超大断面隧道围岩的稳定性分析

合集下载

超大断面隧道围岩的稳定性分析

超大断面隧道围岩的稳定性分析

文章编号:1673 0836(2005)02 0227 04超大断面隧道围岩的稳定性分析师金锋,张应龙(西北工业大学,西安 710072)摘 要:根据地下结构设计理论和岩石屈服的Drucker-Prager准则,考虑到围岩的自身承载能力,采用有限元对广西柳州一处公路隧道围岩的稳定性进行了分析。

考虑到开挖方式、开挖顺序对围岩稳定性的影响,对围岩的开挖过程进行模拟。

确定不同开挖方式下隧道围岩的位移、应力状态,以及位移、应力状态随时间的变化规律,为隧道施工过程中开挖方案的制定、支护时间的选取提供了依据。

关键词:超大断面隧道;围岩稳定性;有限元分析中图分类号:TU457 文献标识码:BFEM Analysis of Rock S tability on Super Section TunnelSHI Jin Feng,Z HANG Ying Long(N orthwestern Polytechn ical University,Shanxi Xi an710072,China)Abstract:Based on theory of structure desi gn and guide line of Drucker-Prager for rock.taking in to account of its capabili ty bearing the weight of surrounding rock,the Guangx i Liuzhou Ci ty road tunnel has been analysed to simulate the surrounding rock by FE M analysis.Considering the effect of the excavated means and the excavated order to the stabili ty of the surrounding rock,the process of excavation of the surrounding rock is simulated.Making certain surrounding rock of tun nel bit shift,stress conditi on on the different excavation means,and the al ternation regular pattern with bit shift and stress adapts to time.It offered a foundation for excavation scheme formulation and selection supporti ng ti me in the process of buildin g the tunnel.Keywords:Super section tunnel;rock stabili ty;FE M analysis我们在公路隧道的开挖过程中,遇到许多面积超过100m2的断面,给施工安全和进度都带来了一定的难度。

隧道工程中的围岩稳定性分析

隧道工程中的围岩稳定性分析

隧道工程中的围岩稳定性分析隧道工程是一项复杂而重要的工程,涉及到许多工程学科的知识。

其中一个关键的因素就是隧道围岩的稳定性。

围岩的稳定性对隧道的安全和可持续运营起着至关重要的作用。

因此,隧道工程中的围岩稳定性分析成为了工程师们研究和解决的难题。

隧道工程中的围岩稳定性分析可以分为岩石力学分析和数值模拟两个方面。

岩石力学分析是指通过实地勘探和采样,对隧道围岩的物理力学性质进行实验室测试,并通过理论计算和分析,了解围岩的强度、变形性能、破坏特性等。

这样可以为隧道设计提供关键的参数和参考依据。

进行岩石力学分析时,首先需要对围岩进行采样。

通过岩芯和地质面的观察,可以得到围岩的颜色、结构、岩石类型等基本信息。

然后,利用岩石工程力学测试,如拉伸试验、压缩试验等,确定围岩的强度和变形特性。

同时,还需要进行单轴和三轴剪切试验,以评估岩石的抗剪强度。

这些实验数据可以为后续的数值模拟提供基础。

数值模拟是利用计算机模拟隧道施工和运营过程中围岩的变形和破坏情况。

通过数值模拟,可以对围岩的稳定性进行全面准确的分析和预测。

在数值模拟中,主要采用有限元法进行计算。

首先,需要根据岩石力学分析得到的实验数据,建立围岩的材料模型和边界条件。

然后,将隧道建模,并将岩石材料模型应用于模拟中。

最后,对围岩施加负荷,通过计算机模拟围岩的变形和破坏情况。

在进行围岩稳定性分析时,需要考虑到许多因素。

其中,地下水是一个重要的因素。

地下水的存在会显著影响围岩的稳定性。

当隧道施工过程中遇到地下水时,要通过合理的抽水措施来控制地下水位,减少对围岩的影响。

此外,还要考虑到隧道周围的地质构造和应力状态等因素。

这些因素的综合分析和计算可以帮助工程师们确定围岩稳定性的状况,并制定相应的安全措施。

围岩稳定性分析的准确性对隧道工程的安全和可持续运营至关重要。

它可以帮助工程师们了解围岩的力学特性,预测围岩的变形和破坏情况,制定合理的施工方案和安全措施。

因此,在隧道工程中,围岩稳定性分析是一项必不可少的工作。

地铁隧道施工中的围岩稳定性分析

地铁隧道施工中的围岩稳定性分析

地铁隧道施工中的围岩稳定性分析地铁隧道作为现代城市交通系统的重要组成部分,其施工过程中的围岩稳定性分析是一项非常关键的工作。

围岩稳定性的好坏直接关系到隧道的安全性和使用寿命,因此对于地铁隧道的施工方来说,合理的围岩稳定性分析非常重要。

一、围岩特性分析在进行围岩稳定性分析之前,首先需要对围岩的特性进行分析。

围岩的特性包括岩性、结构、强度、稳定性等方面。

岩性可以分为软岩、硬岩等不同类型,而结构则包括岩体的裂缝、节理等特征。

这些特性对于围岩的稳定性具有重要影响。

二、应力环境分析地铁隧道施工中,围岩所承受的应力环境是很复杂的,包括地表荷载、地下水压力、地壳运动等多个方面。

在进行围岩稳定性分析时,需要充分考虑这些应力环境的影响。

例如,地表荷载会对围岩产生额外的压力,而地下水压力则可能导致围岩的软化和溶解。

因此,在分析围岩稳定性时需要考虑这些应力环境的综合影响。

三、工程地质调查与分析工程地质调查是进行围岩稳定性分析的基础,通过对地铁隧道所在地区的地质情况进行综合分析,可以更好地评估围岩的稳定性。

工程地质调查包括地层、地下水、岩土体等方面的调查。

这些数据可以为围岩稳定性的分析提供重要的依据。

四、围岩稳定性评价指标在对围岩稳定性进行分析时,需要根据具体情况选取合适的评价指标。

常用的评价指标包括有效应力、稳定性系数、岩体开挖应力等。

通过这些指标的分析,可以评估围岩的稳定性,并采取相应的支护措施。

五、围岩支护设计基于围岩稳定性的分析结果,需要进行围岩支护的设计。

根据不同的围岩特性和施工条件,可以选择不同的支护方式,如钢筋网片、喷射混凝土、锚杆等。

支护设计的目的是保证围岩的稳定性,防止隧道发生塌方等意外情况。

六、围岩监测与预警施工过程中,对围岩进行实时监测是非常重要的,通过监测实时了解围岩的变形和应力状态,可以及时采取措施进行处理。

围岩监测包括地下水位监测、应力监测、位移监测等多个方面,通过这些监测数据可以预测围岩的破坏程度,并及时进行预警。

隧道围岩块体稳定性分析及支护对策

隧道围岩块体稳定性分析及支护对策

在块 体理论 的基 础 上开 发 的三 维 块体 分 析 软 件 , 该 程 序具有 操作 简便 、 功能齐全、 互 动性 好 等 特 点 , 目前 已 被众 多学 者接 受 和使 用 。 。U n w e d g e程 序研 究 的块
体 由 3组 结 构 面 和 隧 道 轮 廓 面 ( 临空面 ) 切割而成 。
岩体 作 为 一 种 非 均 质 介 质 , 其 间夹 杂 着 断 层 、 节 理、 破 碎带 、 软 弱夹 层 等结 构 面 , 这 些 结 构 面将 岩体 切 割成 形状 各异 、 大 小 不 均 的块 体 。 隧道 开 挖 打 破 了块
体 在 自然 状 态 下 的 稳 定 平 衡 , 进 而 引 起 隧 道 围 岩 的
1 块 体 理 论 及 Un w e d g e程 序
1 . 1 块 体 理 论 块 体 理 论 目前 已 广 泛 应 用 于 隧 道 、 地下 空间 、 边 坡
等 岩土工 程 中 。块 体 理 论认 为 , 岩体 由被 结 构 面 切割
该程 序假 定结构 面 为平 面 且 可 贯 穿 整个 研 究 岩 体 ; 只
众 多学者 研究 并发 展 了块体 理 论 , 并 将 其 应 用 于工 程
实践 一 。 本文 对 块 体 理 论 和 U n w e d g e程 序 的原 理 作 简 要 介绍 , 并将 其应 用 于莲 花 山 2号 隧道 围岩 稳 定 性分 析
关 键块 体产 生移 动后 , 可能 导致 其余块 体 的松 动 ,
6 3
1 ) 重 力 W
滑 动 方 向 为
摘 要 隧道 围岩 中的节 理和 断层将 岩体 切割 成块 体 , 人 工 开挖打 破 了块 体 的 自然 平衡 状 态 。这 些 不

隧道围岩稳定性分析与加固技术研究

隧道围岩稳定性分析与加固技术研究

隧道围岩稳定性分析与加固技术研究隧道作为地下交通工程的重要组成部分,其决定着城市交通的畅通与发展。

然而,在隧道的建设、运营及使用过程中,会因为地质条件、水文地质条件、姿态等多种因素导致围岩的不稳定性,从而引起严重的安全隐患。

因此,对隧道围岩稳定性进行分析及相应的加固技术研究,具有重要的实际意义。

一、隧道围岩稳定性分析1、地质条件及水文地质条件分析在隧道建设前,需要进行地质钻探等一系列勘探工作,获取地质、水文地质等方面的相关信息,以便为后续的设计工作提供精确的基础数据。

同时,根据不同地质条件和水文地质条件的特点,对于岩体的物理力学性质、化学特性和水文地质特征等进行分析,以提高隧道围岩稳定性预测的准确性。

2、姿态分析隧道的几何姿态是影响隧道围岩稳定性的重要因素之一。

根据隧道的设计参数和围岩的力学特性,对于姿态角、掏切比、围压大小等因素进行科学分析和提前预测。

只有将所有影响因素加以综合考虑,才能够准确预测隧道围岩稳定性,为后续的加固工作提供科学依据。

3、稳定性计算根据隧道的设计参数和围岩的力学特性,采用方法计算出隧道各截面的围岩稳定系数,确定隧道围岩的稳定性。

同时,进行有限元模拟分析,确定隧道围岩的应力状态,为后续的加固设计提供参考依据。

二、隧道围岩加固技术研究1、高压注浆高压注浆技术是目前隧道围岩补强加固技术中最常用的一种。

该技术通过向岩体内部注入一定数量的水泥浆,进而增强岩体的密实度和抗压强度,改善其力学性质,进一步提高隧道的围岩稳定性。

2、锚杆加固锚杆加固是指将钢筋或拉索预埋在洞壁内或洞壁周围的土层、岩体中,利用锚固力,将锚杆与洞壁紧密连接,从而达到加固效果。

该技术适用于较软的岩石或土壤,其不仅在岩体内部产生锚杆支撑框架,还可以增加其抗拉强度。

3、喷涂加固喷涂加固是利用喷涂机,将钢筋、混凝土等材料喷涂在洞壁上,形成喷涂墙或喷涂块,从而形成能够抗拆、抗析的加固效果。

相比于传统的加固方法,喷涂加固获得了广泛的应用,同时也逐步成为了加固技术的主要趋势。

隧道施工设计中的围岩稳定性分析方法研究

 隧道施工设计中的围岩稳定性分析方法研究

智能化和自动化技术的应用
利用人工智能和大数据技术进行围岩稳定性预测 开发自动化监测和预警系统,提高施工安全性 利用机器人和自动化设备进行隧道施工,提高效率和质量 利用虚拟现实和增强现实技术进行施工模拟和培训,提高施工质量和效率
跨学科融合和交叉创新
围岩稳定性分析的未来发展趋势将更加注重跨学科融合和交叉创新 跨学科融合可以带来新的思路和方法,提高围岩稳定性分析的准确性和可靠性 交叉创新可以促进不同学科之间的交流和合作,推动围岩稳定性分析技术的进步和发展 跨学科融合和交叉创新将为围岩稳定性分析的未来发展提供新的机遇和挑战
实践应用中常见的围岩稳 定性问题及解决方法
围岩稳定性分稳定性分析 的准确性和可靠性
围岩稳定性分析 的未来发展
分析方法的改进和创新
引入新的数据分析技术,如机器学习、深度学习等 改进现有分析方法,提高计算效率和准确性 结合工程实践,开发新的围岩稳定性分析方法 加强与其他领域的交叉学科研究,如地质力学、岩体力学等
经验公式法
原理:根据大量实测数据和经 验总结出的公式
适用范围:适用于各种地质条 件和围岩类型
优点:简单易用,结果可靠
缺点:需要大量的实测数据和 经验积累
围岩稳定性分析 的流程
收集资料和现场勘查
收集地质资料:包括地形、地质构造、岩性、地下水等 收集施工资料:包括施工方法、施工进度、施工质量等 现场勘查:实地考察隧道施工现场,了解围岩实际情况 收集监测数据:通过监测仪器收集围岩变形、应力等数据
隧道施工过程中的 围岩稳定性分析: 实时监测围岩稳定 性,及时调整施工 方案和施工方法, 确保隧道施工的安 全和质量。
隧道施工后的围 岩稳定性分析: 评估隧道施工对 围岩稳定性的影 响,为后续运营 和维护提供依据。

隧道围岩稳定性评估方法总结

隧道围岩稳定性评估方法总结

隧道围岩稳定性评估方法总结隧道是一种重要的交通工程,其可靠的围岩稳定性对于保证交通安全至关重要。

因此,对隧道围岩稳定性的评估方法进行总结和探讨,对于工程建设具有重要的意义。

首先,对于隧道围岩稳定性的评估,通常采用定性和定量的方法相结合。

定性评估方法主要通过观察围岩的岩性、构造、断裂等特征,综合判断围岩的稳定性状况。

定量评估方法则通过采集地质勘探、测量数据,结合计算模型和数值分析方法,进行隧道围岩的力学参数评估。

一种常用的定量评估方法是利用岩石力学参数的试验和测定结果,结合合理的力学模型,进行隧道围岩的稳定性分析。

在进行力学参数测定时,可以采用室内试验和原位试验两种方式。

室内试验主要通过对采集到的岩石样品进行试验,包括抗压强度试验、抗折强度试验、剪切强度试验等,从而获得岩石的力学参数。

原位试验则是在实际的工程现场进行,主要包括钻孔取样、切割试块、岩石钢索张力测量等方法,以获取更真实的围岩力学参数。

通过测定获得的力学参数,再结合适当的数值模型,可以进行隧道围岩稳定性的数值分析和仿真模拟,评估围岩的稳定性并预测可能产生的变形和破坏。

另一种常用的定量评估方法是基于地质信息和监测数据进行隧道围岩稳定性评估。

这一方法主要根据地质调查、地质剖面和地质构造等信息,结合隧道设计参数和现场监测数据,进行变形和破坏预测。

通过监测数据的分析与解读,可以了解隧道围岩的变形、位移、裂缝等情况,进一步评估围岩的稳定性。

同时,还可以根据监测数据的变化趋势,对围岩的稳定情况进行长期动态评估,为后续维护和管理提供科学依据。

隧道围岩稳定性评估方法还可以借鉴其他领域的研究成果。

例如,在岩石力学领域,研究人员通过综合实验和数值模拟,提出了一系列对围岩稳定性影响因素的评估指标和分析方法,如岩石强度指标、应力-应变特性指标等。

这些指标和方法可以应用于隧道围岩稳定性的评估中,为工程设计和施工提供更科学的依据。

此外,还可以借鉴土力学、地震工程等相关领域的研究成果,综合运用多学科的理论和方法,从不同角度对隧道围岩的稳定性进行评估和预测。

隧道建设中围岩稳定性与支护结构分析研究

隧道建设中围岩稳定性与支护结构分析研究

隧道建设中围岩稳定性与支护结构分析研究隧道建设是一项复杂的工程,其中一个重要的问题是如何保证围岩的稳定性,并设计出合适的支护结构。

隧道穿越山脉和地下,需要克服围岩多变、地质构造复杂、地下水渗漏等困难,所以在隧道建设中,设计和施工要保证安全、经济,也要保证工期。

本文将探讨隧道围岩稳定性和支护结构的分析与研究,希望对相关工程师有所帮助。

1. 围岩的分类和特点根据构成岩石的不同,围岩可分为岩性岩石、软弱地层、岩层间填充杂物等。

这些围岩的特点是多变的,例如,硬岩易于开挖,但裂隙和节理和天然岩体断裂在开挖和运输过程中容易露头,而软弱地层则易于塌方和破坏。

此外,地下水也是设计和施工的一个重要考虑因素,它会影响开挖过程中的支撑结构和稳定性。

2. 围岩的稳定性分析方法为保证隧道的稳定性,需要进行围岩的稳定性分析。

围岩的稳定性主要由支护结构和围岩本身两部分构成,设计时需要考虑到两者的相互作用。

主要的稳定性分析方法包括数值模拟、物理模拟和经验公式。

其中,数值模拟是应用最多的方法之一,它能够考虑到复杂的地质情况和设计模式,提供最准确的结果。

3. 支护结构设计原则支护结构是保证隧道稳定的关键,它的设计需要遵循几个基本原则。

首先是根据地质条件和隧道剖面,确定适当的支护形式。

例如,对于高压水力隧道,需要采用防水措施;对于断层带,需要采用一定的加建支护结构等。

其次是根据隧道的功能、使用年限和工程造价,选择经济、合理的支护结构组合。

例如,可以使用钢支撑、喷锚和预应力支撑等技术,以确保支撑效果最佳、成本最小。

4. 支护结构的设计实例支护结构的设计除了从理论上制定方案,实际应用时也要考虑到实际的围岩情况,尤其是地下水的影响。

以下是常见的支护结构设计实例:4.1. 巨型控水型隧道支护结构设计该隧道全长54km,地下水位50-65m,采用了压力门式护拱、喷锚杆和泥浆墙等支护措施。

在设计中,考虑到地下水的渗漏,特别增加了一道泥浆墙,在地面上使用了高压注入仪和监测设备,确保了隧道的安全。

高速公路隧道围岩稳定性的若干方面分析

高速公路隧道围岩稳定性的若干方面分析

高速公路隧道围岩稳定性的若干方面分析随着隧道建设的不断深入,超长深埋的隧道不断的在建设当中,这其中遇到的问题也越来越多。

而隧道工程的围岩稳定性对隧道的正常施工发挥着重要的作用,因此对影响隧道围岩稳定性的因素分析就显得尤为重要了。

根据工程实践,可将影响因素归为三类:一是地质因素,主要指的是原岩应力状态、岩石的组成及构造以及风化情况等;二是工程因素,主要指工程的规模,隧道的类型及大小形状等;三是施工因素,主要指的是施工的手段及工艺,还有就是对围岩的支护方式等。

通过对这些因素的分析,更加客观的了解影响其稳定性的原因,进而找到合适的解决方式。

同时衬砌技术进行了简要的介绍,因其是隧道施工中重要的施工工序,衬砌的质量直接对隧道的施工进度、质量及成本产生重要的影响,因此对衬砌技术及相应的衬砌防排水技术进行了说明,以阐述衬砌技术的发展情况。

1、公路隧道稳定性分析方法对公路隧道围岩稳定性的分析主要包括对隧道的整体及局面两个方面进行分析,其主要方法主要有以下几种方法。

1.1工程地质类比法在对拟建的隧道围岩稳定性进行分析时,可参考已建工程,对其地质条件,岩体类型及相关的监测资料进行对比分析,从而对拟建的工程稳定性进行判断。

目前这种方法较为成熟,已形成多种围岩分类标准,可以根据不同的围岩形式确定出支护衬砌的厚度和形式。

1.2力学分析法自从人们对围岩稳定性的研究开始,对其的力学研究一直处于不断进步的过程,主要经历了从古典压力理论、散体压力理论以及发展到现在更为先进的弹性、塑性力学理论。

隧道开挖之后,因改变了岩体之间原有的受力状态,使得围岩内部受力重新分布,并有可能出现应力集中的不利状态,因此需对其受力状态进行受力分析,如果围岩所受的应力均小于岩体的弹性极限强度,则围岩稳定,处于弹性状态;而当围岩部分受力超出其受力状态时,使得处于弹塑性状态,会因围岩受力不均匀而使得围岩发生部分坍塌,因此需对围岩进行弹塑性进行分析。

1.3数值计算方法岩体是一种非均质、非线性的复杂多变的地质构造物,并且具有复杂的边界条件,使得其力学分析复杂,而一般的解析法不能适应如此复杂的数学力学问题,而数值方法可以有效的模拟复杂的力学和结构特征,能够有效的解决围岩施工中遇到的工程问题。

隧道围岩稳定性研究综述

隧道围岩稳定性研究综述

隧道围岩稳定性研究综述随着科学技术的高速发展,人们对隧道围岩稳定性研究的方法呈现出各种各样。

文章通过资料的查阅,总结了隧道围岩稳定性研究的发展历史及现状,在前人研究的基础上分析了其以后的发展趋势。

标签:公路隧道;围岩稳定性;理论研究;数值模拟;模型试验1 概述近几年随着我国加大了对基础设施建设的力度,我国的隧道也随之不断发展,其规模越来越大,样式越来越多,据统计,截至2015年底,我国大陆运营公路隧道14006座,总长12684km,每年其数量都在以16%的速度增长,这其中包含了各种地质、环境等差的隧道。

为了解决隧道施工及运行的安全,因此,大量的从事隧道相关的科研人员对其稳定进行了大量的研究。

本文对他们的研究总结及其阐述,并在前人研究的基础上分析了未来隧道围岩稳定性研究的发展趋势。

2 围岩稳定性研究现状2.1 理论研究现状围岩压力理论从19世纪的古典压力理论,后來的散体压力理论,到现在的弹性力学理论及塑性力学理论,人们无不时时刻刻在对围岩压力理论进行研究。

在国外,芬纳(Fenner)-塔罗勃根据压力理论总结出了围岩的弹塑性应力图形,日本研究人员Kawamoto采用美国学者Krajcinova提出的损伤力学知识对节理岩体的力学性质进行研究。

在国内孙钧通过对围岩-支护系统受力机理的理论研究,其提出了西原模型在隧道围岩-支护系统中的有限元解朱合华[1]提出了广义虚拟支撑力法,其采用位移释放系数来反映掘进面对围岩的空间约束程。

大量理论研究表明隧道开挖后会使围岩原始应力发生改变,并在开挖面附近出现应力集中现象。

2.2 数值模拟现状进入21世纪以来,由于计算机技术得到迅猛发展,其计算能力得到不断提高,能够方便快速的解决问题,因此越来越多科研人员采用数值模拟来解决围岩稳定性问题。

现有的数值模拟大致分为4种,其包括有限元法、有限差分法、边界元法、离散元法。

有限元法是发展的非常早的数值分析方法,发展到现在其十分成熟,并包含了几十种岩体的本构模型。

隧道开挖中的围岩稳定问题

隧道开挖中的围岩稳定问题

隧道开挖中的围岩稳定问题隧道是一种人工开凿的地下通道,被广泛应用于交通、水利、矿山等工程领域。

在隧道的建设过程中,围岩稳定问题是一个必须要解决的关键问题。

围岩稳定性不仅关系到隧道施工的安全性,还直接影响着隧道的使用寿命和运行效果。

隧道的开挖过程中,周围的围岩会受到剥离、开裂、变形等不同程度的影响。

这些问题可能导致隧道内部的渗水、坍塌、塌方等严重事故发生,给施工人员和设备带来巨大的风险。

因此,在进行隧道开挖时,必须对围岩进行稳定性分析,并采取相应的措施来确保开挖的安全和顺利进行。

首先,稳定性分析是隧道开挖过程中不可或缺的一步。

在进行分析时,需要考虑到地质构造、岩性、围压、地下水位等因素的综合影响。

通过对围岩力学性质的测试和现场观测,可以获得有效的数据来进行分析。

常见的分析方法有解析法、数值方法和模拟实验等。

通过分析,可以确定隧道开挖时可能遇到的围岩变形和破坏形式,从而选择合适的支护措施。

其次,围岩支护是确保隧道开挖稳定性的关键。

根据不同的地质条件和围岩性质,可以采用不同的支护措施。

常见的支护措施包括钢支撑、混凝土衬砌、锚杆喷锚等。

这些措施可以提供稳定的支撑力,减少围岩变形和开裂的可能性。

同时,也可以通过控制隧道开挖的速度和采取适当的排水措施来降低开挖对围岩的影响。

此外,隧道施工过程中的监测与预警也是非常重要的。

通过安装各种传感器和监测设备,可以实时监测围岩的变形和应力状态。

当监测到异常情况时,及时采取措施进行补救,避免事故的发生。

因此,在每个施工阶段都应该进行周密的监测工作,并制定相应的应急预案。

最后,隧道施工中的围岩稳定问题也需要与环境保护相结合。

在进行隧道开挖时,需要注意对周边环境的影响。

包括噪声、震动、水土流失等问题。

应采取相应的措施来减少对环境的负面影响,保护生态环境。

综上所述,隧道开挖中的围岩稳定问题是一个复杂而关键的课题。

通过稳定性分析、围岩支护、监测与预警以及环境保护等措施的综合应用,可以确保隧道开挖的安全和稳定性。

隧道围岩的稳定性分析与评价

隧道围岩的稳定性分析与评价

隧道围岩的稳定性分析与评价隧道是现代交通建设中不可或缺的一部分,而隧道的稳定性对于交通运输的安全性和效率起着至关重要的作用。

因此,对隧道围岩的稳定性进行分析与评价显得至关重要。

本文将从不同的角度对隧道围岩的稳定性进行探讨。

首先,我们需要了解隧道围岩的特点。

隧道围岩是指隧道开挖时所遇到的周围岩石或土层,其特点主要包括力学性质和岩层结构。

力学性质包括岩石的强度、变形特性和破坏模式,而岩层结构则主要涉及岩层的纵向和横向切割裂缝、节理等。

了解这些特点可以为后续的稳定性分析提供基础。

其次,隧道围岩的稳定性分析可采用多种方法。

其中一种常用的方法是数值模拟,通过使用计算机程序模拟隧道开挖过程中的围岩响应,进而评估其稳定性。

这种方法可以考虑多种因素,如地下水位、地应力分布、围岩强度等,从而较为准确地预测隧道的稳定性。

另外,实验模型也是评价隧道围岩稳定性的重要手段。

通过在实验室中制作隧道围岩模型,并施加不同的荷载,可以观察和测量模型的变形和破坏情况,从而获得对真实工程的参考和指导。

接下来,我们需要关注隧道围岩稳定性评价的指标。

常用的评价指标包括围岩的变形和破坏程度、岩体的开挖后裂隙扩展情况以及周围环境对隧道围岩稳定性的影响等。

这些指标可以通过观测和记录岩体的位移、应力、应变、岩石裂隙的发育情况以及地下水位的变化等来评价。

此外,也可以通过进行各种力学实验获得更准确的参数值,从而提高评价的可靠性和准确性。

最后,我们需要考虑隧道围岩的稳定性评价的应用。

首先,对于已经建成的隧道,在设备和材料条件允许的情况下,可以通过监测围岩的稳定性指标,及时发现问题并采取措施进行修复和加固,以确保隧道的安全使用。

其次,对于正在建设中的隧道,稳定性评价可以帮助设计者选择合适的支护措施和参数,并为施工过程中的安全措施提供依据。

最后,对于规划中的隧道项目,稳定性评价可以帮助决策者选择合适的线路,避免潜在的围岩稳定性问题。

综上所述,隧道围岩的稳定性分析与评价对于交通运输的安全和效率至关重要。

隧道工程围岩稳定性评估

隧道工程围岩稳定性评估

隧道工程围岩稳定性评估隧道工程是一种常见的地下工程形式,为确保工程的安全性和可靠性,围岩稳定性评估具有重要意义。

本文将介绍隧道工程围岩稳定性评估的一般原则、方法和应用。

一、围岩稳定性评估的原则围岩稳定性评估是指对围岩的力学性质和围岩与工程结构之间相互作用的研究,目的是评估围岩对隧道工程的稳定性产生的影响。

在进行围岩稳定性评估时,需要遵循以下原则:1. 目标明确:明确评估的目标和内容,确定评估的指标和标准。

2. 综合分析:结合实地调查、室内试验和数值模拟等多种手段,综合分析围岩的地质结构、物理性质和力学特性。

3. 系统评估:从整体到局部,逐个评估各个部分的稳定性,形成全面的评估结果。

4. 安全可靠:评估结果应该能够反映工程的实际情况,提出合理的建议和防治措施,确保工程的安全可靠。

二、围岩稳定性评估的方法围岩稳定性评估的方法多样,一般包括以下几个方面:1. 地质调查:通过对工程区域进行地质调查,了解围岩的地质构造、岩性特征、断裂带等情况,为后续的评估提供基础数据。

2. 室内试验:通过对采集的围岩样品进行室内试验,包括抗压强度试验、抗剪强度试验、抗拉强度试验等,获取围岩的力学性质参数。

3. 数值模拟:运用数值模拟软件对隧道的围岩进行三维建模,并采用合适的本构模型和力学参数,模拟围岩的受力和变形情况。

4. 监测和反馈:在施工过程中,通过实时监测围岩的变形和应力状态,及时调整工程措施,以确保围岩的稳定性。

三、围岩稳定性评估的应用围岩稳定性评估在隧道工程中具有广泛的应用,可以被用于以下几个方面:1. 隧道设计:通过围岩稳定性评估的结果,确定隧道的合理断面、支护结构和防治措施,为隧道的设计提供科学依据。

2. 施工控制:在施工阶段,通过监测和评估围岩的稳定性,及时调整施工方案,确保施工的安全和顺利进行。

3. 运维管理:在隧道投入使用后,通过定期监测和评估围岩的稳定性,及时采取维护和修复措施,确保隧道的长期运营安全。

浅谈隧道围岩稳定性分析

浅谈隧道围岩稳定性分析

浅谈隧道围岩稳定性分析近年来,数值分析在隧道工程领域的应用越来越广泛,成为隧道工程研究设计的重要手段。

数值模拟分析具有很多优点,主要有:①可以模拟复杂的地质条件、复杂的工程结构以及复杂的荷载、边界条件;②在隧道工程开挖过程中,如若用数值软件进行模拟的话,就能从应力应变云图、变形矢量图、位移变化曲线图等图中直接明了地观察岩土体变形过程中的应力场、位移场的变化。

与现场模型试验相比,数字模拟不用实际的工程材料、工程仪器以及具体的试验方案,而且数值模拟及时方便的调整相关的模拟参变量的大小,也能适时的停止模拟,观察某一阶段的应力应变,总的来说,数值模拟的效果有时甚至要远远好于现场模型试验 [1]。

余存鹏以明垭子软岩隧道为依托,通过FLAC3D数值模拟分析了现场施工引起的隧道围岩变形值,根据位移评判依据来评判隧道的稳定性[2];尚岳全等基于流固耦合理论,利用有限差分软件对含有破碎带的隧道围岩在饱水条件下的开挖稳定性进行分析,得到不同倾角的破碎带在开挖前后的渗流场特性、主应力特性和塑性区特性等结果,并在此基础上分析了地下水的存在对隧道围岩稳定性的影响[3];姚军,王国才等基于新奥法的基本原理要求,采用数值分析开展在不同地应力释放条件下围岩稳定性影响的研究,结果表明,地应力释放越大,锚杆承担的荷载越小,围岩的塑性区发展范围越大[4];廖军,杨万霞等采用有限元模拟分析某一公路隧道的施工过程,研究在不同的工况条件下,隧道围岩的稳定性,根据分析结果为隧道施工选择了合理的开挖施工方法[5]。

因此,在隧道工程中,通过采用数值模拟方法研究施工过程中围岩的应力、应变和位移变化,进而分析研究隧道施工过程中的稳定性,具有重要的现实意义。

2工程概况火石岗隧道为贵州省境内仁怀至赤水高速公路第6合同段中的一条中长距离分离式隧道。

隧道建筑界限净宽10.25m,净高5m。

左幅起讫桩号ZK38+273~ZK38+800段,全长527米,最大埋深100米;右幅起讫桩号YK38+300~YK38+827段,全长527米,最大埋深115米。

隧道工程中的岩层稳定性分析

隧道工程中的岩层稳定性分析

隧道工程中的岩层稳定性分析隧道工程是一项复杂而重要的工程,对岩层稳定性的分析是确保隧道安全建设的关键。

本文将介绍隧道工程中岩层稳定性的分析方法和技术。

一、隧道工程中的岩层稳定性分析概述在隧道施工过程中,岩层的稳定性是一个至关重要的问题。

如果岩层不稳定,就可能导致洞穴塌方、地质灾害等严重后果。

因此,进行岩层稳定性分析是隧道工程的基本要求之一。

二、岩层稳定性的评估指标1. 地应力地应力是岩层稳定性分析的一个重要参数。

通过测量地应力大小和变化趋势,可以判断岩层的稳定性状况。

2. 岩石力学参数岩石力学参数包括岩石的抗压强度、抗拉强度、抗剪强度等。

通过测试这些参数,可以确定岩层的稳定性。

3. 水文地质参数水文地质参数包括地下水位、渗透性和含水量等。

这些参数的变化对地下岩层的稳定性具有重要影响。

三、岩层稳定性分析方法1. 数值模拟方法数值模拟方法是一种常用的岩层稳定性分析方法。

它通过借助计算机软件,对隧道工程中的岩层进行模拟和分析,可以预测岩层的变形和破坏情况,评估其稳定性。

2. 统计方法统计方法是通过统计大量实测数据和观测数据,来确定岩层的稳定性。

通过对数据的分析和比对,可以判断岩层是否处于稳定状态。

3. 实地勘察方法实地勘察方法是一种直接观察和测量隧道工程现场的方法。

通过对岩层的实地勘察和监测,可以了解岩层的实际情况,进而评估其稳定性。

四、岩层稳定性分析技术1. 地面测量技术地面测量技术是一种非常重要的岩层稳定性分析技术。

通过使用测量仪器,如全站仪、测距仪等,可以获得隧道工程现场的地形、地貌等数据,用于稳定性的分析。

2. 地球物理勘探技术地球物理勘探技术是通过使用地震波、电磁波等物理信号,对岩层的内部结构和性质进行探测的技术。

通过对地下岩层的勘探,可以获取到岩层的相关参数,用于岩层稳定性的分析。

3. 遥感技术遥感技术是一种通过卫星遥感图像、航空照片等数据,对隧道工程附近的地貌、岩层等进行分析的技术。

通过借助遥感技术,可以获取到大范围的岩层信息,进而对岩层的稳定性进行评估。

隧道开挖围岩稳定性分析

隧道开挖围岩稳定性分析
JIAN SHE YAN JIU
Sui dao kai wa wei yan wen ding xing fen xi
隧道开挖围岩稳定性分析
唐春琴
一、地形地貌 某隧道所在区海拔高程介于 93.05m ~ 640.1m 之间, 相对高差 547.05m,地层岩性主要为侏罗系中统自流井 组(J2z)、(J2z)及沙溪庙组侏罗系下统三叠系上统香溪 群(T3-J1x),岩性以砂岩、泥岩、砂质泥岩、粉砂岩, 局部夹薄层炭质页岩和炭质泥岩。
5-7 2.5-5 1.6-3.2 中等
<5 >5 >3.2 严重
>11 <1 <0.6 变形小
7-11 1-2.5 0.6-1.6 轻微 477 18.08 13.11 12.64 1.43 1.04
5-7 2.5-5 1.6-3.2 中等
<5 >5 >3.2 严重
单元层代号 <1-3> <1-3>
二、软弱岩组稳定性
1. 软弱岩组工程地质特性
岩石的单轴抗压强度小于 30MPa 的岩层称为软岩,
软弱岩层是指强度低、孔隙度差、胶结程度大、受结构面
切割及风化影响显著。在隧道围岩压力的作用下产生显著
变形的工程岩体。软岩隧道围岩强度低,结构松软,易吸
水膨胀,因而围岩隧道变形大。隧道围岩含有大量的软弱
岩组如表 1。
2. 软弱岩组围岩变形分析
关于围岩是否会发生大变形以及变形量有多大,在有
支护压力、原地应力作用下隧道围岩的相对变形和掌子面
变形预测公式,计算公式如下 : εt(%)=0.15(1-pi/po)(σcm/Po)-(3Pi/Po+1)/(3.8Pi/Po+0.54)

关于大洞径隧洞围岩稳定性分析

关于大洞径隧洞围岩稳定性分析

关于大洞径隧洞围岩稳定性分析摘要:随着我国经济的不断发展,社会进程的日益加快,我国的隧道开挖工程也得到了充分的发展空间。

然而,在我国社会主义现代化建设工作的要求下,大洞径隧洞的需求量也愈来愈大,这就带给了隧道开挖企业以巨大的压力:在我国现今的地质条件下,大洞径隧洞的开挖过程中存在的许多的变量,如岩土自身特性的不确定性,天气的不确定性以及地质的多变性都严重地影响了大洞径隧洞的开挖工作的开展,且洞径愈大,变量也随之而愈大。

因此,如何有效控制大洞径隧洞开挖过程中的变量已经成为了现今每一个隧道开挖企业都极为重视的一个问题了。

本文将通过对围岩的稳定性进行全方位的分析,来达到提高开挖人员对大洞径隧洞开挖过程中的变量控制工作力度的目的。

关键词:大洞径隧洞;稳定性;岩土特性1、围岩稳定性分析在大洞径隧洞开挖过程中的意义围岩的稳定性是影响着整个大洞径隧洞开挖成效的一个主要因素:就我国目前的开挖技术来说,围岩的稳定性在开挖的过程中并没有能够得到有效的控制,这就意味着工程实施企业必须从其它的方面来弥补对围岩的稳定性不足的问题。

而在我国现今的地质条件下,大洞径隧洞开挖工程已经成为了一项存在变量极多的工程了,每一项工作的开展都会影响着整个大洞径隧洞开挖工程的进度及质量,这就要求各项工作的开展都必须具有一定的针对性,且必须能够协调好各个阶段与各个阶段、各项工作与各项工作之间的关系,尤其是在地质结构愈发复杂,开挖技术对地质结构的破坏不断加大,且大洞径隧洞本身所具有的岩土多样化等工程环境下,工程开展过程中各项工作的衔接更是尤为重要的。

这对工程管理人员来说,是一个考验,也是一个入职的条件:任何的管理工作是具有针对性和系统性的。

要想成为一个合格的工程管理人员,就必须在管理的过程中凸显出管理工作的系统性及针对性,从根本上确保对工程全局的控制。

而针对围岩的稳定性弥补来说,工程管理人员要突显出对其的管理工作的针对性和系统性,则必须对围岩的稳定性进行全方位的分析,就稳定性分析结果出发,制定出一系列的保障措施,从实效上实现对围岩稳定性的有效控制。

隧道施工中的围岩稳定性分析与处理

隧道施工中的围岩稳定性分析与处理

隧道施工中的围岩稳定性分析与处理隧道施工是一项复杂而又具有挑战性的工程,而隧道围岩的稳定性是确保隧道施工顺利进行的关键。

本文将从围岩的性质和特点、围岩稳定性分析方法以及围岩处理方法等方面探讨隧道施工中的围岩稳定性问题。

围岩的性质和特点对于隧道施工的稳定性至关重要。

围岩由各种类型的岩层组成,例如花岗岩、辉石岩等。

这些岩层具有不同的物理和力学性质,如硬度、强度、稳定性等。

此外,围岩的结构也非常复杂,其中可能存在节理、褶皱、断层等地质构造。

这些特点决定了围岩在隧道施工中的行为和稳定性。

在隧道施工前,我们需要进行围岩稳定性分析,以了解围岩的性质和行为,为施工提供科学的依据。

其中一种常用的方法是岩体分类。

通过对围岩性质进行调查和实验,我们可以将围岩划分成不同的等级,例如稳定等级、控制等级等。

这可以帮助我们确定需要采取的措施以及施工中可能面临的风险。

另一种常用的方法是地质雷达探测。

地质雷达可以通过发送无线电波,并测量其反射信号来探测围岩内的隐蔽结构和裂缝。

这可以帮助我们了解围岩的内部情况,以及可能的不稳定因素,如地下水位、断层、岩石裂缝等。

通过这些信息,我们可以更好地预测围岩可能面临的挑战和风险。

一旦了解了围岩的特点和施工中可能遇到的问题,我们可以采取相应的围岩处理方法来保证施工的安全和稳定。

例如,在围岩较为稳定的情况下,我们可以选择使用钻孔爆破的方法,通过控制爆破的强度和方向来破坏围岩,提供施工的空间。

在围岩较不稳定的情况下,我们可以选择使用支护技术,例如喷射混凝土、锚杆以及岩锚等。

这些措施可以增强围岩的稳定性,并防止围岩的坍塌和塌方。

此外,我们还可以采用地下水控制技术来处理围岩稳定性问题。

地下水是围岩稳定性的重要因素之一,过高的地下水位有可能导致围岩变软和溶解。

通过合适的排水和防水措施,我们可以有效地控制地下水位,从而降低围岩的水分含量,提高围岩的稳定性。

总之,隧道施工中的围岩稳定性是一项复杂而又重要的问题。

隧洞围岩稳定性分析

隧洞围岩稳定性分析

总752期第十八期2021年6月河南科技Journal of Henan Science and Technology隧洞围岩稳定性分析任婧婧郑恒祥(华北水利水电大学,河南郑州450045)摘要:隧洞作为水利工程中重要的水工建筑物,其围岩稳定性在整个工程中至关重要。

因此,总结地下洞室围岩稳定性研究分析方法,分析不同支护类型对围岩稳定性的影响,并对不同支护时机选择方法做出评判,从而为以后隧洞的开挖施工和支护提供参考。

关键词:围岩稳定性;分析方法;强度折减法中图分类号:U451.2文献标识码:A文章编号:1003-5168(2021)18-0082-03Stability Analysis of Tunnel Surrounding RockREN Jingjing ZHENG Hengxiang(North China University of Water Resources and Electric Power,Zhengzhou Henan450045)Abstract:As an important hydraulic structure in hydraulic engineering,the stability of surrounding rock of tunnel is a crucial issue in the whole project.This paper summarizes the research and analysis methods of the stability of sur⁃rounding rock of underground tunnel,and evaluates different supporting timing selection methods.It provides a refer⁃ence for the excavation and support of tunnel in the future.Keywords:surrounding rock stability;analysis method;strength reduction在地下洞室的稳定性研究中,围岩是否稳定和支护结构是否安全通常是研究的重中之重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文章编号:1673 0836(2005)02 0227 04超大断面隧道围岩的稳定性分析师金锋,张应龙(西北工业大学,西安 710072)摘 要:根据地下结构设计理论和岩石屈服的Drucker-Prager准则,考虑到围岩的自身承载能力,采用有限元对广西柳州一处公路隧道围岩的稳定性进行了分析。

考虑到开挖方式、开挖顺序对围岩稳定性的影响,对围岩的开挖过程进行模拟。

确定不同开挖方式下隧道围岩的位移、应力状态,以及位移、应力状态随时间的变化规律,为隧道施工过程中开挖方案的制定、支护时间的选取提供了依据。

关键词:超大断面隧道;围岩稳定性;有限元分析中图分类号:TU457 文献标识码:BFEM Analysis of Rock S tability on Super Section TunnelSHI Jin Feng,Z HANG Ying Long(N orthwestern Polytechn ical University,Shanxi Xi an710072,China)Abstract:Based on theory of structure desi gn and guide line of Drucker-Prager for rock.taking in to account of its capabili ty bearing the weight of surrounding rock,the Guangx i Liuzhou Ci ty road tunnel has been analysed to simulate the surrounding rock by FE M analysis.Considering the effect of the excavated means and the excavated order to the stabili ty of the surrounding rock,the process of excavation of the surrounding rock is simulated.Making certain surrounding rock of tun nel bit shift,stress conditi on on the different excavation means,and the al ternation regular pattern with bit shift and stress adapts to time.It offered a foundation for excavation scheme formulation and selection supporti ng ti me in the process of buildin g the tunnel.Keywords:Super section tunnel;rock stabili ty;FE M analysis我们在公路隧道的开挖过程中,遇到许多面积超过100m2的断面,给施工安全和进度都带来了一定的难度。

为了保证安全施工、提高掘进速度,我们采用有限元分析的方法,对该类地下隧道的开挖过程进行了有限元模拟。

揭示了不同开挖方式下隧道围岩的变形规律、应力分布特征,以及围岩位移随时间发生变化的规律,可为该隧道施工过程中开挖方案的制定、支护时间的选取提供依据。

1 隧道概况1.1 地质条件根据钻孔所揭露的地质情况,本区出露的岩石岩性较为单一,为沉积岩中的石灰岩,岩石的主要成分为白色的方解石,含有白云石、石英及长石等成分,根据围岩分类原则属于 类岩石。

岩石比重2.84(g/c m3),容重2.68(g/cm3),含水状态为饱和,单轴极限抗压强度为25MPa,弹性模量1.5 104MPa,泊松比值为0.26,抗剪强度C值1.2MPa, 值为45.0 。

1.2 断面参数该隧道跨度为12m,侧墙高6m,半圆拱半径为6m,断面面积为128.5m2。

第1卷 第2期2005年04月 地下空间与工程学报Chinese Journal of Underground Space and EngineeringVol.1Apr.2005收稿日期:2004 11 09(修改稿)作者简介:师金锋(1979 ),男,陕西富平人,硕士研究生,主要从事新型建筑材料方面研究工作。

2 模型的建立2.1 有限元计算模型的建立有限元模型的计算范围按照文献[1]的方法水平宽度取为隧道跨度的3倍,而垂直高度亦即从计算模型的地表至下部边界取为跨度的3倍。

整个模型水平方向和垂直方向的宽度都为84m 。

模拟计算采用ANSYS6.1版程序。

在模拟中屈服准则采用文献[2]中的Drucker Prager 准则,为提高计算精度,围岩均采用文献[3]中提出的四边形8节点的plane42号等参单元,建立的有限元模型总共划分为576个有限单元,1811个节点。

图1 计算模型Fi g.1 Module of computation2.2 屈服准则依据文献[2][4][5]屈服准则采用Drucker-Prager 模型,该模型中f ( )= I 1+J 2-K =0(1)由拉、压单轴应力的破坏状态,求得a =f c -f t 3(f c +f t ), K =2f c f t 3(f c +f t )(2)理想塑性材料一致性条件 f=0(3)由式(1)、(3)可推出Druc ker-Prager 材料的本构矩阵D ep =D -D p (4)D p =19K a 2+G9K a 2T+3K aG J 2( S T +S T )+G 2J 2SST(5)其中:K 为体积模量;G 为剪切模量;J 2为应力偏张量的第二不变量;I 1为应力张量的第一不变量;=[1 1 1 0 0 0]T ;S =[S 11 S 22 S 33 S 12 S 23 S 31]T 。

3 计算荷载我们在这里采用 铁路隧道技术规范 TBJ3-85)中关于围岩压力的理论计算公式,得出围岩的初始地应力,再引用释放系数,对围岩在开挖的不同阶段进行受力计算,然后反向加载到隧道的开挖边界上。

其中各个施工阶段所采用的释放荷载百分比和累计的施工时间见表1。

表1中所列释放荷载百分比是考虑到隧道具体施工情况,参考文献[6]的数据。

由于分布开挖使得初应力得到释放,以全量的50%计。

表1 施工阶段划分表Table 1 D istribution of construction phase 计算阶段施工步骤时间S/s 释放荷载百分比/%1234初始地应力第一次开挖第二次开挖第三次开挖18640017280025920000.20.20.14 断面开挖方式我们拟定了5种开挖方式,它们的基本开挖顺序形式见开挖方案(1) (5)。

断面图中的序号代表开挖的先后顺序。

图2 开挖方案示意图Fig.2 Excavation scheme228地下空间与工程学报 第1卷图3 不同开挖方案的最后变形图Fig.3 Last deformtion of the different ex cavation scheme5 计算结果从洞壁节点垂直方向位移情况统计表中(见表2)的数据统计和变形图可以看出,在相同的开挖步数的情况下,方案(1)比方案(2)在拱顶位置产生的位移大,而在其它部位方案(1)却比方案(2)小;方案(1)和方案(3)与方案(2)和方案(4)相比较,由于方案(2)和方案(4)是先开挖起拱线以下的部分,所以在底板中点处的位移量显示方案(2)和方案(4)比方案(1)和方案(3)大;方案(1)与方案(3)相比较,除了拱顶处位移方案(1)比方案(3)大外,其它几个部位都小于方案(3),这是由于每步开挖时都在这些部位产生大的应力集中所造成的,方案(5)就是由于开挖步数少所以应力集中区小,而使它的位移量小,因此,合理减少开挖步数,避免开挖造成的锐角切口,尽可能地不使这些部位造成过多人为的应力集中。

方案(2)与方案(4)相比,由于方案(4)是先墙后拱,所以在底板中点的位移量要大于方案(2)。

对开挖方案(2)、(4)比较看出,分步开挖的步数越多,围岩的位移速度和应变速度越慢;对开挖方案(3)、(4)比较看出,在同一时刻,方案(4)的位移量大于方案(3)。

两种方案最终的位移量虽然相同,但方案(3)要平缓一些,但在同一时刻的应力却相反,这说明方案(4)的应力释放快;对两种开挖步数相同的开挖方案做比较,其中的差别不明显。

从位移与时间关系曲线图中可以看出(图中横坐标为时间,单位为s;纵坐标为位移量,单位为mm,曲线第一阶段代表在初始地应力加载后产生一个弹性的瞬时位移,第二、三阶段代表分布开挖过程中应力释放所产生的位移,第四阶段直线段代表位移稳定阶段。

从图中可以看出位移与时间的关系,变形在第四天后就基本稳定。

根据隧道变形与时间的关系曲线图,可以估算每次掘进、临时支护施作一个循环的时间在7d 左右,从掘进完成到临时支护施作之间有5d 的时间,按照三班制和钻杆长度为5m 计算,最大掘进50m 就要施作一次临时柔性支护。

2292005年第2期 师金锋,等:超大断面隧道围岩的稳定性分析图4 不同开挖方案的围岩位移与时间关系曲线Fi g.4 Curve of Relation bet ween rock displacement and time表2 洞壁节点位移情况统计表(单位:mm)Table 2 Statistic o f node shift on the wall开挖方式拱顶拱脚(左侧墙)/mm 底脚(左侧墙)/mm 底板中点/mm开挖方案(1)第一步开挖方案(1) 终开挖方案(2)第一步开挖方案(2) 终开挖方案(3)第一步开挖方案(3) 终开挖方案(4)第一步开挖方案(4) 终开挖方案(5)第一步开挖方案(5) 终-17.832-13.387-12.323-10.782-12.324-10.782-12.324-10.783-15.609-7.63689.05406.80079.14158.00459.13868.00169.13878.00177.92725.67396.30224.73996.37915.58946.37425.58456.37435.58465.52093.95864.41133.31054.46803.90994.47123.91314.47163.91343.86172.7609注:表中的正负号是与开挖前各节点相比较,以压为正,拉为负。

由等效应力图可看出,虽然地下洞室开挖前,有限元模型的每个节点均受初始应力作用而处于相对平衡状态;但开挖后,因洞壁岩体节点失去原有岩体的支撑,破坏了原有的受力状态,造成洞室周边岩体向洞内空间松胀,其结果又会改变邻近岩体质点的相对平衡状态,从而引起应力、应变的调整,形成新的应力平衡状态。

相关文档
最新文档