Geometrical Optics via electromagnetic wave quantization
光电专业英语单词
专英单词Chapter 1 Geometrical OpticsModels of light: Rays and Waves Reflection and RefractionTotal internal Reflection Thin lensesLocating Images by Ray Tracing Thin Lens EquationSpherical Mirrors lens Aberrationelectromagnetic spectrum 电磁波谱parallel ray 平行光线reflection 反射refraction 折射incident beam 入射光束outgoing ray 出射光束the angle of reflection 反射角specular reflection 镜面反射diffuse reflection 漫反射optically denser medium 光密媒质optically thinner medium 光疏媒质transparent medium 透明介质prism 棱镜index of refraction 折射率positive lens 正透镜negative lens 负透镜optical axis 光轴optical instument 光学仪器focal point 焦点curvature 曲率paraxial approximation 傍轴近似achromatic lens 消色差透镜object distance 物距image distance 像距focal length 焦距the lateral of linear magnification 横向放大率spherical mirror 球面镜curved mirror 曲面镜concave mirror 凹面镜convex mirror 凸面镜spherical aberration 球差coma / coma aberration 彗差field curvature 场曲distortion 畸变chromatic aberration 色差focusing mirror 聚焦面镜objective lens 物镜aspherics 非球面镜Chapter 2 Wave OpticsHuygens’ Principle Reflection and Refraction of Light WavesInterference of Light Interference of Thin FilmsDiffraction by a Single Slit Multiple-Slit Diffraction and GratingsResolution and the Rayleigh Criterion DispersionSpectroscopes and Spectra Polarization Scatteringwave crest 波峰wave trough 波谷wave surface /wavefront 波阵面constructive interference 相长干涉destructive interference 相消干涉diffraction grating 衍射光栅spectrometer 分光计polarization 偏振Rayleigh scattering 瑞利散射optical activity 旋光性aperture 孔径half wave loss 半波损失fringes of equal inclination 等倾条纹fringes of equal thickness 等厚条纹diffraction grating 衍射光栅multiple-beam interference 多光束干涉resolution 分辨率wavefront splitting interference 分波前干涉diffraction aperture 衍射孔径amplitude splitting interference 分振幅干wave velocity 波速spectroscope 分光镜longitudinal wave 纵波transverse wave 横波Chapter 3 Optical InstrumentsThe eye The Magnifying GlassCameras and Projectors Compound MicroscopesTelescope Other lensesPupil 瞳孔Cornea 角膜Lens 晶状体Retina 视网膜near point 近点far point 远点Astigmatism 散光Myopia nearsightedness 近视hyperopia farsightedness 远视zoom lens 变焦透镜varifocal lens 变焦距镜头Magnifying glass 放大镜Chapter 4 Principles of LasersLaser Principle Types of LasersControl of The Laser Outputtransition 跃迁spontaneous emission 自发辐射excited state 激发态stimulated emission 受激辐射ground state 基态LASER —Light Amplification by Stimulated Emission of Radiationresonant cavity 谐振腔pumped light 泵浦光;抽运光population inversion 粒子数反转population distribution 粒子数分布bandwidth 带宽wavetrain 波列gain 增益etalon 标准具feedback 反馈threshold 阈值multimode 多模ring resonator 环形谐振腔stable and unstable resonators 稳定腔和非稳腔the confocal resonator 共焦腔Semiconductor Lasers 半导体激光器Solid State Lasers 固体激光器Fiber laser 光纤激光器Ion and Atomic Lasers 离子及原子激光器Excimer laser 准分子激光器Electro-ionization Laser 电致电离激光器Plasma Laser 等离子体激光器Q-SwitchingModulation of the Laser OutputMode Locking for Ultrashort PulsesQ switch Q 开关;调Q birefringence 双折射isolator 隔离器piezo-electric crystal 压电晶体quarter wave plate ? 波片harmonic wave 谐波Acousto-optic modulation 声光调制Magneto-optic modulation 磁光调制electro-optic modulation 电光调制SPM Self-phase Modulation 自相位调制PCM Pulse Code Modulation 脉冲编码调制active mode locking 主动锁模passive mode locking 被动锁模Laser Manufacturing Technology Laser RadarLasers in MedicineLaser Welding 激光焊接Laser Heat Treatment 激光热处理Laser Cutting 激光切割Laser Marking 激光打标Laser Drilling 激光打孔arc welding 电弧焊Laser Heat-Conduction Welding 激光热传导焊接Laser Deep Penetration Welding 激光深熔焊接laser cladding technology 激光熔覆技术Laser Texturing Technology 激光毛化技术Chapter optical communicationcontinuous wave 连续波transverse electric mode 横电模transverse magnetic mode 横磁模core 纤芯cladding 包层SBS stimulated Brillouin Scattering 受激布里渊散射SRS stimulated Raman scattering 受激拉曼散射Multimode Fiber 多模光纤Single Mode Fiber 单模光纤SIOF Step-Index Optical Fiber 阶跃折射率分布光纤GIOF Graded-Index Optical Fiber 渐变折射率分布光纤GVD Group Velocity Dispersion 群速度色散PMD Polarisation Mode Dispersion 偏振模色散Waveguide dispersion 波导色散Material dispersion 材料色散FDM frequency division multiplexing 频分复用TDM Time Division Multiplexing 时分复用WDM Wavelength Division Multiplexing 波分复用DWDM Dense Wavelength Division Multiplexing 密集波分复用LED light emitting diode 发光二极管LD laser diode 激光二极管APD Avalanche photo Diode 雪崩光电二极管OFA Optical Fiber Amplifier 光纤放大器SLA/SOA semiconductor laser/optical amplifier 半导体光放大器preamplifer 前置放大器active component 有源器件attenuator 衰减器Transmitter 发射机low pass filter 低通滤波器isolator 隔离器Optical Circulator 光环行器Optical switch 光开关Passive component 无源器件ADM Add Drop Multiplexer 分插复用器AWG arrayed-waveguide grating 阵列波导光栅Ethernet 以太网Internet of Things 物联网AON Active Optical Network 有源光网络PON Passive Optical Network 无源光网络PDH Plesiochronous Digital Hierarchy 准同步数字体系SDH Synchronous Digital Hierarchy 同步数字传输体系Chapter Holographyreconstruction 再现development 显影photosensitive medium 感光介质Optical Date Storage 光数据存储。
《光学技术》杂志投稿指南
《光学技术》杂志投稿指南《光学技术》是面向国内外的以应用科学和工程技术研究成果为主的有关光电技术方面的专业性学术刊物。
主要刊登高水平学术论文及重要科研成果,旨在促进国际国内学术交流,发展科学技术,培养科技人才,为社会主义现代化建设服务。
《光学技术》被Elsevier 的国际著名数据库Scopus收录,为中文核心期刊(2008年版:机械、仪表工业类),为中国科技论文统计与分析统计源用刊(中国科技核心期刊)。
为了保证刊物的质量,并使本刊与相关的检索机构的要求接轨,根据国家标准,并结合本刊实际制定本简则,请投稿者执行。
1 刊登内容(1) 应用科学研究和工程技术研究方面的有创新性(首创性或原创性)的学术论文。
所谓创新性,即要求论文所揭示的事物现象、属性、特点以及事物运动时所遵循的规律,或者这些属性、特点以及运动规律的运用必须是前所未见的、首创的或部分首创的,而不是对他人工作的复述或解释。
(2) 有创新的科研实验和有实用价值的研究报告。
(3) 重要学术问题和重大科技成果的综合评述及前沿学科的发展趋势和展望。
(4) 优秀学位论文中的创新部分。
(5) 最新学术动态和科学研究快报。
2 投稿约定(1) 来稿必须具有创新性、学术性、科学性、规范性和可读性。
(2) 本刊对所登论文收取评审费(400元)和发表费。
(3) 学生作者(研究生)论文需经导师审查、签字后方可接收。
(4) 文稿一经发表赠送当期期刊2本。
3 来稿要求和注意事项(1) 论文要求主题明确、数据可靠、逻辑严谨、文字精炼。
文稿必须包括中英文题名、中文作者姓名和作者汉语拼音姓名、作者中英文工作单位和邮编、中英文摘要和中英文关键词、中图分类号、正文和参考文献。
(2) 论文篇幅(含图表)限10000字,按照期刊模版进行排版。
投稿可直接在线投稿:,若系统故障可直接将论文投稿发至编辑部邮箱(),注明“投稿”。
并附第一作者个人简介(包括出生年、性别、民族、籍贯、技术职称、学位或在读学位、主要研究方向),以及联系电话,电子信箱,通讯地址,邮编等信息。
瑞利分布调制光的反射式关联成像
瑞利分布调制光的反射式关联成像张颖涛; 李洪国【期刊名称】《《实验室研究与探索》》【年(卷),期】2019(038)007【总页数】4页(P16-18,45)【关键词】关联成像; 信噪比; 随机调制光【作者】张颖涛; 李洪国【作者单位】天津理工大学理学院天津300384【正文语种】中文【中图分类】O431.20 引言关联成像又称为鬼成像,是通过强度关联测量获得物体图像信息的一种非直接成像技术。
具体来说是,具有空间关联性质的光源,例如热光源发出的光被分束器分成物光束和参考光束,其中一束光传播一定距离再照射物体后(物光束)被一不具有空间分辨能力的桶探测器接收;另一束光(参考光束)不经过物体,被一具有空间分辨的探测器接收,对上述两探测器记录的信号执行关联测量即可以重建获得物体的关联像。
史砚华等[1]首先利用双光子纠缠光源实现了鬼成像。
随后大量研究表明,利用经典光源例如赝热光源或真热光源也可以实现关联成像[2-14]。
Shapiro等[15]理论上提出了计算关联成像方案,随后Bromberg等[16]实验实现了计算关联成像。
Sun等[17]基于计算关联成像和三维图像重建技术,实验上利用数字光投影仪产生具有二值分布的调制光实现了三维物体的图像重建。
在计算关联成像中,光源可以被调制成具有任意强度概率密度分布的光,在实际中应用更方便[18-20]。
前期的研究主要集中在二值分布或负指数分布[17]。
本文基于瑞利分布的关联成像,首先理论分析强度概率密度函数为瑞利分布的调制光关联成像的信噪比,然后实验上实现基于该分布的反射式物体的计算关联成像。
1 反射式关联成像信噪比理论分析1.1 反射式关联成像信噪比的一般表达式反射式关联成像装置示意图如图1所示,随机调制光源发出的光经分束器变为物光束和参考光路。
其中一束光经过物体反射后(物光束)被一个不具有空间分辨率的桶探测器接收;另一束光(参考光束)自由传播一定距离后被一个具有空间分辨的探测器接收,对上述两探测测得的强度信号进行多次采样执行强度涨落关联测量后即可重建获得反射式物体的图像。
My Library1我的书房
My Library1我的书房作者:艾伦·亚历山大·米尔恩/文沈洁/译来源:《英语世界》2024年第05期When I moved into a new house a few weeks ago, my books, as was natural, moved with me. Strong, perspiring men shovelled them into packing-cases, and staggered with them to the van, cursing Caxton2 as they went. On arrival at this end, they staggered with them into the room selected for my library, heaved off the lids of the cases, and awaited orders. The immediate need was for an emptier room. Together we hurried the books into the new white shelves which awaited them, the order in which they stood being of no matter so long as they were off the floor. Armful after armful was hastily stacked, the only pause being when (in the curious way in which these things happen) my own name suddenly caug ht the eye of the foreman. “Did you write this one,sir?” he asked. I admitted it. “H’m,” he said noncommittally. He glanced along the names of every armful after that, and appeared a little surprised at the number of books,which I hadn’t written. An easy-going profession, evidently.幾个星期前我迁居新房,我的书自然也随我一起搬走。
2021华侨、港澳台联考物理考试大纲
2021华侨、港澳台联考物理考试大纲Ⅰ.考试要求1.理解本大纲中所列的基础物理知识(包括现象、概念、定律和应用)。
2.掌握本大纲中所涉及的科学方法和技能(包括实验方法和实验技能)。
3.能够运用基础物理知识、方法和技能解决具体问题。
关于考试要求的几点说明:(1)本大纲既包含理论知识,也包含实验知识。
但考试时,实验知识只要求用书面回答,不要求考生在考场动手做实验。
(2)本大纲所涉及的数学知识包括三角、代数、几何、解析几何等普通数学知识。
微积分不作要求。
(3)一般采用国际单位制(SI)。
但也要求熟悉下列符号:μ(微),m(毫),k(千),cm(厘米)。
还要求会用下列一些单位:A(埃),degree(度,指角度),℃(摄氏度),eV(电子伏特),kWh(千瓦小时),atm(标准大气压),mmHg(毫米汞高),以及年、日、小时、分、秒。
(4)考试答卷时,物理专用名词可以写成英文。
Ⅱ.考试内容考试内容包括力学、热学、电磁学、光学、原子物理学(包括核物理)五部分及实验。
一、力学1.运动学(kinematics)标量(scalars)和矢量(vectors),矢量的加法,矢量的分解(限于二纳)。
质点。
位移和路程。
速度。
加速度。
相对速度(relative velocity)。
匀速运动。
匀变速运动。
落体和抛体运动。
图示法(s-υ图,υ-t图)。
曲线运动:钭抛运动。
匀速圆周运动,线速度和角速度,向心加速度。
2.牛顿运动定律(Newton's law of motion)和万有引力定律(Law of universal gravitation)牛顿第一定律。
惯性(inertia)牛顿第二定律。
力。
质量。
牛顿第三定律。
万有引力定律。
弹性力。
胡克定律(Hooke's law)。
摩擦力。
静摩擦和静摩擦系数。
滑动摩擦和滑动摩擦系数。
牛顿定律的应用。
质点做圆周运动时的向心力。
人造地球卫星的运动(限于圆轨道)。
3.物体的平衡(equilbrium)共点力作用下物体的平衡。
巴黎综合理工考试试题类型(物理).
ECOLE POLYTECHNIQUE – « INGENIEUR POLYTECHNICIEN »PROGRAMINTERNATIONAL ADMISSIONSRecommended knowledge in Physical SciencesThe recommended knowledge in Physical Sciences for the applicants to the “Track 2 - International admissions” is detailed below.This document is meant to give the applicants directions on the knowledge they are likely to be interviewed upon. It is given for information purposes only and cannot be considered as a basis of the programme for the second track examinations.Ecole Polyte chnique reserves the right to test an applicant’s knowledge on other fields of Physical Sciences than those listed in this document.Besides, Ecole Polytechnique expects the applicants to know the numerical values of the basic constants of physics, as well as the orders of magnitude of the physical phenomena of nature.The applicants should be able to show excellent standard mathematical skills.An excellent level in mathematics and in physical sciences is a key to successful studies at Ecole Polytechnique.I. MECHANICS¾Newtonian mechanics¾Mechanics of solids¾Statics and mechanics of fluids¾Applications of mechanicsII. ELECTRIC CIRCUITSIII. ELECTRICITY AND MAGNETISM¾Electrostatics¾Magnetostatics¾Electromagnetic wavesIV. OPTICS¾Geometrical optics¾Wave opticsV. THERMODYNAMICS¾Perfect gas¾First and second principles of thermodynamicsPhysical constantsThe values of Planck, Boltzmann and Avogadro constants, the charge and the mass of the electron, the speed of light in vacuum, the electric permittivity and the magnetic permeability of free space, in SI system of units (at least two significant digits are required.Orders of magnitudeThe orders of magnitude of quantities such as the magnetic field of the Earth, the radius of the Earth, the accelera tion of free fall at the Earth’s surface, the concentration ofelectrons in a typical metal, the wavelengths of the electromagnetic waves of the visible spectrum, the distance between two atoms in a solid or liquid, the Bohr radius of the fundamental state of the hydrogen atom, the size of the nucleus.Compulsory minimal requirements of calculation skillsMastering a certain number of calculation skills such as is compulsoryExpansionsBe able to study the behaviour of a physical quantity A (x in the neighbourhood of a given value of its argument x . The common expansions about x ≈ 0(((22111;1ln( ; 22131cot ; 33tan ; 221cos ; 63sin x x x x x x x x e x x x g x x x x x x x x −++≈+≈+++≈−≈+≈−≈−≈αααα Derivatives and primitives of the functions of a single variableDerivatives of the elementary functions (x g x tg x x x e x n x cot , ,cos ,sin , ,ln , as well as of the composition function f (g (x .Rules for the derivative of the product and the quotient of two functions of a real variable. Primitives of the elementary functions above.Integration by parts.Conditions for the convergence of an integral in the cases of an infinite integration interval or the presence of points of discontinuity.Functions of several variables. Common differential operators.Total differential.Partial derivatives with respect to an independent variable in the case of a function of several variables. Nabla operator ∇. Gradient of a function f (r . r r ∇ f Curl of a vector field A (r . Divergence A ×∇r A .∇r . Circulation ∫(.C d l A .Laplacian and vector Laplacian .f 2∇A 2∇ Multiple integrals. Stokes, Gauss – Ostrogradski theorems.Reduction of multiple integrals to simple integrals by using the symmetry properties (cylindrical, spherical of the integrants and surfaces (volumes involvedStokes theorem.Gauss-Ostrogradski theorem.Differential equationsSolution of first order differential equations with separable variables.Solution of second order linear and homogeneous differential equations with constant coefficients. Characteristic polynomial, number and nature of solutions, critical damping.Solution of second order linear inhomogeneous equations with constant coefficients. Concepts of forced oscillations and resonance.Equations with partial derivativesD’Alembert’s solution of the wave equation.Progressive monochromatic plane waves. Concepts of wave vector, wavelength, frequency and period.Principal phenomenological laws (Fick, Fourier and diffusion equations. Energy, mass, etc. balance within an elementary volume.Linear algebraCalculation of a determinant, diagonalization of a matrix, concepts of eigenvalues and eigenvectors of a linear operator.TrigonometryDefinitions and properties of the basic trigonometric functions (sine, cosine, tangent, cotangent.Common trigonometric formulas (cos 2x = cos 2x - sin 2x ; sin 2x = 2 sin x cos x ; sin α + sin β = 2 sin [(α + β / 2] cos [(α - β / 2] ; cos α + cos β = 2 cos [(α + β / 2] cos [(α - β / 2], etc..Fourier series of a regular enough periodic function.I. MECHANICSNewtonian mechanicsNewton’s laws: the principle of inertia, the principle of action and reaction, the fundamental equation of dynamics.Galilean relativity. Concept of non-inertial reference frames and forces referred to as « inertia » forces (in particular, in the case of linear acceleration and uniform rotation frames Angular momentum theorem. Kinetic energy theorem. Momentum theorem.A two particle system. Central force motion, bound states, scattering states.Expressions for the velocity and the acceleration of a material point in cylindrical and spherical co-ordinates.Concept of potential energy. Independence on the path of the work done by a potential-derived force.Conservation of mechanical energy of an isolated material system in the case of conservative forces.Conservation of angular momentum in the case of central forces. First and second Kepler’s laws (the law of conical sections and the law of areas.Conservation of momentum in the case of an isolated system. Elastic and inelastic collision problems. Concept of a centre of mass of a system.Expressions for the potential, kinetic and total energy of a particle in the case of a circular trajectory.Mechanics of solidsRigid bodies (non-deformable solids. Solids rotating about a fixed axis. Moment of inertia of a rigid body. Expression for the kinetic energy of a rigid body as a sum of a translational term of its centre of mass and of a rotational term referred to the centre-of-mass reference frame (Koenig’s theorem. The problem of the compound pendulum.Statics and mechanics of fluidsEuler’s description (the concept of a velocity field of a fluid. Concepts of flow density, mass flow rate and volume flow rate. Mass balance. Equation of the conservation of mass in its local form.Definitions of a stationary flow, of an incompressible flow, of a non-rotational flow.Perfect flows: Euler’s equation, Bernoulli’s relationship on incompressible and homogeneous flows.Calculation of the resulting force of the pressure forces exerted upon an object, in fluid statics. The Archimedes’ principle (the buoyancy force applied to an object immersed in a fluid.Applications of mechanicsLorentz force (force exerted on a charged particle in constant electric and magnetic fields. Trajectory of a charged particle in a static and uniform magnetic field.Linear oscillations; damped harmonic oscillations. Forced oscillations, resonance.II. ELECTRIC CIRCUITSElectric voltage. Kirchoff’s laws of knots and meshes. Electric current. Ohm’s law. Superposition theorem.Basic circuit components: resistor, capacitor, coil. Their impedances in sinusoidal regime. Transient regime of charging and discharging a capacitor.Sinusoidal currents and voltages. Maximum value, rms (root mean square value. Impedances in series and in parallel.Study of resonances in circuits in sinusoidal regime. RLC circuit. Relation to resonance in mechanics.III. ELECTRICITY AND MAGNETISMElectrostaticsCoulomb’s law. The concept of electric field. Electrostatic field E. Circulation and flow of E. Gauss’ theorem. Symme try properties of E.Electrostatic potential φ and Poisson’s equation.Calculation of E and φ for a simple charge distribution ρ. Electrostatic potential between the plates of a planar capacitor.Concept of electric dipole, field created by a dipole at large distances, interaction energy of a permanent dipole with the electric field. Definition of the electric polarization vector. Electric field in a conductor at equilibrium. Equipotential surfaces.Electric field in the vicinity of a metal surface.Coulomb’s law between two charges immersed in a homogenous linear and isotropic dielectric medium.MagnetostaticsMagnetic field B. Symmetry properties of B.Magnetic field created by a thin wire carrying a current (Biot-Savart law, the two Maxwell equations (the divergence of B and Ampère’s law, vector potential A.Non-unicity of the electrostatic potential φand the vector potential A, unicity of the electric field E and the magnetic field B.Circulation of B. Relationship between the circulation of B and the encircled currents (theorem of the total current.Calculation of B created by straight wires and circular loops. Field along the axis of a circular loop and of a coil (solenoid having a circular cross-section.Magnetic dipole and magnetic moment M. Expression for the interaction energy between a magnetic moment and a magnetic field B.Flux of B. Electromagnetic induction phenomenon, Faraday’s law, Lenz’ rule.Electromagnetic wavesElectromagnetic waves in vacuum.Maxwell’s equations in vacuum. Progressive harm onic plane waves as solutions of the Maxwell’s equations in vacuum. Frequency, wavelength, wave vector. The concept of phase velocity.Transversality of the electric and magnetic fields.The state of polarization state an electromagnetic wave. Linear and circular polarizations. Volume density of the electromagnetic energy, Poynting vector.Concept of wave packet. Group velocity.Electromagnetic waves in matter (linear and isotropic medium.Macroscopic E and B fields. Constitutive relationships complementing Maxwell’s equations. Frequency-dependent complex dielectric constant ε(ω.Concepts of complex refraction index, dispersion and absorption.Microscopic models describing the material polarization of the medium: Drude model, model of the elastically bound electron (Lorentz model.IV. OPTICS Geometric optics Concept of light ray. Reflection and refraction by a plane mirror. Snell-Descartes’ laws. Limit angle. The total reflection phenomenon. Spherical mirrors, lenses, conjugation and magnification relations. Wave optics Reflection and refraction of a harmonic progressive polarized plane wave at the interface between two dielectric media. Proof of Snell-Descartes laws. Concept of optical path. Interference between two totally coherent waves. Michelson’s interfe rometer. Thin slabs. Fabry-Pérot cavity. Diffraction at infinity. Huyghens-Fresnel principle. Diffraction by a rectangular slit. Diffraction at infinity by two slits (Young’s slits, by a row of slits. V. THERMODYNAMICS Thermodynamic state functions: internal energy, entropy, enthalpy, free energy, free enthalpy, as well as their differentials. Extensive and intensivevariables, thermodynamic equilibrium. Heat capacities at a constant volume and at a constant pressure. Perfect gas Perfect monoatomic gas model. Maxwell-Boltzmann distribution of velocities for a monoatomic perfect gas. The equipartition theorem. Collisions against a wall. Relationship between pressure and mean square velocity. Perfect gas in a field of forces having a potential energy V(r. The barometric formula. Limitations of the perfect gas model. Real gases. The van der Waals gas. First and second principles of thermodynamics First principle. Internal energy U. Heat transfer. Work exchanged by a system. The work of pressure forces. Enthalpy and Joule-Thomson expansion. The enthalpy of a perfect gas. Second principle. The entropy S. Entropy balance. Reversible and irreversible processes. Thermodynamic definition of temperature. The entropy of a perfect gas (for a condensed and idalatable phase. Heat machines. Dithermal cycle. Efficiency. Carnot’s theorem. Equilibrium between the phases of a pure substance. Triple point, critical point, enthalpy and entropy of phase changes. Clapeyron’s formula. Free energy and free enthalpy: definitions and dif ferentials. Chemical potential. The perfect gas case. Equilibrium between two phases. Generalization, Gibbs’ phase rules. 6。
光电英语词汇(G)-英语行业-专业词汇-
光电英语词汇(G)更多英语行业-专业词汇-请点击这里获得gain cell 增益室gain coefficient of medium 媒质增益系数gain control 增益控制gain crossover 增益窜渡gain curve of medium 媒质增益曲线gain decay characteristic 增益衷减特性gain factor 增益因数gain invertion 增益反转gain margin 增益容限gain of light 光增益gain per pass 单程增益gain spiking 增益巅值gain stage 增益级gain staturation 增益饱和gain-bandwidth product 宽频增益器gain-bandwithd 增益带宽gain-guided laser 增益导引雷射gain-switching amplifier 增益开关放大器gain-switching system 增益开关系统gal 伽galaaxy 银河系galactic irradiance 银河系辐照度galactic noise 银河系噪声galaxy 银河Galilean binocular 伽利略双筒望远镜Galilean eyepiece 伽利略目镜galilean refracting telescopes 折射望远镜,Galilean 望远镜Galilean telescope 伽利略望远镜galilent telescope 加利略望远镜galley camera 制版照相机gallium (Ga)镓gallium aluminum arsenide (GaAIAs or AIGaAs)砷铝化镓gallium antimonite (GaSb)锑化镓gallium aresenide injection laser 砷化镓注入式激光器gallium arseide detector 砷化镓探测器gallium arsenide 砷化镓gallium arsenide photphide 磷砷化镓gallium arsenide (GaAs) injection laser 砷化镓注入雷射gallium nitride 磷化镓gallium photsphide (GaP)加仑gallium-arsenide optical filter 砷化镓滤光片gallon (gal)电流探测galvanic detection 镀锌galvanoluminescence 电流发光galvanometer 电流计galvanometer mirror 电流计镜galvanometer recorder 电流计记录器galvanometer shunt 电流计分流器galvanometer spot project 电流计光点投影器galvanometerh 电流计gamma 加玛gamma camera 加玛射线照像机gamma control r控制gamma correction r校准gamma irradiation r辐射gamma radiography 加玛防线照像术gamma ray r射线gamma ray detector 伽玛射线检测器gamma ray image converter r射线变像管gamma sphere 伽玛射线球gamma value r值gamma-ray astronomy 伽玛射线天文线gamma-ray fluoroscope r射线荧光镜gamma-ray gauge r射线测量计gamma-ray hologram r射线全息图gamma-ray laser r射线激光器gamma-ray meter r射线测计,r剂量计gamma-ray projector r射线投影器gamma-ray spectrograph r射线摄谱仪gamma-ray spectromete r伽玛射线分光计gamma-space r空目gammagraph r照相装置gammagraphy r照相术gamut (1)音阶(2)色移GaN 氮化镓GaN LED 氮化镓发光二极体Ganecke projection 甘奈克投影gang capacitor 其轴电容器gang switch 共轴开关GaP 磷化镓gap coding 空隙编码gap conunter 间隙计数器gap length 气隙长度gap loss 间隙损失gap-gauge 厚薄尺,塞尺Garching iodine laser system 伽斤碘激光系统garment (1)外套,外表(2)外涂层garmnet 石榴石garnet crystal 石榴晶体garnet laser 石榴石激光器gas (1)气体(2)媒气gas absorption cell 气体吸收元件gas active material 气体激光材料gas amplification 气体放大gas analysis 气体分析gas ballast rotary pump 气镇旋转泵gas breakdown 气体击穿gas breakdown threshold 气体击穿阈gas chromatograph 气象色谱gas chromatography 气相色谱gas chromatorgarma 气相色谱gas clean up 气体除净gas current 气体电流gas detector 气体检测器gas diode 气体二极管gas diode phototube 充气光电二极管gas discharge 气体放电gas discharge display 气体放电显示器gas discharge laser 气体放电雷射gas dynamic CO-laser 气动-氧化碳激光器gas dynamic laser 气体激光器gas etching technique 气体刻蚀技术充气的gas filled cable 充气电缆gas filled rectifier 充气整流器gas filled tube 充气管gas filter correlation 气体滤器相关gas focusing 气体聚焦gas laser 气体激光高度计gas laser altimeter 气体透镜gas lens 混合气体透镜gas magnification 气体放大gas mixture lens 汽油gas photocell 气体光电池gas recyclers and gas handling equipment 气体再生设备,气体填充设备gas ring laser 不透气的,气密的gas tightness 气体迁移激光器gas tube 气体管gas-ballatsing 气镇gas-discharge 气体放电gas-discharge cell 气体放电元件gas-discharge lamp 气体放电灯gas-discharge laser 气的放电激光器gas-discharge noise 气体放电噪声gas-discharge plasma 气体放电等离子体gas-discharge source 气体放电光源gas-discharge tube 气体放电管gas-filled 充气灯gas-filled lamp 充气激光管gas-filled laser tube 充气光电管gas-filled phototube 充气钨丝灯gas-filled tungsten-filament 气体注入式激光器gas-injection laser (1)衬垫(2)垫圈gas-phase laser 气环形激光器gas-tight 气密性gas-transport laser 充气三极管,闸流管gas-transport laser (GTL)气体输送雷射gasdynamic 气动的gasdynamic mixing laser 气动混合激光器gasdynamic mode 气动模gasdynamic type of chemical laser 气动式化学激光器gaseous 气体的gaseous cascade laser 气体串级激光器gaseous discharge 气体放电gaseous medium 气体媒质gaseous target 气体靶gases for lasers 雷射用气体gases for optical application 光学用气体gasket 气体激光器gasoline 气相激光器gassing 释气gastriode 纤维胃窥镜gastrofiberscope gastroscope 胃镜gastroscope 胃窥镜,胃视镜gate (1)门电路(2)选通脉冲(3)电影放大镜头窗口gate bias 栅偏压Gate Driver IC 闸极驱动IC gate float 浮动窗框gate mask 孔板gate pulse 选通脉冲,门脉冲gate trigger signal 闸极驱动讯号gate turn off signal 闸极关闭讯号gate value 门阀gate width 选通脉冲宽度gate-controlled switch 闸控开关gated amplifier 选通放大器gated aradiometer 选通辐射计gather 导入,引入gating 选通,开启gating pulse 选通脉冲gating siganl 选通信号gatling gun laser 卡特林机枪雷射(连发式雷射)gauge batr 规杆gauge block 规块gauge caliper 测径规gauge feeler 厚薄规gauge glass 量液玻璃管gauge hole 标准孔gauge outfit 测量头,表头gauge point 标记点gauge pressure 计示压力,表压gauge (=gage)(1)规(2)计(3)测量gauge[-block] interferometer 规块干涉仪gauging error 分度误差,检定误差gauss 高斯Gauss beam 高斯光束Gauss double type object-lens 双高斯型物镜Gauss eyepiece 高斯目镜Gauss optics 高斯光学Gauss plane 高斯平面Gauss point 高斯点gauss points 高斯点Gauss theorem 高斯定理Gauss transform 高斯变换Gauss-condition error 高斯条件误差Gauss-invariant co-ordinates 高斯不变坐Gaussian band-pass filter 高斯带通滤波器Gaussian beam 高斯光束Gaussian curvature 高斯曲率Gaussian distribution 高斯分布Gaussian doublet 高斯型双胶合透镜Gaussian elementary beam 高斯基本光束Gaussian error 高斯误差Gaussian flux law 高斯通量定律Gaussian function 高斯函Gaussian image 高斯像Gaussian laser beam 高斯激光束Gaussian lens formula 高斯透镜公式Gaussian lineshape 高斯线型Gaussian noise 高斯噪声gaussian optics 高斯光学Gaussian probability-density function 高斯概率密度函数gaussian pulse 高斯脉冲Gaussian reference sphere 高斯参考球Gaussian reflectivity 高斯反射率Gaussian regaion 高斯区域Gaussian wave train 高斯波列gaussmeter 高斯计,磁强计gauze filter 网状滤波器gauze technique 线网技术Gaviola test 加维拉检验法Ge mesa transistor 锗台式晶体管Ge photodiode array camera tube 锗光电二极管阵列摄像管gear (1)齿轮(2)传动装置gear bank 齿轮组gear box (gear case)齿轮箱gear coupling 齿轮联轴节gear drive 齿轮传动gear lead checking machine 齿轮导程检查仪gear lever 变速杆gear mesh 齿轮齿合gear rack 齿轮齿条gear sector 扇形齿轮gear shift 变速,调档gear sprial 螺旋齿轮gear testing machine 齿轮检查仪,测齿仪gear thickness gauge 齿厚规gear tooth venier caliper 厚游标卡尺gear wheel 齿轮gear wheel shaft 齿轮轴gear wheel tester 齿轮检查仪gear-type coupling 齿轮联轴节gearing (1)齿轮装置(2)传动装置gegenschein-zodiacal light photometer 积坚斯因,祖弟卡光线光度计Geiger counter 盖革计数器Geiger Mueller region 盖氏弥勒区域Geiger Mueller threshold 盖革弥勒阈值Geiger-mueller counter 盖革一弥计时器Geiger-Muller ballast 盖革-弥勒计数管Geiger-Muller coungter 盖革-弥勒计数管geigerscope 闪烁镜geissler tube 盖斯勒管gel 凝胶gel layer 凝胶层gelatine 明胶gelatine filter 明胶滤光镜gelogy 地质学gemoetrical error 几何误差genal drawing 总图general assembly 总装配general computer 通用计算机general confocal resonator 泛共焦共振腔general isoplanatism theorem 广义等晕定理general radiation scattering 连续辐射散射general view 总图,全视图general wave-beam guide 通用波导general-purpose camera 通用照相机generalized coordinates 广义坐标generalized Lagrange invariant 广义拉格朗日不变量generalized projection 广义投影generalized pupil function 广义光瞳函数generalized relative aperture 广义相对孔径generating mark 磨胚痕generation 磨胚generation electric field meter 发电式电场计generation lifetime (1)发生涛命(2)生成寿命generation Ⅱwafer tube 第二代晶圆管generation-recombination noise 振荡复合噪声generator (1)振荡器(2)发生器(3)发电机(4)母线generator field control 发电机场控制generatrix 母线genescope 频率特性观测仪genetic engineering 遗传工程学genlock 内锁genmetric concentration 几何传中率genoralized inverse matrix 广义逆矩阵geocenter 地球质量中心geodesic lens 测地镜头geodesic leveling 大地水准测量geodesy 大地测量学geodetic datum 天地基准点geodetic instrument 大地测量仪器geodetic measurement 大地测量geodetic survey 大地测量geodimeter 光电测距仪geodynamic satellite 地球动力卫geodynamics 地球动力学geographic survey 地图测量geographical coordinates 地图坐标,地理坐标geography 地理geoid 大地水准面geological mapping 地质测绘geological survey 地质测量geologit's compass 地质罗盘仪geomagnetic field 地磁场geometrcial transformation 几何变化geometric extent 几何领域geometric metamerism 几何的同差异构性geometric operations 几何作业geometric optics 几何光学geometrical aberration 几何像差geometrical axis 几何轴geometrical broadening 几何展宽geometrical center 几何中心geometrical cross section 几何截面geometrical drawing 几何图geometrical focus 几何焦点geometrical gropression 几何级数geometrical image 几何像geometrical leveling 几何水准测量geometrical optics 几何光学geometrical projection 几何投影法geometrical relationship 几何关系geometrical scanner 几何授描器geometrical shadow 几何阴影geometrical similarity 几何相似性geometry 几何学geomorphology 地貌学,地形学geophysical survey 地球物理测量geophysics 地球物理学Georan (geodetie ranger)大地测距仪geoscience 地球科学geostationary satellite 同步卫星geosynchronous orbit 同步轨道geosynchronous satellite 地球同步卫星germainium imaging sensor 锗成像传感器germainium lens 锗透镜germainium-doped optical fibre 掺锗光学纤维German Illuminating Engineeering Society (DL TG)德国照明工程协会German silver 德银germanium (Ge)锗germanium bolometer 锗测辐射热器germanium detector 锗探测器germanium polarizer 锗偏振器germanium-mosaic image-convertor 锗镶嵌变像管germanium-silicaon alloy 锗硅合金germicidal lamp 杀菌灯germinium-doped silica 掺锗二氧化硅getter (1)吸气剂,收气剂(2)吸杂剂getter bulb 吸气剂管getter material 吸气材料GGG laser crystals 雷射晶体(GGG)ghost effect 寄生效应ghost image 鬼像,幻像ghost line 鬼线ghost peak 假峰ghost prism 鬼棱镜ghost surface 假面ghost-strenght 鬼像强度ghosts 幻影giant optical pulsation 巨光脉冲giant pulse (GP)巨脉冲giant pulse emission 巨脉冲发射giant pulse technique 巨脉冲技术giant resonance 巨共振giant-pulse laser 巨脉冲激光器gib clamp 扁栓制动机构gibbs 吉卜斯Gibbs' phenomena 吉卜斯现象giga (G)吉,千兆giga-electron-volt 吉电子伏,千兆电子伏GIGABIT ethernet network equipment 超高速乙太网路设备gilbert (Gb)吉伯gilding (1)镀金(2)镀金术gimbal 常平架,平衡环gimbal lock 常平架锁定gimbal mount 常平架座glaass-sealed 玻璃封接的Glan polarizer 格兰起偏振镜glan spectrophotometer 葛兰分光光度计Glan-Foucault polarizing prism 格兰-傅科偏振棱镜glan-thompson prism 葛兰-汤普生棱镜Glan-Thomson prism 格兰-汤姆逊棱镜glan-thomson prismsGlan-Thomson 棱镜glancing angle 掠射角glancing incidence 掠入角gland (1)衬垫压盖(2)密封装置gland nut 压紧螺母glarimeter 光泽计glaring 耀眼的glas laswer 玻璃激光器glass (1)玻璃(2)望远镜(3)显微镜(4)放大镜glass and glass-ceramic mirrors 玻璃,玻璃/陶瓷面镜glass annealing furnace 玻璃退火炉glass barium (Baryta)钡玻璃glass bead screen 玻璃球屏幕glass beads 玻璃珠glass blowing 吹玻璃glass capacitor 玻璃电容器glass capillary 玻璃毛细管glass cement 玻璃胶glass cement surface 玻璃胶合界面glass ceramic 玻璃陶瓷glass cuter 玻璃刀glass dial 玻璃刻度些glass disk laser 玻璃圆盘激光器glass disk scale 玻璃刻度盘glass dosimeter 玻璃软片板glass electrode 玻璃电极glass fiber 玻璃纤维glass fiber waveguide 玻璃纤维波导glass film plates 玻璃雷射glass filter 滤光镜glass generators 玻璃产生机glass laser 上色墨glass laser targer 玻璃激光靶glass lasers 玻璃雷射glass marking inks 玻璃上色墨glass melting furnace 玻璃熔炉摄谱仪glass mirror 玻璃镜glass plate 玻璃板glass powder 玻璃粉glass precision scale 精密玻璃刻尺glass rod 玻璃棒glass scale 玻璃分划尺glass shot (1)闪光玻璃(2)特技摄影glass sight 光学瞄准具glass slip 玻璃片glass spectrograph 玻璃摄谱仪glass substrate 玻璃基板glass target 玻璃靶glass transition temperature 玻璃软化温度glass-air interface 玻璃-空气分界面glass-beaded 玻璃熔接的glass-engraving 玻璃雕刻glass-fiber cabie 光缆glass-fiber guide 玻璃纤维波导glass-fiber laser 玻璃纤维激光器glass-on-glass ddrawing technique 玻璃拨丝技术glass-path 玻璃光程glass-processing 玻璃加工的glass-shell target 玻璃空心靶glasses 眼镜glassine 玻璃射glassiness 玻璃质glassing machine 抛光机glassite 玻璃抛光分glassy 透明的,玻璃状的glassy chalcogenide 透明硫化物glassy chalcogenide semiconductor 透明硫化物半导体glaucoma 绿内障,青光眼glaze wheel 研磨轮Glazebrook prism 格累兹布鲁克棱镜glazer 抛光轮glazing (1)抛光,磨光(2)配玻璃glazing machine 抛光机gleam 发光,闪光glide plane 滑移平面glide reflection 滑移反射glimmer (1)微光,微弱闪光(2)云母glint (1)光反射(2)闪烁glisten (1)反光(2)闪光glitter 闪烁global monitoring 全球监控global radiation 金球辐射globar 碳化硅棒globar element 碳化硅棒元件globar meterial 碳化硅棒材料globar source 碳化硅棒光源globe 球,球体globe lens 球透镜globe photometer 球形光度计globular bulb 球状灯泡globular projection 球面投影globule 小球体globulite 滴晶glory ray 彩色glosgloss meters 光泽计gloss 光泽gloss meter 光泽计glossiness (1)光泽度(2)砖光度glossy paper 光面相纸glossy specimen 光泽样品glow 辉光glow ballast 辉光管glow characteristic 辉光特性曲线glow discharge 辉光放电glow factor 辉光因数glow lamp 辉光放电管,白炽灯glow modulator tube 辉光调制管glow plasma 辉光等离子体glower 炽热体glue line heating 胶线加热gluing 胶合,黏合glyceriin-immerision system 甘油油浸系统go-gauge 通过规go-no-go gauge 过端-不过端量规gobo (1)镜头挡光板(2)吸声板goggles 护目镜,风镜Golay cell 高莱探测器gold (Au)金gold blackbody 金黑体gold flaser 金激光器gold foil 金箔gold leaf electroscope 金箔验电器gold-doped 掺金的goldberg wedge 戈伯劈gon 百分度gonimeter eyepiece 测角目镜goniometer (1)测角器(2)测向器goniometer eyepiece 测角器目镜goniometry (1)测角术(2)测向术goniophotometer 测角光度计goniophotometric curve 测角光度曲线gonioradiometer 测角轴射计Gonioscopic prism 视轴角度棱镜gonometric (1)测角的(2)测向的Gotar lens 戈塔镜头grad criteria 等级判据gradation (1)层次(2)分级(3)等级grade (1)等级(2)坡度grade of fit 配合等俏grade-index 递级指数graded coating 等级涂层graded deposit 递级淀积层graded index 陡度折射率graded refractive index 陡度折射率graded-index glass fiber 陡度折射率玻璃纤维graded-index potical fiber 陡度折射率光学纤维graded-index potical waveguide 陡度折射率光学波导gradient 陡度,梯度gradient edge enhancement 梯度边增强gradient neutral density filter 陡度中性密滤光片gradient refractive index 陡度折射率gradient spectrum 陡度光谱gradient vector 梯度向量gradienter 陡度计,测斜度计gradual approximation 渐次近似法gradual cut filter 阶梯式截止滤光片graduated circle 分度圈graduated ring 分度圈graduated scale 分度尺graduation 分度,刻度graduation line 分度线,刻度线graduation mark 分度符号graduator 分度器gradusated filter 分度滤光片grain 粒,晶粒grain isolating diaphragm 晶粒隔离光阑grain noise 颗粒噪声grain refinement 晶粒细化grain size (1)粒度(2)晶粒大小grain structure 颗粒特构graininess (1)粒度(2)颗粒性graininess of the photographic image 相片影像的颗粒度gram 克gram atom 克原gram molecule 克分子gram-rad 克-弧度gramme ring 格阑姆环Grandagon 格朗达贡granlte 花岗岩granular 颗粒状的granular structure 颗粒结构granularity (1)颗粒度(2)颗粒性granulation 颗粒化grape jelly 葡萄胶graph 线图graph plotter 制图仪graphechon 阴极射线存储管graphecon 阴极射线储存管graphic 图示的,图解的graphic analysis 图解分析graphic arts 图解艺术graphic arts camera 图解艺术照相机graphic arts equipment 图解艺术设备graphic chart 图表graphic display 图形显示graphic instrument 图解仪graphic language 图像语言graphic meter 自动记录仪graphic method 图示法graphic panel 图示板graphic projection disply 图形投影显示graphic recorder 图形记录器graphic representation 图示,图形表示法graphic scale 图示比例尺graphical construction of image 成像图法graphical design of otpical system 光学系统图解设计graphical integration 图解积分graphical ray tracing 图解光路追踪graphics 图解法,图示学graphite 石墨graphitic carbon 石墨碳graser 伽射graser (gamma-ray laser) r激光器graser rodr 激光棒grasshof number 革拉秀夫数grate 格栅graticule (1)十字线(2)分度镜grating 光栅grating beam-divider 光栅光束分离器grating constant 光栅常数grating coupled 光栅耦合的grating coupler 光栅耦合器grating dip 光栅浸渍grating efficiency 光栅效率grating interferometer 光栅干涉仪grating line 光栅划线grating lobe 光栅波瓣grating monochromator 光栅单色仪grating pair 光栅对grating prism 光栅棱镜grating recombiner 光栅光束重合器grating reflector 栅状反射器grating satellite 光栅伴线grating shearing interferometer 光栅剪切干涉仪grating space 光栅间距grating spectrograph 光栅摄谱仪grating spectrometer 光栅分光计grating spectronmeter 光栅分光计grating spectrum 光栅光谱grating spectrum satellite 光栅光谱伴线grating storage target 栅状信息存储靶grating substrate 光栅衬底grating (chromatic resolving power)光栅(色监别能力)grating-coupled radiation 光栅耦合辐射grating-like hologram 类光栅全息图grating-ruling engine 光栅刻线机gravimeter 重差计gravitational field (1)引力场(2)重力场gravitational force (1)引力(2)重力gravitational imaging 重力造像gravitational method 重力法gravitational red shift 引力红移gravitational waves 重力波gravity 重力gravity interferometer 重力干涉仪gravitycell 重力电池gravure microscope 照相制版用显微镜gray (1)灰色(2)灰色的gray body 灰体Gray code 葛莱码gray levels 灰色阶层gray scale 灰色刻度gray scales 灰色标gray-level mask 灰阶光罩gray-scale image 灰色刻度相gray-scale modification 灰色刻度修正grazing angle 掠射角grazing emergence (1)掠射(2)临界出射grazing incidence 掠入射grazing-incidence diffraction 掠入射衍射grazing-incidence grating 掠入射光栅grazing-incidence interferometer 掠入射干涉仪grazing-incidence mounting 掠入射装grease 润滑脂grease-spot photometer 油斑光度计green (1)绿色(2)绿色的green block 绿块green disk 革忍碟green filter 绿色滤光器green laser 绿光激光器green mercury light 汞绿光green radiation 绿辐射green region 绿区Green's function 格临函数Green's theorem 格临定理green-house effect 温室效应Green-Twyman interferometer 格临-揣曼干涉仪green-yellow light 黄绿光greenough microscope 革忍欧夫显微镜Greenwich meridian 格林尼治子午线Greenwich sidereal time 格林尼治恒星时Greenwich time 格林尼治时Gregorian mirror 格雷果反射镜Gregorian telescope 格雷果里望远镜grenz rays 界射线grey (1)灰色(2)灰色的grey body 灰色体grey body radiation 灰色体射grey filter 灰滤色镜grey glass 灰玻璃grey level 灰度级grey photometric wedge 灰色光楔grey scale 灰度标grey surface 灰表面greyness 灰色grid (1)栅极(2)格栅(3)电池铅板grid azimuth 平面方位角grid bias cell 栅偏压电池grid blocking 栅遮断grid control 栅控grid pulsing 栅极脉波法grid-bias 栅偏压grid-leak bias 栅漏偏压grid-voItage 栅压gridistor 隐栅管grill 格栅grin (graded index)陡度折度率GRIN lenses (graduated refractive index rod) GRIN 透镜grindability 可磨性grinder (1)磨床(2)磨工grinding 研磨grinding and polishing machinery 研磨与抛光机器grinding material 磨料grinding stone (1)砂轮(2)磨石grinding tool 磨具grindstone 天然磨石grit (1)研磨砂(2)粒度grond photogrammetry 地面摄影测量学grooring 划槽groove (1)槽(2)粒度groove form diffraction grating 槽形衍射光栅grooved pulley 槽轮gross area 总面积gross difference 总差gross tolerance 总公差gross weight 总重,毛重grossmeters 光泽度计ground absorption 地面吸收,大地吸收ground circle 基圆ground coat 底涂层ground colour 底色ground flat 研磨平面ground glass 磨砂玻璃,毛玻璃ground infrared target 地面红外目标ground laser locator designator 地面激光定位指示器ground laser radar 地面激光雷达ground level 基能级ground line 基线ground noise 本底噪声ground object 地面地标ground range 地面距离ground state 基态ground state assignment 基态分布ground state atom 基态原子ground state population 基态粒子数ground state relaxation 基态弛豫ground state speies 基态族ground truth 地表实况ground wire (1)群(2)基,组,族,团ground-based optical receiver 地面光学接收器ground-cathode amplifier 阴极接地放大器ground-echo pattern 地球反射波图样ground-excited level jump 基态激发能级跃迁ground-glass diffuser 毛玻璃漫射器ground-glass finder 毛玻璃寻像器ground-glass screen 毛玻璃屏ground-to-air laser ranging 地对空激光测距ground-to-ground laser ranging 接地线grounded-base amplifier 基极接地放大器grounded-collector amplifier 共集放大器grounded-emitter amplifier 共射放大器grounded-grid amplifier 栅极接地放大器grounded-plate amplifier 屏极接地放大器grounding conductor 接地导体group 群码group code 群延迟时间group delay time 脉冲群振荡器group index 群摄group modulation 群调变group pulse generator 组合振射效group shot 组合系统group system 群摄group theory 组合系统group velocity 郡论growing wave 增长波growith striation 生长辉纹growler 咆哮器grown junction 生长接面grown-junction photocell 生长-接面光电池grub screw 无头螺钉Grum recording spectroadiometer 格卢姆自动记录分光辐射谱仪grzig incidence telescope 掠入射望远镜GSGG GSAG laser crystals 雷射晶体(GSGG,GSAG)guard (1)防护(2)防謢装置guard wire 保护线gudden-pohl effect 卡登-波耳效应guidance (1)制导,导航(2)导槽guidance accuracy 制导准确度guidance beam 制导波束guidance control 制导控制guidance information 制导信息guidance package 制导组件guide (1)导向器(2)导轨(3)导槽guide bar 导杆guide curve 导向曲线guide face 导轨面guide grid 定向栅guide line 导线guide locating 导销guide number 闪光次数guide number letter scale 曝光指数等级guide pin 导销,定位销guide pulley 导轮,压带轮guide rod 导杆guide surface 导轨面guide track 导轨guide wavelength 导波长guide way (1)导轨(2)导向槽guided mode 导引模式guided ray 导向射线guided transmission 波导传输guided wave 导波guiding laser beam 制导激光束guiding microscope 引导显微镜guiding ocular 引导目镜guiding prism 引导棱镜Guinier focusing camera 纪尼埃聚焦照相机gum 树胶,树脂gun (1)抢,炮(2)电子枪(3)照相机镜头gun camera 枪炮照相机gun sight 枪炮瞄准镜gun-laying reticle 枪瞄准十字线gun-sight aiming point camera 枪炮瞄准装置Gunn effect oscillator 耿氏效应振荡器gunn errer 白恩效应guy wire 拉线gypsum 石膏gyration 回转gyrator 回转器,陀螺gyre 回转,旋转gyro 回转罗盘,陀螺仪gyro black assembly 回转组件gyro frequency 回转频率gyro horizon 回转地平仪gyro magnetic ratio 回磁比gyro sextant 回转六分仪gyro-level 回转水平仪gyrobearing 回转方位gyroclinometer 回转测斜仪gyrocompass 回转罗盘gyromagnetic effect 回磁效应gyromagnetic ratio 回磁比gyromagnetic spin system 回磁自旋系统gyrometer 回转测试仪gyropilot 回转驾驶仪,导航仪gyroscope 回转仪,陀螺gyroscopic camera mount 摄影机回转座gyroscopic clinmeter 回转测斜仪gyroscopic theodolite 回转经纬仪gyrosight 回转瞄准器gyrostabilizer 回转稳定器gyrostat 回转轮gyrosyn 回转感应同步罗盘gyrotron 振动回转器,振动陀螺仪gyrotropi crystal 旋光晶体gyrotropic bi-refringence 旋转变折射gyrotropy (1)旋转回归线(2)旋光性本文章由毛毛雨/收集整理。
眼科词汇中英文对照
v眼科词汇中英文对照A型超声图A-scan ultrasonographyB型超声图Maddox杆测验白内障Nd:Y AG激光囊切开术SRK公式,人工晶体状体度数测定二期人工晶状体植入术人工晶状体(IOL)上皮上皮水肿子午线晶状体干燥性角结膜炎无前房或浅前房无晶状体无晶状体眼镜无缝线白内障手术毛果芸香碱出血外伤性白内障外眼病外眼检查对比敏感度平坦部玻璃体切除术白内障手术白内障囊内摘除术(ICCE)白内障囊外摘除术(ECCE)皮质皮质性白内障皮质类固醇先天性白内障全身麻醉关节炎后房后房型人工晶状体后囊混浊地塞米松异物成熟期白内障红光反射老年性白内障冷冻器B-scan ultrasonographymaddox rod testingcataractNd: Y AG laser capsulotomySRK formula, for IOL power secondary intraocular lensintraocular lensesepitheliumepithelial edemameridianslenskeratoconjunctivitis siccaflat or shallow anterior chamber AphakiaAphakic spectaclesNo-stitch cataract surgerypilocarpinehemorrhagetraumatic cataractsexternal eye diseaseexternal eye examinationcontrast sensitivitypars plana lensectomycataract surgeryintracapsular cataract extraction (ICCE) extracapsular cataract extraction (ECCE) cortexcortical cataractscorticosteoridscongenital cataractsgeneral anesthesiaArthritisposterior chamberposterior chamber intraocular lenses posterior capsular opacification dexamethasoneforeign bodiesmature cataractsred reflexAge-related cataractsCryoprobe局部麻醉折叠式人工晶状体角巩膜切口角膜角膜水肿角膜曲率计角膜病变赤道周边部虹膜切除术屈光屈光不正表面麻醉视力视网膜色素变性视网膜脱离视轴青光眼青光眼斑点前房前房积血复视,单眼性玻璃体穿孔伤穿通伤结合膜瓣结膜切口脉络膜上腔出血脉络膜脱离虹膜虹膜切除术剥脱综合症(假性剥脱)恶性青光眼核核性白内障缺血性调节调节幅度透明质酸钠高度近视眼婴儿期白内障接触镜检眼镜检查球后麻醉球旁(周)麻醉local anesthesiafoldable intraocular lensescorneal-scleral incisioncornealcorneal edemakeratomtrykeratoplastyequatorperipheral iridectomyrefractionrefraction errortopical anesthesiavisual acuityretinitis pigmentosaretinal detachmentoptic axisglaucomaglaukomfleckenanterior chamberhyphemadiplopia, monocularvitreousperforating injurypenetrating injury, see also Trauma conjunctival flapconjunctical incisionsuprachoroidal hemorrhagechoroidal detachmentirisiridectomyexfoliation syndrome (pseudoedfoliation) malignant glaucomanucleusnuclear cataractischemiaaccommodationamplitude of accommodationsodium hyaluronatehigh myopiainfantile cataractscontact lensesophthalmoscopyretrobulbar anesthesiaperibulbar anesthesia眼内压升高眼内异物眼内炎眼压增高眼底粘弹剂维生素缺乏黄斑功能黄斑变性黄斑囊样水肿睑板腺炎睑缘炎裂隙灯检查超声晶状体乳化术睫状阻滞睫状麻痹剂解剖碱性烧伤缩瞳剂糖尿病阿托品,弱视治疗AC/A比率,比值,调节性复辏/调节比值弱视病因极性白内障手术杯/盘比眼外肌鼻泪道系统结膜炎新生儿眼炎眼眶早产儿视网膜病变视网膜母细胞瘤剥夺性弱视视神经萎缩角膜映光法垂直肌下斜上斜视力评估垂直性偏离下直肌不全麻痹elevated intraocular pressureintraocular foreign bodies endophthalmitisincreased intraocular pressurefundusviscoelasticsvitamin deficienciesmacular functionmacular degenerationcystoid macular edemameibomianitisblepharitisslit-lamp examinationultrasound for phacoemulsificationciliary blockciliary-block glaucomaanatomyalkali injuriesmioticsdiabetes mellitusatropine in amblyopia treatmentAC/A ratio, See accommodative convergence/accommodation ratio amblyopiaetiologypolarcataract surgerycup/disc ratioextraocular musclesnasolacrimal systemconjunctivitisophthalmia neonatorumorbitalretinopathy of prematurityretinoblastomadeprivation amblyopiaoptic atrophycorneal light reflexvertical rectus muscleshypotropiahypertopiavisual assessmentvertical deviationsinferior rectus muscle上斜肌垂直性非共同性同视机单眼剥夺单眼抑制单眼运动麻痹不全麻痹调节性幅辏调节性内斜对侧的复视对抗肌E图表房角切开分离性垂直性偏离幅辏,集合分散下直肌异侧一致性,同侧复视检查巩膜巩膜扣带固视(视觉)光凝硅胶管植入过敏反应脉络膜葡萄膜虹膜炎虹膜睫状体炎后马托品后葡萄膜炎后退后粘连化脓性化学烧伤黄斑变性Hering运动一致法则Hess屏法Horner综合症眼压superior obliqueverticalinconitancyamblyoscopemonocular deprivationmonocular suppressionmonocular eye movementspalsy, paralysisparesisaccommodative convergence accommodative esotropia contralateraldiplopiaagonist musclesIlliterate Egoniotomydissociated vertical deviation convergencedivergenceinferior rectus muscles heteronymoushomonymousdipiopiasclerascleral bucklingfixation (visual) photocoagulationsilicon intubationallergic reactionchoroidsuvealiritisiridocyclitishomatropineposterior uveitisrecessionposterior synechiaepyogenicchemical burnsmacular degengrationHering’s law of motor correspondence Hess screen testHorner’s syndromeintraocular pressureGraves(甲状腺)眼病激光治疗(激光手术)营养障碍假性外斜假性斜视间歇性睑外翻睑下垂交替抑制角膜角膜病变角膜曲率计角膜炎角膜移植术拮抗肌睫状肌麻痹性睫状体近点近点集合近点联合运动反射痉挛泪点泪囊泪囊鼻腔吻合术泪小管类风湿性关节炎棱镜眼球震颤棱镜检查立体感觉立体视觉立体视觉检查眼睑协同肌内毗赘皮内斜屈光性后天性共同性非调节性假性内斜内旋内隐斜皮质类固醇Graves (thyroid) eye disease laser therapy (laser surgery) dystrophy pseudoexotropia pseudostrabismus intermittentectropion blepharoptosis alternating suppression corneakeratopathykeratometrykeratitiskeratoplastyantagonist muscles cycloplegicciliary bodynear point ofnear point of convergence near synkinetic reflex spasm oflacrimal punctalacrimal sac dacryocystorhinostomy canaliculirheumatoid arthritis prismsnystagmusprism teststereoscopic perception stereopsisstereo acuity testing eyelidssynergistsepicanthusesotropiarefractiveacquiredcomitant nonaccommodative pseudoesotropiaincycloesophoria corticosteroids偏中心固视交感性眼炎前房角镜强的松角膜混浊发生率青光眼植入阀青霉素眼部护理穹窿部切口球筋膜屈光不正屈光参差性热烧伤融合感觉性和运动性双眼视觉融合性集合融合性散开沙眼上睑下垂上直肌失明视交叉视力评估视盘视神经萎缩视神经炎视网膜遗传性全身病视网膜出血视网膜对应视网膜竞争视网膜色素变性同向运动瞳孔瞳孔光反射瞳孔散大瞳孔缩小托品卡胺外斜外侧直肌外伤eccentric fixation sympathetic ophthalmia gonioscopyprednisonecorneal opacityincidenceglaucoma implant procedures pencillinophthalmic carefornix incisionfascia bulbiisoametropic anisometropicthermal burnsfusionsensory and motor binocular visionfusional convergence fusional divergence trachomaptosissuperior rectusblindnessoptic chiasmvisual assessmentoptic discoptic atrophyoptic neuritisretinahereditarysystemic diseaseretinal hemorrhagesretinal correspondence retinal rivalrypigmentosaversionspupilspapillary light reflex mydriasismiosistropicamideexotropialateral rectus muscle trauma外旋外旋转外隐斜外展Worth四点检查法下斜肌下斜视下直肌霰粒肿新生儿淋球菌眼炎小梁切除术A型垂直肌无力调节缝线切口适应症新生儿眼炎眼镜调节性内斜结缔组织恶性色素上皮分离性眼位异常视网膜对应隐斜拥挤现象圆锥角膜YAG激光正位眼痣肿瘤眼球表面周边的轴长注视位置配偶肌板层角膜移植术表层角膜切除术带状疱疹单纯疱疹病毒干眼巩膜炎过敏性反应Excyclo-Extorsion (excycloduction)ExophoriaAbductionWorth’s four-dot testInferior oblique muscleHypotropiaInferior rectuschalaziagonococcal ophthalmia neonatorum trabeculotomyA patternmyasthenia gravisadjustable suturesincisionindicationophthalmic neonatorumspectacleaccommodative esotropiaconnective tissuemalignantpignent epithelialdissociatedalignmentabnormal (anomalous) retinal correspondence phoria, heterophoriacrowding phenomenonkeratoconusYAG laserorthophorianevitumorsepibulbarperipheralaxial lengthgazeyoke musclelamellar keratoplastysuperficial keratectomyherpes zosterherpes simplex virusdry eyesscleritisallergic reaction虹膜切除术虹膜脱出红霉素化学烧伤环丙沙星间断缝合法碱性化学烧伤角膜磨削术角膜切开术角膜咬切器角膜移植术接触镜结膜瓣结膜结石金霉素,氯化四环素局部异体植片排斥片泪囊炎泪腺炎利福平睑板腺睑板腺炎氯霉素绿脓杆菌麦粒肿前房积血前房消失前房蓄脓强的松龙青霉菌属霰粒肿三叉神经散光色素沉着沙眼新生血管形成血管翳远视眼真菌翳状赘肉Goldmann眼底接触镜Goldmann压平眼压计Humphrey视野分析仪Maddox杆阿熙提iridectomyprolapse of iriserythromycinchemical burnsciprofloxacininterrupted suture closure technique alkaline burnkeratomileusiskeratotomycorneal puncheskeratoplastycontact lensconjunctival flapconjunctival concretions chlortetracyclineallograft rejection dacryocystitisdracyoadenitisrifampinmeibomian glandsmeibomitischloramphenicolpseudomonas aeruginosa hordeolumhyphemaflat anterior chamberhypopyonprednisolonepenicilliumchalaziontrigeminal nerveastigmatismpigmentationtrachomaneovasculariationpannushyperopiafungipterygiumGoldmann fundus contact lens Goldmann applanation tonometer Humphrey vision analyzer Maddox rodapostib等效镜度低视力助视器地形图第一焦点调节调节不足调节的近点调节反应调节范围调节范围(域)调节幅度调节痉挛调节麻痹对比敏感度干涉滤片光轴几何光学假性老视检眼镜检影镜检影镜法交叉柱镜法焦点焦度计角膜曲率计角膜移植术内皮细胞睫状肌麻痹验光界面近视近视力助视器老花棱镜棱镜度内皮细胞镜检查内皮显微镜逆动逆规散光前房角镜屈光参差屈光度屈光度人工晶体(IOL)人工晶体计算equivalent powerlow-vision aids topographyprimary focal point accommodation insufficiencynear point of accommodation responserangerange of accommodation amplitude of accommodation spasmparalysiscontrast sensitivity interferenceoptical axisgeometrical optics pseudopresbyopia ophthalmoscopy shiascopyretinoscopycross cylinderfocal pointsfocimeterkeratometerkeratoplastyendothelialcycloplegic refraction interfacesmyopianear-vision aids presbyopiaprismsprism diopterspecular microscopy specular microscopy against motionagainst-the-rule astigmatism gonioscopy anisometropiadiopteroptical powerintraocular lensesIOL calculation人工晶体曲率计算散光镜片色差试验镜片,镜片箱双眼调节雾视氩激光眼底照相机眼镜处方隐斜视主观验光柱镜柱镜度闭角型青光眼玻璃体后脱离玻璃体牵引玻璃体前脱离,挫伤性玻璃体切除术玻璃体视网膜手术巩膜加压巩膜扣带光损伤硅油激光光凝术激光治疗(激光手术)旁中心凹区色觉色盲视网膜出血视网膜色素变性视网膜色素上皮视网膜水肿视网膜脱离视网膜中央动脉视网膜中央动脉阻塞视网膜中央静脉阻塞眼科仪器眼内异物低眼压光凝术虹膜结节脉络膜脱离皮质类固醇眼内炎calculation, IOL powerastigmatic lenseschromatictrial lensesbinocular amplitudefoggingargon laserfundus cameraprescribing glassesheterophoria correctionsubjective refractioncylindrical lenscylinder axisangle-closure glaucomaposterior vitreous syndromevitreous tractionanterior vitreous detachment contusion vitrectomyvitreoretinal surgerysclera indentationsclera bucklephotic damagesilicone oillaser photocoagulationlaser therapy (laser surgery) parafoveal areacolor visionachromatopsia, color blindness retinal hemorrhagesretinitis pigmentosaretinal pigment epithelium (RPE) retinal edemaretinal detachmentcentral retinal arterycentral retinal artery occlusion central retinal vein occlusion ophthalmic instrumentation intraocular foreign bodieshypotonyphotocoagulationnodules of irischoroidal detachment corticosteroidendophthalmitisCT扫描,计算机断层摄影重建术眦角倒睫眶骨折睑下垂交感性眼炎甲状腺相关性眶病变眶减压术眶内容切除术泪囊鼻腔吻合术内翻瘢痕性内眦赘皮外翻眼球摘除术眼球突出内皮营养障碍溃疡穿刺术地塞米松发育性青光眼房水甘露醇甘油高渗剂假性剥脱角巩膜撕裂伤角膜擦伤角膜穿通伤角膜异物冷冻摘出术冷冻治疗盲点毛果芸香碱囊膜切除术囊膜切开术前房角切开术青光眼斑全视网膜光凝术视神经萎缩视网膜电图视网膜中央阻塞视野检查computed tomography (CT scan) reconstructioncanthaltrichiasisorbital fracturesptosissympathetic ophthalmia thyroid related orbitopathy decompressionexenterationdacryocystitisentropioncicatricialepicanthusectropionenucleationexopthalmosendothelial dystrophyulcerparacentesis dexamethasone developmental glaucoma aqueousmannitolglycerinhyperosmotic agent pseudoexfoliation corneoscleral laceration corneal abrasionpenetrating injury of cornea cornea foreign body cryoextractioncryotherapyblind spotpilocarpinecapsulectomycapsulotomygoniotomyglaukomfleckenpanretinal photocoagulation optic atrophy electroretinogram (ERG) central retinal vein occlusion perimetry视诱发电位酸烧伤缩瞳剂碳酸酐酶抑制剂通知同意书瞳孔瞳孔放大瞳孔缩小瞳孔阻滞小梁成形术小梁切除术小梁切开术小梁网眼前段巩膜外的巩膜环扎术视网膜前膜剥离视网膜切除术视网膜切开术娩核翼状胬肉visual evoked potential VEP (evoked response)acid burnsmiotics agentcarbonic anhydrase inhibitorinformed consentpupilmydriasismiosispapillary blocktrabeculoplastytrabeculectomytrabeculomytrabecular meshworkanterior segmentepiscleralscleral encircling operationpreretinal membrane peelingretinectomyretinotomynucleus deliverypterygium。
mom课本
Chapter1Computational ElectromagneticsBefore the digital computer was developed,the analysis and design of electromag-netic devices and structures were largely experimental.Once the computer and nu-merical languages such as FORTRAN came along,people immediately began using them to tackle electromagnetic problems that could not be solved analytically.This led to aflurry of development in afield now referred to as computational electromag-netics(CEM).Many powerful numerical analysis techniques have been developed in this area in the last50years.As the power of the computer continues to grow, so do the nature of the algorithms applied as well as the complexity and size of the problems that can be solved.While the data gleaned from experimental measurements are invaluable,the entire process can be costly in terms of money and the manpower required to do the required machine work,assembly,and measurements at the range.One of the fundamental drives behind reliable computational electromagnetics algorithms is the ability to simulate the behavior of devices and systems before they are actually built. This allows the engineer to engage in levels of customization and optimization that would be painstaking or even impossible if done experimentally.CEM also helps to provide fundamental insights into electromagnetic problems through the power of computation and computer visualization,making it one of the most important areas of engineering today.1.1COMPUTATIONAL ELECTROMAGNETICS ALGORITHMSThe extremely wide range of electromagnetic problems has led to the development of many different CEM algorithms,each with its own benefits and limitations. These algorithms are typically classified as so-called“exact”or“low-frequency”and “approximate”or“high-frequency”methods and further sub-classified into time-or frequency-domain methods.We will quickly summarize some of the most commonly used methods to provide some context in how the moment methodfits in the CEM environment.12The Method of Moments in Electromagnetics1.1.1Low-Frequency MethodsLow-frequency(LF)methods are so-named because they solve Maxwell’s Equations with no implicit approximations and are typically limited to problems of small electrical size due to limitations of computation time and system memory.Though computers continue to grow more powerful and solve problems of ever increasing size,this nomenclature will likely remain common in the literature.1.1.1.1Finite Difference Time Domain MethodThefinite difference time-domain(FDTD)method[1,2]uses the method offinite differences to solve Maxwell’s Equations in the time domain.Application of the FDTD method is usually very straightforward:the solution domain is typically discretized into small rectangular or curvilinear elements,with a“leap frog”in time used to compute the electric and magneticfields from one another.FDTD excels at analysis of inhomogeneous and nonlinear media,though its demands for system memory are high due to the discretization of the entire solution domain,and it suffers from dispersion issues as well and the need to artificially truncate the solution boundary.FDTDfinds applications in packaging and waveguide problems,as well as in the study of wave propagation in complex dielectrics.1.1.1.2Finite Element MethodThefinite element method(FEM)[3,4]is a method used to solve frequency-domain boundary valued electromagnetic problems by using a variational form.It can be used with two-and three-dimensional canonical elements of differing shape, allowing for a highly accurate discretization of the solution domain.The FEM is often used in the frequency domain for computing the frequencyfield distribution in complex,closed regions such as cavities and waveguides.As in the FDTD method, the solution domain must be truncated,making the FEM unsuitable for radiation or scattering problems unless combined with a boundary integral equation approach [3].1.1.1.3Method of MomentsThe method of moments(MOM)is a technique used to solve electromagnetic bound-ary or volume integral equations in the frequency domain.Because the electromag-netic sources are the quantities of interest,the MOM is very useful in solving ra-diation and scattering problems.In this book,we focus on the practical solution of boundary integral equations of radiation and scattering using this method.1.1.2High-Frequency MethodsElectromagnetic problems of large size have existed long before the computers that could solve mon examples of larger problems are those of radar crossComputational Electromagnetics3 section prediction and calculation of an antenna’s radiation pattern when mounted on a large structure.Many approximations have been made to the equations of radiation and scattering to make these problems tractable.Most of these treat thefields in the asymptotic or high-frequency(HF)limit and employ ray-optics and edge diffraction. When the problem is electrically large,many asymptotic methods produce results that are accurate enough on their own or can be used as a“first pass”before a more accurate though computationally demanding method is applied.1.1.2.1Geometrical Theory of DiffactionThe geometrical theory of diffraction(GTD)[5,6]uses ray-optics to determine electromagnetic wave propagation.The spreading,amplitude intensity and decay in a ray bundle are computed using from Fermat’s principle and the radius of curvature at reflection points.The GTD attempts to account for thefields diffracted by edges, allowing for a calculation of thefields in shadow regions.The GTD is fast but often yields poor accuracy for more complex geometries.1.1.2.2Physical OpticsPhysical optics(PO)[7]is a method for approximating the high-frequency surface currents,allowing a boundary integration to be performed to obtain thefields.As we will see,the PO and the MOM are used to solve the same integral equation, though the MOM calculates the surface currents directly instead of approximating them.While robust,PO does not account for thefields diffracted by edges or those from multiple reflections,so supplemental corrections are usually added to it.The PO method is used extensively in high-frequency reflector antenna analyses,as well as many radar cross section prediction codes.1.1.2.3Physical Theory of DiffractionThe physical theory of diffraction(PTD)[8,9]is a means for supplementing the PO solution by adding the effects of nonuniform currents at the diffracting edges of an object.PTD is commonly used in high-frequency radar cross section and scattering analyses.1.1.2.4Shooting and Bouncing RaysThe shooting and bouncing ray(SBR)method[10,11]was developed to predict the multiple-bounce backscatter from complex objects.It uses the ray-optics model to determine the path and amplitude of a ray bundle,but uses a PO-based scheme that integrates surface currents deposited by the ray at each bounce point.The SBR method is often used in scattering codes to account for multiple reflections on a surface or that encountered inside a cavity,and as such it supplements PO and the PTD.The SBR method is also used to predict wave propagation and scattering4The Method of Moments in Electromagneticsin complex urban environments to determine the coverage for cellular telephone service.REFERENCES[1]A.Taflove and S.C.Hagness,Computational Electrodynamics:The Finite-Difference Time-Domain Method.Artech House,3rd ed.,2005.[2]K.Kunz and R.Luebbers,The Finite Difference Time Domain Method forElectromagnetics.CRC Press,1993.[3]J.Jin,The Finite Element Method in Electromagnetics.John Wiley and Sons,1993.[4]J.L.V olakis,A.Chatterjee,and L.C.Kempel,Finite Element Method forElectromagnetics.IEEE Press,1998.[5]J.B.Keller,“Geometrical theory of diffraction,”J.Opt.Soc.Amer.,vol.52,116–130,February1962.[6]R.G.Kouyoumjian and P.H.Pathak,“A uniform geometrical theory of diffrac-tion for and edge in a perfectly conducting surface,”Proc.IEEE,vol.62, 1448–1461,November1974.[7]C.A.Balanis,Advanced Engineering Electromagnetics.John Wiley and Sons,1989.[8]P.Ufimtsev,“Approximate computation of the diffraction of plane electro-magnetic waves at certain metal bodies(i and ii),”Sov.Phys.Tech.,vol.27, 1708–1718,August1957.[9]A.Michaeli,“Equivalent edge currents for arbitrary aspects of observation,”IEEE Trans.Antennas Propagat.,vol.23,252–258,March1984.[10]S.L.H.Ling and R.Chou,“Shooting and bouncing rays:Calculating theRCS of an arbitrarily shaped cavity,”IEEE Trans.Antennas Propagat.,vol.37, 194–205,February1989.[11]S.L.H.Ling and R.Chou,“High-frequency RCS of open cavities withrectangular and circular cross sections,”IEEE Trans.Antennas Propagat., vol.37,648–652,May1989.。
Geometrical Optics
首先根据JONSWAP非稳态海谱模型数值模拟出二维随 机粗糙海面,再采用几何光学方法对入射激光光束在海 面上的反射光进行建模,最后计算出海面激光光斑反射 光强的空间分布
激光器所输出的激光光束一般是高斯光束, 但本文所研究的斜入射到海面上激光束却是 经过准直光学系统后、发散角很小的光束, 不妨将其看作平行光束,因此本文在计算二 维随机粗糙海面的激光反射时,是将斜入射 的激光光束分成多根互相平行的光线,先采 用几何光学方法计算每根光线在各个微小平 面上的反射角和反射强度,再将所有反射光 线的反射强度按照不同的反射角度叠加起来, 从而得出总的反射光光强的空间分布。
利用几何光学的知识,即光学系统的成像性质 和规律,在研究近轴区成像规律的基础上建立起 理想光学系统的光学模型。当光学系统的孔径和 视场超出近轴区时,成像质量会逐渐下降。这是 因为自然点发出的光束中,远离近轴区的那些光 线在系统中的传播光路偏离理想途径,而不再相 交于高斯像点(即理想像点)之故。这时,一点的 像不再是一个点,而是一个模糊的弥散斑;物平 面的像不再是一个平面,而是一个曲面,而且像 相对于物还失去了相似性。所有这些成像缺陷, 称为像差。
式中i、r分别为入射角和折射角,k为内反射次数, 取0,1,2,3,…
一细束单色平面自然光波,设其入射面内和垂直于入射面的光振动强 度分别为JM和JL,它作用于半径为R的雨滴外表面任意一点,经过雨滴 的折、反射,分裂成无数个不同张角的光锥,其光锥角为:
为方便表达,令
上两式简化为:
B(i,k) =1时,得式(3)。距雨滴距离为l的正交光锥底面积为:
在光波段,雨滴及毛毛雨滴散射光偏向角用几何 光学方法确定,其强度可用菲涅耳公式计算。一 条入射光线经雨滴折、反射,分裂成无数条光线。 这些光线概括起来可分为两类:一条外表面反射 光和射进雨滴的光线再折射到第一介质中。后一 类光线包括经过和不经过内反射两种情况。
基于混合PSTD_FDTD方法的液晶光学特性模拟_方运
第40卷第9期红外与激光工程2011年9月Vol.40No.9Infrared and Laser Engineering Sep.2011基于混合PSTD-FDTD方法的液晶光学特性模拟方运,张健,吴丽莹(哈尔滨工业大学超精密光电仪器工程研究所,黑龙江哈尔滨150001)摘要:对比分析了时域有限差分法(FDTD)和伪谱时域法(PSTD)的特点,并根据液晶盒的薄板结构特征提出了混合PSTD-FDTD的方法来模拟光在液晶中的传播。
该方法在具有较小厚度和精细结构的液晶盒厚度方向上采用FDTD方法,而在具有大表面和相对较平滑内部介质的玻璃基板平面方向上采用PSTD方法。
充分利用了FDTD方法适合求解具有精细结构的电小问题,而PSTD方法适合求解具有平缓内部介质的电大问题的特点。
利用混合PSTD-FDTD和FDTD方法对开态下相同扭曲向列相液晶像素中光传播100fs的分析结果表明,两种方法获得的透射率最大偏差小于3.3%。
PSTD方法的使用减少了FDTD方法对内存的需求和计算时间,同时还保留了FDTD方法的精度。
关键词:液晶;各向异性介质;光学模拟;FDTD;PSTD中图分类号:O753+.2文献标志码:A文章编号:1007-2276(2011)09-1720-04Optical simulation of liquid crystals based on hybridFDTD-PSTD methodFang Yun,Zhang Jian,Wu Liying(Institute of Ultra-precision Optoelectronic Instrument Engineering,Harbin Institute of Technology,Harbin150001,China)Abstract:A comparative study of finite-difference time-domain(FDTD)and pseudospectral time-domain (PSTD)methods was performed,and a hybrid PSTD-FDTD method was proposed to simulate the propagation of light through liquid crystals according to the characteristics of thin plate structure of liquid crystal cells.The FDTD method was applied in the direction of the cell with a small thickness and fine structures,while the PSTD method was applied in the direction of the glass substrate surface with a large size and smooth internal media,which would take advantage of the characteristics that the FDTD method was suitable for the modelling of an electrically small problem with fine structural details,while the PSTD method was suitable for the modelling of an electrically large problem with smooth internal media.Both the hybrid PSTD-FDTD and FDTD methods were used to simulate the propagation of light through the same twisted nematic liquid crystal pixel in on state for100fs,and the maximum deviation of the transmittance obtained using both methods was less than 3.3%.The application of hybrid method reduced the memory capacity and computational time required for the FDTD method while the accuracy of FDTD method was preserved.Key words:liquid crystals;anisotropic media;optical simulation;FDTD;PSTD收稿日期:2011-01-29;修订日期:2011-02-13基金项目:国家自然科学基金(60878048)作者简介:方运(1983-),男,博士生,主要从事液晶光学、计算电磁场和液晶光学相控阵方面的研究。
Geometrical Optics
nd n ' d ' n '' d ''
The optical path through a series of optical media.
Optical path length
S
n1 n2 n3 n4
n5
P
nm
Optical path length
• Transit time from S to P
proportionately smaller, whereas if it is
moved farther away, the image will be
proportionately larger.
Excellent sharp photographs of
stationary objects can be made with
1 t ni si c i 1
OPL ni si
i 1 m
m
OPL n( s)ds
S
P
c OPL ds v S
Same for all rays
P
反射和折射定律
1.6 Laws of Reflection and Refraction
入射
Whenever a ray of light is incident on the 边界 boundary separating two different media, part of the ray is reflected back into the first medium and the remainder is refracted (bent in its path) as it enters the second medium. The directions taken by these rays can best be described by two well-established laws of nature.
As的用法 5
2.用作连词引导状语从句
1.
引导时间状语从句,意谓“当….的时候”;
2.
3. 4. 5.
引导原因状语从句,意谓“因为”,“由于”;
引导方式状语从句,意谓“好像”,“似乎”;
引导比较状语从句,意谓“同…一样” ;
引导让步状语从句,意谓“虽然”;
2.用作连词引导状语从句
[例句] The antenna gain becomes larger as frequency is increased in the microwave band. (时间) [译文] 在微波波段,天线增益随着频率的升高而增大。 [例句] Electrical energy is widely used in everyday life as it can be easily transformed into light and heat. (原因) [译文] 由于电能易于转换为光和热,所以在日常生活中 获得广泛使用。
[例句] Pulse-code modulation is such as the samples are quantized into discrete steps. [译文]脉冲编码调制是抽样值被量化成离散的阶梯值 (的调制方法)。
3.用作关系代词或关系副词
[例句] The rate of doing work is called the power. As we have seen, it is equal to work divided by the time. (相当于插入语,as指代整个主句) [译文] 做功的速率称为功率。正如我们已经知道的,功 率等于功除以时间。 [例句] As indicated earlier in Chapter 2, fundamental concepts in electrical and electronics engineering, standard circuit theory can neither be used at RF nor particularly at microwave frequencies. [译文] 正如第二章《电气与电子工程中的基本概念》所 指出,基本电路理论对射频,尤其微波频段不适用。 Radio Freqency 射频, 无线电频率
几类常见媒质电磁散射问题的统一描述
几类常见媒质电磁散射问题的统一描述刘广东【摘要】工程实践中,经常遇到线性或非线性媒质、各向同性或各向异性媒质、色散或非色散媒质、无耗或有耗媒质、无磁或有磁媒质以及导体或介质等几类不同目标的电磁散射问题,却尚未形成统一的理论描述。
尝试利用体等效原理,由麦克斯韦方程组导出了这几类问题的一般形式,通过设定一些特定参数,即可得到前述的具体问题,以期为该领域的应用研究奠定理论基础。
几个散射算例初步证实了本文理论框架的普适性。
%The electromagnetic (EM) scattering problems concerning the object of interest (OI) of the media, either linear or nonlinear, either isotropic or anisotropic, either dispersive or nondispersive, either lossless or lossy, either nonmagnetic or mag-netic, and either conductive or dielectric, are often encountered in engineering practice. However, a general description of these problems has not been made. Based on the volume equivalence theorem, this task is tentatively performed in this paper by deriving from the Maxwell equations. After that, the aforementioned specific problems could be described through setting certain parameters. This work might lay theoretical foundation for the application research in this field. Several numerical examples preliminarily demon-strate the universality of the presented theoretical framework.【期刊名称】《阜阳师范学院学报(自然科学版)》【年(卷),期】2014(000)002【总页数】7页(P15-21)【关键词】电磁散射;体等效原理;麦克斯韦方程;本构关系【作者】刘广东【作者单位】阜阳师范学院物理与电子科学学院,安徽阜阳 236037【正文语种】中文【中图分类】O451电磁散射是电磁场和媒质相互作用的物理过程,其遵循的一般规律是麦克斯韦(Maxwell)方程组[1]。
工程光学英文版课后练习题含答案
工程光学英文版课后练习题含答案IntroductionEngineering Optics is a branch of optics that studies the application of optical principles and devices to solve engineering problems, including optical design, imaging systems, and measurement techniques. As an important part of Engineering Optics, the homework exercises help students understand the theoretical knowledge and familiarize themselves with practical problems. In this document, we provide a set of homework exercises with answers for Engineering Optics, which are designed to help students review the knowledge they learned in class and prepare for exams.Chapter 1: Introduction1.What is the definition of light?–Light is an electromagnetic wave that travels through space and has both electric and magneticcomponents perpendicular to each other and to thedirection of propagation.2.What are the primary properties of light?–The primary properties of light include reflection, refraction, diffraction, interference,and polarization.3.What is the difference between coherent andincoherent light?–Coherent light is light that has a constant phase relationship between two or more waves, whileincoherent light is light that has a random phaserelationship between two or more waves.4.What is the difference between monochromatic andpolychromatic light?–Monochromatic light consists of a single wavelength, while polychromatic light consists ofmultiple wavelengths.5.Define dispersion.–Dispersion is the phenomenon of different wavelengths of light traveling at different speedsthrough a medium, leading to a separation of thecolors of light.Chapter 2: Geometrical Optics1.Define ray and expln how rays are used ingeometrical optics.–A ray is an idealized model of the path that light travels through space, represented as a linewith an arrow indicating the direction ofpropagation. Rays are used in geometrical optics to determine the behavior of light as it passesthrough lenses, mirrors, and other optical devices.2.Define optical axis and principal plane.–The optical axis is the imaginary line passing through the center of curvature of a sphericallysymmetric optical system. The principal plane isthe plane perpendicular to the optical axis thatpasses through the focal point of the system.3.Define focal length and expln how it relates to the curvature of a lens.–The focal length is the distance between the center of curvature of a lens and the point whereparallel rays of light converge after passingthrough the lens. The curvature of a lensdetermines its focal length.4.Define the focal plane and expln how it relates to the focal length.–The focal plane is the plane perpendicular to the optical axis that passes through the focalpoint of a lens or mirror. The distance from thelens or mirror to the focal plane is equal to thefocal length.5.Expln the concept of conjugate planes.–Conjugate planes are prs of object and image planes that are related by an optical system suchthat an object in one plane is imaged onto theother plane. The distance between the two planes isequal to the sum of the object distance and imagedistance.Chapter 3: Optical Instruments1.Define the resolving power of an optical system.–The resolving power of an optical system is its ability to distinguish two closely spacedobjects as separate entities. It is determined bythe numerical aperture and wavelength of the lightused in the system.2.Define the magnification of an optical system.–The magnification of an optical system is the ratio of the size of the image produced by thesystem to the size of the object being imaged.3.What is a camera and how does it work?–A camera is an optical instrument that uses a lens to focus an image onto a light-sensitivesurface, such as film or a digital sensor. Theimage is formed by the interaction of light withthe surface, creating a chemical or electronicpattern that can be developed into a visible image.4.What is a microscope and how does it work?–A microscope is an optical instrument that uses a lens or a series of lenses to magnify small objects that cannot be seen with the naked eye. The specimen is placed on a stage and illuminated witha light source, and the image is formed by lensesthat focus the light onto the observer’s eye or a camera sensor.5.What is a telescope and how does it work?–A telescope is an optical instrument that usesa lens or a mirror or a combination of both tocollect and focus light from distant objects, such as stars, galaxies, or planets. The image is formed by lenses that magnify the light and focus it onto the observer’s eye or a camera sensor.ConclusionIn conclusion, the homework exercises and answers provided in this document are intended to help students review key concepts and prepare for exams in Engineering Optics. By solving these problems, students can deepen their understanding of optical principles and devices and develop their problem-solving skills. We hope that this resource will be useful for students and instructors alike in the study of Engineering Optics.。
(光电信息工程专业英语)专业英语第七讲Geometrical Optics
牛顿1672年使用的6英寸反射式望远镜复制品,为皇 家学会所拥有。
1994年,不列颠哥伦比亚大学开始建造一台 口径为6米的旋转水银面望远镜——大型天 顶望远镜(LZT),并于2003年建成
1.9 Lens Aberrations
9. By choosing materials with indices of refraction that depend in different ways on the color of the light, lens designers can ensure that positive and negative lens elements compensate for each other by having equal but opposite chromatic effects.
1.9 Lens Aberrations
4. Up to now, our discussion of lenses has not taken into account some of the optical imperfections that are inherent in single lenses made of uniform material with spherical surfaces. These failures of a lens to give a perfect image are known as aberrations. 句子结构: our discussion … has not taken into account … imperfections…
vt.提供;给予(provide的过去式)
参考翻译:
在上述的推导中,我们检验了物在会聚透镜焦点以外的特殊情况。 然而,如果遵守下述的符号规则,薄透镜公式对于会聚和发散薄透镜都是 有效的,且不论物体远近。
光学5版 Hecht 纸质版说明书
For courses in introductory calculus-based physics
The 4th Edition of Physics for Scientists and Engineers builds on strong research-based foundations with fine-tuned and streamlined content, hallmark features, and an even more robust Mastering Physics program. By extending problem- solving guidance to include a greater emphasis on modeling and significantly revised and more challenging problem sets, students gain confidence and skills in problem solving. The addition of advanced topics accommodates different teaching preferences and course structures.
Sustaining market leadership for over twenty years, Optics, 5th Edition demonstrates the range and balance in subject matter. The text is grounded in traditional methodology, while providing an early introduction to the powerful perspective of the Fourier theory, which is crucial to present- day analysis. Electron and neutron diffraction patterns are pictured alongside the customary photon images, and every piece of art has been scrutinized for accuracy and altered where appropriate to improve clarity.
几何光学中光线的拉格朗日函数和动力学参量
( Dept . of Physics &Eleetronic Information , We stern Chongqing University Chongqing 402160 , China)
少 。实验观测表明 :当光线紧靠巨大星体掠过时 ,光线会弯曲 ;光线在高温星体周围未被
磁化的等离子体中也有弯曲现象 ,并且呈现开放的双曲线轨道或椭圆轨道 [2][3] 。这些问
题都不是传统的几何光学所能解释的 。因此 ,有必要在进一步探讨几何光学与粒子力学
相似性的基础上 ,研究几何光学中光线的动力学参量和遵从的规律 ,并由此探讨诸如光
[ 参考文献 ]
[1 ]曾谨言 1 量子力学[M]1 北京 :科学出版社 ,19811 [2 ]R. K. Luneberg. Mathematical Theory of Optics(Califonia University press. Rerkeley and Los Angeles ,1964) 1 [ 3 ]Abbas A. Rangwala and Vaman H. Kui Karmi. Laplace - Runge - Len2 vector for a light ray a trajectory in r - 1 media Am. J . phys. Vol. 69 No. 7. July 2001. 803 - 8091
L opt = L ( r , v) = n ( r) v
(4)
这里速率 v 是这样定义的 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Geometrical Optics via electromagnetic wave quantizationJohn P. HernandezDepartment of Physics and Astronomy,University of North Carolina, Chapel HillThe basic laws of geometrical optics can be deduced from energy-momentumconservation for electromagnetic waves, without other wave concepts. However,the concept of quanta is required; it arises naturally, hence such a hypothesis couldhave arisen earlier than it did historically. Measurements to determine the angles ofreflection and refraction demand that each incident quantum be either reflected orrefracted; such a separation is central to the experimental results.INTRODUCTIONMaxwell’s great achievement (briefly summarized, in this paragraph, for what follows): culminated in the derivation that electromagnetic waves are transverse and the square of their speed equals the reciprocal product of the permeability and permittivity of the medium(µε). Hence, in a linear, homogeneous, isotropic, and non-absorbing medium, the speed of light is the vacuum value (c) divided by the index of refraction (n = [µε/µοεο](1/2)). Further, the ratio of the electric field amplitude to that of the magnetic field is also the speed of light. Such waves transport energy and linear momentum, along the “rays” (lines perpendicular to the constant phase surfaces). The relation between energy and momentum follows from the power flux due to the wave. The power flux (i.e. the magnitude of the Poynting vector), divided by the speed of light, gives the radiation force exerted over the same area, perpendicular to the rays. Thus, from the concept that force is the time rate of change of momentum, the ratio of energy density (u) and linear momentum density (p) is u/p = (c/n). All this is discussed in a first course on electromagnetism [1].In an elementary treatment of electromagnetism, the next topic to be treated, following the material summarized above, is geometrical optics, an application in which all dimensions are to be large compared to the wavelength and times also large compared to the inverse frequency. It seems desirable to immediately show the connection between geometrical optics and the previously studied energy and momentum in electromagnetism. It is well known that such an approach reverses the historical sequence in which physical optics, the fully wave-based approach, was used for this topic; and also, that physical optics is indeed required to calculate the fraction of the energy reflected, interference, and diffraction phenomena, though it is unable to explain the photo-electric effect. The present approach, an alternative to one using Huygens’ Principle or equivalent, offers an important advantage in an elementary treatment: exploring the direct connection between energy and momentum of electromagnetic waves and geometrical optics – yet, to my knowledge, this argument is not routinely given. The fact that there is something missing and required, quantization, may be viewed as a further advantage, in that the treatment suggests a hypothetical route to its early discovery.GEOMETRICAL OPTICSTo define the problem, geometrical optics considers a plane wave (really a macroscopically narrow beam), in a medium (of index n1), which has certain total energy (UΙ) and momentum (P I = U I /(c/n1)) incident, for simplicity, on an arbitrary area of a single, flat, interface during some arbitrary time interval. The momentum is incident on the interface along rays whose angle to the surface normal is θ1. The interface separates the first medium from a second one, of index n2. The reflected energy, from the same area and in the same time interval, can be labeled as U R and the reflected momentum (U R /(c/n1)) departs the interface along rays at an angle θR from the surface normal. Finally, the energy transmitted, through the area in the time interval, is labeled as U T; its associated momentum (U T /(c/n2)) also departs from the interface, but now into the second medium, along rays at an angle θ2 from the surface normal. As no energy is absorbed by the surface or the media and, if the interface is externally held stationary against the incoming radiation pressure, no external work is done, energy conservation implies UΙ = U R + U T. The independent variables UΙ and R ≡ (U R / U I) are not usually specified, or required, in geometrical optics; thus, there is no need to discuss the polarization of the incident wave, relative to the interface.The incident wave exerts pressure on the interface area which, for a static situation, is balanced by a single external force, one perpendicular to the interface. Thus, linear momentum parallel to the interfacial plane must be conserved. Note that such momentum conservation, perpendicular to the plane of incidence (that containing the incident and surface-normal directions), demands that, with no incident momentum in that direction, any reflected and transmitted momenta must cancel; it is not required that each be zero (however, the reflection symmetry across the plane of incidence adequately excludes such momenta). Further, in the plane of incidence, momentum conservation parallel to the interface demands:[U I /(c/n1)] sin θ1 = [U R /(c/n1)] sin θ R + [U T /(c/n2)] sin θ 2 . (1) Equivalently, using energy conservation, the above can be rewritten as:[U R /(c/n1)] sin θ1 + [U T /(c/n1)] sin θ1 = [U R /(c/n1)] sin θ R + [U T /(c/n2)] sin θ 2 . (2) Collecting terms and dividing by U I yields:R n1 (sin θ1 - sin θ R) = (1-R) (n2 sin θ 2 - n1 sin θ1). (3) Apparently, this is the end of the discussion based on energy-momentum conservation and it is not quite enough to account for the experimental data.The experimental bases of geometrical optics are the laws of reflection and refraction. They are valid for coherent or incoherent incident waves and relate the angles and the indices of refraction. The familiar experimental laws consist of the following: confinement of all rays to the plane of incidence, specular reflection: θ1 = θ R, and Snell’s law: n2 sin θ 2 = n1 sin θ1. These experimental laws can be immediately identified as consistent, but not identical, with conservation of energy and of momentum, parallel to the interface, from the argument given above which resulted in equations (1-3). To obtain an identity, there is an additional requirement:equations (1-3) must be satisfied independently of R. If this were not the case, the equations would also admit solutions (θ R and θ 2 in terms of R and θ 1) in conflict with experiment, unless R=0 or 1. For the very specific cases, R=1 (total internal reflection) or R=0 (incidence at Brewster’s angle with the incident polarization in the plane of incidence), there is only one outgoing term and the conservation equations have no solution other than the experimental one.Given the experimental observations, equation (2) must be taken to imply that those fractions of the incident wave which are in fact reflected and transmitted are measured to conserve energy and momentum parallel to the interface, separately. Confinement of the reflected and refracted rays to the plane of incidence can also be identified as a consequence of the separate conservation of momentum parallel to the interface (there are no incident momenta perpendicular to the plane of incidence), in addition to the symmetry argument. It will be shown later that the momentum change perpendicular to the interface can also be interpreted to separate. Classically one must be careful with the point of view noted for equation (2), a division of the incident energy-momentum into a part which will be reflected and one which will be transmitted is conceivable but cannot be associated with any property of the incident wave, the physics must be elsewhere. The only unmentioned classical physics, the polarization, cannot be made to carry the burden of such a division; even for a unique polarization, in general, the wave is not fully reflected or refracted. However, the separation of the outgoing waves is clear, since the directions of propagation are experimentally measured, separately. There is no hint, in (1-3), that experimental geometrical optics should have solutions which are independent of R. Since energy-momentum conservation parallel to the interface does not yield the experimental results unless there is R independence, a physical explanation is required.The simplest physical hypothesis consistent with experiment could have been suggested much earlier in history than was actually the case and is now known to be correct: the energy and momentum in electromagnetic waves are quantized and, in geometrical optics, each incident quantum is either reflected or refracted (for each quantum R=0 or 1, on measurements; these alternatives are probabilistic, thus avoiding the need for preselection in the incident wave). It then follows that if U I is the energy of such a quantum, only the first or the second term of the right side of (1) can be non-vanishing. The single-quantum argument is finally extended to a U I which contains an arbitrary number of identical quanta. The experimental laws are then a consequence of the conservation laws, regardless of R for the ensemble (though the macroscopic reflectivity of the interface is not available from the conservation laws, it is not required to obtain the laws of reflection and refraction). Finally, another result is implicit in the above: energy conservation, in the experiments of interest, requires that all quanta (incident, reflected, and refracted) have the same energy; this energy must therefore be a function of the frequency of the wave, the only factor identical in both media.As an aside from the topic under consideration, it is noted that the external force, balancing the radiation pressure, integrated over the time interval, provides for the change in momentum perpendicular to the interface (final minus initial):= {[U R /(c/n1)] cos θ R – [U T /(c/n2)] cos θ 2 } + [U I /(c/n1)] cos θ 1(∆p)┴= U I <[R/(c/n1)] [cos θ 1 + cos θ R] + (1-R){[1 /(c/n1)] cos θ 1 – [1/(c/n2)] cos θ 2 }>. (4) The effect is difficult to measure, it does depend on U I and R, and it is not included in the study of geometrical optics. The last line of (4) can be seen to be interpretable with the two separateprocesses: the term with R is the momentum change of any reflected quanta while the one with (1-R) is that due to the transmitted ones.Also, it may be useful to reassure the casual reader: the above argument is compatible with now-known quantum concepts in such experiments [2]. In order to experimentally determine the directions of the reflected and refracted rays, measurements are required. Given that the observations are independent of the intensity of the incident radiation, such measurements guarantee that each photon is detected as entirely reflected or refracted, since no partial quanta are found in the measurements, in agreement with quantum mechanics. In physical optics experiments, for example with thin films, each photon can be though of as partially reflected and refracted to give interference effects, but a measurement, to determine the refraction path in the film, will destroy the interference since it is well known that number and phase operators do not commute (such an effect is well known in other contexts). Also, momentum uncertainties, say introduced by slits, do yield diffraction effects but are unobservable for the large dimensions, compared to the wavelength, considered in geometrical optics. Energy conservation is also compatible with the large measurement times, in such experiments. The present argument is, of course, based on the now-known particle picture of electromagnetism, whereas physical optics is based on the wave picture. Electromagnetism, as a particular case of natural phenomena, is subject to quantum wave-particle duality (with no intrinsic conflict); but different experiments show different aspects of this duality. CONCLUSIONNewton gave a corpuscular argument, of the present type, to account for the laws of geometrical optics. His explanation suffered from the problem that he had the incorrect energy-momentum relation for electromagnetism. The correct energy-momentum argument given here is based on knowledge available to Maxwell, indeed obtained by him and his immediate successors, up to the missing quantization. Given that, during Maxwell’s time, the wave description gave all experimental results discussed here and more, it would have required a great leap to put such knowledge aside and try to account for the experiments, in geometrical optics, on the basis of energy-momentum conservation exclusively. Historically, the time to consider the duality in the two pictures had not yet come. The concept of photons had to wait for a conflict between known theory and experiment: the photo-electric effect. It is curious that Einstein, who did have all the concepts available in his miraculous year (1905), also failed, I believe, to make the connection to geometrical optics. To summarize the present argument, the laws of geometrical optics can be seen to be identical to energy-momentum conservation for photons. REFERENCES1.See, for example, Fundamentals of Physics by D. Halliday, R. Resnick, and J. Walker(John Wiley & Sons, New York, Sixth Edition 2001), Chapters 22-37.2.See, for example, Quantum Mechanics by E. Merzbacher (John Wiley & Sons, NewYork, Third Edition 1998), Chapters 1 and 23.。