(x﹣1)2<3x+7,x∈R},则A∩Z中有个元素.18.若集合A={x|x≤2}、B={x|x≥a}满足A∩B={2},则实数a=.19.已知集合A={x||x﹣a|≤1},B={x|x2﹣5x+4≥0}.若A∩B=∅,则实数a的取值范围是.20.已知A={﹣1,3,m},集合B={3,4},若B⊆A,则实数m=.21.下列命题正确的个数(1)很小的实数可以构成集合;(2)集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合;(3)1,,这些数组成的集合有5个元素;(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限内的点集.22.设n∈N+,一元二次方程x2﹣4x+n=0有整数根的充要条件是n=.逻辑是研究思维形式及其规律的一门学科,是人们认识和研究问题不可缺少的工具,是为了培养学生的推理技能,发展学生的思维能力简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

相关文档
最新文档