Universal spin-Hall conductance fluctuations in two dimensions
原虫概论阿米巴
3、生活史
经口
四核包囊 小肠下段脱囊 4个核滋养体
核分裂
8个单核小滋养体
肠粘膜
邹褶或隐窝,二分裂繁(以细菌粘膜 肠内容
物
已消化食物为食) 胞质分泌囊液
虫体团缩形成囊前期 包囊
包囊→滋养体→包囊为疾病阿米巴生活史型
在一定条件下
抵抗力下降
滋养体侵入肠粘膜组织
肠腔内
组织内(肠壁、肝脑) 、
染色后胞核形态特征是医学原虫病 原诊断的重要依据
致病特点
1、增殖作用:大量增殖到一定数量后引起 损害,血液、体液及分泌物中原虫的检查 可为临床诊断提供可靠信息。
2、播散作用:由于快速增殖而具有的全身 播散的倾向。病原学诊断不仅要考虑原发 病灶,而且还要考虑到继发病灶乃至全身 各器官。
3、机会致病:有些原虫对健康宿主不表现 出明显致病性,但当宿主免疫功能低下时, 可导致严重甚至致死性的感染。
常见医学原虫分类
1、生物学分类:隶属于4个纲: 动鞭纲 叶足纲 孢子纲 动基裂纲 (鞭毛虫)(阿米巴)(孢子虫) (纤毛虫) 2、按寄生部位分类:腔道内寄生原虫(肠
道、阴道)和血液及组织内寄生原虫(红 细胞内、有核细胞内、肝、肺、脑及其他 组织内寄生)。
阿米巴概述
以伪足为运动细胞器,多数生 活史有滋养体和包囊两个时期, 滋养体期为运动、摄食、繁殖和 致病期,包囊为静止期,是阿米 巴传播期。
对成形粪便,用碘液染色法查包囊。包囊形成有 间歇,故检查时应隔日1次并连续3次以上送检 为宜。 (2)十二指肠液或胆汁检查滋养体 (3)肠检胶囊法。 (4)小肠活组织检查,利用纤维胃镜取小肠粘 膜组织检查。
五、流行
、分布: 1本病在发达与发展中国家均有流行,我国平均 感染率为2.65%
Conductance fluctuations at the fractional quantum Hall plateau transitions
σxyσxx1/213/2cf cf 012Fig.11/2σxxσxy 1/201/32/53/7Fig.2a rX iv:c ond-ma t/9711176v1[c ond-m at.m es -hall]18No v1997P (σxx )σxx Fig.3(a)a rX iv:c ond-ma t/9711176v1[c ond-m at.m es -hall]18No v1997P (σxy )σxy Fig.3(b)a rX iv:c ond-ma t/9711176v1[c ond-m at.m es -hall]18No v1997P (σxx )σxx Fig.3(c)a rX iv:c ond-ma t/9711176v1[c ond-m at.m es -hall]18No v1997P (σxy )σxy Fig.3(d)0510*******.280.30.320.340.360.380.40.420.44a rX iv:c ond-ma t/9711176v1[c ond-m at.m es -hall]18No v1997P (σxx )σxx Fig.3(e)a rX iv:c ond-ma t/9711176v1[c ond-m at.m es -hall]18No v1997P (σxy )σxy Fig.3(f)010*********.380.390.40.410.420.430.440.450.46a r X i v :c o n d -m a t /9711176v 1 [c o n d -m a t .m e s -h a l l ] 18 N o v 1997Conductance fluctuationsat the fractional quantum Hall plateau transitionsHae-Young Kee a,b ,Yong Baek Kim a,b ,Elihu Abrahams a ,and R.N.Bhatt b,caSerin Physics Laboratory,Rutgers University,Piscataway,NJ 08855-0849b Bell Laboratories,Lucent Technologies,Murray Hill,NJ 07974c Department of Electrical Engineering,Princeton University,Princeton,NJ 08544(November 14,1997)We obtain a “mean field”scaling flow of the longitudinal and the Hall conductivities in the frac-tional quantum Hall ing the composite fermion picture and assuming that the compositefermions follow the Khmelnitskii-Pruisken scaling flow for the integer quantum Hall effect,the un-stable fixed points which govern the transitions between different fractional quantum Hall statesare identified.Distributions of the critical longitudinal and Hall conductivities at the unstable fixedpoints are obtained and implications of the results for the experiments on mesoscopic quantum Hallsystems are discussed.PACS numbers:73.40Hm,71.30.+h Many interesting phenomena in disordered mesoscopic metals occur when the phase coherence length of the electrons exceeds the sample size [1].In particular,these mesoscopic metals show sample specific conductance fluctuations in contrast to macroscopic systems where self-averaging leads to a disorder averaged conductance [1,2].It turns out that the magnitude of the fluctuation is of the order of e 2/h and universal in the sense that it only depends on the symmetry of the problem.Thus,it has acquired the name “universal conductance fluctuations”[2].On the other hand,in two-dimensional macroscopic electronic systems in high perpendicular magnetic fields (quan-tum Hall effect regime),metallic behavior can be observed only near quantum phase transitions,i.e.,the transitions between different quantum Hall plateaus [3].At these quantum critical points,the disorder averaged longitudinal (σxx )and Hall conductivities (σxy )are expected to be universal [4,5].These universal critical conductivities can be observed when the sample size becomes larger than the phase coherence length.For the integer quantum Hall effect,Khmelnitskii and then Pruisken [6]suggested a two parameter scaling flow in terms of σxx and σxy .It was noticed that a non-linear sigma model with a topological term can describe the quantum phase transitions between different plateaus and the topological term is responsible for the metallic behavior at the quantum critical points [6].According to this scaling flow,there are two types of fixed points.There are stable fixed points which correspond to the integer quantum Hall states with (σxx ,σxy )=(0,n )(in this paper,all the conductivities are written in units of e 2/h ).There are also unstable fixed points which govern the critical behavior at the transitions between adjacent integer quantum Hall states.The disorder-averaged critical conductivities ( σxx , σxy )at the (0,n −1)→(0,n )transition or at the corresponding unstable fixed points were suggested to be (1/2,n −1/2).Here n is a positive integer.There exist numerical calculations [7,8]of σxx and σxy at the transition (σxx ,σxy )=(0,0)→(0,1),which obtain σxx ≈0.5and σxy ≈0.5.Besides the average value,it is of interest to determine the conductance fluctuations near the critical point,which can be observed in mesoscopic quantum Hall samples where the phase coherence length becomes larger than the sample dimensions.More generally,one is interested in the probability distribution of the conductivities at these quantum critical points,which may be expected to be universal.A study of the Hall conductivity at the transition between the state with (σxx ,σxy )=(0,0)and the integer quantum Hall state with (σxx ,σxy )=(0,1)was carried out by Huo and Bhatt [9].They found that the Hall conductivity distribution is universal,independent of sample size,and symmetric about σxy ≈0.5,but has long power-law tails.Recently,experiments measuring two-terminal conductance provide further motivation [10].Cobden and Kogan [10]measured the two-terminal conductance (which corresponds to σxx [11])of mesoscopic samples in the integerquantum Hall regime.They found large conductance fluctuations near the integer quantum Hall plateau transitions indicating a broad distribution of the longitudinal conductance.In particular,they found that the distribution is almost uniform in the interval between zero and one in units of e 2/h .There have been theoretical efforts to understand these large fluctuations of σxx [11].Wang,Jovanovic,and Lee[12]have calculated the ensemble averaged two-terminal conductance and its fluctuations at the critical point of the integer quantum Hall plateau transitions.They used the Chalker-Coddington network model [13]and periodic boundary conditions in the transverse direction.They concluded that the average and all the higher moments of the conductance distribution are universal at the transition.It means that the entire distribution is universal.At thesame time,the distribution turns out to be very broad in the sense that there is no well-defined typical value.Cho and Fisher[14]also calculated the distribution of the conductance in terms of the network model with periodic and open boundary conditions.It was explicitly shown that the conductance is more or less uniformly distributed between zero and one and there is almost no weight for the conductances larger than one.Thus,both of the results[12,14] are consistent with the experiment of Cobden and Kogan[10].These results naturally leads us to ask what the distributions of the longitudinal and the Hall conductivities are at the critical points for the fractional quantum Hall plateau transitions.At best,the theoretical calculations mentioned above can be applied only to the integer quantum Hall effect because the electron-electron interaction is not included.Since the electron-electron interaction is essential for the fractional quantum Hall effect,the calculation of the distributions of the conductivities at the critical points in the fractional quantum Hall regime requires the consideration of both the electron-electron interaction and disorder and is thus much more complicated.Several years ago,Jain[15]proposed the composite fermion theory of the fractional quantum Hall effect.A composite fermion is obtained by attaching an even number2m offictitiousflux quanta to an electron.At the meanfield level,one takes into account only the average of thefictitious magneticfield due to the attachedfictitious magneticflux.Then the system can be described as fermions in an effective magneticfield∆B=B−˜B,where ˜B=2mnhc/e is the averagedfictitious magneticfield and n e is the density of electrons.Therefore,in the meanfield eapproximation,the fractional quantum Hall states withν=p/(2mp+1)can be described as integer quantum Hall states of composite fermions with pfilled Landau levels occupied in an effective magneticfield∆B[15,16].Hereνis thefilling fraction and p is an integer.The most important correlation effects due to the electron-electron interaction are supposed to be included in the construction of the composite fermions through thefictitiousflux quanta.In this paper,we use the composite fermion theory to get the scalingflow of the longitudinal and Hall conductivities, and the distributions of the conductivities at the critical points in the fractional quantum Hall regime.The main difference between the integer quantum Hall effect of the electrons and that of the composite fermions is that the composite fermions experience both potential disorder and randomflux disorder while the electrons have only potential disorder[16].The randomflux disorder for the composite fermions arises due to the fact that the attachedflux moves together with the electron so that an inhomogeous electron density distribution,which would occur in a random potential,induces a randomfictitious magneticfield.As afirst step,in the absence of a rigorous study about the effects of both types of disorder,we assume that the integer quantum Hall effect of composite fermions follows the Khmelnitskii-Pruisken scalingflow[6].Using a relation between the conductivity tensor of the electrons and that of the composite fermions,we shall obtain the scalingflow in the fractional quantum Hall regime.In this scalingflow, the stable and the unstablefixed points are identified.Due to the mean-field nature of the connection between the integer and fractional quantum Hall states mentioned above,we call it a“meanfield”scalingflow of the fractional quantum Hall effect.Assuming that the distributions of the critical conductivities of the composite fermions in their integer regime follow those of the electrons in their integer regime,we also get the distributions of the conductivities for the electrons at the critical points of the fractional quantum Hall plateau transitions.The relation between the resistivity tensorρof the electrons and thatρcf of the composite fermions is given by[16]ρ=ρcf+ρcs,(1) whereρcs= 02m−2m0 (2) comes from the Chern-Simons transformation.Then the longitudinalσxx and the Hallσxy conductivities of the electrons can be expressed in terms of the composite fermion conductivitiesσcf xx andσcf xy as follows.σcf xx[(σcf xx)2+(σcf xy)2]σxx=.(3)(σcf xx)2+[σcf xy+2m((σcf xx)2+(σcf xy)2)]2These equations are valid for any realization of the disorder.For macroscopic samples,all the conductivities can be replaced by the disorder averaged value if the self-averaging is legitimate.We assume that the integer quantum Hall effect of the composite fermions follows the Khmelnitskii-Pruisken scaling flow in Fig.1[6].There are stablefixed points(σcf xx,σcf xy)=(0,n−1)which represent the integer quantum Hall statesof the composite fermions(here n is a positive integer).There are also unstablefixed points(σcf xx,σcf xy)=(1/2,n−1/2)which control the transitions bewteen the quantum Hall states(σcf xx,σcf xy)=(0,n−1)and(σcf xx,σcf xy)=(0,n).In order to get the scalingflow for the fractional quantum Hall effect of the electrons,we use Eq.3to map the Khmelnitskii-Pruiskenflow in theσcf xx−σcf xy plane to theflow in theσxx−σxy plane.We consider only the principal sequenceν=p/(2p+1)of the fractional quantum Hall states,so m=1is taken from now on.Let usfirst calculate various limits.For anyσcf xy,ifσcf xx→∞,thenσxx→0andσxy→1/2.Thus,the entire lineσcf xx→∞goes to the point(σxx,σxy)=(0,1/2).The lineσcf xx=0goes to(σxx,σxy)=(0,σcf xy/(1+2σcf xy)).Thus all the stablefixed points (σcf xx,σcf xy)=(0,n−1)go to(σxx,σxy)= 0,n−124n2−4n+22(4n2−4n+2)(4n2−2n+1)4n .(6) The resulting scalingflow for the principal sequenceν=p/(2p+1)is shown in Fig.2.It looks quite similar to the case of the integer quantum Hall states and is consistent with the selection rules in the law of corresponding states proposed by Kivelson,Lee,and Zhang[4].For example,the direct transition between(σxx,σxy)=(0,0)and(0,2/5) states is not allowed.The scalingflow also gives us some new information.For example,the scaling curve which starts at(σxx,σxy)=(0,1/2)and goes to(1/10,3/10)has a maximum at(σxx,σxy)=(1/8,3/8).This implies that the bare longitudinal conductivity of the smaple should be smaller than1/8in order to see theν=1/3quantum Hall state.It is also interesting to notice that our result for the scalingflow in the fractional quantum Hall regime is different from that proposed by Laughlin et al.some years ago[17].Now we consider the statistical properties of the conductivities at the critical points which are governed by the unstablefixed points given by Eq.5.Let us assume that the distributions of the critical conductivities for the integer quantum Hall effect of the composite fermions is the same as those for the electrons.Then the distribution of the critical longitudinal conductivities for the composite fermions at(σcf xx,σcf xy)=(1/2,n−1/2)will be taken as[10–12,14]P(σcf xx)= 10≤σcf xx≤10σcf xx>1.(7) On the other hand,the distribution of the Hall conductivity for the composite fermions is taken as P(σcf xy)= 1.246e−5.309(σcf xy− σcf xy )2 1−0.2791(σcf xy− σcf xy )2 |σcf xy− σcf xy |≤0.50840.04122/(σcf xy− σcf xy )2.9|σcf xy− σcf xy |>0.5084,(8)where σcf xy =n−1/2.This distribution turns out to be an excellent parametrization of the numerical result[9]. Furthermore,both the distribution and its derivative at|σcf xy− σcf xy |=0.5084are continuous.Notice that the same distribution is taken for any n with σcf xy =n−1/2due to the invariance of the effective action or the non-linear sigma model[6]underσcf xy→σcf xy+l,where l is an integer.One can also see that P(σcf xy)does not have a second moment due to the long tail.Notice that the distributions ofσcf xx andσcf xy may be correlated.In the absence of a rigorous study about the relation between these two distributions,in this paper,we assume that they are independent each other for simplicity. Then the distribution ofσxx andσxy at the critical points of the fractional quantum Hall plateau transitions can be3obtained from the convolution of P(σcf xx)and P(σcf xy)using Eq.3.That is,the distribution P(σxx)and P(σxy)ofσxx andσxy are given byP(σxx)= ∞−∞dσxy|J(σxx,σxy:σcf xx,σcf xy)|P(σcf xx)P(σcf xy)P(σxy)= ∞−∞dσxx|J(σxx,σxy:σcf xx,σcf xy)|P(σcf xx)P(σcf xy),(9)whereσcf xx andσcf xy in the integrand should be written in terms ofσxx andσxy from Eq.3.Here J(σxx,σxy:σcf xx,σcf xy) is the Jacobian for the change of the variables fromσcf xx andσcf xy toσxx andσxy.The results P(σxx)and P(σxy)at the critical point(or the unstablefixed point)for the transition(σxx,σxy)=(0,0)→(0,1/3)are shown in Fig.3(a)and(b).One can see that P(σxx)has a maximum atσmaxxx ≈0.09,but thedistribution is still broad so that this is not really a typical value.Notice that there is almost no weight beyond σxx≈0.5.The average and the second moment are given by σxx =0.1andδσxx=2me2 2me2H.Y.K.was also supported by the Korea Research Foundation.R.N.B.thanks the J.S.Guggenheim foundation for a fellowship and Bell Laboratories for hospitality at the early stage of this project.σxy δσxyδσxy/ σxy 0→1/30.30.06750.2250.02940.01840.6402/5→3/70.4190.01110.0266。
纳米管制作皮肤感应器 翻译 中英
最后译文:纳米管弹性制作出皮肤般的感应器美国斯坦福大学的研究者发现了一种富有弹性且透明的导电性能非常好的薄膜,这种薄膜由极易感触的碳纳米管组成,可被作为电极材料用在轻微触压和拉伸方面的传感器上。
“这种装置也许有一天可以被用在被截肢者、受伤的士兵、烧伤方面接触和压迫的敏感性的恢复上,也可以被应用于机器人和触屏电脑方面”,这个小组如是说。
鲍哲南和他的同事们在他们的弹透薄膜的顶部和底部喷上一种碳纳米管的溶液形成平坦的硅板,覆盖之后,研究人员拉伸这个胶片,当胶片被放松后,纳米管很自然地形成波浪般的结构,这种结构作为电极可以精准的检测出作用在这个材料上的力量总数。
事实上,这种装配行为上很像一个电容器,用硅树脂层来存储电荷,像一个电池一样,当压力被作用到这个感应器上的时候,硅树脂层就收紧,并且不会改变它所储存的电荷总量。
这个电荷是被位于顶部和底部的硅树脂上的纳米碳管测量到的。
当这个复合膜被再次拉伸的时候,纳米管会自动理顺被拉伸的方向。
薄膜的导电性不会改变只要材料没有超出最初的拉伸量。
事实上,这种薄膜可以被拉伸到它原始长度的2.5倍,并且无论哪种方向不会使它受到损害的拉伸它都会重新回到原始的尺寸,甚至在多次被拉伸之后。
当被充分的拉伸后,它的导电性喂2200S/cm,能检测50KPA的压力,类似于一个“坚定的手指捏”的力度,研究者说。
“我们所制作的这个纳米管很可能是首次可被拉伸的,透明的,肤质般感应的,有或者没有碳的纳米管”小组成员之一Darren Lipomi.说。
这种薄膜也可在很多领域得到应用,包括移动设备的屏幕可以感应到一定范围的压力而不仅限于触摸;可拉伸和折叠的几乎不会毁坏的触屏感应器;太阳能电池的透明电极;可包裹而不会起皱的车辆或建筑物的曲面;机器人感应装置和人工智能系统。
其他应用程序“其他系统也可以从中受益—例如那种需要生物反馈的—举个例子,智能方向盘可以感应到,如果司机睡着了,”Lipomi补充说。
Non-vanishing spin Hall currents in disordered spin-orbit coupling systems
a r X i v :c o n d -m a t /0407279v 2 [c o n d -m a t .m e s -h a ll ] 24 N o v 2004Non-vanishing spin Hall currents in disordered spin-orbit coupling systemsK.Nomura,1Jairo Sinova,2T.Jungwirth,3,4,1Q.Niu,1and A.H.MacDonald 11Department of Physics,University of Texas at Austin,Austin TX 78712-1081,USA 2Department of Physics,Texas A&M University,College Station,TX 77843-4242,USA 3Institute of Physics,ASCR,Cukrovarnick´a 10,16253Praha 6,Czech Republic4School of Physics and Astronomy,University of Nottingham,University Park,Nottingham NG72RD,UK(Dated:February 2,2008)Spin-orbit coupling induced spin Hall currents are generic in metals and doped semiconductors.It has recently been argued that the spin Hall conductivity can be dominated by an intrinsic contri-bution that follows from Bloch state distortion in the presence of an electric field.Here we report on an numerical demonstration of the robustness of this effect in the presence of disorder scattering for the case of a two-dimensional electron-gas with Rashba spin-orbit interactions.PACS numbers:72.10.-d,72.15.Gd,73.50.JtSemiconductor spintronics research over the past decade has concentrated on the properties of spin-polarized carriers created by optical orientation,on the search for new ferromagnetic semiconductors with more favorable properties,and on the injection of spin-polarized carriers into semiconductors from ferromag-netic metals [1,2,3].There has recently been a flurry of theoretical interest [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]in the spin Hall effect [4,5,6],i.e.in transverse spin currents induced by an electric field.Murakami [7]et al.and Sinova [8]et al.have argued in different contexts that the spin Hall conductivity can be dominated by a contribution that follows from the distortion of Bloch electrons by an electric field and therefore approaches an intrinsic value in the clean limit.This conclusion has recently been questioned,for the case of two-dimensional elec-trons with Rashba spin-orbit interactions in particular,by several authors[14,16,19,21,22,23]motivated by a number of different considerations,some of which are related to controversies [24,25,26,27,28,29,30]that have long surrounded the theory of the anomalous Hall effect in ferromagnetic metals and semiconductors.In this Rapid Communication we report on a study based on numerically exact evaluation of the linear-response-theory Kubo-formula expression for the spin Hall con-ductivity.We demonstrate that the intrinsic spin Hall effect is robust in the presence of disorder,falling to zero only when the life-time broadening energy is larger than the spin-orbit splitting of the bands.The correlations be-tween spin-orientation and velocity in the presence of an electric field that lie behind the intrinsic spin Hall effect are not diminished by weak disorder.We consider a two-dimensional electron system with the Rashba spin-orbit interaction(R2DES):H =p 2/2m +λ[p ׈z]·σ/ +V.(1)where σis the Pauli matrix,m is the effective mass,and λis the Rashba spin-orbit coupling constant.When the disorder potential V in Eq.(1)is absent,p = k is a good quantum number.The Rashba spin-orbit in-teraction term can be viewed as Zeeman coupling to ak -dependent effective magnetic field ∆=(2λ)ˆz ×k .The V =0eigenstates are therefore the S =1/2spinors oriented parallel and antiparallel to these fields:|k ± = ∓ie −iφ,1e i k ·r /√| k σ|V |k ′σ′ |2=(n i u 20/Ω)δσσ′exp(−|k −k ′|2l 2v ),where the density of scatterers n i (intended to represent remote ionized donors)is set equal to the electron den-sity.It is widely recognized that 2DES disorder poten-tials can have long correlation lengths up to ∼100[nm].To examine how our conclusions depend on the range of the disorder potential,we have performed calculations for correlation lengths ranging from l v ∼0to l v ∼100[nm].We diagonalize the Hamiltonian in the λ=0eigen-state representation and introduce a hard cutoffat a suf-ficiently large momentum Λ.For a fixed particle density,the number of electron N e and the system size are re-lated by Ω=L 2=N e /n e .Our conclusions are based on calculations with N e up to 2258.For n e =0.6×1011[cm −2]the system size is up to L =2[µm],longer than the characteristic microscopic length scales,the mean-free path (l ∼102−103[nm]),the Fermi wavelength (λF =2π/k F =101[nm]),and the disorder potential range (l v ≤100[nm]).The system size in these simula-tions is comparable to that of typical 2DES channels in electronic devices.We fix the effective mass at the bulk2GaAs value,m =0.067m e ,where m e is the bare mass and perform calculations over a wide range of u 0values.The Kubo formula expression for the z spin of the spin Hall conductivity is:σz µν(ω)=1E n −E n ′n |j z µ|n ′n ′|j ν|2σz }p σz /m respectively[8].In finite size electric field turn on time η−1must be shorter transit time in the simulation cell in order to correct thermodynamic limit for the conductivity.metallic limit of interest here,ηmust exceed the lation cell level spacing but be smaller than all energy scales.In the dc ω=0limit,σzµνis real dissipative contribution that comes from the iηthe denominator and a reactive contribution that comes from the imaginary part of the matrix element product.Typical numerical results for the disorder and spin-orbit coupling strength dependence of the spin Hall con-ductivity σsH =σzxy (ω=0)are illustrated in Fig.1.(These calculations are for l v ∼80[nm].)We find that in the strong Rashba coupling,weak-disorder regime the spin Hall conductivity is close to the (universal)intrin-sic value for this model,and that it decreases for weaker spin-orbit coupling and stronger disorder.Experimen-tally,Rashba spin-orbit coupling strength can be varied over a wide range by tuning a gate field [33,34].We have varied the spin-orbit coupling strength at the Fermi en-ergy λk F from 0.1ǫF to 0.4ǫF .The system size for the cal-culations summarized by Fig.1was 1500nm.The range we have chosen for disorder strength values was based on the golden-rule expression for the transport scatteringrate[32], /τ=2π k ′|V (k −k ′)|2(1−ˆk ·ˆk ′)δ(ǫk′−ǫF ).The golden-rule combined with Boltzmann transport the-ory yields the Drude expression for the longitudinal con-ductivity,σD =ne 2τ/m =2ǫF τ(e 2/h ).Using these ap-proximate estimates,we have varied the disorder strength so that ǫF τcovers the range 2−20,typical for two-dimensional electron systems.For GaAs materials pa-rameters,the disorder strength range that we consider corresponds to mean-free paths l =70−700[nm].We note that in the case of short-range scatterers (l v ∼10[nm])the transport lifetime τdefined above is not so dif-ferent from the momentum lifetime τ0given by /τ0=2π k ′|V (k −k ′)|2δ(ǫk ′−ǫF )(l v ∼10[nm]),whereas these quantities differ substantially for longer (and more realistic)correlation lengths.In what follows we take =1so that τ−1has energy units.These results demon-strate that for this model σsH is to reasonable accuracy a function of only λk F τ,the ratio of the spin-orbit split-ting to the quasiparticle state lifetime broadening.The intrinsic spin Hall conductivity survives provided that200.10.20.20.4For these calculations the system size is L =1500[nm]and l v =80[nm].Note that the conductivity depends mainly on λk F τand that,because our interest is limited to the metal-lic regime,our calculation range does not address the strong scattering limit τ→0.λk F τ>1.Fig.2illustrates some typical system size dependences of the finite-size longitudinal σxx and spin Hall σsH con-ductivities.The size-dependence of transport coefficients in disordered systems can reflect quantum corrections to Boltzmann transport theory due to the interferenceσx x [e 2/h ]L/ ls H L/ ls H L/ lFIG.2:Left:Size dependence of the longitudinal conduc-tivity σxx as a function of L/l for λ=0,ǫF τ=2.0,and l v =20[nm];Middle and Right:L/l dependence of the spin Hall conductivity σSH for l v =20[nm])and λk F /ǫF =0.3.The middle panel is for a strongly disordered system in which ǫF τ=1while the right panel is for the a weakly disordered system in which ǫF τ=5.effects that cause localization.In two-dimensions,scal-ing theory and microscopic perturbative calculations pre-dictσxx corrections that depend on spin-orbit coupling strength and can grow when the system size L is larger than the mean-free path l.The conductivity is expected to decay exponentially with system size in the strongly lo-calized region.[35]Numericalσxx results for the strongly disordered caseǫFτ=2,λ=0,and l v=20[nm],shown in the left panel of Fig.2,are consistent with expectations for this thoroughly studied quantity.[35]Our main inter-est at present,however,is the system size dependence of the spin Hall conductivityσsH and particularly in estab-lishing whether or not it vanishes in the limit L→∞. ForσsH,L should be compared with both l and with the spin-orbit length L so=l/(λk Fτ).In the middle panel ofFig.[2]L so≈3l is the longer intensive length scale,with some system size apparent up to L/L so∼10.For the more weakly disordered case in the right panel l is longer and no systematic L/l dependence was found.These nu-merical results appear to establish rather unambiguously that lim L→∞σsH=0.The intrinsic spin Hall effect in the R2DEG is due to a correlation[8]between quasiparticle velocity and the z-component of spin induced by an electricfield;for an electricfield in the x-direction,an up spin is induced in positive y-component velocity majority-band states and a corresponding down spin at negative velocities.After summing over bands,coherence is confined in momentum space to the annulus of singly-occupied states.These re-sponses are induced by the interband matrix elements of the perturbation term in the Hamiltonian that accounts for the spatially uniform electricfield.Since the observ-able we are interested in here,the spin Hall current,is purely off-diagonal in band indices,its response depends on interband coherence alone and not at all on the altered Bloch state occupation probabilities that dominate most transport coefficients in metals and are the focus of Boltz-mann transport theory.If the spin Hall conductivity were to vanish because of disorder scattering,the intrinsic in-terband coherence would either have to be cancelled at all wavevectors,or be cancelled by stronger coherences induced in a narrow transport window(presumably of width1/τ)centered on the Fermi circles.In Fig.3we compare the exact linear-response momentum-dependent z-direction spin-density(and hence interband coherence)for a disorder-free system (left panel)withλk F/ǫF=0.2with that of a disor-dered system(right panel)with the same spin-orbit in-teraction strength andǫFτ=3.2.(l v/λF=0.2for the calculations illustrated in Fig.3.)Both quantities are proportional to the electricfield and are plotted in the same units.These results were obtained from the same linear response theory expressions used in Eq.(2)with S z(k)= σσ/2|kσ kσ|=(|k+ k−|+|k− k+|)/2 substituted for the spin current j zµ.The disorder aver-aged spin Hall conductivity and longitudinal conductivity in this case areσsH/(e/8π)=0.64andσxx/(e2/h)=5.1 atǫFτ=3.2.Our numerical calculations demonstrate that the coherence is not changed qualitatively by impu-rity scattering,maintaining the same angle dependence as it is spread in momentum space.In particularly there is no evidence that the direction averaged coherence is either cancelled uniformly or cancelled by a strong con-tribution more narrowly centered on the two Fermi cir-cles.The subtleties that confuse theories of the spin Hall conductivity in a R2DES are related to issues that arise quite generally in the linear-response theory analysis of non-dissipative transport coefficients,like the anomalous Hall conductivity[37]of a ferromagnet,the ordinary Hall conductivity of a paramagnet,and the spin Hall con-ductivity of other paramagnetic metals.From an exact eigenstate Kubo formula point of view,these transport coefficients can be dominated by reactive contributions that come from states far from the Fermi level and are not associated with electricfield induced level crossings and dissipation.In the spin and anomalous Hall effect cases, the reactive contributions do not vanish in the limit of a perfect crystal,instead approaching an intrinsic value. The currents accounted for by these intrinsic Hall coef-ficients can be viewed as corresponding to equilibrium currents thatflow in an effective periodic systems whose symmetry has been reduced by the electricfield.This point has been emphasized recently by Rashba[23],who argues on this basis that the intrinsic response is a tran-sient that will be attenuated within a relaxation timeτscale after the electricfield is turned on.Similar argu-ments have been made concerning the intrinsic contri-bution to the anomalous Hall effect.[25]The specific in-stance studied here is perhaps an especially simple exam-ple of this class of effects,precisely because S z(k)and the spin Hall current are purely off-diagonal in band indices. We conjecture,as an extrapolation from the present nu-merical study,that the part of the density-matrix linear response that is off-diagonal in band index always ap-proaches its intrinsic value in the weak disorder limit. The spin Hall current operator,like the charge current operator in the case of the anomalous Hall effect,will also have intraband matrix elements in the general case. We expect that these can in general lead to extrinsic in-4traband contributions to the linear response conductivity that remainfinite in the weak disorder scattering limit. In a realistic sample with boundaries,spin density is accumulated at the sample edge by the spin currents.We expect that edge spin accumulations can be measured ex-perimentally.Stevens et al.[36]have recently reported on a remarkable optical measurement of accumulation due to non-linear response spin currents using a spatially re-solved pump-probe technique in GaAs/AlGaAs quantum wells.Similar luminescence polarization measurements should be able to detect electrically generated linear re-sponse spin Hall currents.In summary,we calculated the spin Hall conductivity in a disordered system with Rashba spin-orbit coupling using the exactly evaluated eigenstates of the Hamilto-nian and the Kubo linear response theory.Wefind that thefield induced spin Hall current of this model ap-proaches its intrinsic value in the limit of weak disorder scattering.The authors thank G.Bauer,D.Culcer,E.M.Han-kiewicz,J.Inoue,L.Molenkamp,S.Murakami,E.Sher-man,N.A.Sinitsyn,X.C.Xie,and S.-C.Zhang for useful discussions.One of the authors K.N.is supported by the Japan Society for the Promotion of Science by a Research Fellowship for Young Scientists.This work has been sup-ported by the Welch Foundation and by the Department of Energy under grant DE-FG03-02ER45958.Note added.—After this work was completed and sub-mitted several preprints appeared reporting on related numerical simulations[38,39,40]of spin Hall conduc-tance infinite samples with contacts.These studies reach similar conclusions on the robustness of spin Hall effects. Very recently two experimental preprints[41,42]have ap-peared which report detection of edge spin accumulation due to spin Hall currents.[1]S. A.Wolf, D. D.Awschalom,R. A.Buhrman,J.M.Daughton,S.von Molnar,M.L.Roukes, A.Y.Chtchelkanova,and D.M.Treger,Science294,1488 (2001).[2]Semiconductor Spintronics and Quantum Computation,edited by D.D.Awschalom,D.Loss,and N.Sarmarth (Springer-Verlag,Berlin,2002).[3]I.Zutic,J.Fabian,S.Das Sarma,Rev.Mod.Phys.76,323-410(2004).[4]M.I.Dyakonov and V.I.Perel,Zh.Eksp.Ter.Fiz.13,657(1971)[JETP33,467(1971)].[5]J.E.Hirsch,Phys.Rev.Lett.83,1834(1999).[6]S.Zhang,Phys.Rev.Lett.85,393(2000).[7]S.Murakami,N.Nagaosa,and S.C.Zhang,Science301,1348(2003).[8]J.Sinova,D.Culcer,Q.Niu,N.A.Sinitsyn,T.Jung-wirth,and A.H.MacDonald,Phys.Rev.Lett.92,126603 (2004).[9]D.Culcer,J.Sinova,N.A.Sinitsyn,T.Jungwirth,A.H.MacDonald,and Q.Niu,cond-mat/0309475.[10]S.Murakami,N.Nagaosa,S.C.Zhang,Phys.Rev.B69,235206(2004)[11]J.Schliemann and D.Loss,Phys.Rev.B165315(2004).[12]N.A.Sinitsyn,E.M.Hankiewicz,W.Teizer,J.Sinova,cond-mat/0310315.[13]S.-Q.Shen,cond-mat/0310368;L.Hu,J.Gao,S.-Q.Shen,cond-mat/0401231.[14]J.Inoue,G.E.W.Bauer and L.W.Molenkamp,Phys.Rev.B67,033104(2003);cond-mat/0402442.[15]A.A.Burkov, A.S.Nunez,and A.H.MacDonald,cond-mat/0311328.[16]E.I.Rashba,cond-mat/0404723.[17]S.Murakami,Phys.Rev.B69,241202(2004)[18]J.Schliemann and D.Loss,cond-mat/0405436;S.I.Er-lingsson,J.Schliemann,and D.Loss,cond-mat/0406531.[19]E.G.Mishchenko, A.V.Shytov, B.I.Halperin,cond-mat/0406730.[20]F.D.M.Haldane,cond-mat/0408417.[21]A.Khaetskii,cond-mat/0408136.[22]R.Raimondi,P.Schwab,cond-mat/0408233[23]E.I.Rashba,cond-mat/0409476.[24]R.Karplus and J.M.Luttinger,Phys.Rev.95,1154(1954).[25]J.Smit,Physica21877(1955);ibid.23,39(1958).[26]L.Berger,Phys.Rev.B2,4559(1970).[27]G.Sundaram and Q.Niu,Phys.Rev.B5914915(1999).[28]T.Jungwirth,Q.Niu,and A.H.MacDonald,Phys.Rev.Lett.88,207208(2002).[29]Z.Fang et al.,Science302(2003)92.[30]Y.Yao,Phys.Rev.Lett.92,037204(2004).[31]E.I.Rashba,Sov.Phys.Solid State2,1109(1960).[32]G.Mahan,Many-Particle Physics,3rd edition,Kluwer,New York,2000.[33]J.Nitta,T.Akazaki,H.Takayanagi,and T.Enoki Phys.Rev.Lett.78,1335-1338(1997)[34]T.Koga,J.Nitta,T.Akazaki,and H.Takayanagi Phys.Rev.Lett.89,046801(2002)[35]P.A.Lee and T.V.Ramakrishnan,Rev.Mod.Phys.57,287(1985).[36]M.J.Stevens,A.L.Smirl,R.D.R.Bhat,A.Najmaie,J.E.Sipe,and H.M.van Driel,Phys.Rev.Lett.90, 136603(2003).[37]The anomalous Hall effect in ferromagnets and its re-lationship to the ordinary Hall effect in paramagnetic metals will be discussed at greater length elsewhere,K.Nomura,J.Sinova,N.Sinitsyn,Q.Niu,and A.H.Mac-Donald,to be submitted.[38]B.K.Nikolic,L.P.Zarbo,S.Souma,cond-mat/0408693.[39]L.Sheng, D.N.Sheng,and C.S.Ting,cond-mat/0409038.[40]E.M.Hankiewicz,L.W.Molenkamp,T.Jungwirth,J.Sinova,cond-mat/0409334.[41]Y.K.Kato,R.C.Myers, A.C.Gossard,and D.D.Awschalom,in press(2004).[42]J.Wunderlich,B.Kaestner,J.Sinova,and T.Jungwirth,cond-mat/0410295.。
【高分子专业英语翻译】
【高分子专业英语翻译】第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。
乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。
水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。
在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。
乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。
单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。
单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。
更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。
这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。
第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。
构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。
以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。
这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。
大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。
和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。
格伦艾尔圆形连接器术语和定义说明书
Essential Connector Terms and Definitions for Specifiers of Interconnect Wiring SystemsBack-Mounted: A connector design used in panel or box applications in which the mounting flange is located inside the equipment enclosure.Bayonet Coupling: A mating design utilizing pins on the receptacle and ramps on the plug for quick-connect and disconnect coupling. “Reverse” bayonet puts the pins on the plug and ramps on the receptacle.Circular Connector:Any of a thousand flavors of mulitpin interconnects with cylindrical contact housings and circular contact interface geometries. Circular connectors are selected for ease of engagement and disengagement, their ability to conveniently house different types of contacts, their wide range of allowable contact voltages and currents, their ease of environmental sealing and their rugged mechanical performance. In military and other high-rel applications, the MIL-C-5015 and D38999 are the most commonly specified types.Note: A disadvantage of the circular design is loss of panel space when used in arrays.Closed Entry: A contact cavity design in which the entry diameter of the socket insulator is smaller than the O.D. of the socket contact. Closed entry limits the size or position of the mating contact to a maximum dimension.Connector Body:The metal or plastic shell of a connector. Its main purpose is to house the contacts, maintain their position and shield them from dust, dirt, moisture, and electrical interference. Coaxial Contacts (and Cable):A contact with inner and outer conductive elements separated by a center dielectric element. Coaxial contacts terminate coaxial cable, and are employed in high bandwidth, high-frequency applications such as video and audio. The cable offers a closed, controlled impedance medium for the transmission of RF energy. It also provides high frequency performance and RFI shielding.Contact:The conductive element in a connector. Contacts mate mechanically and electrically to transmit signals and/or power across a connector interface. Crimp style contacts are the most common type found in high-reliability cylindrical connectors. Male contacts are sometimes referred to as leads, posts or pins. Female contacts are universally known as sockets. Contact Arrangement or Pattern:The gauge, number, spacing and arrangement of contacts in a connector. Contact arrangement selections are based on the current and voltage requirements of the application, and the space available for the connector package.Contact Engaging and Separating Force:T ensile force required to engage or separate mating contacts. Measured in ounces, the force increases with the number of contacts and with contact size. Contact (or Circuit) Identifier: Wiring schematics identify and label each and every circuit with numbers, letters or special codes. On the connector, this process is maintained by marking small numbers or letters next to each contact cavity on the connector.Contact Resistance:The measure of electrical resistance across a pair of fully mated contacts. Measured in ohms or millivolt drop at a specified current, contact resistance is affected by normal force (the static force on the contact interface), plating quality and the physical geometry of the contact.Contact Retainer:A locking clip or tang used to secure a crimp contact in place within the connector insert. Contact retention specifications define the force required to remove a properly seated contact for each class of connector.Contact Retention:The pressure a contact can withstand, in either direction, without being dislodged from the retaining clip which holds it within the connector.Contact Size:An assigned number denoting the outside diameter of the engaging end of the pin contact. The larger the number, the smaller the size. Contact Spacing:Also referred to as pitch, the distance, center-to-center, between adjacent contacts.Coupling Ring:An accessory feature of the connector plug which aids in mating and unmating plugs and receptacles and prevents decoupling of the connector. Self-locking coupling rings are used for high-vibration applications.Crimp: The physical compression (deformation) of a contact barrel around a conductor in order to make an electrical connection.Crimp Contact: A connector pin or socket, shipped loose with the connector body, and designed to be crimped onto the end of the wire conductor with a special tool. Often referred to as “crimp and poke” contacts, the terminated contact is poked into the connector body either by hand, or in the case of small gauge wires, with the aid of a hand-held tool. The ease of assembly and maintenance afforded by crimp contacts is preferred for aerospace and other high reliability applications not requiring a hermetic seal. Dielectric: A material having electrical insulating properties, such as the contact insulator in a connector or the jacketing on a wire.Electrical Connector: A separable device which provides mechanical and electrical contact between two elements of an electronic system without unacceptable signal distortion or power loss. Environmentally Sealed:Connectors and backshells designed to prevent fluids, moisture, air or dust from degrading the performance of electrical contacts and conductors. “Environmental” components typically use gaskets, grommets, potting materials or interfacial and O-ring seals to prevent the penetration of foreign substances into the body of the part.Filter Contact or Filter Connector: Contact design which provides EMI suppression in addition to its normal function of transmitting electrical energy. Filtered connectors are typically specified for high-speed signal paths. Filtering is accomplished through the integration of capacitors into the contact to separate high-frequency noise from low-frequency signals. Firewall Connector: A class of high-reliability, feed-through connectors designed to prevent fire or sparks from penetrating through a sealed bulkhead. Firewall connectors must continue to function for a specific period of time when exposed to fire, and are typically specified in military applications such as fighter jets and Navy ships.Flange:The integral mounting plate on some bulkhead and feed-through connectors used to attach the connector to the chassis or panel. The connector flange is typically square, and is mounted to the panel with threaded screws.Front Mounted: A connector design used in panel or box applications in which the mounting flange is located on the inside or outside of the equipment enclosure.Front Release: “Crimp and poke” style contacts may be removed from the connector for maintenance using a special hand-held tool. The proper insertion and removal tool must be used at all times. In front release designs, the tool is inserted into the mating face of the connector to disengage the contact from its retaining clip. The disengaged contact is then removed from the back (cable-side) of the connector by lightly pulling on the attached wire.Grommet:An elastomeric seal used on the back side of a connector to seal out fluids, moisture, air and dust.Grounding (or EMI) Fingers: A set of spring fingers in certain connectors, used to facilitate shell to shell grounding and enhance EMI performance. The grounding fingers engage before contact mating and remain engaged until after contact separation. Guide Pins:Metal posts) with a rounded or pointed tip which projects beyond the contact interface, used to assist in the correct alignment and mating of connector shells and contacts. The post mates with a corresponding cavity on the mating connector before contacts are allowed to engage. Guide pins are typically used in rack and panel packaging and in other “blind-mate” applications. Guide pins can also be used to insure correct polarization.Hermetic Connector:A class of connectors equipped with a pressure seal for use in maintaining pressurized application environments. The hermetic element of the connector is typically fabricated from vitreous glass.Insert: A molded piece of dielectric material that fits inside the connector shell and supports the connector contacts. Inserts are tooled for each shell size, and contact arrangement. Inserts made from resilient materials also contribute to environmental properties. Insulation Displacement:Forcing an insulated wire into a terminal slot smaller than the conductor diameter, displacing the insulation to make electrical contact.Interfacial Seal: An elastomeric seal providing overall sealing of the mated connectors and their individual contacts. “Cork & bottle” style seals feature a raised shoulder around each pin contact that compresses into a corresponding hole on the socket contact insulator. Key: A short pin (sometimes referred to as a “dog” by crusty old machinists) which slides into a corresponding slot or keyway to guide the plug and receptacle together during mating. The principal function of the key is to insure polarization of the mating contacts. Levels of Interconnection:A classification system for connectors defining connector types in terms of interconnect system function. The levels of most use include Level 4 (subassembly to subassembly), Level 5 (subassembly to I/O) and Level 6 (system to system). The lower levels (1, 2 and 3) all concern interconnection inside the microscopic world of printed circuit boards.Mating and Unmating Force: The force required to join and separate two halves of a connector. This is the sum of contact engaging forces plus any additional force necessary to overcome minor misalignment of connector halves and any dimensional variations in the connector shells.Normal Force:A measure of the spring pressure applied perpendicularly to contacts in mated connectors. The force of this spring pressure creates the gas-tight interface between contact surfaces which prevents corrosive contaminants from penetrating or forming between the contacts. High normal force reduces resistance across the contacts, but contributes to contact wear and may overstress the connector housing and even damage the spring properties of contact sockets. However, maintaining a constant normal force is an essential requirement for electrical integrity in the connector. Package Size: The length, width and height of the connector; or alternatively the dimensions of the entire interconnect system. Package size is an issue in many applications where system miniaturization, faster operating speeds, higher operating temperatures and other application requirements place new demands on the envelope of space the connector and its accessories may occupy.Plug: The half of a connector pair which is designed to attach to a wire or cable; as opposed to the receptacle half which is typically mounted to a bulkhead, panel or box. Even though we usually picture plugs as having male (pin) contacts, they can in fact house any type of contact—pins, sockets or even both. Thus it is the design and location of the connector which makes it a plug, not the gender of its contacts.Polarize:Design features on mating connectors—such as keyways or shell geometries—that insure connectors can be mated in only one possible orientation. The shape of a D-Sub connector shell, for example, assures that the two halves of the connector can be mated in only one way.Potting:The permanent sealing of the cable end of a connector with a compound or material to exclude moisture or to provide a strain relief. Glenair typically uses epoxy compounds for this purpose because of their dimensional stability and high-temperature resistance.Rear Release: “Crimp and poke” style contacts (see Crimp Contacts above) may be removed from the connector for maintenance using a special hand-held tool. The proper insertion and removal tool must be used to install and remove wires from such crimp and poke connectors. In rear release designs, the tool is inserted into the rear (cable side) of the connector to disengage the contact from its retaining clip. The disengaged contact is then removed from the connector by lightly pulling on the attached wire. Receptacle:The other half of the connector pair, designed to be mounted—with jam nut fittings or other fastener hardware—to a bulkhead, panel or box. In-line receptacles are also available for cable-to-cable connections. As with the plug, it is the design and location of the receptacle in the system, not the gender of its contacts, which makes it a receptacle.Rectangular Connector:Any of the thousands of multipin interconnects with rectangular shell housings and rectangular insert interface geometries. Rectangular connectors are typically mounted in rack and panel configurations in which large arrays of fixed receptacle connectors are mated with plugs attached to a movable rack for efficient utilization of space. D-Subminiatures are the world’s most common rectangular connectors.Scoop-proof: Scoop-proof connectors feature a nice, long shell on the receptacle which prevents damage to the exposed contact pins during mating. No matter how hard that swabbie tries, it is impossible to cock the mating plug so as to damage the pins or electrically short the contacts.Service Rating:Also called Current Rating, the maximum voltage or current load a connector is designed to carry during continuous, long-term use. Good engineering practice usually entails preliminary testing of connectors which will be operated with most or all contacts at the maximum rated load. Designers will often maximize contact and wire size in such situations.Solder Cup: A connector design that typically uses potting material to permanently affix the contacts inside the connector shell. Termination of contact to wire is then accomplished by soldering the wire into the cup-like barrel on the back of the contact. In the United Kingdom it is important to pronounce the “l” in solder. Brits also prefer to say “bucket” rather than “cup” when specifying solder contacts. Surface Mount: A termination method in which solder “tails” or leads on the connector are soldered directly to a printed circuit board. In high-reliability commercial and military applications, surface mount receptacle connectors are typically limited to rectangular designs such as D-Subminiatures and Micro-D’s. But some surface-mount applications do use a cylindrical connector mounted to the box with ribbon cable or flying leads soldered directly to the PCB. The reason here is to provide a low-resistance pathway to ground of the shielded cable. In severe EMI applications, it is less satisfactory to bring the shielded cable directly to the printed circuit board because of the difficulty in shielding out interference conducted along the cable.Termination:Termination is the physical act of attaching a wire conductor to a contact. Effective termination contributes to electrical performance and to the durability and reliability of the interconnect system. Common termination methods include crimp, insulation displacement, surface mount, and soldering. Termination can also refer to the mechanical attachment of EMI shielding to the connector backshell.Threaded Coupling: An interconnect mating design which utilizes a threaded nut on the plug, and a corresponding set of threads on the receptacle, to mate the pair of components. The coupling nut is usually equipped with flats or knurling for easy assembly. Different thread types, profiles and geometries provide different functionality. “Buttress” threads, for example, are often specified on plastic connectors due to their enhanced tensile strength. The MIL-C-38999 Series III connector incorporates a triple-start threaded coupling mechanism for greater vibration protection and faster mating and unmating.Wiping Effectiveness: Maintaining a clean, metallic path is essential if contacts are to perform with low and stable contact resistance. Surface films and contaminants are removed from the surface of plated contacts each time mating occurs. This displacement of surface contaminants during mating is called contact wiping. Wiping effectiveness depends on the contact geometry, engagement length and normal force. Interestingly, oxide film does not form on gold plated contacts, so wiping pressure can be lighter to displace only the occasional surface contaminant.Wire Pull-Out Force: This defines the force required to separate a wire from a contact. In properly terminated crimp contacts, the wire will generally break before it pulls away from the contact.。
斯仑贝谢所有测井曲线英文名称解释
斯仑贝谢所有测井曲线英文名称解释OCEAN DRILLING PROGRAMACRONYMS USED FOR WIRELINE SCHLUMBERGER TOOLS ACT Aluminum Clay ToolAMS Auxiliary Measurement SondeAPS Accelerator Porosity SondeARI Azimuthal Resistivity ImagerASI Array Sonic ImagerBGKT Vertical Seismic Profile ToolBHC Borehole Compensated Sonic ToolBHTV Borehole TeleviewerCBL Casing Bond LogCNT Compensated Neutron ToolDIT Dual Induction ToolDLL Dual LaterologDSI Dipole Sonic ImagerFMS Formation MicroScannerGHMT Geologic High Resolution Magnetic ToolGPIT General Purpose Inclinometer ToolGR Natural Gamma RayGST Induced Gamma Ray Spectrometry ToolHLDS Hostile Environment Lithodensity SondeHLDT Hostile Environment Lithodensity ToolHNGS Hostile Environment Gamma Ray SondeLDT Lithodensity ToolLSS Long Spacing Sonic ToolMCD Mechanical Caliper DeviceNGT Natural Gamma Ray Spectrometry ToolNMRT Nuclear Resonance Magnetic ToolQSST Inline Checkshot ToolSDT Digital Sonic ToolSGT Scintillation Gamma Ray ToolSUMT Susceptibility Magnetic ToolUBI Ultrasonic Borehole ImagerVSI Vertical Seismic ImagerWST Well Seismic ToolWST-3 3-Components Well Seismic ToolOCEAN DRILLING PROGRAMACRONYMS USED FOR LWD SCHLUMBERGER TOOLSADN Azimuthal Density-NeutronCDN Compensated Density-NeutronCDR Compensated Dual ResistivityISONIC Ideal Sonic-While-DrillingNMR Nuclear Magnetic ResonanceRAB Resistivity-at-the-BitOCEAN DRILLING PROGRAMACRONYMS USED FOR NON-SCHLUMBERGER SPECIALTY TOOLSMCS Multichannel Sonic ToolMGT Multisensor Gamma ToolSST Shear Sonic ToolTAP Temperature-Acceleration-Pressure ToolTLT Temperature Logging ToolOCEAN DRILLING PROGRAMACRONYMS AND UNITS USED FOR WIRELINE SCHLUMBERGER LOGSAFEC APS Far Detector Counts (cps)ANEC APS Near Detector Counts (cps)AX Acceleration X Axis (ft/s2)AY Acceleration Y Axis (ft/s2)AZ Acceleration Z Axis (ft/s2)AZIM Constant Azimuth for Deviation Correction (deg)APLC APS Near/Array Limestone Porosity Corrected (%)C1 FMS Caliper 1 (in)C2 FMS Caliper 2 (in)CALI Caliper (in)CFEC Corrected Far Epithermal Counts (cps)CFTC Corrected Far Thermal Counts (cps)CGR Computed (Th+K) Gamma Ray (API units)CHR2 Peak Coherence, Receiver Array, Upper DipoleCHRP Compressional Peak Coherence, Receiver Array, P&SCHRS Shear Peak Coherence, Receiver Array, P&SCHTP Compressional Peak Coherence, Transmitter Array, P&SCHTS Shear Peak Coherence, Transmitter Array, P&SCNEC Corrected Near Epithermal Counts (cps)CNTC Corrected Near Thermal Counts (cps)CS Cable Speed (m/hr)CVEL Compressional Velocity (km/s)DATN Discriminated Attenuation (db/m)DBI Discriminated Bond IndexDEVI Hole Deviation (degrees)DF Drilling Force (lbf)DIFF Difference Between MEAN and MEDIAN in Delta-Time Proc. (microsec/ft) DRH HLDS Bulk Density Correction (g/cm3)DRHO Bulk Density Correction (g/cm3)DT Short Spacing Delta-Time (10'-8' spacing; microsec/ft)DT1 Delta-Time Shear, Lower Dipole (microsec/ft)DT2 Delta-Time Shear, Upper Dipole (microsec/ft)DT4P Delta- Time Compressional, P&S (microsec/ft)DT4S Delta- Time Shear, P&S (microsec/ft))DT1R Delta- Time Shear, Receiver Array, Lower Dipole (microsec/ft)DT2R Delta- Time Shear, Receiver Array, Upper Dipole (microsec/ft)DT1T Delta-Time Shear, Transmitter Array, Lower Dipole (microsec/ft)DT2T Delta-Time Shear, Transmitter Array, Upper Dipole (microsec/ft)DTCO Delta- Time Compressional (microsec/ft)DTL Long Spacing Delta-Time (12'-10' spacing; microsec/ft)DTLF Long Spacing Delta-Time (12'-10' spacing; microsec/ft)DTLN Short Spacing Delta-Time (10'-8' spacing; microsec/ftDTRP Delta-Time Compressional, Receiver Array, P&S (microsec/ft)DTRS Delta-Time Shear, Receiver Array, P&S (microsec/ft)DTSM Delta-Time Shear (microsec/ft)DTST Delta-Time Stoneley (microsec/ft)DTTP Delta-Time Compressional, Transmitter Array, P&S (microsec/ft)DTTS Delta-Time Shear, Transmitter Array, P&S (microsec/ft)ECGR Environmentally Corrected Gamma Ray (API units)EHGR Environmentally Corrected High Resolution Gamma Ray (API units) ENPH Epithermal Neutron Porosity (%)ENRA Epithermal Neutron RatioETIM Elapsed Time (sec)FINC Magnetic Field Inclination (degrees)FNOR Magnetic Field Total Moment (oersted)FX Magnetic Field on X Axis (oersted)FY Magnetic Field on Y Axis (oersted)FZ Magnetic Field on Z Axis (oersted)GR Natural Gamma Ray (API units)HALC High Res. Near/Array Limestone Porosity Corrected (%)HAZI Hole Azimuth (degrees)HBDC High Res. Bulk Density Correction (g/cm3)HBHK HNGS Borehole Potassium (%)HCFT High Resolution Corrected Far Thermal Counts (cps)HCGR HNGS Computed Gamma Ray (API units)HCNT High Resolution Corrected Near Thermal Counts (cps)HDEB High Res. Enhanced Bulk Density (g/cm3)HDRH High Resolution Density Correction (g/cm3)HFEC High Res. Far Detector Counts (cps)HFK HNGS Formation Potassium (%)HFLC High Res. Near/Far Limestone Porosity Corrected (%)HEGR Environmentally Corrected High Resolution Natural Gamma Ray (API units) HGR High Resolution Natural Gamma Ray (API units)HLCA High Res. Caliper (inHLEF High Res. Long-spaced Photoelectric Effect (barns/e-)HNEC High Res. Near Detector Counts (cps)HNPO High Resolution Enhanced Thermal Nutron Porosity (%)HNRH High Resolution Bulk Density (g/cm3)HPEF High Resolution Photoelectric Effect (barns/e-)HRHO High Resolution Bulk Density (g/cm3)HROM High Res. Corrected Bulk Density (g/cm3)HSGR HNGS Standard (total) Gamma Ray (API units)HSIG High Res. Formation Capture Cross Section (capture units) HSTO High Res. Computed Standoff (in)HTHO HNGS Thorium (ppm)HTNP High Resolution Thermal Neutron Porosity (%)HURA HNGS Uranium (ppm)IDPH Phasor Deep Induction (ohmm)IIR Iron Indicator Ratio [CFE/(CCA+CSI)]ILD Deep Resistivity (ohmm)ILM Medium Resistivity (ohmm)IMPH Phasor Medium Induction (ohmm)ITT Integrated Transit Time (s)LCAL HLDS Caliper (in)LIR Lithology Indicator Ratio [CSI/(CCA+CSI)]LLD Laterolog Deep (ohmm)LLS Laterolog Shallow (ohmm)LTT1 Transit Time (10'; microsec)LTT2 Transit Time (8'; microsec)LTT3 Transit Time (12'; microsec)LTT4 Transit Time (10'; microsec)MAGB Earth's Magnetic Field (nTes)MAGC Earth Conductivity (ppm)MAGS Magnetic Susceptibility (ppm)MEDIAN Median Delta-T Recomputed (microsec/ft)MEAN Mean Delta-T Recomputed (microsec/ft)NATN Near Pseudo-Attenuation (db/m)NMST Magnetometer Temperature (degC)NMSV Magnetometer Signal Level (V)NPHI Neutron Porosity (%)NRHB LDS Bulk Density (g/cm3)P1AZ Pad 1 Azimuth (degrees)PEF Photoelectric Effect (barns/e-)PEFL LDS Long-spaced Photoelectric Effect (barns/e-)PIR Porosity Indicator Ratio [CHY/(CCA+CSI)]POTA Potassium (%)RB Pad 1 Relative Bearing (degrees)RHL LDS Long-spaced Bulk Density (g/cm3)RHOB Bulk Density (g/cm3)RHOM HLDS Corrected Bulk Density (g/cm3)RMGS Low Resolution Susceptibility (ppm)SFLU Spherically Focused Log (ohmm)SGR Total Gamma Ray (API units)SIGF APS Formation Capture Cross Section (capture units)SP Spontaneous Potential (mV)STOF APS Computed Standoff (in)SURT Receiver Coil Temperature (degC)SVEL Shear Velocity (km/s)SXRT NMRS differential Temperature (degC)TENS Tension (lb)THOR Thorium (ppm)TNRA Thermal Neutron RatioTT1 Transit Time (10' spacing; microsec)TT2 Transit Time (8' spacing; microsec)TT3 Transit Time (12' spacing; microsec)TT4 Transit Time (10' spacing; microsec)URAN Uranium (ppm)V4P Compressional Velocity, from DT4P (P&S; km/s)V4S Shear Velocity, from DT4S (P&S; km/s)VELP Compressional Velocity (processed from waveforms; km/s)VELS Shear Velocity (processed from waveforms; km/s)VP1 Compressional Velocity, from DT, DTLN, or MEAN (km/s)VP2 Compressional Velocity, from DTL, DTLF, or MEDIAN (km/s)VCO Compressional Velocity, from DTCO (km/s)VS Shear Velocity, from DTSM (km/s)VST Stonely Velocity, from DTST km/s)VS1 Shear Velocity, from DT1 (Lower Dipole; km/s)VS2 Shear Velocity, from DT2 (Upper Dipole; km/s)VRP Compressional Velocity, from DTRP (Receiver Array, P&S; km/s) VRS Shear Velocity, from DTRS (Receiver Array, P&S; km/s)VS1R Shear Velocity, from DT1R (Receiver Array, Lower Dipole; km/s) VS2R Shear Velocity, from DT2R (Receiver Array, Upper Dipole; km/s) VS1T Shear Velocity, from DT1T (Transmitter Array, Lower Dipole; km/s) VS2T Shear Velocity, from DT2T (Transmitter Array, Upper Dipole; km/s) VTP Compressional Velocity, from DTTP (Transmitter Array, P&S; km/s) VTS Shear Velocity, from DTTS (Transmitter Array, P&S; km/s)#POINTS Number of Transmitter-Receiver Pairs Used in Sonic Processing W1NG NGT Window 1 counts (cps)W2NG NGT Window 2 counts (cps)W3NG NGT Window 3 counts (cps)W4NG NGT Window 4 counts (cps)W5NG NGT Window 5 counts (cps)OCEAN DRILLING PROGRAMACRONYMS AND UNITS USED FOR LWD SCHLUMBERGER LOGSAT1F Attenuation Resistivity (1 ft resolution; ohmm)AT3F Attenuation Resistivity (3 ft resolution; ohmm)AT4F Attenuation Resistivity (4 ft resolution; ohmm)AT5F Attenuation Resistivity (5 ft resolution; ohmm)ATR Attenuation Resistivity (deep; ohmm)BFV Bound Fluid Volume (%)B1TM RAB Shallow Resistivity Time after Bit (s)B2TM RAB Medium Resistivity Time after Bit (s)B3TM RAB Deep Resistivity Time after Bit (s)BDAV Deep Resistivity Average (ohmm)BMAV Medium Resistivity Average (ohmm)BSAV Shallow Resistivity Average (ohmm)CGR Computed (Th+K) Gamma Ray (API units)DCAL Differential Caliper (in)DROR Correction for CDN rotational density (g/cm3).DRRT Correction for ADN rotational density (g/cm3).DTAB AND or CDN Density Time after Bit (hr)FFV Free Fluid Volume (%)GR Gamma Ray (API Units)GR7 Sum Gamma Ray Windows GRW7+GRW8+GRW9-Equivalent to Wireline NGT window 5 (cps) GRW3 Gamma Ray Window 3 counts (cps)-Equivalent to Wireline NGT window 1GRW4 Gamma Ray Window 4 counts (cps)-Equivalent to Wireline NGT window 2GRW5 Gamma Ray Window 5 counts (cps)-Equivalent to Wireline NGT window 3GRW6 Gamma Ray Window 6 counts (cps)-Equivalent to Wireline NGT window 4GRW7 Gamma Ray Window 7 counts (cps)GRW8 Gamma Ray Window 8 counts (cps)GRW9 Gamma Ray Window 9 counts (cps)GTIM CDR Gamma Ray Time after Bit (s)GRTK RAB Gamma Ray Time after Bit (s)HEF1 Far He Bank 1 counts (cps)HEF2 Far He Bank 2 counts (cps)HEF3 Far He Bank 3 counts (cps)HEF4 Far He Bank 4 counts (cps)HEN1 Near He Bank 1 counts (cps)HEN2 Near He Bank 2 counts (cps)HEN3 Near He Bank 3 counts (cps)HEN4 Near He Bank 4 counts (cps)MRP Magnetic Resonance PorosityNTAB ADN or CDN Neutron Time after Bit (hr)PEF Photoelectric Effect (barns/e-)POTA Potassium (%) ROPE Rate of Penetration (ft/hr)PS1F Phase Shift Resistivity (1 ft resolution; ohmm)PS2F Phase Shift Resistivity (2 ft resolution; ohmm)PS3F Phase Shift Resistivity (3 ft resolution; ohmm)PS5F Phase Shift Resistivity (5 ft resolution; ohmm)PSR Phase Shift Resistivity (shallow; ohmm)RBIT Bit Resistivity (ohmm)RBTM RAB Resistivity Time After Bit (s)RING Ring Resistivity (ohmm)ROMT Max. Density Total (g/cm3) from rotational processing ROP Rate of Penetration (m/hr)ROP1 Rate of Penetration, average over last 1 ft (m/hr).ROP5 Rate of Penetration, average over last 5 ft (m/hr)ROPE Rate of Penetration, averaged over last 5 ft (ft/hr)RPM RAB Tool Rotation Speed (rpm)RTIM CDR or RAB Resistivity Time after Bit (hr)SGR Total Gamma Ray (API units)T2 T2 Distribution (%)T2LM T2 Logarithmic Mean (ms)THOR Thorium (ppm)TNPH Thermal Neutron Porosity (%)TNRA Thermal RatioURAN Uranium (ppm)OCEAN DRILLING PROGRAMADDITIONAL ACRONYMS AND UNITS(PROCESSED LOGS FROM GEOCHEMICAL TOOL STRING)AL2O3 Computed Al2O3 (dry weight %)AL2O3MIN Computed Al2O3 Standard Deviation (dry weight %) AL2O3MAX Computed Al2O3 Standard Deviation (dry weight %) CAO Computed CaO (dry weight %)CAOMIN Computed CaO Standard Deviation (dry weight %) CAOMAX Computed CaO Standard Deviation (dry weight %) CACO3 Computed CaCO3 (dry weight %)CACO3MIN Computed CaCO3 Standard Deviation (dry weight %) CACO3MAX Computed CaCO3 Standard Deviation (dry weight %) CCA Calcium Yield (decimal fraction)CCHL Chlorine Yield (decimal fraction)CFE Iron Yield (decimal fraction)CGD Gadolinium Yield (decimal fraction)CHY Hydrogen Yield (decimal fraction)CK Potassium Yield (decimal fraction)CSI Silicon Yield (decimal fraction)CSIG Capture Cross Section (capture units)CSUL Sulfur Yield (decimal fraction)CTB Background Yield (decimal fraction)CTI Titanium Yield (decimal fraction)FACT Quality Control CurveFEO Computed FeO (dry weight %)FEOMIN Computed FeO Standard Deviation (dry weight %) FEOMAX Computed FeO Standard Deviation (dry weight %) FEO* Computed FeO* (dry weight %)FEO*MIN Computed FeO* Standard Deviation (dry weight %) FEO*MAX Computed FeO* Standard Deviation (dry weight %) FE2O3 Computed Fe2O3 (dry weight %)FE2O3MIN Computed Fe2O3 Standard Deviation (dry weight %) FE2O3MAX Computed Fe2O3 Standard Deviation (dry weight %) GD Computed Gadolinium (dry weight %)GDMIN Computed Gadolinium Standard Deviation (dry weight %) GDMAX Computed Gadolinium Standard Deviation (dry weight %) K2O Computed K2O (dry weight %)K2OMIN Computed K2O Standard Deviation (dry weight %)K2OMAX Computed K2O Standard Deviation (dry weight %) MGO Computed MgO (dry weight %)MGOMIN Computed MgO Standard Deviation (dry weight %) MGOMAX Computed MgO Standard Deviation (dry weight %)S Computed Sulfur (dry weight %)SMIN Computed Sulfur Standard Deviation (dry weight %) SMAX Computed Sulfur Standard Deviation (dry weight %)SIO2 Computed SiO2 (dry weight %)SIO2MIN Computed SiO2 Standard Deviation (dry weight %) SIO2MAX Computed SiO2 Standard Deviation (dry weight %) THORMIN Computed Thorium Standard Deviation (ppm) THORMAX Computed Thorium Standard Deviation (ppm)TIO2 Computed TiO2 (dry weight %)TIO2MIN Computed TiO2 Standard Deviation (dry weight %) TIO2MAX Computed TiO2 Standard Deviation (dry weight %) URANMIN Computed Uranium Standard Deviation (ppm) URANMAX Computed Uranium Standard Deviation (ppm) VARCA Variable CaCO3/CaO calcium carbonate/oxide factor。
欧圣 手持控制器 HBA 使用说明书
These operating instructions are valid only in connection with the data sheet of the rele-vant hand-held pendant station HBA and with the operating instructions of the relevant HBA handwheel!Correct useMachine installations in manual mode can be operated with hand-held pendant stations.Handwheels are used as part of an overall higher-level control system.Their use, installation and operation are permissible only in conformity with these operating instructions.Incorrect useHand-held pendant stations on their own must not be used as safety components for avoiding hazar-dous states in a machine installation.General functionHand-held pendant stations make it possible to operate a machine installation, for instance, in manual mode.Function of individual componentsThe hand-held pendant station may consist of the following components: HandwheelEMERGENCY-STOP device Enabling switches Selector switches PushbuttonsHBA handwheelThe electronic HBA handwheel is a universal pulse generator for manual shaft positioning.An output of 100 or 25 square-wave pulses per revolution is available. A second phase-shifted output allows the connected controller to detect the direction of movement.The pulses are evaluated in the controller.For details, please see the Electronic HBA handwheel operating instructions.EMERGENCY-STOP deviceThe EMERGENCY-STOP device is designed to be mani-pulation-proof in accordance with IEC 60947-5-1/EN ISO 13850.Enab ling switches, selector switches,pushbuttonsThese components are used to transfer additional information to the higher-level machine controller.AssemblyHand-held pendant stations are not used exclusively at a single site. The stations can be stored using a mounting magnet on the rear of the device or a holder.Electrical connectionAlways shield connecting leads.Ground the shield at the open end of the lead at a central grounding point, e.g. in the distribution board or in the control cabinet, over a large sur-face, with low resistance and with low inductance. In the case of leads with plug connectors, ensure that the connection type is EMC-compliant.Original connecting leads must not be shortened. G iven an extension or other modification to the connection cable, the operator must ensure that the valid EMC protection requirements are observed. Do not install connecting leads in the immediate vicinity of interference sources.Authorization according to:Operation with UL-class 2 power supply only.Connection leads of hand-held pendant stations in-stalled at the application site must be separated from all movable and permanently installed leads and non-insulated active parts of other installation parts which operate with a voltage of over 150 V, in such a way that a constant clearance of 50.8 mm is observed. This does not apply if the movable leads are equipped with suitable insulation materials which possess an identical voltage stability to the other relevant installation parts or higher.Service and inspectionEUCHNER handwheels require no maintenance.Handwheels may only be repaired by the manufac-turer.To clean the handwheels, only use solvent-free cle-aning agents and a soft cloth.Disclaimer of liabilityThe company is unable to accept liability in the following cases:if instructions are not followedif the safety instructions are not followedif the units are electrically connected by unautho-rised personnelif any external intervention occursDo not open hand-held pendant stations!Do not throw or drop the hand-held pendant stati-ons!LISTEDPOW. CONV. EQ.82HAEUCHNER GmbH + Co. KG Kohlhammerstra ße 16D-70771 Leinfelden-Echterdingen Tel. +49/711/75 97-0Fax +49/711/75 33 16www.euchner.de ***************S u b j e c t t o t e c h n i c a l m o d i f i c a t i o n s ; n o r e s p o n s i b i l i t y i s a c c e p t e d f o r t h e a c c u r a c y o f t h i s i n f o r m a t i o n .© E U C H N E R G m b H + C o . K G072850-05-02/12 (T r a n s l a t i o n o f t h e o r i g i n a l o p e r a t i n g i n s t r u c t i o n s )ColourGrey RAL 7040/Black RAL 9004Weight1.3 kg Operating temperature 0 °C ... +50 °C Storage temperature -20 °C ... +50 °CHumidity, max.80 %(condensation not permissible)Degree of protection to the frontIn accordance with EN60529 / IEC529IP 65In accordance with NEMA 250-12Resistance to vibrationVibrations (3 axes)DIN/IEC 68-2-6Shock (3 axes)DIN/IEC 68-2-27EMC protection requirements EN 61000-6-2in accordance with CEEN 61000-6-4Switching elements Max. 2 NC contactsUtilization categoryDC-13according to IEC 60947-5-1U e =24 V / I e= 3 A Resistive loadAC 30 V / 0.4 ADC 30 V / 0.1 A Switching voltage, max.30 V DC Switching current, max.0.1 A Switching capacity, max.1 VA see wiring diagramSwitching voltage, max.25 V Switching capacity, max.0,2 VAwww.euchner.deTechnical data, handwheelSee relevant operating instructions for HBA hand-wheel.AccessoriesSee EUCHNER catalogue for hand-held pendant stations or www.euchner.de.。
机械原理术语英汉对照
机械原理重要名词术语中英文对照表Aarchimedes worm 阿基米德蜗杆BFifth-power polynomial motion 五次多项式运动规律oscillating follower 摆动从动件cam with oscillating follower 摆动从动件运动规律oscillating guide-bar mechanism 摆动导杆机构cycloidal gear 摆线齿轮cycloidal motion 摆线运动规律cycloidal-pin wheel 摆线针轮angle of contact 包角back cone 背锥back angle 背锥角back cone distance 背锥距scale 比例尺closed kinematic chain 闭式运动链closed chain mechanism 闭式链机构arm 臂部modified gear 变位齿轮modification coefficient 变位系数standard spur gear 标准直齿轮combine in parallel 并联式组合amount of unbalance 不平衡量intermittent gearing不完全齿轮wave generator 波发生器number of waves 波数Cgeneva wheel 槽轮geneva mechanism 槽轮机构groove cam 槽凸轮backlash 侧系differential gear train 差动轮系differential screw mechanism 差动螺旋机构differentials 差速器space 齿槽space width 齿槽宽addendum 齿顶高addendum circle 齿顶圆dedendum 齿根高dedendum circle 齿根圆thickness 齿厚circular pitch 齿距face width 齿宽tooth profile 齿廓tooth curve 齿廓曲线gear 齿轮pinion and rack 齿轮齿条机构pinion cutter 齿轮插刀hob,hobbing cutter 齿轮滚刀gears 齿轮机构blank 齿轮轮坯teeth number 齿数gear ratio 齿数比rack 齿条rack cutter 齿条插刀coincident points 重合点contact ratio 重合度transmission ratio, speed ratio 传动比transmission angle 传动角combine in series 串连式组合driven pulley 从动带轮driven link, follower 从动件width of flat-face 从动件平底宽度follower dwell 从动件停歇follower motion 从动件运动规律driven gear 从动轮Dbelt drives 带传动belt pulley 带轮universal joint 单万向联轴节unit vector 单位矢量equivalent spur gear 当量齿轮equivalent teeth number 当量齿数equivalent coefficient of friction 当量摩擦系数cutter 刀具lead 导程lead angle 导程角constant acceleration and deceleration motion 等加速等减速运动规律constant diameter cam等径凸轮constant breadth cam 等宽凸轮uniform motion, constant velocity motion等速运动规律equivalent link 等效构件equivalent force 等效力equivalent moment 等效力矩equivalent mass 等效质量equivalent moment of inertia 等效惯性力lower pair 低副clearance 顶隙ordinary gear train 定轴轮系dynamic balance 动平衡dynamic balancing machine 动平衡机dynamic characteristics 动态特性dynamic reaction 动压力dynamic load 动载荷transverse plane 端面transverse parameters 端面参数transverse circular pitch 端面齿距transverse contact ratio 端面重合度transverse module 端面模数transverse pressure angle 端面压力角inline roller follower对心滚子从动件inline flat-faced follower 对心平底从动件inline slider crank mechanism对心曲柄滑块机构in-line translating follower对心移动从动件polynomial motion 多项式运动规律rotor with several masses 多质量转子idler gear 惰轮Fgenerating line 发生线generating plane 发生面normal plane法面normal paramenters 法面参数normal circular pitch 法面齿距normal module 法面模数normal pressure angle 法面压力角feedback combining 反馈式组合inverse cam mechanism 反凸轮机构inverse (backward) kinematics 反向运动学kinematic inversion 反转法generating 范成法form cutting 仿形法flywheel飞轮moment of flywheel 飞轮距nonstandard gear非标准齿轮aperiodic speed fluctuation 非周期性速度波动noncircular gear非圆齿轮standard pitch line分度线standard pitch circle分度圆standard pitch cone分度圆锥planetary differential封闭差动轮系additional mechanism附加机构compound hinge 复合铰链compound combining复合式组合compound screw mechanism复式螺旋机构complex mechanism复杂机构Ginterference干涉rigid circular spline刚轮body guidance mechanism 刚体导引机构rigid impulse (shock) 刚性冲击rigid rotor 刚性转子higher pair高副grashoff’s law 格拉晓夫定理undercutting根切working space工作空间effective resistance工作阻力effective resistance moment工作阻力矩working stroke 工作行程common normal line 公法线general constraint公共约束metric gears公制齿轮power 功率conjugate profiles共轭齿廓conjugate cam共轭凸轮link 构件fixed link, frame 固定构件jointed manipulator关节型操作器inertia force惯性力partial balance of shaking force 惯性力部分平衡moment of inertia, shaking moment惯性力矩balance of shaking force 惯性力平衡full balance of shaking force 惯性力完全平衡path generator轨迹发生器hob,hobbing cutter滚刀roller滚子radius of roller 滚子半径roller follower 滚子从动件undercutting 过度切割Hfunction generator函数发生器interchangeable gears互换性齿轮slider 滑块return,return-stroke 回程compound gear train 复合轮系Jmechanism 机构analysis of mechanism机构分析balance of balance机构平衡mechanism机构学kinematic design of mechanism机构运动设计kinematic diagram 机构运动简图synthesis of mechanism机构综合constitution of mechanism机构组成frame,fixed link机架kinematic inversion 机架变换machine机器robot 机器人manipulator 机器人操作器robotics 机器人学machinery 机械dynamic analysis of machinery机械动力分析dynamic design of machinery 机械动力设计dynamics of machinery 机械动力学mechanical advantage机械利益balance of machinery 机械平衡manipulator机械手mechanical behavior 机械特性mechanical efficiency机械效率mechanisms and machine theory, theory of mechanisms and machines机械原理coefficient of speed fluctuation机械运转不均匀系数fundamental mechanism 基础机构base circle基圆radius of base circle 基圆半径base pitch 基圆齿距pressure angle of base circle 基圆压力角base cylinder 基圆柱base cone 基圆锥quick-return mechanism 急回机构quick-return characteristics 急回特性quick-return motion 急回运动ratchet棘轮ratchet mechanism棘轮机构pawl 棘爪extreme position极限位置crank angle between extreme positions 极位夹角computer aided design计算机辅助设计computer integrated manufacturing system 计算机集成制造系统acceleration加速度acceleration analysis加速度分析acceleration diagram 加速度曲线knife-edge follower尖底从动件intermittent motion mechanism 间歇运动机构simple harmonic motion (SHM for short) 简谐运动involute helicoid 渐开线螺旋面involute 渐开线involute profile 渐开线齿廓involute gear 渐开线齿轮generating line of involute 渐开线发生线involute equation 渐开线方程involute function 渐开线函数involute worm 渐开线蜗杆pressure angle of involute 渐开线压力角simple harmonic motion 简谐运动cross-belt drive交叉带传动crossed helical gears交错轴斜齿轮angular acceleration 角加速度angular velocity 角速度angular velocity ratio 角速比correcting plane校正平面structure 结构structural and mechanical error 结构误差pitch point 节点pitch line节线pitch circle 节园thickness on pitch circle 节园齿厚pitch diameter节圆直径pitch cone 节圆锥pitch cone angle节圆锥角analytical design 解析设计diametral pitch 径节clearance 径向间歇static balance 静平衡passive degree of freedom 局部自由度absolute motion 绝对运动absolute velocity 绝对速度load balancing mechanism 均衡装置Kopen-belt drive 开口传动open kinematic chain 开式链open chain mechanism 开式链机构spatial mechanism 空间机构spatial linkages 空间连杆机构spatial cams 空间凸轮机构spatial kinematic pair 空间运动副spatial kinematic chain 空间运动链block diagram 框图Lpitch curve 理论廓线force 力force polygon 力多边形force-closed cam mechanism 力封闭型凸轮机构moment 力矩equilibrium 力平衡couple [of forces], couples 力偶moment of couple 力偶矩connecting rod, couple 连杆linkages 连杆机构couple curve 连杆曲线line of centers 连心线chain wheel 链轮two-dimensional cam 两维凸轮critical speed 临界转速six-bar linkage 六杆机构blank 轮坯gear train 轮系screw 螺杆thread pitch 螺矩nut, screw nut螺母thread of a screw 螺纹helical pair 螺旋副screw mechanism 螺旋机构helical angle 螺旋角helix, helical line 螺旋线Mmodule 模数friction摩擦friction angle 摩擦角friction force 摩擦力friction moment 摩擦力矩coefficient of friction 摩擦系数friction circle 摩擦圆end-effector 末端执行器objective function 目标函数Nmechanism with flexible elements 挠性机构flexible rotor 挠性转子internal gear 内齿轮ring gear 内齿圈engaging-out啮出engagement, meshing engagement, meshing 啮合meshing point 啮合点angle of engagement 啮合角contacting line, pressure line, line of engagement 啮合线length of contacting line 啮合线长度engaging-in啮入nomogram诺模图Pdisk cam 盘形凸轮parabolic motion抛物线运动belt pulley 皮带轮offset distance 偏距offset circle 偏距圆eccentric 偏心盘offset roller follower 偏置滚子从动件offfser knife-edge follower 偏置尖底从动件offset flat-face follower 偏置平底从动件offset slider-crank mechanism 偏置曲柄滑块机构frequency频率flat belt drive 带传动flat-face follower 平底从动件face width 平底宽度balance 平衡balancing machine 平衡机balancing quality 平衡品质correcting plane 平衡平面balance mass, quality of mass 平衡质量counterweight 平衡重balancing speed 平衡转速planar pair, flat pair 平面副planar mechanism 平面机构planar kinematic pair 平面运动副planar linkage 平面连杆机构planar cam 平面凸轮parallel helical gears 平行轴斜齿轮Qother mechanism most in use 其它常用机构starting period 起动阶段pneumatic mechanism 气动机构singular position 奇异位置initial contact ,beginning of contact 起始啮合点forced vibration 强迫振动depth of cut 切齿深度crank 曲柄grashoff’s law曲柄存在条件rotation guide-bar mechanism 转动导杆机构slider-crank mechanism 曲柄滑块机构crank-rocker mechanism曲柄摇杆机构curvature曲率radius of curvature 曲率半径curved-shoe follower曲面从动件curve matching 曲线拼接driving force驱动力driving moment 驱动力矩whole depth全齿高spherical pair球面副spherical involute 球面渐开线spherical motion球面运动sphere-pin pair球销副polar coordinate manipulator球坐标操作器Rherringbone gear,double helical gear 人字齿轮redundant degree of freedom 冗余自由度flexspline 柔轮flexible impulse, soft shock 柔性冲击flexible manufacturing system 柔性制造系统flexible automation 柔性自动化Sthree-dimensional cam 三维凸轮kennedy’s theorem,theorem of three centers 三心定理planetary drive with small teeth difference 少齿差行星传动design variable 设计变量rise 升程cam profile 实际廓线real part 实部vector矢量output work输出功output link 输出构件output mechanism 输出机构output torque 输出力矩output shaft 输出轴input link 输入构件mathematical model 数学模型double-slider mechanism, ellipsograph 双滑块机构double crank mechanism 双曲柄机构constant-velocity universal joints 双万向联轴节double rocker mechanism 双摇杆机构oldham coupling 双转块机构instantaneous center 瞬心dead point 死点four-bar linkage 四杆机构velocity 速度speed fluctuation 速度波动coefficient of speed fluctuation 速度波动系数velocity diagram 速度曲线instantaneous center of velocity 速度瞬心Tstep pulley 塔轮sun gear 太阳轮characteristics 特性equivalent mechanism 替代机构governor调速器stopping phase 停车阶段dwell 停歇synchronous belt drive同步带传动cam 凸轮cams, cam mechanism 凸轮机构cam profile 凸轮(实际)廓线layout of cam profile 凸轮廓线绘制pitch curve 凸轮理论廓线graphical design 图解设计rise 推程Wexternal gear 外齿轮external force 外力universal joint, hooke’s coupling 万向联轴节wrist 腕部reciprocating motion 往复移动differential screw mechanism 差动螺旋机构displacement 位移displacement diagram 位移曲线pose, position and orientation 位姿steady motion period 稳定运转阶段robust design 稳健设计worm 蜗杆worm gearing 蜗杆传动机构number of threads 蜗杆头数diametral quotient 蜗杆直径系数worm and worm gear 蜗杆蜗轮机构worm gear 蜗轮Xcrank arm, planet carrier 系杆field balancing 现场平衡centrifugal force 离心力relative velocity 相对速度relative motion 相对运动pinion 小齿轮harmonic drive 谐波传动helical gear 斜齿圆柱齿轮stroke 工作行程coefficient of travel speed variation, advance-to return-time ratio 行程速比系数planet gear 行星轮planet gear train行星轮系planet carrier 行星架form-closed cam mechanism 形封闭凸轮机构virtual reality 虚拟现实redundant constraint 虚约束imaginary part 虚部allowable amount of unbalance 许用不平衡量allowable pressure angle 许用压力角circulating power load 循环功率流Ypressure angle 压力角jacobi matrix 雅克比矩阵rocker 摇杆hydrodynamic drive 液力传动hydraulic mechanism 液压机构reciprocating follower 移动从动件sliding pair, prismatic pair移动副prismatic joint 移动关节wedge cam 移动凸轮increment or decrement work 盈亏功optimal design 优化设计detrimental resistance有害阻力simple harmonic motion 余弦加速度运动round belt drive 圆带传动circular gear 圆形齿轮cylindric pair 圆柱副cylindrical cam 圆柱凸轮cylindrical worm 圆柱蜗杆cylindrical coordinate manipulator 圆柱坐标操作器bevel gears 圆锥齿轮机构cone angle 圆锥角driving link 原动件constraint 约束constraint condition 约束条件jerk 跃度jerk diagram 跃度曲线kinematic inversion 运动倒置kinematic analysis 运动分析kinematic pair 运动副moving link 运动构件kinematic diagram 运动简图kinematic chain 运动链motion skewness 运动失真kinematic design 运动设计cycle of motion 运动周期kinematic synthesis 运动综合coefficient of velocity fluctuation 运动不均匀系数Zload 载荷generating 展成法,范成法tension pulley 张紧轮vibration 振动shaking couple 振动力矩frequency of vibration 振动频率amplitude of vibration 振幅tangent mechanism正切机构direct (forward ) kinematics 正向运动学sine generator, scotch yoke 正弦机构spur gear 直齿圆柱齿轮cartesian coordinate manipulator 直角坐标操作器diametral quotient 直径系数mass-radius product 质径积mid-plane 中间平面center distance 中心距center distance change 中心距变动central gear 中心轮final contact,end of contact 终止啮合点periodic speed fluctuation 周期性速度波动epicyclic gear train 周转轮系toggle mechanism 肘形机构shaft angle 轴角axial thrust load 轴向分力driving gear 主动齿轮driving pulley主动带轮rotating guide-bar mechanism 转动导杆机构revolute pair 转动副revolute joint 转动关节rotor 转子balance of rotor 转子平衡assembly condition 装配条件bevel gear 锥齿轮common apex of cone 锥顶cone distance 锥距cone pulley 锥轮sub-mechanism 子机构automation 自动化self-locking 自锁degree of freedom (dof for short )自由度total contact ratio 总重合度resultant force 总反力overlap contact ratio 纵向重合度combined mechanism 组合机构minimum teeth number 最少齿数minimum radius 最小向径applied force 作用力coordinate frame 坐标系。
裴攀-翻译中文
第6章光源和放大器在光纤系统,光纤光源产生的光束携带的信息。
激光二极管和发光二极管是两种最常见的来源。
他们的微小尺寸与小直径的光纤兼容,其坚固的结构和低功耗要求与现代的固态电子兼容。
在以下几个GHz的工作系统,大部分(或数Gb /秒),信息贴到光束通过调节输入电流源。
外部调制(在第4、10章讨论)被认为是当这些率超标。
我们二极管LED和激光研究,包括操作方法,转移特性和调制。
我们计划以获得其他好的或理念的差异的两个来源,什么情况下调用。
当纤维损失导致信号功率低于要求的水平,光放大器都需要增强信号到有效的水平。
通过他们的使用,光纤链路可以延长。
因为光源和光放大器,如此多的共同点,他们都是在这一章处理。
1.发光二极管一个发光二极管[1,2]是一个PN结的半导体发光时正向偏置。
图6.1显示的连接器件、电路符号,能量块和二极管关联。
能带理论提供了对一个)简单的解释半导体发射器(和探测器)。
允许能带通过的是工作组,其显示的宽度能在图中,相隔一禁止区域(带隙)。
在上层能带称为导带,电子不一定要到移动单个原子都是免费的。
洞中有一个正电荷。
它们存在于原子电子的地点已经从一个中立带走,留下的电荷原子与净正。
自由电子与空穴重新结合可以,返回的中性原子状态。
能量被释放时,发生这种情况。
一个n -型半导体拥有自由电子数,如图图英寸6.1。
p型半导体有孔数自由。
当一种P型和一种N型材料费米能级(WF)的P和N的材料一致,并外加电压上作用时,产生的能垒如显示的数字所示。
重参杂材料,这种情况提供许多电子传到和过程中需要排放的孔。
在图中,电子能量增加垂直向上,能增加洞垂直向下。
因此,在N地区的自由电子没有足够的能量去穿越阻碍而移动到P区。
同样,空穴缺乏足够的能量克服障碍而移动进入n区。
当没有外加电压时,由于两种材料不同的费米能级产生的的能量阻碍,就不能自由移动。
外加电压通过升高的N端势能,降低一侧的P端势能,从而是阻碍减小。
如果供电电压(电子伏特)与能级(工作组)相同,自由电子和自由空穴就有足够的能量移动到交界区,如底部的数字显示,当一个自由电子在交界区遇到了一个空穴,电子可以下降到价带,并与空穴重组。
整体立铣刀圆弧刃前刀面的磨削轨迹算法
机械设计与制造Machinery Design & Manufacture147第6期2021年6月整体立铳刀圆弧刃前刀面的磨削轨迹算法张潇然,罗斌,陈思远,程雪峰(西南交通大学机械工程学院,四川成都610031)摘要:针对圆弧立铳刀磨削中周齿前刀面与端齿前刀面的过渡问题,提出磨削圆弧刃前刀面的砂轮轨迹算法,以此实现 周齿与端齿前刀面的光滑连接。
定义了一种切深磨削点轨迹曲线,可以同时约束圆弧前刀面的宽度和前角;定义了圆弧刃在平面中的瞬时前刀面,计算在瞬时前刀面中的砂轮磨削轨迹和姿态,再经过空间坐标变换,得出砂轮实际加工轨迹。
通过C++将算法编写为相应程序,进行仿真和实际加工验证,所得验证结果证明了该方法的正确性和可行性。
关键词:立铳刀;磨削加工;端齿圆弧刃;前刀面中图分类号:TH16;TH161 文献标识码:A 文章编号:1001-3997(2021)06-0147-03The Grinding Algorithm for the Rake Face of the Arc Edge of the Integral End MillZHANG Xiao-ran, LUO Bin, CHEN Si-yuan, CHENG Xue-feng(School of Mechanical Engineering , Southwest Jiaotong University, Sichuan Chengdu 610031, China)Abstract :A iming at the transition problem between the rake f ace of p eripheral f lank and the rake f ace of e nd tooth in the circulararc end mill, proposing a grinding algorithm f or the rake face of the arc edge that can achieve smooth connection between thetwo. Defines a depth-of-depth curve that can simultaneously constrain the width and rake angle of t he arc rake f ace. Defines theinstantaneous rake f ace of the arc edge and calculates the grinding path and attitude of t he grinding wheel in it. After the space coordinate transformation, the actual machining track of t he grinding wheel is obtained. Programming the algorithm into corre sponding p rogram by C++, and p erformming the simulation and p rocessing verification. The obtained results prove the correctnessand f easibility of t he algorithm.Key Words :End Mill ; Grinding ; Arc Edge ; Rake Face1引言圆弧头立铳刀是目前常见的高速切削刀具,具有制造成本低、材料切除率大等特点。
塑料模专业英语
塑料模专业英语——其实世界上最美的景色就是落日与朝阳偶的小小愿望就是和你一起走过这片美丽的景色1、ejector unit顶出单元,包括一切有顶出功能的零件:ejector pin, ejector plate,ejector sleeve,ejector rod,ejector leader busher顶出导销(顶出板导杆)的衬套,也叫ejector guide bush ejector stopper,用于顶出制动的,或限位的ejector pin retaining plate:顶针固定板。
ejector guide pin:顶出导销,字面意义就是顶出时起导向作用的那个针(杆、销钉)2、dual color injection machine for Plate(sheet)-Shaped平板雙射成型機3、weldline夹纹是指熔接线4、electrode :电极5、气纹:gas mark6、Unless you are Amish, you probably come into direct contact with injection molded products constantly. Even if you are Amish, you could very well come in contact with an injection molded product, such as an armrest on a bus or train.位于宾夕法尼亚州的Amish人聚居地,维护了特别和保守的农业生活方式,因为他们与世隔绝的生活方式与陶渊明笔下的那个虚幻的世界如出一辙。
除非你是Amish人那样的原始,否则生活中不可能没有注塑产品以及与之相关的生产制造。
就算你是Amish人,你也应该会很容易的接触到类似的(人工)塑料制品,例如在一辆公共汽车或火车上的一个扶手。
7、texturing就是咬花8、ejector marks 顶白不用翻译那个白字,就是顶出在制品表面产生的一个痕迹,白色只是应力的一个表现9、飞边也叫毛边、披峰,可以说成flash也可以说成burr“皮纹”:TEXTURE顶出机构:ejector mechanism10、fitter:装配工,钳工,网上都用这个个人感觉,对于模具专业直接用die makeer、mold maker、tooling maker效果更好11、Some Typical ComplicationsBurned or Scorched Parts: Melt temperature may be too high. Polymer may be becoming trapped and degrading in the injection nozzle. Cycle time may be too long allowing the resin to overheat.Warpage of Parts: Uneven surface temperature of the molds. Non-uniform wall thickness of mold design.Surface Imperfections: Melt temperature may be too high causing resin decomposition and gas evolution (bubbles). Excessive moisture in the resin. Low pressure causing incomplete filling of mold.Incomplete Cavity Filling: Injection stroke may be too small for mold (ie. not enough resin is being injected). Injection speed may be too slow causing freezing before mold is filled.典型并发症:烧焦:塑料熔化温度过高。
导电氧化铋薄膜的逆自旋霍尔效应
㊀第40卷㊀第10期2021年10月中国材料进展MATERIALS CHINAVol.40㊀No.10Oct.2021收稿日期:2021-01-25㊀㊀修回日期:2021-02-10基金项目:国家自然科学基金面上项目(11874098);兴辽英才计划资助项目(XLYC1807156);中央高校基本科研业务费专项资金资助项目(DUT20LAB111)第一作者:王孟怡,女,1995年生,硕士研究生通讯作者:邱志勇,男,1978年生,教授,博士生导师,Email:qiuzy@DOI :10.7502/j.issn.1674-3962.202101019导电氧化铋薄膜的逆自旋霍尔效应王孟怡,邱志勇(大连理工大学材料科学与工程学院三束材料改性教育部重点实验室辽宁省能源材料及器件重点实验室,辽宁大连116000)摘㊀要:自旋霍尔效应及其逆效应作为自旋电子学中实现自旋-电荷转换的核心物理效应,对纯自旋流的产生㊁探测有着重要的应用价值,是自旋电子器件开发与应用的关键技术节点㊂对高自旋-电荷转换效率材料体系的探索与开发是该领域的核心课题㊂以导电氧化铋薄膜为对象,研究其中的逆自旋霍尔效应㊂采用交流磁控溅射系统,使用氧化铋陶瓷靶制备了不同厚度的导电氧化铋薄膜,并与坡莫合金薄膜构成铁磁/非磁双层自旋泵浦器件,在该器件中首次观测并确认了导电氧化铋薄膜中逆自旋霍尔效应所对应的电压信号㊂通过逆自旋霍尔电压对氧化铋薄膜厚度的依存关系,定量地估算了氧化铋薄膜的自旋霍尔角及自旋扩散长度㊂通过提出一种新的具备可观测逆自旋霍尔效应的材料体系,不仅拓展了自旋电子材料的选择空间,也为新型自旋电子器件的设计和应用提供了思路㊂关键词:氧化铋;导电氧化物;逆自旋霍尔效应;自旋霍尔角;自旋扩散长度;自旋泵浦中图分类号:O469㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2021)10-0756-05Inverse Spin Hall Effect of Conductive Bismuth OxideWANG Mengyi,QIU Zhiyong(Key Laboratory of Energy Materials and Devices (Liaoning Province),Key Laboratory of Materials Modificationby Laser,Ion and Electron Beams,Ministry of Education,School of Materials Science and Engineering,Dalian University of Technology,Dalian 116000,China)Abstract :The direct and inverse spin Hall effect is the key effect for spin-charge conversion in spintronics,which plays avital role in the generation and detection of pure spin currents.It is a core issue to develop and explore materials with high spin-charge conversion efficiency.Here,we demonstrate the inverse spin Hall effect in a conductive bismuth oxide.The bis-muth oxide thin films with different thicknesses were prepared from a sintered bismuth oxide target by an rf-sputtering sys-tem.Then,permalloy /bismuth oxide bilayer spin pumping devices were developed,with which voltage signals corresponding to the inverse spin Hall effect were confirmed by the spin pumping technique.Furthermore,by systematical studying of bis-muth-oxide thickness dependence of those spin Hall voltages,the spin Hall angle and spin diffusion length were quantitative-ly estimated.Our results propose a novel system with an observable inverse spin Hall effect,which expands the possibility of spintronic materials and guides a new path for the development of spin-based devices.Key words :bismuth oxide;conductive oxide;inverse spin Hall effect;spin Hall angle;spin diffusion length;spin pumping1㊀前㊀言自旋电子学是以电子的量子自由度自旋为研究核心的新兴科研领域[1]㊂因在电子信息领域中的巨大应用潜力,自旋电子学建立伊始即吸引了众多研究者,现今是凝聚态物理领域不可忽视的科研分支之一㊂凝聚态体系中自旋的产生㊁操纵与检测相关的机理探讨和应用拓展是自旋电子学领域的核心课题[2]㊂本文所讨论的逆自旋霍尔效应即自旋霍尔效应的逆效应,是实现自旋流向电流转换的重要物理效应,其对自旋流特别是纯自旋流的检测有着不可替代的应用价值㊂逆自旋霍尔效应一方面可直接应用于弱自旋流的检测,另一方面也可作为自旋流-电流的转换媒介实现自旋向电荷体系的能量及信息传博看网 . All Rights Reserved.㊀第10期王孟怡等:导电氧化铋薄膜的逆自旋霍尔效应递[3-5]㊂而逆自旋霍尔效应的应用长期受制于自旋流-电流转换效率,即自旋霍尔角[6]㊂因此,新材料体系的探索及高自旋霍尔角材料的开发是逆自旋霍尔效应应用的关键所在㊂由于具有较大的自旋轨道耦合强度,重金属及其合金体系长期以来是高自旋霍尔角材料的研发重点[7-17]㊂其中贵金属Pt和Au的自旋霍尔角在室温附近分别可达11%ʃ8%和11.3%[7,8],是最常用的自旋霍尔材料㊂重金属合金AuW及CuBi报道的自旋霍尔角也达到10%以上[9,10]㊂此外,其它材料如半导体体系也是逆自旋霍尔效应的研究热点㊂2012年,Ando等[18]首次在室温下观测到p型半导体Si中的逆自旋霍尔效应,开拓了半导体中自旋霍尔效应及其逆效应的研究㊂此外,Olejník等[19]在外延的GaAs超薄膜中观测到逆自旋霍尔效应,并估算其自旋霍尔角θSHEʈ0.15%㊂有机聚合物体系中也被发现具有可观测的逆自旋霍尔效应[20,21]㊂Qaid等[20]在导电聚合物PEDOTʒPSS中观测到约2%的自旋霍尔角,进一步拓展了逆自旋霍尔效应的材料空间㊂另一方面,氧化物因其数量庞大的物质群及丰富多变的物理特性,一直以来都是凝聚态物理和材料研究的重点㊂而氧化物具有合成容易㊁性能稳定㊁价格低廉等特点,成为应用型功能材料的优先选项㊂自旋电子学领域的研究者很早就关注并对氧化物中的逆自旋霍尔效应进行了探索㊂在导电氧化物ITO㊁IrO2等材料中先后观测到逆自旋霍尔效应[22-24]㊂其中5d金属氧化物IrO2的自旋霍尔角达到6.5%[24],揭示了重金属氧化物作为自旋功能材料应用的可能,也拓展了氧化物体系中自旋霍尔功能材料的开发方向㊂本工作以导电氧化铋(Bi2O3)薄膜为研究对象,构建并制备了坡莫合金(Py)/Bi2O3的双层自旋泵浦器件㊂并利用自旋泵浦技术对Bi2O3中的逆自旋霍尔效应进行了系统的研究㊂首先在Bi2O3薄膜中观测并确认了逆自旋霍尔效应对应的电压信号;通过对Bi2O3薄膜厚度与信号强度的系统分析,确认该信号与自旋泵浦效应的等效电路模型预测相符;并定量地给出了Bi2O3薄膜的自旋霍尔角和自旋扩散长度㊂2㊀实验原理与方法本工作通过交流磁控溅射由烧结Bi2O3靶材制备了Bi2O3薄膜㊂通过控制成膜时气压(Ar:0.7Pa)及后期真空热处理工艺(<3ˑ10-5Pa,1h@500ħ),在具有热氧化层的硅基板上成功制备了导电Bi2O3薄膜㊂利用四端法确定Bi2O3薄膜的的电导率为2.1ˑ104Ω-1㊃m-1㊂通过改变成膜时间,系统地制备了膜厚范围在12~112nm的Bi2O3薄膜㊂并利用电子束沉积技术将10nm的Py薄膜与Bi2O3膜复合,构建了如图1a所示的Py/Bi2O3双层自旋泵浦器件㊂其中由10nm的Py单层薄膜测得的电导率为1.5ˑ106Ω-1㊃m-1㊂图1b是具有SiO2氧化层的硅基板上沉积的Py/Bi2O3双层膜的X射线衍射图谱,其中Py层与Bi2O3层的厚度分别为10和32nm㊂在2θ=69.1ʎ附近可观测到属于硅基板(400)晶面的强衍射峰;而2θ=27.7ʎ附近可以观测到微弱的特征衍射峰,对比衍射数据库可以判断该衍射峰来源于δ-Bi2O3的(111)晶面;除此之外,无明显可观测的衍射峰,由此判断器件中的Bi2O3为萤石结构的δ-Bi2O3相[25-27],并具备法线方向为[111]的择优取向㊂考虑到测得的薄膜电导率与离子导电的纯δ-Bi2O3的电导率之间存在差异[28],不能排除器件中的Bi2O3薄膜存在氧缺陷或伴生金属铋相从而导致薄膜的电导率上升㊂在衍射图谱中没有明显的氧化硅及Py特征峰,可以归因于氧化硅和Py均为非晶态结构且Py层膜厚过薄㊂图1㊀Py/Bi2O3双层膜器件及自旋泵浦实验设置示意图,H为外加磁场(a);具有SiO2氧化层的硅基板上Py/Bi2O3双层膜的X射线衍射图谱(b)Fig.1㊀Schematic illustration of the Py/Bi2O3bilayer system and spin-pumping set-up,H is the external magnetic field(a);XRD patterns of the Py/Bi2O3bilayer film on an oxidizedsilicon substrate(b)图1a还给出了自旋泵浦实验设置的示意图㊂实验样品置于TE011微波谐振腔中心,微波谐振腔特征频率为9.444GHz,此时样品处微波的电场分量取最小,而磁场分量取最大㊂同时在样品膜面方向上施加外磁场H㊂在微波的交变磁场与外磁场的共同作用下,当微波频率f 与外磁场大小H满足共振条件:757博看网 . All Rights Reserved.中国材料进展第40卷2πf =μ0γH FMR (H FMR +4πM s )(1)Py 中的铁磁共振被激发,其中γ和4πM s 分别是Py 薄膜的有效旋磁比和饱和磁化强度[29]㊂由自旋泵浦模型可知,此时Py 与Bi 2O 3薄膜界面产生自旋积累,纯自旋流J s 将通过界面注入到Bi 2O 3层中[20-22,29-36]㊂由于Bi 2O 3中的逆自旋霍尔效应,该自旋流将被转换为电流,并以电场E ISHE 的形式被检测㊂这里E ISHE :E ISHE ɖJ s ˑσ(2)其中,σ为磁性层的自旋极化矢量,E ISHE ,J s 与σ互为正交矢量时E ISHE 取最大值㊂E ISHE 可以通过Bi 2O 3表面两端的电极测量㊂3㊀结果与讨论图2a 给出了Py /Bi 2O 3双层膜器件中测得的典型铁磁共振微分吸收谱d I (H )/d H ㊂其中I 为微波吸收强度,H 为外磁场强度㊂由共振微分吸收谱可知,在H FMR ʈ99mT时,d I (H )/d H=0,即该磁场强度处微波吸收强度I 达到最大值,为Py 的铁磁共振场㊂图中正负峰值的间距对应图2㊀Py /Bi 2O 3双层膜铁磁共振微分吸收谱d I (H )/d H 和外加磁场H 的依存关系,I 为微波吸收强度(a);Py /Bi 2O 3双层膜中测得的电压信号V 与磁场强度H 的关系图,其微波功率为200mW(图中空心圆为实测数据,红色虚线为Lorentz 及其微分函数的拟合结果,蓝绿虚线分别为拟合曲线中的对称和反对称分量)(b)Fig.2㊀External magnetic field H dependence of the FMR signal d I (H )/d H for the Py /Bi 2O 3bilayer film,I denotes the microwave ab-sorption intensity (a);external magnetic field H dependence of the voltage signal V for the Py /Bi 2O 3bilayer film excited by mi-crowave with a power of 200mW (open circles are the experimen-tal data,the dash curves are the fitting results)(b)铁磁共振线宽W ,对比单层10nm 的Py 薄膜,Py /Bi 2O 3双层膜的铁磁共振线宽W 明显增大,表明在双层膜器件中由于铁磁共振的激发,产生了基于自旋泵浦效应的自旋流[31]㊂该自旋流通过Py /Bi 2O 3界面被注入到Bi 2O 3层㊂如图2b 所示,当固定微波功率为200mW 时,Py /Bi 2O 3双层膜在垂直于外磁场方向上可以测得与铁磁共振相对应的电压信号,其电压峰值对应的磁场基本与铁磁共振场H FMR 相符㊂利用Lorentz 及其微分函数拟合,可以很好地再现电压V 与磁场H 的依存关系(图2b)㊂其中,Lorentz 微分函数的反对称分量通常归因于自旋整流及其他效应的贡献[29,32-34]㊂从拟合参数可知反对称分量在整个电压信号中的占比小于5%㊂而Lorentz 函数的对称分量V s 主要归因于自旋泵浦产生的自旋流所对应的电压,其峰位与铁磁共振场H FMR 完全对应㊂同时考虑到无法排除对称信号中自旋整流效应的贡献,将电压信号中对称分量V s 定义为[28]:V s =V ISHE +V sr ㊂其中V ISHE 为逆自旋霍尔效应对应的电压信号,V sr 对应自旋整流效应的电压信号㊂图3a 和3b 分别给出了在外磁场方向不同的情况下测得的铁磁共振微分吸收谱d I (H )/d H 与电压信号V 对外磁场强度H 与铁磁共振场H FMR 的差值的依存关系图,其中外磁场方向角θH 的定义如图3c 中的插图所示㊂在改变外磁场方向角θH 的情况下,微波微分吸收谱的形状与线宽基本没有发生改变(图3a)㊂而电压信号V 随θH 的变化产生了较大的差异(图3b),当外磁场平行于膜面,即θH =ʃ90ʎ时,电压峰值取最大值,符号相反;当外磁场垂直于膜面,即θH =0ʎ时,电压峰信号消失㊂由式(2)可知,在自旋泵浦实验中逆自旋霍尔效应的信号大小与磁性层中的自旋极化方向相关,即E ISHE ɖsin θM ㊂这里θM 对应铁磁薄膜磁化方向与薄膜法线方向的夹角,可以根据铁磁共振场数据及外磁场方向角θH 计算获得[22,31,35]㊂考虑到薄膜样品中退磁场的影响,当且仅当磁场方向与膜面平行或在法线方向(即θH =ʃ90ʎ,0ʎ)时,铁磁薄膜的磁化方向与外磁场方向相同,此时E ISHE 取正负最大值和零㊂在Py /Bi 2O 3双层膜器件中测得的电压信号很好地符合了该实验模型㊂对所有外磁场方向角θH 下测得的电压数据进行Lorentz 及其微分函数拟合,分离出的电压信号对称分量V s 与外磁场方向角θH 的关系如图3c 所示㊂铁磁层Py 磁化强度M //H eff =H +H M ,这里H 为外加磁场,H M 为Py 薄膜的退磁场㊂V s 的磁场方向角θH 依存可以很好地基于自旋泵浦的动力学模型拟合[22,31,35,36],从而验证了V s中逆自旋霍尔效应的贡献占主导地位㊂857博看网 . All Rights Reserved.㊀第10期王孟怡等:导电氧化铋薄膜的逆自旋霍尔效应图3㊀不同外磁场方向角θH 下Py /Bi 2O 3双层膜的铁磁共振微分吸收谱d I (H )/d H (a)和电压信号V (b)与外磁场强度H 和铁磁共振场H FMR 差值的关系图;电压信号对称分量V s 与外磁场方向角θH 的关系图(实验数据表示为空心菱形,红色实线为拟合结果,插图中定义了外磁场方向角θH )(c)Fig.3㊀H -H FMR dependence of FMR signals d I (H )/d H (a)and voltagesignals V (b)for the Py /Bi 2O 3bilayer film at various out-planemagnetic field angles θH ;the out-plane magnetic field angle θHdependence of V s (the out-plane magnetic field angle θH is deter-mined in the insert)(c)㊀㊀图4a 中给出了在不同微波功率P MW 下的电压信号V 与外磁场H 的依存关系㊂与自旋泵浦模型的预期相符,电压峰值随着P MW 的增加而增大㊂图4b 为电压信号的对称分量V s 与微波功率P MW 的关系㊂由图可见,在微波功率为0~200mW 范围内,V s 与P MW 呈线性关系,与直流自旋泵浦模型的预测一致[22,30,35]㊂图5给出了Py /Bi 2O 3器件中的V s 对Bi 2O 3层厚度d N的依存关系㊂V s 随Bi 2O 3层厚度d N 的增大而减小,这基本可以归因于随Bi 2O 3层厚度d N 增加所导致的器件整体电阻的减小㊂该结果明显区别于Py /Bi 自旋泵浦器件中自旋泵浦信号随Bi层厚度的增加而先增加后减小的结图4㊀不同微波功率P MW 下的Py /Bi 2O 3双层膜的电压信号V 与磁场H 的关系图(a),电压信号对称分量V s 与微波功率P MW 的依存关系图(b)Fig.4㊀External magnetic field H dependence of voltage signals V for thePy /Bi 2O 3bilayer film at various microwave powers P MW (a),the P MW dependence of the voltage signal V s (b)果[37]㊂因此,在这里忽略可能存在的Rashba-Edelstein 效应等界面效应的影响,根据等效电路模型[29,31],同时考虑到Py 层中自旋整流效应的可能贡献,将V s 表示为[29]:V s =V ISHE +V sr=ωθSHE λtanh(d N /2λ)d N σN +d F σF 2e ћ()j 0s +j srd N σN +d F σF(3)其中,d N ㊁d F ㊁σN 和σF 分别表示Bi 2O 3层和Py 层的厚度d 和电导率σ;j 0s 是Py /Bi 2O 3界面处的自旋流密度,可以通过Py 层中铁磁共振线宽W 的变化量计算获得;j sr表示自旋整流效应对应的等效电流㊂利用式(3)对V s 与Bi 2O 3层厚度d N 依存关系的实验数据进行拟合,可以获得Bi 2O 3薄膜中的自旋霍尔角θSHE 及自旋扩散长度λ㊂如图5所示,拟合所得的θSHE 和λ的上限分别为0.7%和6.5nm,而θSHE 和λ的最佳估测值分别为0.5%和3.5nm㊂4㊀结㊀论本工作利用自旋泵浦效应首次在导电Bi 2O 3薄膜中观测并确认了逆自旋霍尔效应㊂在Py /Bi 2O 3双层膜中探测到的电压信号与逆自旋霍尔效应和自旋泵浦效应的模型相符㊂通过系统探讨逆自旋霍尔电压与Bi 2O 3薄膜厚度的关系,定量地给出了导电Bi 2O 3薄膜中的逆自旋霍尔角约为0.5%,自旋扩散长度约为3.5nm㊂导电Bi 2O 3中逆自旋霍尔效应的发现,不仅拓宽了逆自旋霍尔效应957博看网 . All Rights Reserved.中国材料进展第40卷图5㊀Py/Bi2O3双层膜中Bi2O3厚度d N与电压信号对称分量V s的依存关系(实验数据表示为空心圆,实线为式(3)的拟合结果,插图为Py/Bi2O3双层膜系统中考虑了逆自旋霍尔效应和自旋整流效应的等效电路图)Fig.5㊀The experimental and fitting results of Bi2O3thickness d N dependence of V s for the Py/Bi2O3bilayer films(the insert is theequivalent circuit of the Py/Bi2O3bilayer system,in which inversespin Hall effect and spin-rectification effect are both considered)材料的选择范围,也为新型自旋电子器件的设计和应用提供了新的选择㊂参考文献㊀References[1]㊀FLATTE M E.IEEE Transactions on Electron Devices[J],2007,54(5):907-920.[2]㊀TAKAHASHI S,MAEKAWA S.Science Technology Advanced Materi-als[J],2008,9(1):014105.[3]㊀SCHLIEMANN J.International Journal of Modern Physics B[J],2006,20:1015-1036.[4]㊀JUNGWIRTHT,WUNDERLICH J,OLEJNIK K.Nature Materials[J],2012,11(5):382-390.[5]㊀NIIMI Y,OTANI Y.Reports on Progress in Physics[J],2015,78(12):124501.[6]㊀SINOVA J,VALENZUELA S,WUNDERLICH J,et al.Reviews ofModern Physics[J],2015,87(4):1213-1260.[7]㊀SEKI T,HASEGAWA Y,MITANI S,et al.Nature Materials[J],2008,7(2):125-129.[8]㊀ALTHAMMER M,MEYER S,NAKAYAMA H,et al.Physical Re-view B[J],2013,87(22):224401.[9]㊀LACZKOWSKI P,ROJAS-SÁNCHEZ J C,SAVERO-TORRES M,etal.Applied Physics Letters[J],2014,104(14):142403. [10]NIIMI Y,KAWANISHI Y,WEI D H,et al.Physical Review Letters[J],2012,109(15):156602.[11]VLAMINCK V,PEARSON J E,BADER S D,et al.Physical ReviewB[J],2013,88(6):064414.[12]FAN J Y,EOM J.Applied Physics Letters[J],2008,92(14):142101.[13]HAHN C,LOUBENS G,KLEIN O,et al.Physical Review B[J],2013,87(17):174417.[14]MOROTA M,NIIMI Y,OHNISHI K,et al.Physical Review B[J],2011,83(17):174405.[15]MOROTA M,OHNISHI K,KIMURA T,et al.Journal of AppliedPhysics[J],2009,105(7):07C712.[16]PAI C F,LIU L Q,LI Y,et al.Applied Physics Letters[J],2012,101(12):122404.[17]NIIMI Y,MOROTA M,WEI D H,et al.Physical Review Letters[J],2011,106(12):126601.[18]ANDO K,SAITOH E.Nature Communications[J],2012,3(1):629.[19]OLEJNÍK K,WUNDERLICH J,IRVINE A C,et al.Physical ReviewLetters[J],2012,109(7):076601.[20]QAID M M,MAHANI M R,SINOVA J,et al.Physical Review Re-search[J],2020,2(1):013207.[21]QIU Z Y,URUICHI M,HOU D Z,et al.AIP Advances[J],2015,5:057167.[22]QIU Z Y,KAJIWARA Y,ANDO K,et al.Applied Physics Letters[J],2012,100(2):022402.[23]QIU Z Y,HOU D Z,KIKKAWA T,et al.Applied Physics Express[J],2015,8(8):083001.[24]FUJIWARA K,FUKUMA Y,MATSUNO J,et al.Nature Communica-tions[J],2013,4(1):2893.[25]BOYAPATI S W,CHAKOUMAKOS E D,BRYAN C.Solid State Ion-ics[J],2001,138(3/4):293-304.[26]BATTLE P D,CATLOW C R A,DRENNAN J,et al.Journal ofPhysics C:Solid State Physics[J],1983,16(17):561-566. [27]JOLLEY A G,JAYATHILAKE R,WACHSMAN E D,et al.Ionics[J],2019,25(8):3531-3536.[28]LAURENT K,WANG G Y,TUSSEAU-NENEZ S,et al.Solid State I-onics[J],2008,178(33):1735-1739.[29]QIU Z Y,AN T,UCHIDA K,et al.Applied Physics Letters[J],2013,103(18):182404.[30]KAJIWARA Y,HARII K,TAKAHASHI S,et al.Nature[J],2010,464(7286):262-266.[31]ANDO K,TAKAHASHI S,IEDA J,et al.Journal of Applied Physics[J],2011,109(10):103913.[32]BAI L H,HYDE P,GUI Y S,et al.Physical Review Letters[J],2013,111(21):217602.[33]HARDER M,CAO Z X,GUI Y S,et al.Physical Review B[J],2011,84(5):054423.[34]BAI L H,FENG Z,HYDE P,et al.Applied Physics Letters[J],2013,102(24):22402.[35]ANDO K,KAJIWARA K,TAKAHASHI S,et al.Physical Review B[J],2008,78(1):014413.[36]LIN C,MATSUKURA F,OHNO H.Nature Communications[J],2013,4(1):2055.[37]HOU D,QIU Z Y,HARII K,et al.Applied Physics Letters[J],2012,101(4):042403.(编辑㊀吴㊀锐)067博看网 . All Rights Reserved.㊀第10期中国材料进展特约编辑王聪特约编辑雷娜特约编辑刘恩克特约撰稿人方梅特约撰稿人魏大海王㊀聪:北京航空航天大学集成电路科学与工程学院教授,博士生导师㊂1995年在中国科学院物理研究所获得博士学位,曾先后在德国㊁法国㊁美国短期工作㊂长期从事反钙钛矿磁性功能材料㊁反铁磁自旋电子学材料,太阳能光热转换涂层㊁辐射致冷薄膜以及太阳能集热器等的研究㊂在Adv Mater,Phys Rev系列等刊物上发表论文近240篇,SCI他引超过3500次,2020年被评为爱思唯尔(Elsevier)中国被高引学者;授权国家发明专利13项,2012年获得教育部高等学校科学研究优秀成果自然科学二等奖;2020年获得中国材料研究学会科学技术二等奖㊂现兼任中国物理学会理事㊁中国晶体学会理事㊁中国物理学会粉末衍射专业委员会副主任㊁中国材料学会环境材料委员会副主任㊁国家能源太阳能热发电技术研发中心技术委员会委员㊁国际衍射数据中心(ICDD)委员㊁中国物理学会相图委员会委员㊁IEEE PES储能技术委员会(中国)储能材料与器件分委会委员㊂Journal of Solar EnergyResearch Updates主编㊂‘北京航空航天大学学报“‘硅酸盐学报“‘中国材料进展“等杂志编委㊂承担国家 863 项目,国家基金委重点项目等20余项,培养博士㊁硕士研究生近50名㊂雷㊀娜:女,1981年生,北京航空航天大学集成电路科学与工程学院副教授,博士生导师㊂主要研究方向为低维磁性材料的自旋调控,围绕电控磁的低功耗自旋存储与自旋逻辑器件方面取得一定成果,发表相关SCI论文30余篇,包括Nat Commun3篇,Phys Rev Lett,Phys RevAppl,Nanoscale各1篇等㊂其中1篇Nat Com-mun文章为ESI高被引论文;Phys Rev Appl上文章被编辑选为推荐文章㊂刘恩克:男,1980年生,中国科学院物理研究所研究员,博士生导师㊂2012年于中国科学院物理研究所获得博士学位,获中科院院长奖学金特别奖㊁中科院百篇优秀博士论文奖㊂2016~2018年作为 洪堡学者 赴德国马普所进行研究访问,合作导师为Claudia Felser和StuartParkin教授㊂主要从事磁性相变材料㊁磁性拓扑材料㊁磁性拓扑电/热输运等研究㊂在国际上首次实现了磁性外尔费米子拓扑物态,提出了全过渡族Heusler合金新家族,发现了 居里温度窗口 效应,提出了等结构合金化 方法等㊂已在Science,NatPhys,Nat Commun,SciAdv,PRL等期刊上发表学术论文200篇㊂曾获国家基金委 优青 基金㊁中科院青促会优秀会员基金㊁国家自然科学二等奖(4/5)等㊂方㊀梅:女,1984年生,中南大学物理与电子学院副教授,硕士生导师㊂长期从事功能薄膜㊁自旋电子器件的设计㊁制备与表征的研究工作,探索自旋电子学相关机理㊂以第一作者/通讯作者在Nature Com-munications(2篇)㊁Physical Review Applied,APL Materials,AppliedPhysics Letters等国际期刊上发表学术论文20余篇,获得国家授权发明专利1项㊂主持国家自然科学基金青年项目㊁湖南省自然基金面上项目㊁中国博士后科学基金一等资助和特别资助㊁中南大学 猎英计划 等项目多项㊂兼任PhysicalReview Letters,PhysicalReview Applied等10余个国际期刊审稿人㊂魏大海:男,1982年生,2009年博士毕业于复旦大学物理系,现任中国科学院半导体研究所研究员,博士生导师㊂2010~2015年先后在日本东京大学物性研究所㊁德国雷根斯堡大学开展博士后研究㊂主要致力于半导体自旋电子学的物理与器件研究,基于新型自旋电子材料开展注入㊁探测以及调控,通过自旋霍尔效应㊁自旋轨道矩等自旋相关输运现象,探索自旋流的各种新奇特性及其可能的应用㊂在Nature Com-munications㊁Phys RevLett,等期刊上发表40余篇论文㊂曾获 国家海外高层次青年人才 ㊁德国洪堡 学者奖金㊁亚洲磁学联盟青年学者奖,作为负责人入选首批中特约撰稿人邱志勇科院稳定支持基础研究领域青年团队 ,承担十三五 国家重点研发计划 量子调控与量子信息 专项青年项目㊂邱志勇:男,1978年生,大连理工大学材料科学与工程学院教授,博士生导师㊂长期从事功能材料与自旋电子学融合领域的研究工作,近年来在Nature Materi-als,Nature Comm,PRL,ACTA Mater等知名杂志上发表论文60余篇,H因子25,引用2200余次㊂依托材料开发背景,在自旋电子材料及自旋物理方向进行了长期研究,近两年以推进新一代磁存储器技术为目标,致力于反铁磁自旋电子学领域的开拓,取得了基于反铁磁材料的自旋物理及应用相关的一系列先驱性成果㊂167博看网 . All Rights Reserved.。
量子反常霍尔效应的英语
量子反常霍尔效应的英语Quantum Anomalous Hall EffectThe Quantum Anomalous Hall effect (QAHE) is an exotic state of matter, discovered in 2014, that occurs when atwo-dimensional system of electrons is subjected to certain types of magnetic fields that cause the electrons to form tiny vortices. These vortices, or 'globally-coupled spin-orbit excitations', allow electrons to move in a way that would normally be impossible, creating a Hall effect that is not consistent with conventional physics. The QAHE has been proposed as a possible way to create spintronic devices, which could be used to make more efficient electronic components for a variety of applications.The Quantum Anomalous Hall effect is an example of a topological phase of matter, which is characterized by its insensitivity to certain types of perturbations. This means that, unlike conventional material, it is not easily disrupted by slight changes in temperature or pressure. This makes it ideal for applications that require precision and reliability. Furthermore, the QAHE could be used in quantum computing due to its insensitivity to noise and low power requirements.The Quantum Anomalous Hall effect has been observed in avariety of materials, including graphene, bismuth-selenium compounds, and thin films of antimony-tellurium alloys. It has also been proposed as a possible way to createradiation-resistant transistors that could be used in devices such as telecommunication satellites and high-altitude aircraft.The Quantum Anomalous Hall effect is an exciting new discovery, and it may open up new possibilities for technological advances in the near future. For example, spintronic devices based on the QAHE could lead to improved energy efficiency and faster data processing. Furthermore, its potential in quantum computing could revolutionize the way we store and process information. As research continues, it is likely that the QAHE will continue to prove itself as a valuable tool for technological advancement.。
Sidel Universal机器的伸展柱套件说明说明书
UNIVERSAL MACHINES
STRETCH ROD CYLINDER
■ Direct replacement for Sidel® Model Universal Machines
• Direct Replacement • Provides Significantly Longer Life • Reduces Maintenance
DIMENSIONS: ML309397, ML307592, ML308217, & ML309326
ML#308217 with valve, ML#306987 without valve
50x400 Blue (Cold Set CSD)
ML#309326 with valve, ML#307364 without valve
Ø 5.551 [141]
1.378 [35]
2X .916 [23.5] .984 [25] x 45 2.165 [55] 1.673 [42.5]
.886 [22.5] .886 [22.5]
K
2X .197 [5] x 45 1.673 [42.5] 2.165 [55] 1.673 [42.5]
20.870 [530.1]
.394 [10]
7.677 [195]
2X Ø .315 [8] ML#308217 2X Ø .236 [6] ML#309397 & ML#309326
Ø .551 [14]
Ø .315 [8]
8.11 [206.1]
2.486 [63.1]
Z .039 [1] Z
4.409 [112] 4.143 [105.2]
3X .625 [15.9]
亥姆霍茲線圈磁場-物理學系-國立清華大學
實驗:亥姆霍茲線圈磁場(Magnetic fields of Helmholtz coil)編者:國立清華大學物理系戴明鳳編撰日期:99年01月20日一、目的:環形亥姆霍茲線圈對(Helmholtz coil pair)和螺旋線圈(solenoidal coil;又稱螺線管)常被用以提供實驗時所需的均勻磁場,本實驗探討環形亥姆霍茲線圈所產生的磁場在空間中的分佈和均勻度變化。
二、原理:1. 何謂亥姆霍茲線圈?亥姆霍茲線圈是為紀念德國物理學家赫門⋅梵⋅亥姆霍茲(Hermann von Helmholtz)而得名,亥姆霍茲線圈的基本結構如圖1所示,是由兩個結構、大小完全相同的環形線圈組合而成,兩線圈以共軸方式配對架設,並使兩線圈之中心點間的距離等於環形線圈的半徑R 。
線圏內通入相同方向、相同大小的電流;如此可使兩環形線圈的中間區域內,獲得均勻的磁場(以下簡稱均場)。
因由雙線圈所組成,故也稱為亥姆霍茲線圈對。
亥姆霍茲線圈(對)的結構要求:1.兩個完全相同的環形線圈(線圈半徑為R)2.通過線圈圓心的兩垂直中心軸共軸3.兩線圈的中心點距離=線圈半徑,可使磁場的不均勻度最小。
圖1 亥姆霍茲線圈對(Helmholtz coil pair)的結構圖,由兩個完全相同的環形磁性線圈共軸且對稱地座落在實驗空間的左右兩側,並使兩線圈之中心點間的距離等於環形線圈的半徑R 。
以下簡單探討單一線圈和雙線圈組所產生的磁場強度在空間中的變化。
2. 繞有N圈回路的單一場線圈如圖2所示,對於由N圈回路線圈纏繞成半徑為R 的單一場線圈,在通過線圈中心之垂直軸上的磁場(on-axial magnetic field)為x R x NIR B 232220)(2+=μ (1)上式中μ0 = 4π⨯10-7 T ⋅m/A = 1.26⨯10-6 T ⋅m/A 為真空或自由空間的導磁係數(permeability), I 為線圈中流通的電流(以安培,A ,為單位),x 為距線圈中心之垂直距離(以公尺為單位),ˆx為軸向的單位向量。
英文翻译外文文献翻译12Linkages(连杆机构)
录一:中文文献一、联动可能被定义为固体的,或链接,其中每一个环节,是连接通过引脚连接(铰链)或滑动关节至少有两个人组合。
为了满足这一定义,必须形成一个联动层出不穷,或关闭,或一个封闭的链条链系列。
很明显,有许多链接链的行为从为数不多的不同。
这就提出了一个非常重要的问题,关于为运动中的一台机器传输给联动的适用性。
这是否适当取决于链接的数量和接头数量。
二、自由度。
一个三杆机构(含连在一起的三间酒吧)显然是一个僵化的框架,没有相对运动之间的联系是可能的。
来描述一个四连杆机构,有必要才知道之间的任何连接两个角度的联系的相对位置。
(包括固定链接OQ的,在图5c机制四个环节,因此是一个四连杆机构。
)这种联系是说,有一个自由度。
两个角度都必须在指定的五杆机构的联系的相对位置,它有两个自由度三、单自由度运动的联系,制约,也就是说,对所有的链接上所有的点都认为是固定的,确定的其他链接路径。
路径是最容易掌握的或假设上的路径是必要的联系是固定的,然后移动的方式与约束兼容其他环节的可视化。
四、四杆机构。
当一个约束联系的成员之一,是固定的,联动机制,执行变成了机器中的一个有用的机械功能的能力。
在针脚连接联系的输入(驱动器)和输出(跟随者)链接通常枢连接到固定的联系;连接链路(耦合器)通常不投入,也没有输出。
由于任何一个链接可以是固定的,如果链接的不同长度,四个机制,用不同的输入输出关系,每一个都可以得到以四杆机构。
这四个机制是说是基本的联动反转。
五、当最短的链接图11(上)是固定的,链接B和D可以完成革命。
这就是所谓的拖链接机制。
如果曲柄在一个恒定速度b旋转,曲轴D将在同一方向旋转的速度也不同。
通过自身或与其他机制系列,拉杆可以提供有用的运动效果。
在图中,曲柄B是司机,在一个统一的旋转速度逆时针;曲柄D扫过的角度φ,这是只有50度扫描。
这意味着,曲柄d将曲柄移动速度比b当移动从B到B'和比扫过的角度φ,这是只有50度扫描。
斯伯利
2013-5-28
*
在陀螺球的西侧装有两块阻尼重物,共重约30g,用以产生阻尼 力矩。 MK37E型罗经的阻尼因数约为3,阻尼周期为84~120min。 2.垂直环(vertical ring)
垂直环系一铝合金铸件,呈圆环形,它通过水平枢轴装置在叉形 随动环内。
在垂直环的西侧安装E状随动变压器, 在垂直环的东侧安装E形力矩器 电解液水准器安装在垂直环的顶部。
2013-5-28
斯伯利MK37型陀螺罗经的主要技术指标:
1.直航向精度 ± 0.5º
2.适用纬度 3.适用速度 4,环境温度 0º~ 75º(南、北纬) 0 ~ 40 kn -5º ~ 45º C C 正常起动约4h,快速起动约1.5h
5.罗经稳定时间
6.陀螺球寿命
7,船舶电源 直流24V
20 000h
当航向为45º 、135º 、225º 和315º 时,框架误差最大;
当航向为0º 、90º 、180º 和270º 时,框架误差为零。
2013-5-28 *
第三节 电路系统 斯伯利MK37型罗经的电路主要包括: 电源系统、随动系统、传向系统、速纬误差校正电路以及各种工 作方式的控制电路等。 MK37E型所有电路系统的全部元器件均安装在控制与发送器内, 各种开关、指示灯及保险丝均安装在其面板上。 一、电源系统 斯伯利MK37型罗经的电源系统是采用静止式逆变器(static Inverter)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
is produced where chemical potentials for the two spin channels become different at the two edges of the sam-
ple. This interesting phenomenon has been subjected to extensive studies and there are several experiments re-
A very important and interesting issue therefore arises: what are the properties of the fluctuations of spin-Hall conductance in disordered samples? Is there a transport regime where spin-Hall conductance fluctuation is universal? The answers to these questions are non-trivial because the flow of dissipation-less spin-current is qualitatively different from the flow of charge current driven by an external electric field. It is the purpose of this paper to report our investigations of these issues. For a disordered four-terminal sample with a given Rashba SO interaction strength tso, and/or Dresselhaus interaction strength tso2, our results suggest that there is indeed a universal spin-Hall conductance fluctuation (USCF) whose root mean square amplitude is g = 0.18(e/4π), independent of other system details (thus universal). The fluctuation is however a function of the SO interaction strength and found to be well fitted by a functional form of rms(GsH ) = g tanh(|tso − tso2|/0.17). Finally, the distribution of spin-Hall conductance obeys a Gaussian distribution in the metallic regime and deviates from it in the insulating regime.
porting spin accumulation which may have provided evidence of this effect4. It has been shown that for a pure
two dimensional (2d) sample without any impurities, the Rashba SO interaction generates a spin-Hall conductivity having universal value3 of e/8π. It has also been shown that any presence of weak disorder destroys this spin-Hall effect in the large sample limit5,6. On the other
perpendicular to the electric field: such a spin-current is dissipation-less because the external electric field does no
work to the electrons flowing inside conductor sample has a finite x-extent, the flow
the disorder, Fermi energy, and the sample size as long as transport is in the coherent diffusive regime characterized by the relation between relevant length scales, l < L < ξ. Here L is the linear sample size, l the elastic mean free path and ξ the phase coherence length. If time-reversal symmetry is broken, UCF is suppressed by a factor of two.
PACS numbers: 71.70.Ej, 72.15.Rn, 72.25.-b
The notion of dissipation-less spin-current1 has attracted considerable interests recently. In its simplest
form, a spin-current is about the flow of spin-up electrons in one direction, say +x, accompanied by the flow
The University of Hong Kong, Hong Kong, China 2Institute of Physics, Chinese Academy of Sciences, Beijing, China 3Department of Physics, McGill University, Montreal, PQ, Canada
We report a theoretical investigation on spin-Hall conductance fluctuation of disordered four terminal devices in the presence of Rashba or/and Dresselhaus spin-orbital interactions in two dimensions. As a function of disorder, the spin-Hall conductance GsH shows ballistic, diffusive and insulating transport regimes. For given spin-orbit interactions, a universal spin-Hall conductance fluctuation (USCF) is found in the diffusive regime. The value of the USCF depends on the spinorbit coupling tso, but is independent of other system parameters. It is also independent of whether Rashba or Dresselhaus or both spin-orbital interactions are present. When tso is comparable to the hopping energy t, the USCF is a universal number ∼ 0.18e/4π. The distribution of GsH crosses over from a Gaussian distribution in the metallic regime to a non-Gaussian distribution in the insulating regime as the disorder strength is increased.
To investigate USCF, we consider a four terminal device in two dimensions schematically shown in the left inset of Fig.1. We will first discuss the results in the presence of only Rashba interaction. In the presence of Rashba interaction (αsoz · (σ × k)), the Hamiltonian of