14.2 乘法公式(第3课时)PPT课件
最新人教版八年级数学上册《14.2.2 完全平方公式》优质教学课件
2.不能直接应用公式进行计算的式子,可能需要先添 括号变形成符合公式的要求才行 3.弄清完全平方公式和平方差公式不同(从公式结构 特点及结果两方面)
a2+b2=(a+b)2–2ab=(a–b)2+2ab; 4ab=(a+b)2–(a–b)2.
你还有什么疑惑?
请与同伴交流!
(3)(–3a+b)2=9a2–6ab+b2.
探究新知
素养考点 2 利用完全平方公式进行简便计算
例2 运用完全平方公式计算:
(1) 1022;
(2) 992.
解: 1022 = (100+2)2 =10000+400+4 =10404.
992 = (100 –1)2 =10000 –200+1
=9801.
探究新知
想一想 下面各式的计算是否正确?如果不正确,应当 怎样改正?
(1)(x+y)2=x2 +y2 ×
(x +y)2 =x2+2xy +y2
(2)(x –y)2 =x2 –y2 ×
(x –y)2 =x2 –2xy +y2
(3) (–x +y)2 =x2+2xy +y2 × (–x +y)2 =x2 –2xy +y2
(2)原式=20162–2×2016×2015+20152
=(2016–2015)2=1.
探究新知
素养考点 3 利用完全平方公式的变形求整式的值
例3 已知x–y=6,xy=–8.
求:(1) x2+y2的值; (2)(x+y)2的值.
解:(1)∵x–y=6,xy=–8, (x–y)2=x2+y2–2xy,
人教版八年级上册数学教案14.2 乘法公式(3课时)
14.2乘法公式14.2.1平方差公式(第1课时)一、基本目标【知识与技能】掌握平方差公式,会用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性,感受数学知识的实际价值.二、重难点目标【教学重点】平方差公式.【教学难点】理解平方差公式的结构特征,灵活应用平方差公式.环节1自学提纲,生成问题【5 min阅读】阅读教材P107~P108的内容,完成下面练习.【3 min反馈】1.根据条件列代数式:(1)a、b两数的平方差可以表示为a2-b2;(2)a、b两数差的平方可以表示为(a-b)2.2.(1)(x+2)(x-2)=x2-4;(1+3a)(1-3a)=1-9a2;(x+5y)(x-5y)=x2-25y2.观察以上算式及其运算结果填空:上面三个算式中的每个因式都是多项式;等式的左边都是两个数的和与两个数的差的乘积,等式的右边是这两个数的平方的差.(2)平方差公式:(a +b )(a -b )=a 2-b 2.也就是说,两个数的和与这两个数的差的积,等于这两个数的平方差.3.已知a +b =10,a -b =8,则a 2-b 2=80. 4.计算(3-x )(3+x )的结果是9-x 2. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】运用平方差公式计算: (1)(3x -5)(3x +5); (2)(-2a -b )(b -2a ); (3)(x -2)(x +2)(x 2+4).【互动探索】(引发学生思考)观察各式子的特点,确定用什么公式计算? 【解答】(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25. (2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2. (3)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.【互动总结】(学生总结,老师点评)运用平方差公式计算时,要注意以下几点:(1)左边是两个二项式相乘,并且这两个二项式中一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【例2】计算:10015×9945.【互动探索】(引发学生思考)观察式子特点,直接计算比较难,将原式转化为⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15,用平方差公式计算.【解答】原式=⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15=10 000-125=99992425. 【互动总结】(学生总结,老师点评)可将两个因数写成相同的两个数的和与差,形成平方差公式结构.活动2 巩固练习(学生独学)1.下列运算中,可用平方差公式计算的是( C ) A .(x +y )(x +y )B .(-x +y )(x -y )C .(-x -y )(y -x )D .(x +y )(-x -y )2.如图1,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图2),利用这两幅图形的面积,可以验证的乘法公式是(a +b )(a -b )=a 2-b 2.3.长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为4a 2-9b 2. 4.若(m +3x )(m -3x )=16-nx 2,则mn 的值为±36. 5.计算:(1)⎝⎛⎭⎫34y +212x ⎝⎛⎭⎫212x -34y ; (2)⎝⎛⎭⎫-56x -0.7a 2b ⎝⎛⎭⎫56x -0.7a 2b ; (3)(2a -3b )(2a +3b )(4a 2+9b 2)(16a 4+81b 4).解:(1)254x 2-916y 2. (2)0.49a 4b 2-2536x 2. (3)256a 8-6561b 8.6.运用平方差公式简算: (1)2013×1923; (2)13.2×12.8.解:(1)原式=⎝⎛⎭⎫20+13×⎝⎛⎭⎫20-13=400-19=39989. (2)原式=(13+0.2)×(13-0.2)=169-0.04=168.96. 活动3 拓展延伸(学生对学)【例3】对于任意的正整数n ,整式(3n +1)(3n -1)-(3-n )(3+n )的值一定是10的倍数吗?【互动探索】要判断整式是否为10的倍数→需化简代数式→化简结果是否是10的倍数→做出判断.【解答】原式=9n 2-1-(9-n 2)=10n 2-10=10(n +1)(n -1). ∵n 为正整数,∴(n -1)(n +1)为整数,即(3n +1)(3n -1)-(3-n )(3+n )的值是10的倍数.【互动总结】(学生总结,老师点评)平方差公式中的a 和b 可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.环节3课堂小结,当堂达标(学生总结,老师点评)平方差公式:(a+b)(a-b)=a2-b2.请完成本课时对应练习!14.2.2完全平方公式第2课时完全平方公式一、基本目标【知识与技能】1.掌握完全平方公式及其结构特征.2.会用完全平方公式进行简单计算.【过程与方法】利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感态度与价值观】培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.二、重难点目标【教学重点】完全平方公式及其结构特征.【教学难点】灵活应用完全平方公式进行计算.环节1自学提纲,生成问题【5 min阅读】阅读教材P109~P110的内容,完成下面练习.【3 min反馈】1.按要求列代数式:(1)a、b两数和的平方可以表示为(a+b)2;(2)a、b两数平方的和可以表示为a2+b2.2.计算下列各式:(a+1)2=(a+1)(a+1)=a2+2a+1;(a-1)2=(a-1)(a-1)=a2-2a+1;(m-3)2=(m-3)(m-3)=m2-6m+9.3.完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.如图1可以用来解释(a+b)2-(a-b)2=4ab,那么通过图2面积的计算,验证了一个恒等式,此等式是(a-b)2=a2-2ab+b2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】运用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2; (4)(a+b+c)2.【互动探索】(引发学生思考)观察式子的特点,怎样运用完全平方公式进行计算?【解答】(1)(5-a)2=52-2·5·a+a2=25-10a+a2.(2)(-3m-4n)2=(-3m)2-2·(-3m)·4n+(4n)2=9m2+24mn+16n2.(3)(-3a+b)2=(-3a)2+2·(-3a)·b+b2=9a2-6ab+b2.(4)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2.【互动总结】(学生总结,老师点评)完全平方公式:(a±b)2=a2±2ab+b2,可巧记为“首平方,尾平方,积的2倍在中央,符号确定看前方”.【例2】计算:(1)9982;(2)(2)20182-2018×4034+20172.【互动探索】(引发学生思考)(1)直接计算9982比较复杂,考虑将998转化为1000-2,再利用完全平方公式计算.(2)逆用完全平方公式即可.【解答】(1)原式=(1000-2)2=1 000 000-4000+4=996 004.(2)原式=20182-2×2018×2017+20172=(2018-2017)2=1.【互动总结】(学生总结,老师点评)(1)中可将该式变形为(1000-2)2,再运用完全平方公式可简便运算.活动2巩固练习(学生独学)1.运算结果是x4y2-2x2y+1的是(C)A.(-1+x2y2)2B.(1+x2y2)2C.(-1+x2y)2D.(-1-x2y)22.若|a-b|=1,则b2-2ab+a2的值为(A)A.1B.-1C.±1D.无法确定3.下列关于962的计算方法正确的是(D)A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92164.运用完全平方公式计算:(1)(-3a+2b)2;(2)(a+2b-1)2;(3)50.012; (4)49.92.解:(1)4b2-12ab+9a2.(2)a2+4ab+4b2-2a-4b+1.(3)2501.0001.(4)2490.01.活动3拓展延伸(学生对学)【例3】如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.【互动探索】根据完全平方公式的结构特点→确定(m+1)xy的值→建立方程→确定m 的值.【解答】∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61.【互动总结】(学生总结,老师点评)两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【例4】已知a+b=4,ab=-5,求下列各式的值.(1)a 2+b 2; (2)(a -b )2.【互动探索】由已知等式联想到什么乘法公式?所求代数式与已知等式有什么关系?怎样求解?【解答】(1)a 2+b 2=(a +b )2-2ab .把a +b =4,ab =-5代入,得a 2+b 2=42-2×(-5)=16+10=26. (2)(a -b )2=(a +b )2-4ab .把a +b =4,ab =-5代入,得(a -b )2=42-4×(-5)=16+20=36. 【互动总结】(学生总结,老师点评)完全平方公式的常用变形: (1)a 2+b 2=(a +b )2-2ab =(a -b )2-2ab ; (2)ab =12[(a +b )2-(a 2+b 2)];(3)(a -b )2+(a +b )2=2(a 2+b 2); (4)(a +b )2+(a -b )2=4ab ; (5)(a +b )2=(a -b )2+4ab ; (6)(a -b )2=(a +b )2-4ab ; (7)ab =⎝⎛⎭⎪⎫a +b 22-⎝ ⎛⎭⎪⎫a -b 22; (8)a 2+b 2+c 2+ab +ac +bc =12[(a +b )2+(b +c )2+(a +c )2];(9)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc . 环节3 课堂小结,当堂达标 (学生总结,老师点评) 完全平方公式两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 字母表示:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2.请完成本课时对应练习!第3课时 添括号法则一、基本目标【知识与技能】理解并掌握添括号法则,综合运用乘法公式进行计算.【过程与方法】经历类比去括号法则,推出添括号法则的过程,发展学生的知识迁移能力,使学生逐渐掌握添括号法则.【情感态度与价值观】通过类比学习,掌握添括号法则,培养学生的归纳概括能力和发散思维.二、重难点目标【教学重点】添括号法则的推导和运用.【教学难点】添括号法则的运用.环节1自学提纲,生成问题【5 min阅读】阅读教材P111的内容,完成下面练习.【3 min反馈】1.去括号法则:a+(b+c)=a+b+c;a-(b+c)=a-b-c.2.反过来,就得到添括号法则:a+b+c=a+(b+c);a-b-c=a-(b+c).3.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.4.在括号内填入适当的项:(1)x2-2x+y=x2-(2x-y);(2)a-2b+3c=-(-a+2b-3c).5.根据添括号法则完成变形:(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)].环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按下列要求,给多项式3x3-5x2-3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“-”号;(3)把多项式后三项括起来,括号前面带有“-”号;(4)把多项式中间的两项括起来,括号前面“-”号.【互动探索】(引发学生思考)根据添括号法则,联系题目要求多项式的各项的符号变化进行添加.【解答】(1)3x3+(-5x2-3x+4).(2)-(-3x3+5x2)-3x+4.(3)3x3-(5x2+3x-4).(4)3x3-(5x2+3x)+4.【互动总结】(学生总结,老师点评)添括号时,明确括号前的符号以及括到的项.无论怎样添括号,原式的值都不能改变,可以用去括号法则检验是否正确.【例2】计算:(1)(a-m+2n)2;(2)(x-y-m+n)(x-y+m-n);(3)(2x-y-3)(2x-y+3);(4)(x-2y-z)2.【互动探索】(引发学生思考)利用添括号法则对原式添加括号→变为乘法公示结构→利用乘法计算公式进行计算.【解答】(1)原式=[(a-m)+2n]2=(a-m)2+4n(a-m)+4n2=a2-2am+m2+4an-4mn+4n2.(2)原式=[(x-y)-(m-n)][(x-y)+(m-n)]=(x-y)2-(m-n)2=x2-2xy+y2-(m2-2mn+n2)=x2-2xy+y2-m2+2mn-n2.(3)原式=[(2x-y)-3][(2x-y)+3]=(2x-y)2-9=4x2-4xy+y2-9;(4)原式=[(x-2y)-z]2=(x-2y)2-2z(x-2y)+z2=x2-4xy+4y2-2xz+4yz+z2.【互动总结】(学生总结,老师点评)此式需添括号变形成公式结构,再运用公式使计算简便.活动2巩固练习(学生独学)1.下列去(添)括号做法正确的有(C)A.x-(y-z)=x-y-zB.-(x-y+z)=-x-y-zC.x+2y-2z=x-2(z-y)D.-a+c+d+b=-(a+b)+(c+d)2.在横线上填入“+”或“-”号,使等式成立.(1)a-b=-(b-a);(2)a+b=+(b+a);(3)(a-b)2=+(b-a)2(4)(a-b)3=-(b-a)3.3.在括号内填上恰当的项:ax-bx-ay+by=(ax-bx)-(ay-by).环节3课堂小结,当堂达标(学生总结,老师点评)添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.简记:遇“加”不变,遇“减”都变.字母表示:a+b+c=a+(b+c);a-b-c=a-(b+c).请完成本课时对应练习!。
最新人教版初中八年级上册数学【第十四章 14.2乘法公式 运用乘法公式计算】教学课件
谢谢
(1) (2x + y + z) (2x – y – z) 解:原式 =[ 2x + ( y + z ) ] [ 2x – ( y + z ) ]
= (2x)2– (y + z)2 =4x2 –(y2+2yz+z2) =4x2 – y2–2yz–z2 =4x2 – y2–z2–2yz.
当堂练习
(2) (a + 2b – 1) 2 解:原式=[a + (2b – 1) ]2
ab
4.(x-2y-3)(x+2y-3). 解:原式=[(x-3)-2y] [(x-3)+2y].
例题讲解
例2 . 运用乘法公式计算:
(a + b +c ) 2.
解:原式 = [ (a+b) +c ]2
温馨提示:将(a+b)看作一个整体, 解题中渗透整体的思想.
= (a+b)2 +2 (a+b)c +c2
2.判断下列计算过程是否正确,若错误请把正 确答案修改在下面.
( 3a +2b-c ) 2 解:原式 = [ (3a + 2b )-c ]2 应该运用完全平方公式
= ( 3a + 2b )2 -c2 这是平方差 = 9a2 +12ab + 4b2-c2. 判断:错误.
易错点:混淆两个乘法公式而出错.
2.(2y-3)2= 4y2-12y + 9 .
温馨提示:将(2y – 3)看作一个整 体,解题中渗透整体的思想.
思考
一、去括号法则是什么?
14.2 乘法公式 课件 人教版数学八年级上册
(-3y-4x)(3y-4x)=(-4x-3y)(-4x+3y) =(-4x)2-(3y)2=16x2-9y2.
知1-练
感悟新知
知1-练
1-1. 下列各式中,可以用平方差公式进行计算的是( B ) A. (a-1)(1-a) B. (-a+2)(-a-2) C. (a+2)(2+a) D. (a-b)(-a+b)
知2-练
(1)1022;
解:原式=(100+2)2=10 000+400+4=10 404;
(2)99.82;
原式=(100-0.2)2=10 000-40+0.04=9 960.04;
2
(3)
60
1 60
.
原式=60+6102=3
600+2+3
6100=3
6023
1 600.
感悟新知
知识点 3 添括号
为2 023.
2 022×2 024-2 0232=(2 023-1)×(2 023+1)-2 0232
=2 0232-12-2 0232=-1.
感悟新知
2-1. 运用平方差公式进行简便计算:
知1-练
(1)9.8×10.2;
解:原式=(10-0.2)×(10+0.2)=;
(2)(-4a+5b)2;
知2-练
括号不能漏掉.
(-4a+5b)2 =(5b-4a)2 =(5b)2-2·(5b)·(4a)+(4a)2 =25b2-40ab+16a2;
不 能 漏 掉 “ 2ab” 项 且 符 号 与完全平方中的符号一致.
感悟新知
(3)(-2m-n)2;
知2-练
解:(-2m-n)2 =(2m+n)2
感悟新知
知3-讲
特别解读 1. 添括号只是一个变形,不改变式子的值. 2. 添括号时,如果括号前面是负号,括号里的各项都要改
14.3.2 公式法 课件-人教版数学八年级上册
a,b可以是单项式,也可以是多项式
知1-讲
2. 平方差公式的特点 (1)等号的左边是一个二项式,各项都是平方的形式且 符号相反; (2)等号的右边是两个二项式的积,其中一个二项式是 这两个数的和,另一个二项式是这两个数的差.
3. 运用平方差公式分解因式的步骤
知1-讲
一判:判断是不是平方差,若负平方项在前面,则
据多项式的特点,把其变形为能提取公因式或能用公式法
的形式,再分解因式;
(3)当乘积中每一个因式都不能再分解时,因式分解就结束了.
特别解读
知2-讲
1. 因式分解中的完全平方公式是整式乘法中的完全平方公式逆
用的形式.
2. 结果是和的平方还是差的平方由乘积项的符号确定,乘积项
的符号可以是“+”,也可以是“-”,而两个平方项的符号
利用加法的交换律把负平方项交换放在后面;
二定:确定公式中的a和b,除a和b是单独一个数或
字母外,其余情况都必须用括号括起来,表示一个整体;
三套:套用平方差公式进行分解;四整理:将每个
因式去括号,合并同类项化成最简形式.
特别解读
知1-讲
1. 因式分解中的平方差公式是乘法公式中的平方差公式逆
用的形式.
解:∵ 9a2=(±3a)2,16=±42,9a2+ka+16是一个完
全平方式, ∴ ka=±2×3a·4=±24a. ∴ k=±24.
有和的完全平方式和差 的完全平方式两种形式
知2-练
2-1. 若x2+2(m-3)x+16是关于x的完全平方式,则m= _-__1_或__7__.
例 3 分解因式: (1)x2-14x+49; (2)-6ab-9a2-b2;
2. 乘法公式中的平方差公式指的是符合两数之和与两数之
人教版数学八年级上册教学设计《14-2乘法公式》(第3课时)
人教版数学八年级上册教学设计《14-2乘法公式》(第3课时)一. 教材分析《14-2乘法公式》是人教版数学八年级上册的教学内容,本节课主要介绍了完全平方公式和平方差公式的概念及其应用。
通过学习本节课,学生能够掌握完全平方公式和平方差公式的推导过程,理解其含义,并能灵活运用这两个公式解决实际问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析八年级的学生已经具备了一定的数学基础,对公式、定理有一定的认识。
但在解决实际问题时,仍需加强对公式的理解和运用。
学生在学习过程中,可能对完全平方公式和平方差公式的推导过程存在一定的困惑,因此需要教师耐心引导,让学生逐步理解并掌握这两个公式。
三. 教学目标1.知识与技能:让学生掌握完全平方公式和平方差公式的推导过程,理解其含义,并能灵活运用这两个公式解决实际问题。
2.过程与方法:通过小组合作、讨论交流的方式,培养学生的合作精神和沟通能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受到数学在生活中的重要性。
四. 教学重难点1.教学重点:完全平方公式和平方差公式的推导过程,及其在实际问题中的应用。
2.教学难点:完全平方公式和平方差公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.启发式教学法:教师引导学生思考,让学生自主探索,发现公式的推导过程。
3.小组合作学习:学生分组讨论,培养学生的合作精神和沟通能力。
4.练习法:布置适量的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.课件:制作乘法公式的课件,包括教学内容、例题、练习题等。
2.教学素材:准备一些与生活相关的实例,用于导入新课。
3.练习题:挑选一些适合本节课的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如平方运算、面积计算等,引导学生思考乘法公式的应用。
人教版八年级数学上册 14.2 乘法公式 课件
第(3)题( − − )2 = [−( + )]2 = ( + )2 ,
应选择“和”的完全平方公式计算,即( − − )2 = [−( + )]2 = ( + ( + 1)( − 1) =
(2)( + 2)2 =
(3)( − 1)2 = ( − 1)( − 1) =
(4)( − 2)2 =
教学新知
上面的几个运算都是形如( ∓ )2 的多项式相乘,由于
【结论】也就是说,两
(a b)2 (a b)(a b) a 2 ab ab b 2 a 2 2ab b 2
y 2 22 y 2 4 y 5
y 4 y 4 y 5 4 y 1;
(2) 102 98 (100 2)(100 2)
2
2
100 2 10000 4 9996.
2
2
教学新知
探究2: 计算下列多项式的积,你能发现什么规律?
2 + 2 ; 第(4)题中的 − 2 − 3 = −(2 + 3),原式可变形为 −
(2 + 3)2 ,选择“和”的完全平方公式计算,即(2 + 3)( − 2 − 3) =
− (2 + 3)2 = −(4 2 + 12 + 9) = −4 2 − 12 − 9.
知识梳理
(4) (2a +3b) (2a -3b) ; (5) (-2a -3b) (2a -3b); (6) (2a +3b) (-2a -3b).
14.2.乘法公式 课件 人教版数学八年级上册
两个数的和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍。
探究
你能根据图1和图2中的面积说明完全平方公式吗?
b
a
a
b
图1
b a
b a 图2
例题
(4m+n)2
(x-2y)2
练习
1022
992
扩展----贾宪三角
中国的数学发展到宋元时期,终于走到了它的高峰。在这个数学创 新的黄金时期中,各种数学成果层出不穷,令人目不暇接。其中特 别引人注目的,当首推北宋数学家贾宪创制的“贾宪三角”了。
其解法与现代通常使用的“霍纳法”(由英国数学家霍纳于1819年给 出)基本一致,但比霍纳法要早了五百多年。从贾宪到秦九韶逐步 发展完备起来的高次方程数值解法,是中国数学在宋元时期的一项 杰出的创造。
小结
1. 计算(x-y)(-y-x)的结果是( ) A.-x2+y2 B. -x2-y2 C. x2-y2 D. x2+y2
观察上述算式,你能发现什么规律?运算出结果后,你又发现什么 规律?
平方差公式
(a+b)(a- b)=a2- ab+ab- b2= a2- b2.
即两个数的和与这两个数的差的积,等于这两个数的平方差. 平方差公式的逆用: a2-b2 = (a+b)(a-b)
证明
请从这个正方形纸板上,剪下一个边长为b的小正方形,如图1,拼
贾宪最著名的数学成就,是他创制了 一幅数字图式,即“开方作法本源图” 。 这幅图现见于杨辉的书中,但杨辉在 引用了这幅图后特意说明:“贾宪用此 术”。所以过去我国数学界把这幅图称 为“杨辉三角”,实际上是不妥当的, 应该称为“贾宪三角”才最为恰当。
14.2.2第3课时 整式的化简与求值-人教版八年级数学上册作业课件
(3)(3m-n)(-3m-n); 解:原式=n2-9m2. (4)(x-1)(x2+x+1); 解:原式=x3+x2+x-x2-x-1 =x3-1. (5)(2x+5y)(3x-2y)-2x(x-3y); 解:原式=6x2+11xy-10y2-2x2+6xy =4x2+17xy-10y2.
第十四章 整式的乘法与因式分解
延伸:设中间的一个奇数为 n,则最大的奇数为 n+2,最小的奇 数为 n-2,
(n+2)2-(n-2)2=n2+4n+4-n2+4n-4=8n. ∵n 是整数, ∴任意三个连续的奇数中,最大数与最小数的平方差是 8 的倍数.
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
(7)(3x-2y)2(3x+2y)2. 解:原式=[(3x-2y)(3x+2y)]2 =(9x2-4y2)2 =81x4-72x2y2+16y4.
(3)(-2a2b)2·(3ab2-5a2b)÷(-ab)3; 解:原式=4a4b2·(3ab2-5a2b)÷(-a3b3) =(12a5b4-20a6b3)÷(-a3b3) =-12a2b+20a3. (4)(6x4-8x3)÷(-2x2)-(3x+2)(1-x). 解:原式=-3x2+4x-3x+3x2-2+2x =3x-2.
整延式的伸乘法:与任因式意分解三个连续的奇数中,最大数与最小数的平方差是
整式的乘法与因式分解
8
的
第十四章 整式的乘法与因式分解
第十倍四章数整,式的请乘法说与明因式理分解由.
人教版八年级数学上册课件 14.2 乘法公式(付,156)
(1)在运用平方差公式之前,一定要看是否具备公式 的结构特征;
(2)一定要找准哪个数或式相当于公式中的a,哪个 数或式相当于公式中的b;
(3)总结规律:一般地,“第一个数”a 的符号相同, “第二个数”b 的符号相反;
总结经验
从例题1和练习1中,你认为运用公式解决问题时应 注意什么?
(3) 51×49;
(4)(3x+ 4)(3 x- 4)-(2 x+3)(2 x-3).
课堂小结
(1)本节课学习了哪些主要内容? (2)平方差公式的结构特征是什么? (3)应用平方差公式时要注意什么?
布置作业
教科书习题14.2第1题.
八年级 上册
14.2 乘法公式 (第2课时)
课件说明
• 本课是在学生已经学习了平方差公式的基础上,研 究第二个乘法公式,它是具有特殊形式的两个多项 式相乘得到的一种特殊形式,也是后续学习因式分 解、分式运算的重要基础.
判定正误
练习 下面各式的计算是否正确?如果不正确,应 当怎样改正? (1)(x+y)2 =x2+y2; (2)(x-y)2 =x2 -y2; (3)(x-y)2 =x2+2xy+y2; (4)(x+y)2 =x2+xy+y2.
课件说明
• 学习目标: 1.理解完全平方公式,能用公式进行计算. 2.经历探索完全平方公式的过程,进而感受特殊 到一般、数形结合思想,发展符号意识和几何 直观观念.
• 学习重点: 完全平方公式.
导入新知
问题1 计算下列各式: (1)(p+1)2 =______;(m+2)2 =______; (2)(p-1)2 =______;(m-2)2 =______.
人教版数学八年级上册第三课时 添括号法则课件
中,正确的是
(D)
A.[(a+c)-b][(a-c)+b]
B.[(a-b)+c][(a+b)-c]
C.[(b+c)-a][(b-c)+a]
D.[a-(b-c)][a+(b-c)]
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
数学·八年级 (上)·配人教
8
5.在等式的括号内填上恰当的项:
(1)x2-y2+8y=x2-(__y_2-__8_y_____);
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
能力提升
数学·八年级 (上)·配人教
10
9.下列式子中不能运用乘法公式计算的是
A.(a+b-c)(a-b+c)
B.(a-b-c)2
C.(a+b)(a-b)
D.(2a+b+2)(a-2b-2)
10.已知a-b=-3,c+d=2,则(a-d)-(b+c)的值为
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
数学·八年级 (上)·配人教
15
17.运用乘法公式计算: (1)(x+2y-3)(x-2y+3); 解:原式=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-4y2+12y-9. (2)(a+2b-c)(a-2b-c)-(a-b-c)2. 解:原式=[(a-c)+2b]·[(a-c)-2b]-[(a-c)-b]2=(a-c)2-4b2-[(a-c)2 -2b(a-c)+b2]=(a-c)2-4b2-(a-c)2+2b(a-c)-b2=-5b2+2ab-2bc.
(__________)].
5
6.已知2a-3b2=5,则10-2a+3b2=_____. -3
7.(x2+x+M)2=(x2+x)2-6(x2+x)+M2,则M=_______.
14.2乘法公式--杨辉三角(共19张PPT)
(2)直接写出25+5×24×(-3)
+10×23×(-3)2+10×22×(-3)3
+5×2×(ー3)4+(-3)5=
;
(3)直接写出25-5×24+10×23-
10×22+5×2-1=
;
13
知识点二:利用“杨辉三角”解决规律问题
针对练习 1
(4)若(2xー1)2018=a1x2018+a2x2017+a3 x2016+ …+a2017 x2+a2018 x+a2019, 求a1+a2+a3+…+a2017+a2018的值.
14
知识点二:利用“杨辉三角”解决规律问题
针对练习
我国古代数学的许多创新和发展都位居世界前列,如南宋 数学家杨辉(约13世纪)所著的《详解九章算术》一书中, 用下图所示的三角形解释二项式(a+b)n的展开式的各项系 数,此三角形称为“杨辉三
角”根据“杨辉三角”,计算(a+b)20
的展开式中第三项的系数为( D )
6
知识点一:“杨辉三角”的认识
新知探究
杨辉三角中斜行和水平行之间的关系
①
把斜行①中第7行之前的数
②
字相加得1+1+1+1+1+1+1=6
③
②:1+2+3+4+5=15
④ ⑤
⑥
③:1+3+6+10=20 ④:1+4+10=15 ⑤:1+5=6
⑥1
将上面得到的数字与第7行中的数字对比你有什么发现?
初中课件-八上数学八年级数学第十四章14.2.2乘法公式(完全平方公式)_ppt课件
比一比 赛一赛
回答下列问题: (1) (a+2y)2是哪两个数的和的平方? (a+2y)2 =( a ) 2+2( a )( 2y )+( 2y ) 2 (2) (2x−5y)2是哪两个数的差的平方? (2x -5y)2 =( 2x ) 2 -2(2x)( 5y )+( 5y ) 2
3、多项式的乘法法则是什么? 用一个多项式的每一项乘以 另一个多项式的每一项,再把所得的 积相加.
(a+b) (m+n)= am+an + bm+bn
4、探究 计算下列各式,你能发现什么规律?
2+2p+1 (1) (p+1)2 = (p+1) (p+1) = P ______ 2+4m+4 2 m (m+2) = _________;
(2x−5y)2可以看成哪两个数的和的平方?
(2x−5y)2可以看成2x与 −5y的和的平方.
例1、运用完全平方公式计算:
2 (1)(4m+n)
解: (4m+n)2=(4m)2 +2•(4m) •n +n2
(a
2 +b) = 2 a
+
2ab
+
2 b
2 =16m
+8mn +n2
2 (2)(x-2y)
= a2-ab-ab+b2
=a2-2ab+b2 .
14.2.2完全平方公式
完全平方公式的数学表达式:
(a+b)2= a2 +2ab+b2
14.2乘法公式第三课时习题(带答案)-人教版数学八年级上第十四章
第十四章 整式的乘法和因式分解14.2 乘法公式第三课时 整式的化简 添括号法则测试题知识点:添括号法则及其应用1. 下列各式添括号正确的是( )A. −x+y =−(y−x )B. x−y =−(y+x )C. 10−m =5(2−m )D. 3−2a =−(2a −3)2. 下列各式中,去括号或者添括号正确的是 ( )A. x+(y−2)=y+x −2B. x −(y −1)=x −y −1C. x −y +1=x −(y −1)D. x +y −1=x +(y +1)3. 下列添括号错误的是( )A. a 2−b 2−b +a = a 2−b 2+(a −b )B. (a +b +c )(a −b −c )=[a +(b +c )][a −(b +c )]C. a −b +c −d =(a −d )+(c −b )D. a −b =−(b +a )4. 为了应用平方差公式计算(x +3y −1)(x −3y +1),下列变形正确的是( )A. [x −(3y +1)]2B. [x +(3y +1)]2C. [x +(3y −1)][x −(3y −1)]D. [(x −3y )+1)][(x −3y )−1]5. 若一个三角形的三边a ,b ,c 满足a 2+b 2+c 2−ab −bc −ca =0,这个三角形是( )A. 直角三角形B. 等边三角形C. 等腰三角形D. 等腰直角三角形6. 已知:,则代数式a 2+b 2+c 2−ab −bc −ca 的值是()A. 4B. 3C. 2D. 17. 若,则的值为____________.8. 已知:,则的值为______.21201,19201,20201+=+=+=x c x b a 054222=++-+b a b a b a +210x x --=2222002x x -+9. 按要求把多项式5a 3b −2ab +3ab 3−2b 2添上括号:(1) 把前两项扩到带有“+”号的括号里,把后两项扩到带有“−”的括号里;(2) 把后三项扩到带有“−”号的括号里;(3) 把四次项扩到带有“+”的括号里,把二次项扩到带有“−”号的括号里。
人教版初中数学乘法公式公开课PPT
•
9.考查对文章内容信息的筛选有效信 息的能 力。这 类试题 ,首先 要明确 信息筛 选的方 向,即 挑选的 范围和 标准, 其次要 对原文 语句进 行加工 ,用凝 练的语 言来作 答。
•
10.剪纸艺术传达着人们美好的情感, 美化着 人们的 生活, 而且能 够填补 创作者 精神上 的空缺 ,使沉 浸于艺 术中的 人们忘 掉一切 烦恼。 或许这 便是它 能在民 间顽强 地生长 ,延续 至今而 生命力 旺盛不 衰的原 因吧。
•
3. 结合实际,结合原文,根据知识库 存,发 散思维 ,大胆 想象。 由文章 内容延 伸到现 实生活 ,对现 实生活 中相关 现象进 行解释 。对人 类关注 的环境 问题等 提出解 决的方 法,这 种题考 查的是 学生的 综合能 力,考 查的是 学生对 生活的 关注情 况。
• • •
4.做好这类题首先要让学生对所给材 料有准 确的把 握,然 后充分 调动已 有的知 识和经 验再迁 移到文 段中来 。开放 性试题 ,虽然 没有规 定唯一 的答案 ,可以 各抒已 见,但 在答题 时要就 材料内 容来回 答问题 。 5.木质材料由纵向纤维构成,只在纵 向上具 备强度 和韧性 ,横向 容易折 断。榫 卯通过 变换其 受力方 式,使 受力点 作用于 纵向, 避弱就 强。 6.另外,木质材料受温度、湿度的影 响比较 大,榫 卯同质 同构的 链接方 式使得 连接的 两端共 同收缩 或舒张 ,整体 结构更 加牢固 。而铁 钉等金 属构件 与木质 材料在 同样的 热力感 应下, 因膨胀 系数的 不同, 从而在 连接处 引起松 动,影 响整体 的使用 寿命。
以A选项正确;因为x2-2x-y+2x3=-(2x+y)
-(-x2-2x3),所以B选项错误;因为(a-b)(b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过本节课的学习,你有何收获和体会?
1、我们学会了去括号法则和添括号法则,利用 添括号法则可以将整式变形,从而灵活利用乘 法公式进行计算.
2、我体会到了转化思想的重要作用,• 学数学 其实是不断地利用转化得到新知识,比如由繁 到简的转化,由难到易的转化,由已知解决未 知的转化等等 同学们总结得很好.在今后的学习中希望大家 继续勇敢探索,一定会有更多发现
人教版 · 数学 · 八年级(上)
14.3乘法公式
人教新课标
请同学们完成下列运算并回忆去括号法则. (1)4+(5+2) (3)a+(b+c) (2)4-(5+2) (4)a-(b-c)
解:(1)4+(5+2)=4+5+2=11 (2)4-(5+2)=4-5-2=-3
(3)a+(b+c)=a+b+c
(1)4+5+2=4+(5+2)
(2)4-5-2=4-(5+2)
左边没括号,右边有括号,也就是添了括号,• 同 学们可不可以总结出添括号法则来呢?
添括号其实就是把去括号反过来,所以添括号法则是:
添括号时,如果括号前面是正号,括到括号里的各项 都不变符号;• 如果括号前面是负号,括到括号里的各 项都改变符号. 也是:遇“加”不变,遇“减”都变.
(4)a-(b-c)=aபைடு நூலகம்b+c
去括号法则:
去括号时,如果括号前是正号,去掉括号后, 括号里各项不变号;如果括号前是负号,去掉括 号后,括号里的各项都变号.
也就是说,遇“加”不变,遇“减”都变.
∵4+5+2与4+(5+2)的值相等;4-5-2与4-(5+2) 的值相等.所以可以写出下列两个等式:
例5 运用乘法公式计算: (1) ( x +2y-3) (x- 2y +3) ; (2) (a + b +c ) 2.
解: (1) ( x +2y-3) (x- 2y +3)
= [ x+ (2y – 3 )] [ x- (2y-3) ] = x2- (2y- 3)2 = x2- ( 4y2-12y+9) = x2-4y2+12y-9. (2)(a + b +c ) 2 = [ ( a +b ) + c ] 2 = (a+b)2 +2 (a+b)c +c2 = a2+2ab +b2 +2ac +2bc +c2 = a2+b2+c2 +2ab+2bc +2ac.