【2010】PU表面接二氧化钛

合集下载

原位聚合聚氨酯/纳米二氧化钛复合材料的研究

原位聚合聚氨酯/纳米二氧化钛复合材料的研究

高桥石油 化工有 限责任公 司 ; 纳米 TO 粉体 : i 粒径 2 0~10 m, 庆川 东化工 0n 重
( 团 ) 限公 司 。 集 有
1 2 仪 器、 . 设备
子上 , 种方法 可得到分 散性好 、 这 结合强 度高 的复合 材料 , 一种较 理想 的制 备聚合 物/ 是 无机 纳米粒子 复
注 : 含 TO 的 聚氨 酯 , 交 联 剂 为 T , 同 。 不 i2 其 MP 下
干燥 4 , 8h 然后 称取 一 定量 干 燥后 的样 品和 一 定量 的 K r 片 , 压 片在 紫外 灯下 烘 干 , F I B压 将 用 T R仪 在 波 长 4 0 4 0c 范 围内进行 扫描 。 0 0~ 0 m
力学性 能测 试 : 拉伸 强度 、 断裂 伸长 率和拉 伸 弹 性 模量 按 G / 0 0 1—2 0 , 。拉 伸 速 率 为 B T 14 . 0 6O 试 n 4
收 稿 日期 :0 10 - 2 1.30 7
笔者 主 要 采 用 原 位 聚合 法 制 备 聚 氨 酯/ 米 纳
TO 复合 材料 , 究 和 分析 了该 复 合材 料 的 力学 性 i: 研
能和热 稳定 性 能 。笔 者还 用 强 酸处 理 来 提 高 纳 米
王明 , : 等 原位聚合 聚氨酯/ 纳米二氧化钛复合材料 的研究
4 3± 3 4 5 34± l 8 4
16 O 1 .5± .9
12 O O .6土 .9 16 O 1 .8土 .O
图 1 TO 和 M—i2 F I i2 TO 的 T R谱 图 r
5 0~ 0 m。处 的吸 收 峰 为 纳米 TO 中 T— 0 7 0c ‘ i, i
O键 的伸缩 和 弯 曲振 动 峰 , 这是 TO 的特 征振 动 吸 i:

二氧化钛附着力

二氧化钛附着力

二氧化钛附着力
二氧化钛(TiO2)是一种白色无定形粉末,通常用作颜料、光催化剂等。

它的附着力是指其与其他物质结合的能力,这对于涂料、塑料、橡胶等行业尤为重要。

在涂料行业中,二氧化钛作为颜料使用,能够提高涂层的遮盖力、耐候性和光泽度。

当二氧化钛以纳米粒子的形式添加到环氧树脂中时,其小尺寸和大比表面积使得表面活性和吸附能力增强,从而与树脂中的氧起键合作用,并与裸露的金属原子之间产生类似离子键的强力,这增加了环氧树脂和金属间的结合点,提高了附着力。

研究表明,当纳米TiO2含量为4%时,附着力可达到最大值。

此外,二氧化钛膜的作用主要是改善二氧化钛表面与包膜层之间的附着力,这种膜也被称为附着力促进层。

在实际操作中,二氧化钛膜的主要成分是四氯化钛或硫酸钛溶液,通过特定的工艺过程形成膜层,以提高其在应用中的性能。

总之,二氧化钛的附着力对于其在各个应用领域的性能至关重要,通过优化其粒子大小、表面处理和配方设计,可以显著提高其与其他材料的结合强度和耐久性。

平光乳胶漆用二氧化钛颜料的表面处理

平光乳胶漆用二氧化钛颜料的表面处理

本文由八〇年的雪茄贡献 pdf文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

维普资讯 http://www.cqvip.com 第 8翔  沫  料  工  业  平 光 乳胶 漆 用 二 氧 化钛 颜 料 的表 面 处 理  毕 胜。

( 化工 部 涂 料 工 业 研 究所枝 术服 务 中 ) 硫 陵法 盒 红 石型 二 氧化 钍 用 无机 盐 类进 行 表面处 理 后 .形 成 疏 松多 孔 的海 绵状 包 膜 ,提 高 了它 在 平光 乳胶 漆膜 中的干 遮盖 力 讨 论 了处 理 工 艺 ,处 理 剂 用 量 .处 理 温度 和 p H值 对 颜料 性 能 的影 响 . 一 、 前  言  本 试 验 经 过探 索 、 小 试 和 中试 (批 量 试 生 产 )三 个 阶段 , 产 品 主 要 质 量 指 标 基本 达  平 光 乳 胶 漆 用 二 氧 化 钛 , 是 二 氧 化 钛 颜  到 国 际 上有 代表 性 的 同类 型 产 品— — 日本 石 原 公 司 R- 8 7 0的 水 平 ,最 终 通 过 江 苏 省级 技  料 的 专 门 品 种 之 一 , 其 最 大 特 点 是 在 高 颜 料  体 积 浓 度 (PVC )的 乳 胶 中 能 呈 现 出 高 遮 盖 力 。

 为 了经 济 台 理 地 应 用 二 氧 化钛 颜 料 , 术 鉴 定 ,填 补 了 我 国 钛 白颜 料 生产 中 的这 项 空 白。

更 充 分 地 发 挥 二 氧 化 钛 颜 料 的 特 性 , 国 外 早  已 出 现 一 系 列 平 光 乳 胶 漆 专 用 的 二氧 化 钛 牌  二 、试 验 部 分  1 仪 器 和原 材 料 . 号 。

 在 我 国 , 由 于这 种 二 氧 化 钛 品 种 迟 迟 未  投 产 , 即 使 进 口的二 氧 化 钛也 都 是 所 谓 的 “通 用 级 ” ,例 如 日本 石 原 公 司 早 期 产 品 R 一 表 面 处 理 容 器 : 玻 璃 烧 杯 (容 量 根 据 处  理 的 颜 料 量 而 定 ) 。

二氧化钛纳米粒子的表面修饰及表征

二氧化钛纳米粒子的表面修饰及表征

二氧化钛纳米粒子的表面修饰及表征
二氧化钛纳米粒子表面修饰是指对二氧化钛纳米粒子表面进行化学修饰或物理修饰,通过调节它们的表面结构、官能团或电荷状态等性质,从而改变它们的物理化学性质和生物学行为。

这种表面修饰可以优化纳米粒子的生物相容性、稳定性和靶向性,从而广泛应用于医学、环境、能源等领域。

以下介绍几种常见的表面修饰方法及其表征手段:
1. 硅烷偶联剂修饰:将硅烷偶联剂分子通过化学键或物理吸附的方式连接到二氧化钛表面,可以增强纳米粒子与其他材料的相容性和分散性。

常用的表征方法有红外光谱、拉曼光谱等。

2. 磷酸化修饰:通过与二氧化钛表面的羟基反应,使纳米粒子表面磷酸化,可增强其负电性,从而增加其在细胞周围的稳定性和生物学相容性。

常用的表征方法有电位滴定、X射线光电子能谱等。

3. 生物修饰:将生物大分子如蛋白质、DNA等通过化学或生物方法与二氧化钛纳米粒子表面结合,可以赋予其生物识别性和靶向性,广泛应用于药物传递、诊断等领域。

常用的表征方法有荧光分析、电泳分析等。

4. 核壳结构修饰:将较稳定的材料如金属、聚合物等通过化学或物理方法包裹在二氧化钛纳米粒子表面,可以增加其稳定性和生物相容性,并且扩展其应用范围。

常用的表征方法有透射电镜、X射线衍
射等。

总之,二氧化钛纳米粒子的表面修饰及表征是一个复杂的过程,需要综合应用多种实验手段进行探究。

聚氨酯纳米二氧化钛复合材料及性能研究

聚氨酯纳米二氧化钛复合材料及性能研究

b)。

由于团聚粒子容易引起基体损伤而产生应力集中,因此在外力作用下先从团聚体处断裂,因此使得复合材料的性自&下降。

另外,从图3.5中可以看到,纳米团聚体与基体间界面清晰,说明界面作用很弱。

这种薄弱的结合界面在负载下容易产生滑移、脱层,不能有效转移应力.使界面破坏而导致材料性能下降。

a(100×)b(100西OF毽35SEMpb嘶窖mpl】soflI】eI曲no_1氇parlide如t11c鳓Tlposi如图35纳米面旺粒子在复合材料中分布的亚M分析注:懒含量为6%-Fn0蚋含量为3%,3.15纳米砸0l含量对聚氨酯复合材料力学性能的影响本节主要研究了锐钛型纳米啊02含量对复合材料力学性能的影响,对金红石型纳米砸02对复合材料性能影响作了尝试性的分析研究;对于相似配比不同条件的数据,由于纳米面02填料对聚氨酯基体作用机理大致相同,因此只是进行了简单地对比说明。

一、铙钛型纳米rn0I含量对聚氨酯复合材料力学性能的影响1、填料为纳米砷趣—A(粒径在80nm左右),预聚体合成温度为100l℃以上,—_NCO%=6.0%(1)性能分析与讨论西华大学硕士学位论文(a)PL驵%ⅡⅢ旺(100哟(b)PUB%I堋旺(1删(c)PU石%I卜砸。

2(100Qq(d)PL耵%I吣(100血0Fi93.7sEMpho峰aphS0f恤n鲫0-币02paltickh妞∞唧。

si忙图3.7纳米伽2粒子在复合材料中分布的s刚分析图3.7为聚氨酯复合材料断面上的SEM分析图。

由图3.7可以看到,当纳米Tj晚填加量较少时,纳米粒子在Pu基体中分散比较均匀,但随着填加量的增加,纳米面02在基体中的分散性也逐渐变差,且出现大的团聚体(如图3.7c及3.7曲)。

在纳米粒子均匀分散在聚合物基体中的情况下,当基体受到外力时,粒子周围产生应力集中效应,引起基体树脂产生银纹吸收能量,同时粒子之间的树脂基体也产生塑性变形,吸收冲击能量,因为纳米粒子比表面积大,比表面能高,与基体结合力强,在外力作用下,粒子易发生更多银纹,吸收更多能量。

二氧化钛硅树脂和聚氨酯改性环氧树脂的结构与性能研究

二氧化钛硅树脂和聚氨酯改性环氧树脂的结构与性能研究

二氧化钛硅树脂和聚氨酯改性环氧树脂的结构与性能研究二氧化钛(TiO2)、硅树脂和聚氨酯改性环氧树脂是一类常用的功能材料,其结构和性能研究十分重要。

本文将对二氧化钛、硅树脂和聚氨酯改性环氧树脂的结构和性能进行详细阐述。

首先,对于二氧化钛来说,其结构主要由金属钛(Ti)和氧(O)元素组成。

二氧化钛存在多种晶型,其中最常见的是金红石型(rutile)、麦片状型(anatase)和锐钛矿型(brookite)。

二氧化钛具有高硬度、高抗腐蚀性、高耐热性和高光催化活性等特点。

在光催化应用中,二氧化钛能有效地利用紫外光将有机物质分解为无害的二氧化碳和水。

其次,硅树脂是一类由硅氧链(Si-O)主链组成的高分子化合物。

硅树脂由硅原子(Si)与氧原子(O)通过共价键连接而成,硅原子周围还可连接有次级基团,例如甲基基团(-CH3)或苯基团(-C6H5)。

硅树脂具有优异的耐热性、耐磨性和电绝缘性能。

此外,硅树脂还具有出色的耐化学腐蚀性和抗紫外线性能。

最后,聚氨酯改性环氧树脂是将聚氨酯(PU)与环氧树脂(EP)进行共混和反应得到的一种新型复合材料。

聚氨酯改性环氧树脂不仅具有环氧树脂的高强度和刚性,还具有聚氨酯的高韧性和弹性。

其结构中既含有聚酯、聚醚等大分子链,又含有环氧基团。

聚氨酯改性环氧树脂具有优异的耐冲击性、抗裂性和耐候性。

因此,它在涂料、粘接剂和复合材料等领域得到广泛应用。

除了上述的结构特点外,二氧化钛、硅树脂和聚氨酯改性环氧树脂还具有一系列独特的性能。

例如,二氧化钛具有高折射率、低折射率和高抗菌性能;硅树脂具有低介电常数、低损耗和高耐火性;聚氨酯改性环氧树脂具有良好的自修复性能、优异的黏结力和抗腐蚀性能。

这些性能使得这些材料在光电子、建筑材料、涂料、粘接剂、电子器件等领域得到广泛应用。

综上所述,二氧化钛、硅树脂和聚氨酯改性环氧树脂是一类具有特殊结构和性能的功能材料。

深入研究它们的结构和性能,对于开发新型材料、提高产品性能和探索新应用具有重要意义。

泡沫镍制二氧化钛的原理

泡沫镍制二氧化钛的原理

泡沫镍制二氧化钛的原理
泡沫镍制二氧化钛的原理是利用泡沫镍的高活性和高表面积,将镍泡沫浸泡在含有钛酸酯(如钛酸四丁酯)的有机溶剂中,形成含有钛酸酯的镍泡沫。

接着,将含有钛酸酯的镍泡沫置于高温环境下,通过热解反应,可以使钛酸酯分解生成二氧化钛。

在热解过程中,钛酸酯分子中的有机基团被分解气化,生成有机物蒸汽,而钛酸酯中的钛元素则在高温下发生氧化反应,生成二氧化钛颗粒。

由于泡沫镍的高表面积和高通透性,有机物蒸汽和反应产物可以更容易地在泡沫内部和表面的通道中扩散和反应,从而形成均匀的二氧化钛颗粒。

最后,将泡沫镍进行酸洗处理,去除未反应的有机物和表面上的杂质,得到纯净的二氧化钛产品。

泡沫镍制二氧化钛的原理主要依靠镍泡沫的高活性和高表面积,加上热解反应的条件,使得反应能够在较短的时间内进行,并且形成均匀的二氧化钛颗粒。

这种方法可以实现高效、低成本的二氧化钛制备过程,并且可以应用于大规模生产。

舞蹈器材用改性PU胶粘剂的耐老化性能测试分析

舞蹈器材用改性PU胶粘剂的耐老化性能测试分析

舞蹈器材用改性PU胶粘剂的耐老化性能测试分析作者:赵欣莹何书凡崔昌水来源:《粘接》2024年第02期doi:10.3969/j.issn.1001-5922.2024.02.002摘要:针对聚氨酯(PU)胶粘剂在使用与存储环节较容易出现的老化问题,研制改性剂TiO2-TDI粒子,其原料为甲苯 2,4-二异氰酸酯(TDI)与抗氧剂2246、纳米二氧化钛(TiO2,金红石型),通过对二氧化钛、TiO2-TDI粒子结构的热失重分析(TGA)、傅里叶变换红外光谱(FTIR)、紫外-可见漫反射(UV-vis)等加以表征。

结果显示,在二氧化钛表面,通过化学键作用与TDI成功键合,完成了该改性粒子制备。

此粒子对可见光、紫外线有着更强水平的吸收能力,通过化学法成功完成抗热氧化、光氧化的改性剂,可以使得PU胶粘剂耐老化性能得到显著改善,更好地应用于舞蹈器材中。

关键词:耐老化;舞蹈器材;聚氨酯;胶粘剂中图分类号:TQ433.4+32 文献标志码:A 文章编号:1001-5922(2024)02-0005-04Test and analysis of viscosity and aging resistance of modified PU adhesive for dance equipment ZHAO Xinying1,HE Shufan2,CUI Changshui2(1 Xi’an Peihua University,Xi’an 710199,China;2 Xi’an International Unive rsity,Xi’an 710077,China)Abstract:In order to solve the aging problem of polyurethane (PU) adhesive in the use and storage process,the modifier TiO2-TDI particles were developed,and the raw materials were toluene 2,4-diisocyanate (TDI),antioxidant 2246 and nano titanium dioxide (TiO2,rutile type),which were characterized by thermogravimetric analysis (TGA),Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible diffuse reflectance (UV-vis) of the structure of titanium dioxide and TiO2-TDI particles.The results showed that the modified particles were successfully bonded to TDI on the surface of titanium dioxide by chemical bonding.This particle had a stronger level of absorption capacity for visible light and ultraviolet rays,and the modifier of anti-thermal oxidation and photo-oxidation could be successfully completed by chemical methods,which significantly improved the aging resistance of PU adhesive and was better used in dance equipment.Key words:aging resistance;dance equipment;polyurethane;adhesive聚氨酯(PU)膠粘剂分子链涉及到异氰酸酯基(游离性)、氨基甲酸酯基,这使得该胶粘剂在使用中,游离性的—NCO就会更快的与水分子产生化学反应,进而产生胺类物与二氧化碳;前者又能与其中的—NCO进行反应,产生氨基甲酸酯基团,其稳定性更差,并和—NCO进一步产生反应。

科技成果——光触媒二氧化钛涂料

科技成果——光触媒二氧化钛涂料

科技成果——光触媒二氧化钛涂料技术开发单位中科院理化技术研究所项目简介该项目选定了四氯化钛为主要原料,用化学合成法制备低温可固化,并具有利用太阳光中微量紫外线的水基光触媒制剂。

由于其主要成分为二氧化钛和水,是无毒、无味、无污染的新型环境友好制剂。

本光催化剂可在多种材质如外墙,玻璃,瓷砖等表面使用,在保持原材料的色度、透明度等外观特性的基础上,使材料表面具有抗菌、防雾、防霉、自洁、光催化分解污染物等多重功效。

产品特点水性/中性;可常温(或加热≤110℃,短时间固化成膜(10-15min);可采用喷涂、刷涂、浸渍涂布等涂布方式成膜,施工操作非常方便;生产工艺简单,生产过程环境友好;使用后不影响原基底的外观和性能;具有优良的耐候性。

产品性能纳米二氧化钛固含量:≤5%;外观:淡乳黄色均匀乳状液;成膜后特性:低温稳定性:3次循环不变质;表干≤10min;pH值:6.0-7.0;耐水性:96h无异常;耐碱性:48h无异常;耐温变性:5次循环无异常等;产品符合GB/T9755-2001标准中优等品的技术指标要求。

产品应用光催化剂广泛适用于多种材质,如外墙,玻璃,石材,瓷砖、金属等表面,在保持原材料的色度、透明度等外观特性的基础上,具有抗菌、防雾、防霉、自洁、光催化分解污染物等多重功效。

可解决仓库、古建筑、石碑、瓷砖、马赛克、大理石、花岗石等饰面以及各类面砖墙面、民用住宅及其他建筑的防污、防霉及保色。

还可用于室内装饰材料的后处理剂,使其用途可延伸到更宽广的领域,如:经过处理的纺织品(窗帘布),壁纸及各种饰品等除具有极好的杀菌性外,还具有良好的消除甲醛的功效。

另外,用该后处理剂做成过滤网可装到空调机或空气净化器中等等。

合作方式技术转让。

乙二醇表面改性纳米二氧化钛的制备及其对水性聚氨酯的改性

乙二醇表面改性纳米二氧化钛的制备及其对水性聚氨酯的改性

乙二醇表面改性纳米二氧化钛的制备及其对水性聚氨酯的改性潘卉;曹刘琴;赵甜;吴志申;张治军【期刊名称】《化学研究》【年(卷),期】2014(000)005【摘要】以乙二醇(EG)和钛酸四丁酯(TBOT)为原料,采用原位表面修饰方法成功制备了乙二醇表面改性纳米TiO 2(EG-TiO 2);利用傅立叶红外光谱仪、X 射线衍射仪、透射电子显微镜表征了其结构,采用热重分析仪测定了其热稳定性。

结果表明,经表面修饰的纳米二氧化钛在水性聚氨酯皮革涂饰剂(WPU)基体中分散良好;将EG-TiO 2添加到 WPU 中能显著提高其抗紫外线性能、热稳定性及耐磨性能。

%TiO 2 nanoparticles surface-modified with ethylene glycol (EG)were successfully pre-pared by in situ surface modification method.The structure of as-synthesized product was char-acterized by Fourier transform infrared spectrometry,X-ray diffraction and transmission elec-tron microscopy,while its thermal stability was examined by gravimetric analysis.Results in-dicate that TiO 2 nanoparticles surface-modified by EG can be dispersed well in waterborne pol-yurethane (WPU).Besides,as-synthesized surface-modified TiO 2 nanoparticles at a moderate dosageare able to significantly improve the ultraviolet resistance,thermal stability and abra-sion resistance of WPU.【总页数】7页(P509-515)【作者】潘卉;曹刘琴;赵甜;吴志申;张治军【作者单位】河南大学化学化工学院,河南开封 475004;河南大学化学化工学院,河南开封 475004;河南大学特种功能材料教育部重点实验室,河南开封 475004;河南大学特种功能材料教育部重点实验室,河南开封 475004;河南大学特种功能材料教育部重点实验室,河南开封 475004【正文语种】中文【中图分类】TB321【相关文献】1.纳米二氧化钛的表面改性及复合氟碳涂料的制备 [J], 张于弛;高仁金2.聚丙烯-聚乙二醇嵌段共聚物的制备及其对聚丙烯薄膜的表面改性 [J], 任伟;蒋晓菡;俞强3.纳米二氧化钛光催化剂的制备及其表面改性的研究进展 [J], 姬文慧;毛晓宁;王志鸽;王慧春4.表面改性聚乙烯亚胺-聚乙二醇/α-环糊精空心微球的制备与表征 [J], 张婉贞;程从;张红素;骆玲;张晟5.用二氧化硅表面改性纳米二氧化钛的制备及表征 [J], 孙秀果;张建民;彭政因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G ModelPOC-2476;No.of Pages 5Progress in Organic Coatings xxx (2010) xxx–xxxContents lists available at ScienceDirectProgress in OrganicCoatingsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /p o r g c o atPreparation of nano-TiO 2/polyurethane emulsions via in situ RAFT polymerizationXiang-Chen Che a ,Yu-Zi Jin a ,∗,Youn-Sik Lee b ,∗∗a Department of Chemistry,College of science,Yan Bian University,Yanji 133-002,People’s Republic of ChinabDivision of Chemical Engineering,Nanomaterials Processing Research Center,Chonbuk National University,Chonju 561-756,South Koreaa r t i c l e i n f o Article history:Received 29April 2010Received in revised form 8August 2010Accepted 10September 2010Keywords:Polyurethane macromonomer TiO 2nanofillerTiO 2-RAFT agent hybrid RAFT polymerizationNano-TiO 2/polyurethane emulsiona b s t r a c tStable nano-TiO 2/polyurethane (PU)emulsions were prepared via in situ reversible addition-fragmentation chain transfer (RAFT)emulsion polymerization of 2-hydroxyethyl acrylate (HEA)-capped PU macromonomer,using azobisisobutyronitrile (AIBN)as a radical initiator and 2-{[(butylsulfanyl)carbonothioyl]sulfanyl }propanoic acid (BCSPA)anchored onto TiO 2nanoparticles (TiO 2-BCSPA)as a RAFT agent.When the molar ratio of AIBN to TiO 2-BCSPA was changed from 1:3to 1:10,the polydispersity index (PDI)of polymers in the emulsions decreased from 1.83to 1.06,due to more effective RAFT polymerization in the emulsions.The TiO 2nanofillers were well-dispersed through-out the polymer films.The tensile strengths of the nanocomposite films were significantly enhanced due to coordination bonding between the TiO 2nanofillers and the –COOH end groups of the polymers,as evidenced by the FT-IR spectral data.© 2010 Published by Elsevier B.V.1.IntroductionPolyurethane (PU)can be tailored to have a variety of use-ful characteristics such as wear-resistance,oil-resistance,chemical corrosion-resistance,and rigidity,depending on its functional groups and soft/hard segments [1].Waterborne PU can be pre-pared by adding hydrophilic groups to the polymer chains,which finds applications in coatings and adhesives,mainly as a result of environmental regulations which aim to reduce organic solvent pollution.Inorganic/polymer nanocomposites are a relatively new class of materials.In general,as compared to conventional composites,the nanocomposites exhibit improved physical properties such as ther-mal,mechanical and barrier,due to the much stronger interfacial interactions between the nanofillers and polymer matrices [2–5].Different types of nanofillers are used depending on the purpose of the resulting nanocomposites –common examples are silica,clay,carbon nanotubes,and titanium dioxide (TiO 2)[6].TiO 2is an inter-esting nanofiller because it is not only capable of photocatalytic degradation of organic matter,but also it can retard photo-aging of PU through ultraviolet light absorption [7,8].Mechanical strengths of nanocomposites can be reduced by the agglomeration of nanoparticles,which results from the par-∗Corresponding author.Tel.:+864332732295;fax:+864332733071.∗∗Corresponding author.Tel.:+82632702312;fax:+82632702306.E-mail addresses:jinyz@ (Y.-Z.Jin),yosklear@jbnu.ac.kr (Y.-S.Lee).ticles’large surface areas.Agglomeration can be minimized by modification of the nanoparticles’surfaces to strengthen their interfacial interactions.Charpentier et al.[9]used a reversible addition-fragmentation transfer (RAFT)agent with a functional group ZC(S)SR,such as 2-{[butylsulfanyl]carbonothionyl }sulfanyl prpanoic acid (BCSPA),where Z and R are respectively an activa-tion of C S double bond and a leaving group.They modified TiO 2nanoparticles with BCSPA to obtaina hybrid where the –COOH group of BCSPA was linked to the TiO 2surface via three coor-dination modes,monodentate,chelating bidentate,and bridging bidentate [10].The use of the TiO 2-BCSPA hybrid along with a rad-ical initiator in the polymerization of acrylic acid allowed them to obtain TiO 2/poly(acrylic acid)nanocomposites where the polymers were grafted on well-dispersed TiO 2nanoparticles.The well-established RAFT polymerization mechanism is shown Scheme 1,where the Z and R groups of the ZC(S)SR type RAFT agent are eventually incorporated into the resulting polymer ends [11].In a previous study,emulsions of PU macromonomers end-capped with 2-hydroxyethyl acrylate (HEA)were successfully polymerized in the presence of a RAFT agent and a radical initiator [12].The results revealed that emulsion polymerization proceeded via a living polymerization mechanism.In this study,BCSPA was chosen as a bifunctional RAFT agent because it can coordinate to TiO 2nanoparticles and subsequently polymerize emulsions of PU macromonomers.TiO 2-BCSPA hybrids were first prepared by the method of Charpentier et al.[9],which were then used in in situ RAFT polymerization of PU macromonomer dispersions to obtain nano-TiO 2/PU emulsions.This paper describes the synthesis and brief characterization of such nano-TiO 2/PU emulsions.0300-9440/$–see front matter © 2010 Published by Elsevier B.V.doi:10.1016/j.porgcoat.2010.09.0132X.-C.Che et al./Progress in Organic Coatingsxxx (2010) xxx–xxxScheme 1.Proposed mechanism of the RAFT polymerization process,where M and P (P m ,P n ,P x and P y )denote a monomer and polymer chain,respectively.2.Experimental 2.1.MaterialsCarbon disulfide and triethylamine (TEA)were purchased from Tianjin Chemical Co.(China).2-{[(Butylsulfanyl)carbonothioyl]sulfanyl }propanoic acid (BCSPA),2-bromopropanoic acid,anatase nano-titanium dioxide (20–35nm),and other reagents were pur-chased from Aladdin Reagent Database Inc.(China).Anhydrous methanol,sodium hydroxide,and hydrochloric acid were pur-chased from Tianjin Shen Thai Chemical Co.(China).Poly(propylene glycol)-2000(PPG-2000),isophorone diisocyanate (IPDI),2-hydroxyethyl acrylate (HEA),2,2-dimethylolbutyric acid (DMBA),dibutyltin dilaurate (DBTDL),and azobisisobutyronitrile (AIBN)were obtained from Lookspoly Co.(South Korea).The TiO 2nanopar-ticles were functionalized with BCSPA by following the previously reported procedure [9].After filtration of the reaction mixture through a 0.05␮m polycarbonate membrane filter,the unreacted BCSPA was removed by washing with methanol,and unreacted2.2.Synthetic procedures of nano-TiO 2/PU emulsionsPU emulsions were prepared according to the previously used procedures shown in Scheme 2[12].Briefly,in a round-bottom flask equipped with a reflux condenser and a mechanical stir-rer,a mixture of IPDI (57.8g)and PPG-2000(200g)was heated to 80◦C for 3h,and cooled to 60◦C then added to it were DMBA (12.7g)and DBTDL (1.0g).The mixture was stirred for 2h,and then heated to 80◦C,followed by addition of HEA (6.6g).The resulting mixture was stirred further for 3h.Reac-tion progress was checked at 30min intervals by determining the concentration of free NCO groups [13].The PU prepolymer was neutralized with TEA (8.7g),followed by addition of deionized water and ethylene diamine (EDA,2.6g)to obtain a HEA-capped PU macromonomer (PUM,M n =4300)dispersion.The solid content ofScheme 2.Synthesis of nano-TiO 2/PU emulsions.the PUM dispersion was adjusted to 40wt%by addition of deionized water.AIBN (1.5g;0.01mol)and TiO 2-BCSPA (9.5g;0.03mol)were added to the PUM emulsion and mixed under ultrasonication.The resulting dispersion was mechanically stirred at 200rpm and 60◦C for 6h,to obtain the nano-TiO 2/PU emulsion (TiO 2/PU-3).For com-parison,PU-3was also prepared using AIBN and BCSPA in a molar ratio of 1:3,where only BCSPA was used as the RAFT agent instead of TiO 2-BCSPA ing the same method,TiO 2/PU-5,TiO 2/PU-7,and TiO 2/PU-10were prepared.The different numbers in PU-3,PU-5,PU-7,and PU-10indicate the molar ratios of AIBN to TiO 2-BCSPA (or BCSPA in the case of PU-3).The nano-TiO 2/PU emulsions were cast on silicon plates,dried at room temperature for 1week.The resulting polymer were further dried in a vacuum oven at 60◦C overnight.The TiO 2/PU films were washed with acetone in Soxhlet apparatus for 60h for FT-IR analysis and %conversion calculation.Neglecting the weight of AIBN,the %conversion of PUM to TiO 2/PU nanocomposite was calculated as follows:Conversion (%)=[W film /W emulsion ×0.4]×100where W film and W emulsion represent the weight of the dried film and of the emulsion used for the preparation of the film,respec-tively.X.-C.Che et al./Progress in Organic Coatings xxx (2010) xxx–xxx32.3.Cleaving grafted polymers from TiO 2nanoparticlesIn order to determine molecular weights of the polymers grafted on the TiO 2nanoparticles,the polymers were cleaved from the TiO 2nanoparticles,following a modified previously reported method [9].Briefly,500mL of each sample was mixed with 150mL 2M HCl and was stirred under reflux overnight,cooled to room tempera-ture,neutralized with NaHCO 3,and finally filtered.The resulting mixture of polymer and nano-TiO 2in tetrahydrofuran (THF)was refluxed for 3h,and filtered to remove the TiO 2nanoparticles,and dried in a vacuum oven.The dried polymer samples were used for NMR and GPC experiments.2.4.CharacterizationProton NMR spectra were obtained from a Swiss Bruker AV-300MHz NMR spectrometer,using TMS as an internal standard.FT-IR spectra were recorded using KBr pellets on a Shimadzu Cor-poration FI-IR1730instrument.Molecular weights of polymers were measured by gel permeation chromatography (GPC)with a Shimadzu GPC (LC-10Avp),using a RI detector referenced to monodisperse polystyrene standards and THF as the eluent at a flow rate of 1.0mL/min.Scanning electron microscopy (SEM)images were recorded using a Hitachi S3500N instrument.The tensile strengths and elongations at breaking of the TiO 2/PU nanocompos-ite films were measured with a universal test machine (Shimadzu AGS-J SES1000)at 25◦C with a crosshead speed of 50mm/min.Five specimens were tested for each nanocomposite,and an average value was taken for each data point.3.Results and discussion 3.1.SynthesisThe TiO 2nanoparticles were functionalized by following the reported procedure [9].The untreated TiO 2nanoparticles and yel-low TiO 2-BCSPA powders were dispersed in a mixture of ethyl acetate and water (1:1,v/v)under ultrasonication,and the resulting mixtures were allowed to stand for 2weeks.The TiO 2nanoparticles were suspended in the aqueous lower phase,and the TiO 2-BCSPA hybrid powders were well-dispersed in the ethyl acetate upper phase,as shown in Fig.1.This indicated that the hydrophilic TiO 2nanoparticles were successfully functionalized by BCSPA and becamehydrophobic.Fig.1.Photographs of (left)TiO 2-BCSPA and (right)TiO 2both dispersed in ethyl acetate (top phase)/water (bottom phase).T r a n s m i t t a n c e (%)Wavenumber (cm -1)Fig.2.FT-IR spectra of (a)PUM,(b)TiO 2-BT 3P,and (c)TiO 2/PU-3.The PUMs were prepared by a previously described method [12].The yellow solid TiO 2-BCSPA was added to the PUM emulsion and mixed under ultrasonication to form core-shell typed emulsion droplets of TiO 2-BCSPA coated with PUM.Consequently,AIBN,a hydrophobic radical initiator,was added and the resulting emul-sion was heated to 60◦C to obtain the nano-TiO 2/PU emulsions.The FT-IR spectra of TiO 2-BCSPA,PUM and TiO 2/PU-3films are shown in Fig.2.Several characteristic absorption peaks appear for each sample:peaks at 3332,2970,1716,and 1539cm −1resulted from the N–H,C–H,C O,and CO–NH groups,respectively [14].Of particular note is the absorption peak of PUM at 657cm −1which was shifted to 669cm −1in the FT-IR spectra of the TiO 2-BCSPA and TiO 2/PU-3films,indicating the presence of bridging or chelating coordination between the carboxyl groups of BCSPA and TiO 2[9].1H NMR spectra of PUM and TiO 2/PU-3are shown in Fig.3.InFig.3a,the proton resonance peaks in the range of 5.8–6.5ppm were assigned to vinyl protons (–CH CH 2)at the end of each PUM.This compares with the NMR spectrum of TiO 2/PU-3(Fig.3b)which did not show any vinyl proton peak in the same spectral range.This indicates that any possible unreacted HEA end-capped PUMs were almost completely removed by the purification steps.3.2.Molecular weights of cleaved polymersDuring the polymerization of TiO 2/PU-10,5mL aliquots were withdrawn from the reaction mixture at different times for GPCFig.3.1H NMR spectra of (a)PUM and (b)TiO 2/PU-3in CDCl 3.4X.-C.Che et al./Progress in Organic Coatings xxx (2010) xxx–xxxTable1Molecular weights and PDIs(from GPC)of polymers cleaved from TiO2/PU-10atdifferent reaction times.Reaction time(h)Conversion(%)M n(g/mol)M w(g/mol)PDI(M w/M n)12313,50019,100 1.4123827,20035,600 1.3147266,40084,900 1.28 692110,000125,000 1.14 892354,000376,000 1.06analysis.Polymers grafted on the TiO2nanoparticles were cleaved from them under acidic conditions,as described in Section2.The results of the GPC measurements are listed in Table1.The number-averaged molecular weight(M n)of the cleaved polymers increased linearly with reaction time,but the PDI value decreased from1.83 to1.06.Considering the PDI of PUM is2.14,the molecular weight distribution range narrowed considerably,clearly indicating that the polymerization of HEA end-capped PUM followed the living polymerization mechanism in the presence of the RAFT agent and AIBN.The GPC estimated molecular weights of the polymers in the various nano-TiO2/PU emulsions formed via RAFT polymerization for8h are listed in Table2.The PDI values decreased gradually to 1.06when the molar ratio of TiO2-BCSPA to AIBN increased from1:3 to1:10.This indicates that the molecular weight of the polymers became more uniform as the ratio increased,due to more efficient RAFT processes at higher molar ratios.The proposed RAFT polymerization mechanism(Scheme1)and the present experimental results led speculation that the TiO2-BCSPA hybrid was consumed by propagating radicals by a RAFT mechanism.Then the fragmented radicals reinitiated polymeriza-tion,resulting in new propagating radicals,subsequently taking part in the equilibrium established between the dormant poly-mer and active chains.The equilibration process allowed all the polymer chains with TiO2at their ends to grow in a uniform manner.Table3Tensile properties of PU-3and variousTiO2/PU nanocompositefilms.Sample Tensile strength(MPa)Elongation at break(%)PU-32190TiO2/PU-311180TiO2/PU-52293TiO2/PU-718330TiO2/PU-10112303.3.Mechanical properties of TiO2/PU nanocompositefilmsThe tensile strengths and elongations at breaking of the TiO2/PU nanocompositefilms were measured and listed in Table3.The ten-sile strengths of all the TiO2/PU nanocompositefilms are much greater than that of the PU-3film,except for elongation at breaking of the TiO2/PU-5film whose data are not at present fully understood and require more experiment.The significantly enhanced tensile strength of the nanocompositefilms is attributable to the strong adhesion between TiO2nanofillers and polymer matrix.These arise from the wrapping of the nanofillers with the polymer chains via bridging or chelating coordination between titanium atoms and the end groups of polymers,resulting in efficient transfer of the external force to the nanofillers from the polymer matrix.This method of fabrication producedfilms with superior mechanical properties when higher molar ratios of AIBN to TiO2-BCSPA were used.The nano-TiO2/PU emulsions were stored at room tem-perature for more than3months without precipitate being observed,indicating that the emulsions may be stable enough for practical applications.The TiO2/PU nanocompositefilms were semi-transparent,suggesting relatively good dispersion of TiO2 nanoparticles in the polymer matrices.SEM micrographs of the TiO2/PU-3and TiO2/PU-10film surfaces are shown in Fig.4,where average diameters of the nanoparticles observed in TiO2/PU-3 (Fig.4a)and TiO2/PU-10(Fig.4b)films are in a range of20–500nm. The nanoparticles appeared to be polymer chains grown from the TiO2-BCSPA hybrid surfaces.There was no significantly largeTable2Molecular weights and PDIs of PUM,PU-3,and polymers cleaved from various nano-TiO2/PU emulsions.Sample code Reaction time(h)Conversion(%)M n(g/mol)M w(g/mol)PDI(M w/M n)PUM8934,3009,200 2.14PU-3891466,000573,000 1.23TiO2/PU-389083,100152,000 1.83TiO2/PU-5891271,000344,000 1.27TiO2/PU-7892237,000279,000 1.18TiO2/PU-10892354,000376,0001.06Fig.4.SEM micrographs of(a)PU-3and(b)TiO2/PU-10films.X.-C.Che et al./Progress in Organic Coatings xxx (2010) xxx–xxx5aggregate in either image.This observation confirms that the TiO2 nanoparticles were well dispersed in the PU matrix,due to the coordination bonds between the TiO2particles and the polymer chains.4.ConclusionNano-TiO2/PU emulsions were successfully prepared via in situ RAFT polymerization of HEA-end capped PUM emulsions,using both AIBN and TiO2-BCSPA.With changing molar ratio of AIBN to TiO2-BCSPA from1:3to1:10,the PDI of the polymers cleaved from the TiO2nanoparticles decreased from1.83to1.06,which is smaller than that of PUM(2.14),due to the living polymerization of the macromonomers.SEM confirmed good dispersion of the modified TiO2nanoparticles in the polymer matrices.The tensile strengths of the nanocompositefilms were significantly enhanced,due to the coordination bonds between the TiO2and the PU chains.The nano-TiO2/PU emulsions were stable enough not to precipitate after at least3months.This synthetic method of nano-TiO2/PU emulsions appears excellent for controlling the molecular weight and distri-bution of PU as well as the dispersion of TiO2nanoparticles in the PU matrix.AcknowledgementsThis research was supported by the funds from Jilin Prov.S&T Department R&D Program20080307and Jilin Prov.S&T Depart-ment R&D Program200905100.References[1]G.Oertel,Polyurethane Handbook,Hanser,Munich,Germany,1985.[2]P.Pramanik,Bull.Mater.Sci.18(1995)819.[3]V.Sambhy,M.M.MacBride,B.R.Peterson,A.Sen,J.Am.Chem.Soc.128(2006)9798.[4]C.Artelt,H.J.Schmid,W.J.Peukert,Aerosol Sci.36(2005)147.[5]J.Israelachvili,Intermolecular and Surface Forces,Academic Press,London,2000.[6]J.Kasanen,M.Suvanto,T.T.Pakkanen,J.Appl.Polym.Sci.111(2009)2597.[7]D.K.Chattopadhyay,K.V.S.N.Raju,Prog.Polym.Sci.32(2007)352.[8]M.S.M.Mirabedini,J.Zohuriaan-Mehr,M.Atai,.Coat.65(2009)222.[9]B.Hojjati,R.Sui,P.A.Charpentier,Polymer48(2007)5850.[10]F.P.Rotzinger,J.M.Kesselman-Truttmann,S.J.Hug,V.Shkover,M.Gratzel,J.Phys.Chem.B108(2004)5004.[11]R.Bussels,C.Bergman-Göttgens,J.Meuldijk,C.Koning,Macromolecules37(2004)9299.[12]Y.-Z.Jin,Y.B.Hahn,K.S.Nahm,Y.-S.Lee,Polymer46(2005)11294.[13]HG/T2409-92,Determination of the concentration of free NCO groups in thepolyurethane prepolymer,The People’s Republic of China Chemical Standard.[14]M.L.Hsaing,C.H.Chang,M.H.Chan,D.Y.Chao,J.Appl.Polym.Sci.96(2005)103.。

相关文档
最新文档