【高中数学】数列高考小题秒杀技巧
高考数学数列题求解题技巧
高考数学数列题求解题技巧数学数列题是高考数学中常见的题型之一,也是考查学生对数列概念和性质的理解和运用能力的重要手段之一。
下面将给出一些解题技巧,帮助你在高考中更好地解答数列题。
1. 确定数列类型在解答数列题时,首先要明确数列的类型。
常见的数列类型包括等差数列、等比数列、斐波那契数列等。
通过观察数列的通项公式、公式中的递推关系或者数列中的规律,确定数列的类型,有助于我们更好地理解和解答问题。
2. 求解等差数列对于等差数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等差数列的前n项和Sn 时,我们可以使用以下公式求解等差数列的的首项a1和公差d:Sn = (n/2)(a1 + an)Sn = (n/2)(2a1 + (n-1)d)其中n为项数,a1为首项,an为第n项,d为公差。
(2)已知前n项和的两倍:如果我们知道等差数列的前n项和Sn的两倍为2Sn,则可以使用以下公式求解首项a1:2Sn = n(2a1 + (n-1)d)(3)已知前n项和的平方:如果我们知道等差数列的前n项和Sn的平方为Sn²,则可以使用以下公式求解公差d:Sn² = n(2a1 + (n-1)d)²/43. 求解等比数列对于等比数列,我们通常可以使用以下几种方法进行求解:(1)已知前n项和:当已知等比数列的前n项和Sn 时,我们可以使用以下公式求解等比数列的的首项a1和公比q:Sn = a1(1 - qⁿ)/(1 - q)其中n为项数,a1为首项,q为公比。
(2)已知前n项积:若已知等比数列的前n项积为Pn,则可以使用以下公式求解首项a1和公比q: Sn = a1(1 - qⁿ)/(1 - q)4. 拆分序列有时,在解答数列题时,我们可以将给定的数列拆分为两个或多个较为简单的数列进行求解。
例如,当我们遇到递推关系较为复杂的数列时,可以考虑将数列拆分为两个或多个等差数列或等比数列,然后分别求解。
高中数学 高考数学50条秒杀型公式与方法
高中数学| 高考数学50条秒杀型公式与方法1,适用条件:[直线过焦点],必有e c o sA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2,函数的周期性问题(记忆三个):①、若f(x)=-f(x+k),则T=2k;②、若f(x)=m/(x+k)(m不为0),则T=2k;③、若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=s i n x y=si n派x相加不是周期函数。
3,关于对称问题(无数人搞不懂的问题)总结如下:①,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;②、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;③、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
4,函数奇偶性:①、对于属于R上的奇函数有f(0)=0;②、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项③,奇偶性作用不大,一般用于选择填空。
5,数列爆强定律:①,等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);②,等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;③,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;④,等比数列爆强公式:S(n+m)=S(m)+q²m S(n)可以迅速求q。
6,数列的终极利器,特征根方程。
首先介绍公式:对于a n+1=p an+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高考数列万能解题方法
数列的项na与前n项和nS的关系:11(1)(2)nn ns nas s n-=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和;2、错项相减法:适用于差比数列如果{}n a等差,{}n b等比,那么{}n na b叫做差比数列即把每一项都乘以{}n b的公比q,向后错一项,再对应同次项相减,转化为等比数列求和;3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和;适用于数列11n na a+⎧⎫⎨⎬⋅⎩⎭和⎧⎫其中{}n a等差可裂项为:111111()n n n na a d a a++=-⋅1d=等差数列前n项和的最值问题:1、若等差数列{}n a的首项10a>,公差0d<,则前n项和nS有最大值;ⅰ若已知通项na,则nS最大⇔1nnaa+≥⎧⎨≤⎩;ⅱ若已知2nS pn qn=+,则当n取最靠近2qp-的非零自然数时nS最大;2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值ⅰ若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;ⅱ若已知2nS pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式; ⑵已知n S 即12()n a a a f n +++=求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥;已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩;⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a ;⑷若1()n na a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥;⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥; ⑹已知递推关系求n a ,用构造法构造等差、等比数列;特别地,1形如1nn a ka b -=+、1n n n a ka b -=+,k b 为常数的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a ;2形如11n nn a a ka b--=+的递推数列都可以用倒数法求通项;3形如1k n n a a +=的递推数列都可以用对数法求通项;7理科数学归纳法; 8当遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式; 数列求和的常用方法:1公式法:①等差数列求和公式;②等比数列求和公式;2分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和; 3倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和这也是等差数列前n 和公式的推导方法. 4错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法这也是等比数列前n 和公式的推导方法.5裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--;④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<= 二、解题方法:求数列通项公式的常用方法: 1、公式法 2、n n a S 求由 3、求差商法 解:n a a ==⨯+=1122151411时,,∴练习4、叠乘法 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 5、等差型递推公式 练习6、等比型递推公式 练习7、倒数法数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项; 解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠练习3、错位相减法:4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加; 练习 深圳一模深圳二模 广州一模 广州二模 韶关调研。
六大技巧突破高考数学数列题型
六大技巧突破高考数学数列题型
距离2019年高考还有:253天
温馨提示:
点击右上角关注,
翻阅历史文章可领取任祎老师亲自审核整理的超值高考资料!
写在开篇的话:
数列是高中数学的主干知识板块之一,解答数列试题要熟悉数列的基础知识,还要运用大量的数学思想方法,数列试题对考查考生的数学素养具有极高的价值.下面总结解答数列试题的八大技巧让你轻松学会数列!
技巧一巧用定义直接解题
技巧二巧用项的性质减少计算
技巧三巧用升降角标法实现转化
技巧四巧用不完全归纳找规律
技巧五巧用等差数列求和公式突破关键
技巧六利用裂项实现求和
下边我们来具体看看:
系列专题完!。
高考数列解题技巧
高考数列解题技巧数列是高中数学的重要内容之一,也是高考数学的热点之一。
在解决数列问题时,学生需要掌握一些常用的解题技巧,以提高解题效率和准确性。
1. 公式法公式法是解决数列问题的基本方法之一。
对于等差数列和等比数列,学生需要熟记它们的通项公式和求和公式,以便在解题时能够迅速运用。
例如,对于等差数列{an},其通项公式为a_n=a_1+(n-1)d,其中a_1为首项,d为公差。
求和公式为S_n=n/2(a_1+a_n)。
2. 裂项相消法裂项相消法是一种常用的求和技巧,适用于一些看似复杂的数列求和问题。
通过将每一项都拆分成两个部分,然后抵消掉中间的部分,可以简化计算过程。
例如,对于数列1/2, 2/3, 3/4, ..., n/(n+1),学生可以使用裂项相消法进行求和。
将每一项都拆分成两个部分,即分子和分母,然后抵消掉中间的部分,得到结果为1-1/(n+1)。
3. 错位相减法错位相减法是一种常用的求和方法,适用于一些周期性变化的数列。
通过错位相减法,可以将一个复杂的数列转化为一个简单的数列,从而简化计算过程。
例如,对于数列1, 1/2, 1/3, 1/4, ..., 1/n,学生可以使用错位相减法进行求和。
将每一项都乘以10,得到数列10, 5, 3, 2, ..., 1/n,然后将两个数列相减,得到结果为9+4+2+...+1-1/n。
4. 倒序相加法倒序相加法是一种求解递推关系式的常用方法。
通过将一个数列的顺序倒过来,然后将正序和倒序的两个数列相加,可以得到一个常数列的和,进而求出原数列的和。
例如,对于数列a_n=S_{n-1}+S_n,学生可以使用倒序相加法求解。
将数列a_n的顺序倒过来得到a_n=S_n+S_{n-1}......(B),然后将(A)式和(B)式相加得到2a_n=2S_n+S_{n-1}+S_{n-2}+......+S_2+S_1=S_n+S_{n-1}+......+S_2+S_1+ S_0=2^n-1。
高中数学数列解题技巧及常用高考数学解题方法
高中数学数列解题技巧及常用高考数学解题方法
最近很多家长和老师反应,孩子初中数学成绩比较好,进入高中以后数学成绩不是很理想,抱怨高中数学难,尤其是在数列知识这方面,家长求助老师帮帮孩子,因此老师整理高中数学数列解题技巧及常用高考数学解题方法分享给大家。
推荐阅读:高三学生及家长必看:数学高效提分知识分享
数列知识点在高中数学中算是难点,在高考数学中又是重点,很多同学都不知道怎么去解答相关的题目。
其实,如果同学们能够把高中数学中数列的相关知识点掌握好,并且能够掌握两道典型的练习题的话,基本上就能够摸清其中的解题技巧了。
今天,先给大家讲解一下解决高中数学数列解题的方法。
从数列的考试题目来看,数列既有很基础、简单的内容,也有复杂的内容,所以说,同学们在学习数列过程中,一定要有耐心,一步一步去深入,从最基本的开始。
在高中数学数列中,掌握高中数学数列两种:即等差数列和等比数列。
在学习的过程中,同学们一定要先把各自的基本概念搞清楚,掌握基本的通项公
好了,今天分享就到这里了,关于高中数学数列解题技巧及常用高考数学解题方法或者需要更多高中数学视频可以私信或者留言给老师。
高中数学数列高考小题秒杀技巧
高中数学数列高考小题秒杀技巧-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN今天给大家讲解数列技巧,今天会讲7道题,这些题都来源于高考真题,难题并不大,难度并不大,常规做2-3分钟一道题是不成问题,今天主要讲秒杀技巧,同学只要掌握这思维方式,这类题型可以做到5-10秒内出答案,在讲秒杀之前,先看一下这种题型用常规解答应该如何去分析。
我们先来看第一道题:我们先用常规方法解,大家会发现等差数列的首项和公差都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和d表达,如图:针对等差数列,我们首先想到的是有两种特殊类型:一类是公差为0;另一类公差为1、2、3这种特殊的等差数列。
像这类首项和公差都未知,大家可以看到,当公差为0的时候,是不是跟题干不相违背,那么我就让公差为0。
那就是等差数列的所有项都均等!前面讲了5道等差数列的题,这些题用技巧是不是直接秒杀!接下来我们就来看看等比数列的题型,我们再来看第6道题:我们先用常规方法解,同样大家会发现等比数列的首项和公比也都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和q表达,如图:同样,针对等比数列,我们首先想到的是有两种特殊类型:一类是公比为1;另一类公比为2、4、6这种特殊的等比数列。
像这类首项和公比都未知,当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。
那就是等比数列的所有项都均等!第7题,同样首项和公比都未知,大家可以看到,由于题干中强调了各项为正数,那么当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。
那就是等比数列的所有项都均等!同学们,是不是这些题用技巧是不是直接秒杀,大家或许会疑惑,我告诉大家,这种方法绝对可靠,只要是公差公比未知,而题中又没强调公差不能为0,或者公比不能为1,所以我们就可以用特例,如果我们用这种方法做答案不对,也不可能强调公差不能为0、公比不能为1,高考是不可能出这种不严谨的题,所以大家放心大胆的使用。
2022高考数学数列题解题方法数列题有什么答题套路
2022⾼考数学数列题解题⽅法数列题有什么答题套路数列题证明⼀个数列是等差(等⽐)数列时,最后下结论时要写上以谁为⾸项,谁为公差(公⽐)的等差(等⽐)数列;证明不等式时,有时构造函数,利⽤函数单调性很简单(所以要有构造函数的意识)。
数列题解题⽅法注意等差、等⽐数列通项公式、前n项和公式;证明数列是等差或等⽐直接⽤定义法(后项减前项为常数/后项⽐前项为常数),求数列通项公式,如为等差或等⽐直接代公式即可。
其它的⼀般注意类型采⽤不同的⽅法(已知sn求an、已知sn与an关系求an(前两种都是利⽤an=sn-sn-1,注意讨论n=1、n>;1),累加法、累乘法、构造法(所求数列本⾝不是等差或等⽐,需要将所求数列适当变形构造成新数列lamt,通过构造⼀个新数列使其为等差或等⽐,便可求其通项,再间接求出所求数列通项)。
数列的求和第⼀步要注意通项公式的形式,然后选择合适的⽅法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进⾏求解。
第⼆题是⽴体⼏何题,证明题注意各种证明类型的⽅法(判定定理、性质定理),注意引辅助线,⼀般都是对⾓线、中点、成⽐例的点、等腰等边三⾓形中点等等,理科其实证明不出来直接⽤向量法也是可以的。
计算题主要是体积,注意将字母换位(等体积法);线⾯距离⽤等体积法。
理科还有求⼆⾯⾓、线⾯⾓等,⽤建⽴空间坐标系的⽅法(向量法)⽐较简单,注意各个点的坐标的计算,不要算错。
⾼考数学答题窍门1、审题要慢,答题要快有些考⽣只知道⼀味求快,往往题意未清,便匆忙动笔,结果误⼊歧途,即所谓欲速则不达,看错⼀个字可能会遗憾终⽣,所以审题⼀定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
2、运算要准,胆⼦要⼤⾼考没有⾜够的时间让你反复验算,更不容你⼀再地变换解题⽅法,往往是拿到⼀个题⽬,凭感觉选定⼀种⽅法就动⼿做,这时除了你的每⼀步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的⽅法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻⽜⾓尖,⼀旦发现⾃⼰⾛进死胡同,还是要⽴刻迷途知返。
数列解题思路与技巧
数列解题思路与技巧数列解题是高中数学中的一个重要内容。
随着中考、高考对数学知识的要求日益提高,我们需要不断提高自己的数列解题能力。
本文将分享一些数列解题的思路与技巧,希望能给大家提供一些帮助。
一、数列的定义与分类数列是一组有序的、按照某种规律排列的数字。
通常用a1、a2、a3……an 表示,其中a1 为首项,an 为末项,n 为项数。
数列可分为等差数列、等比数列、斐波那契数列等多种类型。
在解决数列问题时,要首先确定所给数列的类型。
二、等差数列的解题思路与方法等差数列常见的应用有求和、求公差、求项数等。
其中,求和是最常见的问题。
下面我们将讨论如何解决等差数列求和的问题。
1. 求和公式对于首项为a1,公差为d,末项为an,项数为n 的等差数列,它的前n 项和可以用以下公式表示:Sn=n/2(2 × a1+(n-1) × d)其中,Sn 表示前n 项的和。
这是一个经典的求和公式,掌握之后可以大幅提高求和的效率。
2. 已知首项、末项和项数,求和如果已知首项、末项和项数,我们可以通过求出公差来使用求和公式计算和。
例如,已知首项为1,末项为100,项数为20,求和。
首先,根据公式an=a1+(n-1)×d,可以求出公差为5。
然后,代入公式Sn=n/2(2 × a1+(n-1) × d),得到Sn=20/2(2 ×1+(20-1) × 5)=1010。
因此,所求和为1010。
3. 已知首项、公差和项数,求和如果已知首项、公差和项数,我们可以直接使用求和公式计算和。
例如,已知首项为3,公差为2,项数为10,求和。
代入公式Sn=n/2(2 × a1+(n-1) × d),得到Sn=10/2(2 ×3+(10-1) × 2)=65。
因此,所求和为65。
三、等比数列的解题思路与方法等比数列也是数列中重要的一类。
高中数学数列答题技巧
高中数学数列答题技巧一、数列问题解题方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证为同一常数。
(2)通项公式法:①若= +(n-1)d= +(n-k)d ,则为等差数列;②若,则为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列中,有关的最值问题——常用邻项变号法求解:(1)当>0,d<0时,满足的项数m使得取最大值.(2)当<0,d>0时,满足的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、数列问题解题注意事项1.证明数列是等差或等比数列常用定义,即通过证明或而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意与之间关系的转化。
如:=,=.4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k 为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。
4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m -S3m、……仍为等差数列。
数列常见题型及解题技巧
数列常见题型及解题技巧
数列常见题型及解题技巧
一、等差数列
1、求首项:求出首项a1可用公式:a1=Sn−n(d+a2)
2、求末项:求出末项an可用公式:an=Sn−n(d+a1)
3、求和:求出数列前n项和可用公式:Sn=n(a1+an)2
4、求通项公式:求出通项公式可用公式:an=a1+(n-1)d
5、求某项:求出第k项可用公式:ak=a1+(k-1)d
二、等比数列
1、求首项:求出首项a1可用公式:a1=Sn(qn−1)
2、求末项:求出末项an可用公式:an=a1qn−1
3、求和:求出数列前n项和可用公式:
Sn=a1(1−qn)1−q
4、求通项公式:求出通项公式可用公式:an=a1qn−1
5、求某项:求出第k项可用公式:ak=a1qk−1
三、复合数列
1、求和:求出数列前n项和可用公式:
Sn=a1+a2+…+an
2、求某项:求出第k项可用公式:ak=ak−1+ak
解题技巧:
1、利用性质转化:根据所给的条件,尝试将原数列转换成更简单的形式,如等差数列、等比数列或者复合数列。
2、利用关系性:通过对数列中一些特殊项的求出,可以确定整个数列的情况,比如求出第一项和最后一项,就可以确定数列的前n项和。
3、利用规律性:数列中的每一项都有一定的规律性,依靠这一点可以得到数列的通项公式,进而求出数列的其他项。
高考数学数列问题的答题技巧
高考数学数列问题的答题技巧高中数学中大家都学习了数列这一知识点,而数列在高考中也是经常出现的考点,数列问题有哪些技巧可以又快又准地解答?店铺为您准备了一些高考数列通项、求和的答题技巧,希望对您有所帮助!高考数列通项、求和的答题技巧(1)解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
(2)构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
高考数列问题的易错点1.忽视等递推关系成立的条件,从而忽视检验前几项。
2.忽视n为正整数的默认条件,冒然求导,或利用不等式得到非整数的取等条件。
也会因此心理忽视这一个很好用的条件。
3.裂项相消忘记留下了几项。
可以先写几项验证。
4.通过方程求解的数列可能会漏下情况。
5.等比数列注意公比为1不等同于常数列(如0)。
6.下角标的不规范可能会使“-1”模棱两可,需要注意。
7.累加法或累乘法漏掉第一项。
高考数学数列知识点总结等差数列公式等差数列的`通项公式为:an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值=首项+(项数-1)*公差前n项的和=(首项+末项)*项数/2公差=后项-前项等比数列公式等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)(4)性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每 k项之和仍成等比数列.③若m、n、q∈N,且m+n=2q,则am×an=aq^2(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。
高中数学数列解题方法与技巧
高中数学数列解题方法与技巧一、引言在高中数学学习中,数列是一个重要的章节。
数列解题是数学学习中的基础,在考试中也占有比较大比重。
数列解题需要注意以下方面:1.正确理解题意,判断题目要求,2.找准解题方法与策略,3.实际操作,不放过每一道小问题。
二、数列概念1.数列的定义所谓数列,就是按照一定规律排列的一组数,其中每一个数均称为这个数列的项,数列中第一个项的位置称为“第一项”。
数列可以写作:a1,a2,a3,a4,a5,…,an比如:1,3,5,7,9,…,n,其中的5表示数列的第5项,n表示数列的第n项。
2.数列分类数列可分为等差数列、等比数列、递推数列、Fibonacci数列等。
其中,等差数列的相邻两项之间的公差相等,为d;等比数列的相邻两项之间的比值相等,为q;递推数列则是通过前项计算出后项,最后项由第一项通过递推公式推出。
三、数列解题方法1.等差数列(1)判断等差数列一般来说,判断一组数列是否为等差数列,需要寻找其中的通项公式。
可以借助相邻两项之差是否相等的方法来判断是否为等差数列。
比如:5,8,11,14,17,…判断方法如下:8-5=11-8=14-11=33=d,为常数,因此,判断这个数列为等差数列。
(2)求等差数列公式已知等差数列的首项a1与公差d,求通项公式an的方法如下:an=a1+n-1×d其中,n为数列的项数。
此公式可以自己推导得出,需要注意的是,根据首项与公差可推出所有项,若题目信息不足,则需要另外的方法解题。
(3)等差数列求和等差数列求和有两种方法:平均数法和公式法。
平均数法:将首项与尾项之和除以2,再乘以项数n,即为等差数列之和。
Sn=[a1+an]n2公式法:首项加末项n次方乘公差除以2,即为等差数列之和。
Sn=na1+nna22.等比数列(1)判断等比数列判断一组数列是否为等比数列,需要寻找其中的通项公式。
可以借助相邻两项之比是否相等的方法来判断是否为等比数列。
高中数学数列高考小题秒杀技巧教学内容
高中数学数列高考小题秒杀技巧今天给大家讲解数列技巧,今天会讲7道题,这些题都来源于高考真题,难题并不大,难度并不大,常规做2-3分钟一道题是不成问题,今天主要讲秒杀技巧,同学只要掌握这思维方式,这类题型可以做到5-10秒内出答案,在讲秒杀之前,先看一下这种题型用常规解答应该如何去分析。
我们先来看第一道题:我们先用常规方法解,大家会发现等差数列的首项和公差都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和d表达,如图:针对等差数列,我们首先想到的是有两种特殊类型:一类是公差为0;另一类公差为1、2、3这种特殊的等差数列。
像这类首项和公差都未知,大家可以看到,当公差为0的时候,是不是跟题干不相违背,那么我就让公差为0。
那就是等差数列的所有项都均等!前面讲了5道等差数列的题,这些题用技巧是不是直接秒杀!接下来我们就来看看等比数列的题型,我们再来看第6道题:我们先用常规方法解,同样大家会发现等比数列的首项和公比也都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和q表达,如图:同样,针对等比数列,我们首先想到的是有两种特殊类型:一类是公比为1;另一类公比为2、4、6这种特殊的等比数列。
像这类首项和公比都未知,当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。
那就是等比数列的所有项都均等!第7题,同样首项和公比都未知,大家可以看到,由于题干中强调了各项为正数,那么当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。
那就是等比数列的所有项都均等!同学们,是不是这些题用技巧是不是直接秒杀,大家或许会疑惑,我告诉大家,这种方法绝对可靠,只要是公差公比未知,而题中又没强调公差不能为0,或者公比不能为1,所以我们就可以用特例,如果我们用这种方法做答案不对,也不可能强调公差不能为0、公比不能为1,高考是不可能出这种不严谨的题,所以大家放心大胆的使用。
好了,今天我就分享就到这里,这是一部分秒杀技巧方法,更多技巧在体系课程里,有需要可以联系老师。
高中数学 高考数学50条秒杀型公式与方法
高中数学| 高考数学50条秒杀型公式与方法1,适用条件:[直线过焦点],必有e c o sA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2,函数的周期性问题(记忆三个):①、若f(x)=-f(x+k),则T=2k;②、若f(x)=m/(x+k)(m不为0),则T=2k;③、若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=s i n x y=si n派x相加不是周期函数。
3,关于对称问题(无数人搞不懂的问题)总结如下:①,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;②、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;③、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
4,函数奇偶性:①、对于属于R上的奇函数有f(0)=0;②、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项③,奇偶性作用不大,一般用于选择填空。
5,数列爆强定律:①,等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);②,等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;③,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;④,等比数列爆强公式:S(n+m)=S(m)+q²m S(n)可以迅速求q。
6,数列的终极利器,特征根方程。
首先介绍公式:对于a n+1=p an+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
5分钟做不出来的数列压轴难题,用技巧30s出答案!
高中数学:5分钟做不出来的数列压轴难题,用技巧30s出答案!大家好,今天给大家讲两道高考压轴小题,如果常规运算这种题,大家可能在五分钟内未必能得出正确答案的,那么我们今天讲完技巧,这种题目能够在短短的30秒内就能得到正确答案。
按照我讲课的贯例,首先给大家讲常规解题,让大家先彻底理解这种题,然后讲技巧,对于大家的思维启发是非常有帮助的。
所以让我们先看常规解答,第一题:这道题我讲两种常规解答方法,大家自己可以好好体会一下:方法一:同学们看到没有,这是纯运算,我这样写出来,大家看着可能懂了,思路也清晰,但是,同学们一旦上了考场,未必能在3分钟把他算出来,很可能你在算的中途就动摇了,你可能觉得这道题不是这样去纯运算的,这题就没法做,很可能你就要把它放弃掉了。
方法二:大家看到了吧,这是常规方法解答,虽然我这样写出来同学们一看就懂,但是让同学自己遇到这种题,不一定能想得到这上面来。
好,接下来我们看下面这道题,这道题来源于江苏的压轴题(填空题的最后一道),大家都知道,江苏的题本来就非常难,何况这道题还是压轴题,难度可想而知!因为这道题需要用到的知识点有不等式、数列、函数最值,非常繁琐的一道题。
那么,我也先用常规方法解:我这个计算方法比标准答案还要简单很多,同学们,你们要是看标准答案的解题过程是未必能想得到的。
好了,要使这个不等式成立,我们首先要考虑的是找到它的零界状态时候的值是多少:同学们,看到没,这是常规解答,是不是非常之难。
那么,下面就给大家分享一个技巧:特殊法!30秒就能秒掉这两道题。
上次课程里面我讲了只要遇到等比数列的时候,我们就将它想像成特殊数列,比如说公比q=1,或者是2,4,6,8这种特殊等比数列。
因为像这种本身压轴题,一般就是按特殊思路来的,主要考察的同学们的思维。
那么只要掐住这么点,这种题就可以轻松解决!第2题同样是举特例30秒将它秒掉,需要同学们举一反三!。
题型五 数列 ——高考数学高频题型专项讲解
题型五 数列——高考数学高频题型专项讲解一、思路分析数列的概念和递推公式是高考的热点,主要考查已知递推关系求通项公式、由n a 与n S 的关系求通项公式、利用数列的性质求最值等,主要以填空题、解答题的形式呈现,难度中等.等差数列是高考的重点考查知识,主要考查等差数列的基本运算和性质,等差数列的通项公式和前n 项和公式等,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题,要善于运用函数与方程思想和整体代入思想解决有关等差数列问题,同时要注意探索创新和生活实践情境载体下的试题训练.等比数列是高考的考查热点,主要考查等比数列的基本运算和性质,等比数列的通项公式和前n 项和公式,尤其要注意证明题或以数学文化为背景的数列题,考查题型既有选择题、填空题,也有解答题,难度中等,要会运用函数与方程思想、转化与化归思想和分类讨论思想解题,也要注意探索创新和生活实践情境载体下的试题训练.数列求和及数列综合应用是高考的热点题型,其中等差、等比数列的通项与求和,数列与函数、不等式的综合,以数学文化为背景的数列题是高考命题的热点,多以解答题的形式呈现,难度中等,要注重常规考法,也要注重数列与其他知识的综合创新,同时也要注重对结构不良类试题的训练. 二、考纲要求1.数列的概念和递推公式(1)了解数列的概念及表示方法,理解数列的通项公式的意义. (2)理解数列的递推公式,能根据递推公式写出数列的前几项. (3)理解n a 与n S 的关系.2.等差数列(1)理解等差数列的概念和通项公式的意义.(2)掌握等差数列的前n项和公式,理解等差数列的通项公式与前n项和公式的关系.(3)了解等差数列与一次函数的关系.3.等比数列(1)理解等比数列的概念和通项公式的意义(2)掌握等比数列的前n项和公式,理解等比数列的通项公式与前n项和公式的关系.(3)了解等比数列与指数函数的关系.4.数列求和及数列综合应用(1)掌握几种常用的数列求和方法.(2)掌握数列的综合应用.三、方法技巧1.由前几项归纳数列通项公式的常用方法及具体策略:(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③各项的符号特征和绝对值特征;④对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑤对于符号交替出现的情况,可用(1)k-,*(1)k+-或1k∈N处理.2.等差数列前n项和的最值求解的常用方法(1)通项公式法:其基本思想是通过通项公式求出符号变化的项,从而求得和的最值;(2)前n 项和法:其基本思想是利用前n 项和公式的二次函数特性,借助抛物线的图象求最值.3.利用等差数列前n 项和解决实际问题的步骤: (1)判断问题中涉及的数列是否为等差数列; (2)若是等差数列,找出首项、公差、项数; (3)确认问题是求n a 还是n S ;(4)选择恰当的公式计算并转化为实际问题的解.4.解决等差数列前n 项和的基本运算题的思路方法及注意事项: (1)注意公式1()2n n n a a S +=与1(1)2n n n S na d -=+的选择使用; (2)等差数列的通项公式及前n 项和公式,共涉及五个量1a ,n a ,d ,n ,n S ,已知其中三个就能求另外两个,注意方程思想的应用;(3)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而1a 和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法,同时注意灵活应用等差数列的性质以简化计算过程.5.应用等比数列通项公式解实际应用问题的步骤 (1)构建等比数列模型;(2)明确1a ,q ,n ,n a 等基本量; (3)利用11n n a a q -=求解; (4)还原为实际问题.6.判定数列是等比数列的常用方法: (1)定义法:验证1nn a q a -=(q 为常数且不为0)是否成立,但应注意必须从第二项(即2n)起所有项都满足此等式;(2)等比中项法:验证211n n n a a a -+=(n *∈N ,2n且0n a ≠)是否成立;(3)通项公式法:验证11n n a a q -=是否成立,但应注意隐含条件是10a ≠,0q ≠.7.解决等比数列前n 项和的实际应用问题的基本步骤(1)将已知条件翻译成数学语言,将实际问题转化为数学问题; (2)构建等比数列模型;(3)利用等比数列的前n 项和公式求解等比数列问题; (4)将所求结果还原到实际问题中.8.等比数列基本运算中的常用技巧:(1)(对称设元)一般地,若连续奇数个项成等比数列,则可设该数列为x x xq q,,,,;若连续偶数个项成等比数列,则可设该数列为33x x xq xq q q,,,,,(注意:此时公比20q >,并不适合所有情况).这样既可减少未知量的个数,也使得解方程较为方便.(2)求解等比数列基本量时注意运用整体思想、设而不求等,同时还要注意合理运用3232121121n nn n a a a a a a q a a a a a a --+++=====+++.9.用错位相减法解决数列求和问题的步骤:(1)判断结构:若数列{}n n a b ⋅是由等差数列{}n a 与等比数列{}n b (公比q )的对应项之积构成的,则可用此法求和;(2)乘公比:设{}n n a b ⋅的前n 项和为n T ,然后两边同乘以q ;(3)错位相减:乘以公比q 后,向后错开一位,使含有*()k q k ∈N 的项对应,然后两边同时作差;(4)求和:将作差后的结果求和,从而表示出n T .10.利用裂项相消法求和的基本步骤(1)裂项:观察数列的通项,将通项拆成两项之差的形式; (2)累加:将数列裂项后的各项相加(3)消项:将中间可以消去的项相互抵消,将剩余的有限项相加,得到数列的前n 项和.11.解决数列与不等式综合问题的一般步骤(1)由已知条件和数列性质求基本量,确定数列的特性(等差或等比数列); (2)求出n a 或n S 的通项公式;(3)分析n a ,n S 涉及的函数或不等式,利用相关函数或不等式性质解决题目中的问题;(4)得出结果,叙述完整;(5)回顾反思,查验“n ”的取值是否符合要求,运算过程是否有不当之处.12.数列与不等式的综合问题的解题策略(1)判断数列问题中的一些不等关系,可以利用数列的单调性或者是借助数列对应的函数的单调性求解.(2)对于与数列有关的不等式的证明问题,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等,有时需构造函数,利用函数的单调性,最值来证明.13.数列与函数的综合问题的解题策略(1)已知函数条件,解决数列问题,一般利用函数的性质、图象等进行研究. (2)已知数列条件,解决函数问题,一般要充分利用数列的有关公式对式子化简变形.(3)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解.14.数列在实际应用中的常见模型(1)等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n 项n a 与第(1)n +项1n a +(或者相邻三项等)之间的递推关系还是前n 项和n S 与前(1)n +项和1n S +之间的递推关系.15.解答数列实际应用题的步骤(1)审题:仔细阅读题目,认真理解题意.(2)建模:将已知条件翻译成数列语言,将实际问题转化成数学问题,分清数列是等差数列、等比数列,还是递推数列,是求通项还是求前n 项和. (3)求解:求出该问题的数学解.(4)还原:将所求结果还原到实际问题中.。
高考数学常用提分秒杀技巧:数列经典结论速解难题
高考数学常用提分秒杀技巧:数列经典
结论速解难题
姓名:__________
指导:__________
日期:__________
得到这么结论,我们就可以轻松做题,看例1:
我们继续来升华一下,看例2:
我们看到给出的三个条件为连三项,如果你总结了上面我们所讲的结论,
是不是非常简单?
总结一下我们今天所分享的结论:
接下来再分享一个经典结论,这个结论很简单,特别是基础很差的同学,一定要不要忽视这种结论,给你看几道题就明白了。
如果不会总结的,可以利用这三道题自己进行总结,注意,一定要学会自己梳理总结!
同学,以后遇到这类题,是不是直接秒杀!!
这就是我们的教学方法:梳理题型,让你直击题目本质,让你会做一类题,而不是一道题,让你做题又快又准。
如果有其它任何疑问可以留言,或者私信。
最后,祝你提分顺利,高考金榜题名!介绍:肖博(xbomath),K12教育创业者,中国影响力十大创新人物,一个血液会沸腾的高中数学老师。
Psst:完了吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
今天给大家讲解数列技巧,今天会讲7
道题,这些题都来源于高考真题,难题并不大,难度并不大,常规做2-3分钟一道题是不成问题,今天主要讲秒杀技巧,同学只要掌握这思维方式,这类题型可以做到5-10秒内出答案,在讲秒杀之前,先看一下这种题型用常规解答应该如何去分析。
我们先来看第一道题:我们先用常规方法解,大家会发现等差数列的首项和公差都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和d 表达,如图:
针对等差数列,我们首先想到的是有两种特殊类型:一类是公差为0;另一类公差为1、2、3这种特殊的等差数列。
像这类首项和公差都未知,大家可以看到,当公差为0的时候,是不是跟题干不相违背,那么我就让公差为0。
那就是等差数列的所有项都均等!
【高考数学】高考数列小题秒杀法
前面讲了5道等差数列的题,这些题用技巧是不是直接秒杀!
接下来我们就来看看等比数列的题型,我们再来看第6道题:我们先用常规方法解,同样大家会发现等比数列的首项和公比也都是未知的,而条件只给出一个,明显条件不足,所以我们就将整体换成a1和q表达,如图:
同样,针对等比数列,我们首先想到的是有两种特殊类型:一类是公比为1;另一类公比为2、4、6这种特殊的等比数列。
像这类首项和公比都未知,当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。
那就是等比数列的所有项都均等!
第7题,同样首项和公比都未知,大家可以看到,由于题干中强调了各项为正数,那么当公比为1的时候,是不是跟题干不相违背,那么我就让公比为1。
那就是等比数列的所有项都均等!
同学们,是不是这些题用技巧是不是直接秒杀,大家或许会疑惑,我告诉大家,这种方法绝对可靠,只要是公差公比未知,而题中又没强调公差不能为0,或者公比不能为1,所以我们就可以用特例,如果我们用这种方法做答案不对,也不可能强调公差不能为0、公比不能为1,高考是不可能出这种不严谨的题,所以大家放心大胆的使用。