a01--2005年普通高等学校招生全国统一考试数学(全国卷Ⅰ
2005年高考.全国卷Ⅰ.文科数学试题精析详解(河北、河南、安徽、山西)
2005 年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷 1 至 2 页。
第Ⅱ卷3到 10 页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件 A 、 B 互斥,那么球是表面积公式P( A B) P( A) P(B)S 4R2如果事件 A 、 B 相互独立,那么其中 R 表示球的半径P( A B)P( A) P( B)球的体积公式如果事件 A 在一次试验中发生的概率是P,那么V4R33n 次独立重复试验中恰好发生k 次的概率其中 R 表示球的半径P n (k) C n k P k (1 P) n k一.选择题(1)设I为全集,S1、S2、S3是I的三个非空子集,且 S1S2 S3I ,则下面论断正确的是()(A)C I S1(S2S3)(B)S1(C I S2C I S3)(C)C I S1C I S2C I S3(D)S1(C I S2C I S3)【解析】∵ C I S2C I S3C I (S2S3 ) 所表示的部分是图中蓝色的部分,C I S I所表示的部分是图中除去S1的部分,∴C I S1C I S2C I S3C I S I C I (S2S3 ),故选 C.【点拨】利用韦恩图求解.(2)一个与球心距离为 1 的平面截球所得的圆面面积为,则球的表面积为(A)8 2(B)8(C)4 2(D)4解:∵截面圆面积为πr1,O 1,∴截面圆半径∴球的半径为 ROO 12r 22 ,O∴球的表面积为 8π,故选B.(3)函数 f (x)x 3 ax 2 3 x 9,已知 f ( x) 在 x3 时取得极值,则a =(A )2(B )3(C ) 4 (D )5解: f( x) 3x 22ax 3 ,令 f (x) |x 3 (3x 22ax 3) |x 3 =0,解得 a=5,选 (D)(4)如图,在多面体 ABCDEF 中,已知 ABCD 是边长为1 的正方形,且ADE 、 BCF 均为正三角形, EF ∥ AB , EF=2 ,则该多面体的体积为( A )2( B )333(C )4( D ) 332解:如图 ,过 A 、 B 两点分别作 AM 、BN 垂直于 EF ,垂足分别为 M 、N ,连结 DM 、 CN ,可证得 DM ⊥EF 、CN ⊥EF ,多面体 ABCDEF 分为三部分,多面体的体积 V 为VABCDEFV AMD BNCV EAMDV F BNC ,∵NF 1 , BF 1 ,∴ BN 3 ,2 2作 NH 垂直于点 H ,则 H 为 BC 的中点,则 NH2 ,∴ S BNC 1BCNH2,∴22412 ,EMNFV F BNCS BNC NF324CDHABV E AMDV F BNC2 , V AMD BNC S BNC MN2,∴ V ABCDEF2 ,故选 A .2443(5)已知双曲线 xa2 y 2 1 (a 0) 的一条准线为 x32,则该双曲线的离心率为2( A ) 336 ( D )2 32( B )(C )322解:由 x2y 2 1 (a0) 得 b1,∴ a 2 1 c 2 ,抛物线 y 26x 的准线为 x3 ,因a 22x 2 y 21 (a0) 的一条准线与抛物线 y 2a 2 3 ,解为双曲线26x 的准线重合, 所以2ac得 c 2,所以a 3 ,所以离心率为c223e3,故选 D.a3(6)当0x时,函数 f ( x)1cos2 x8sin 2x的最小值为2sin 2x (A)2 (B)2 3(C)4 (D)4 3解: f ( x)1cos 2x 8sin 2 x 2 cos2 x8sin 2 x cos x 4 sin xsin 2x 2 sin x cos x sin x cos x2 c o sx 4 s i nx 4 ,当且仅当cosx4sin x,即 ant x1时,取“ ”,s i nx c o sx sin x cos x2∵ 0 x π14 ,故选(C).,∴存在 x 使tan x,这时 f ( x)max22(7)y2x x 2(1 x2) 反函数是(A )(C)y11x 2(1x1)y11x 2(1x1)(B )(D )y11x 2(0x1)y11x2(0x1)解:由y2x x2 (1 x2) ,得x 1 1 y 2 (0 y 1) ,故y2x x 2(1x2) 的反函数为f1 (x)1 1 x2 (0x1) ,选(D)(8)设0a1,函数 f (x)log a ( a2 x2a x2) ,则使 f ( x)0的x的取值范围是(A)(,0)(B)(0, )(C)(, log a3)( D)(log a3,)解:∵ 0a1, f (x) 0 ,∴ a 2x2a x2 1 ,解得 a x3或 a x1(舍去),∴ a log a 3,故选 C.(9)在坐标平面上,不等式组y x1所表示的平面区域的面积为y 3 x1(A)2332(D)2(B)( C)22y解:原不等式化为y x 1或y x1,O1y3x1, (x0)y3x 1,( x0)1 B1x, B(1,1) ,所表示的平面区域如右图所示,A(1,2)A22∴ S3,故选 B2A B(10)在 ABC 中,已知 tanC ,给出以下四个论断:2 sin① tan A cot B 1② 0 sin A sin B 2③ sin 2 Acos 2 B 1④ cos 2 A cos 2 Bsin 2 C其中正确的是(A )①③( B )②④(C )①④( D )②③解:∵ tanABtan πCcotCcosC2 sin C cos C,2, sin C222 C2 2sin2∴ sinC2,∴C90 ,22∵ tan A cot Btan2A ,∴①不一定成立,∵ sin Asin Bsin A cos A2 sin( A) ,∴ 0 sin Asin B2 ,∴②成立,∵ sin 2 A cos 2 B sin 2 A sin 2 A 2sin 2 A ,∴③不一定成立,∵ cos 2 Acos 2 B cos 2 A sin 2 A 1 sin 2 C ,∴④成立,故选 B .(11)点 O 是三角形ABC 所在平面内的一点,满足OA OB OB OC OC OA ,则点 O是 ABC 的( A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点( C )三条中线的交点(D )三条高的交点解: OA OB OB OC OC OA ,即得OA OBOC OA ,OB(OBBA) (OB BC)(OB BA即 BC(OB BA) 0 ,故BC OA 0 , BC OA ,同理可证 AC OB ,∴ O 是ABC 的三条高的交点 ,选 (D)(12)设直线 l 过点 ( 2,0) ,且与圆22相切,则l 的斜率是x y 1(A ) 1(B )1( C )3323( D )解:设过点( 2,0) ,且与圆 x 2y 2 1相切的直线 l 的斜率为 k,则直线 l 的方程为:y-kx+2k=0,k 满足: 1=| 2k | 得 k= 3 ,选(D).1 k 23第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005年普通高等学校招生全国统一考试数学试卷全国卷I文
2005年普通高等学校招生全国统一考试文科数学(必修+选修I )第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn k kn n P P C k P --=)1()(一.选择题(1)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是 (A )1±(B )21±(C )33±(D )3±(2)设I 为全集,321S S S 、、是I 的三个非空子集,且IS S S =⋃⋃321,则下面论断正确的是(A )C I S 1∩(S 2∪S 3)=Φ (B )S 1⊆(C I S 2∩C I S 3) (C )C I S 1∩C I S 2∩C I S 3=Φ (D )S 1⊆(C I S 2∪C I S 3)(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a = (A )2 (B )3 (C )4 (D )5(5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32(B )33 (C )34(D )23(6)已知双曲线)0( 1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为 (A )23(B )23(C )26(D )332(7)当20π<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8))21( 22≤≤-=x x x y 反函数是 (A ))11( 112≤≤--+=x x y(B ))10( 112≤≤-+=x x y(C ))11( 112≤≤---=x x y(D ))10( 112≤≤--=x x y (9)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞ (C ))3log ,(a -∞ (D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23(C )223(D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断:其中正确的是①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+(A )①③ (B )②④(C )①④ (D )②③(12)点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点 (B )三条边的垂直平分线的交点(C )三条中线的交点(D )三条高的交点第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2005年普通高等学校招生全国统一考试
2005年普通高等学校招生全国统一考试数学(理工农医类)分类整理 三角函数、解三角形与平面向量(全国卷Ⅰ)(6)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(10)在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③(B )②④ (C )①④ (D )②③(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=,则实数m = (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。
(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 与函数)(x f y =的图像不相切。
(全国卷Ⅱ)1.函数f (x )=|sin x +cos x |的最小正周期是( )A .4πB .2πC .πD .2π 4.已知函数)2,2(tan ππω-=在x y 内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-17.锐角三角形的内角A 、B 满足tanA -A2sin 1=tanB ,则有( )A .sin2A -cosB=0B .sin2A+cosB=0C .sin2A -sinB=0D .sin2A+sinB=08.已知点A (3,1),B (0,0)C (3,0).设∠BAC 的平分线AE 与BC 相交于E , 那么有λλ其中,CE BC =等于( )A .2B .21 C .-3 D .-3110.点P 在平面上作匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为 ( ) A .(-2,4) B .(-30,25) C .(10,-5) D .(5,-10) (全国卷Ⅲ)(1)已知α为第三象限角,则2α所在的象限是(A )第一或第二象限 (B )第二或第三象限 (C )第一或第三象限 (D )第二或第四象限(7)设02x π≤≤,sin cos x x =-,则 (A) 0x π≤≤ (B)744x ππ≤≤(C) 544x ππ≤≤ (D) 322x ππ≤≤(8)αααα2cos cos 2cos 12sin 22⋅+(A) tan α (B) tan 2α (C) 1 (D)12(14)已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= (16)已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是 (19)(本小题满分12分)△ABC 中,内角A ,B ,C 的对边分别是a ,b,c ,已知a ,b,c 成等比数列,且cosB =34。
2005年高考.全国卷Ⅰ.理科数学试题精析详解(河北、河南、安徽、山西)
(D) 2 2 i
【点拨】对于复数运算应先观察其特点再计算,会简化运算.
(2)设 I 为全集, S1、S2、S3 是 I 的三个非空子集,且 S1 S2 S3 I ,则下面论断正确的是
()
(A) CI S1 (S2 S3)
(B) S1 (CI S2 CI S3)
(C) CI S1 CI S2 CI S3
(3)一个与球心距离为 1 的平面截球所得的圆面面积为 π ,则球的表面积为
()
(A) 8 2π (B) 8π (C) 4 2π (D) 4π 【解析】∵截面圆面积为 π ,∴截面圆半径 r 1 ,
O1
∴球的半径为 R OO12 r 2 2 ,
∴球的表面积为 8π ,故选B.
O
【点拨】找相关的直角三角形.
1 3
S
BNC
NF
2 24
,
VE AMD
VF BNC
2 24
V , AMDBNC
SBNC MN
2 4
,∴ V ABCDEF
2
,故选 A.
3
【点拨】将不规则的多面体分割或补全为规则的几何体进行计算.
(6)已知双曲线
x2 a2
y2
1
(a
0) 的一条准线与抛物线 y 2
6x 的准线重合,则该双曲线的
sin 2x
2sin x cos x sin x cos x
(D) 4 3
2 cos x 4 sin x 4 ,当且仅当 cos x 4 sin x ,即 tan x 1 时,取“ ”,
sin x cos x
sin x cos x
2
∵0
x
π 2
,∴存在 x 使 tan x
2005年高考文科数学(全国卷Ⅰ)试题及答案
2005年高考文科数学(全国卷Ⅰ)试题及答案第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一、选择题(1)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是(A )1± (B )21± (C )33±(D )3±(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(A )2 (B )3 (C )4 (D )5(5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34 (D )23(6)已知双曲线)0( 1222>=-a yax 的一条准线为23=x ,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332(7)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2(B )32 (C )4 (D )34(8))21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y (B ))10( 112≤≤-+=x x y(C ))11( 112≤≤---=x x y (D ))10( 112≤≤--=x x y(9)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞ (C ))3log,(a -∞(D )),3(log+∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(11)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin coscos=+其中正确的是 (A )①③(B )②④(C )①④(D )②③(12)点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上2.答卷前将密封线内的项目填写清楚3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02l g ≈(14)8)1(xx -的展开式中,常数项为 (用数字作答)(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 种(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1( (Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求a的取值范围(20)(本大题满分12分)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(Ⅰ)求甲坑不需要补种的概率;(Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率(精确到01.0)(21)(本大题满分12分) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S (Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T(22)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与(3,1)a =-共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值。
2005年高考数学试卷
2005年普通高等学校招生全国统一考试 理科数学(全国卷Ⅰ)无答案解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181- (4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32(B )33 (C )34 (D )23 (5)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为(A )23(B )23 (C )26(D )332 (6)当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+- (8)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞(C ))3log ,(a -∞ (D )),3(log +∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23(C )223 (D )2(10)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是(A )①③ (B )②④ (C )①④ (D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对(12)复数ii 2123--=(A )i(B )i -(C )i -22(D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005年高考理科数学试题全国卷1(河北、河南、山西、安徽)
2005年普通高考全国数学卷(一)考区(河北理科卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是( )(A )Φ=⋃⋂)(321S S S C I (B ))(221S C S C S I I ⋂⊆ (C )Φ=⋂⋂)321S C S C S C I I I(D ))(221S C S C S I I ⋃⊆ (2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为()(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181-(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为()(A )32 (B )33(C )34 (D )23(5)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为( )(A )23 (B )23 (C )26 (D )332(6)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为( )(A )2(B )32 (C )4 (D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(8)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )(A ))0,(-∞(B )),0(+∞ (C ))3log,(a-∞ (D )),3(log+∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为()(A )2 (B )23 (C )223 (D )2(10)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin cos cos =+其中正确的是(A )①③(B )②④ (C )①④ (D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有( )(A )18对 (B )24对 (C )30对(D )36对 (12)复数ii 2123--=( )(A )i (B )i - (C )i -22 (D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005年高考全国卷1(文科数学)
2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)(适用:河北、河南、山西、安徽、海南)一、选择题 (本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.2等于 A.i B.i -C.iD.i -2.设I 为全集,321S S S 、、是I 的三个非空子集,且123S S S I =,则下面论断正确的是A.123I C S S S =∅() B.122I I S C S C S ⊆() C.123(I I I C S C S C S =∅) D.122I I S C S C S ⊆() 3.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 A.π28 B.π8 C.π24 D.π44.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =A.2B.3C.4D.55.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE ∆、 BCF ∆均为正三角形,EF ∥AB ,2EF =,则该多面体的体积为 A.32 B.33 C.34 D.236.已知双曲线2221x y a -=(0a >)的一条准线为23=x ,则该双曲线的离心率为 A.23 B.23 C.26 D.332 7.当20π<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为 A.2 B.32 C.4 D.34AB CD E F8.y =12x ≤≤)反函数是A.1y =11x -≤≤)B.1y =(01x ≤≤)C.1y =(11x -≤≤)D.1y =(01x ≤≤)9.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使()0f x <的x 的取值范围是A.)0,(-∞B.),0(+∞C.)3log ,(a -∞D.),3(log +∞a10.在坐标平面上,不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩所表示的平面区域的面积为 A.2 B.23 C.223 D.2 11.在ABC ∆中,已知C B A sin 2tan =+,给出以下四个论断: ①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cos sin 22=+B A ④C B A 222sin cos cos =+其中正确的是A.①③B.②④C.①④D.②③12.点O 是ABC ∆所在平面内的一点,满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是ABC ∆的A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.若正整数m 满足m m 102105121<<-,则m = .(lg 20.3010)≈ 14.81()x x-的展开式中,常数项为 .(用数字作答) 15.6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 种.16.在正方形1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,则①四边形1BFD E 一定是平行四边形②四边形1BFD E 有可能是正方形③四边形1BFD E 在底面ABCD 内的投影一定是正方形④四边形1BFD E 有可能垂直于平面1BB D以上结论正确的为 .(写出所有正确结论的编号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x . (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间[0,]π上的图像.18.(本大题满分12分)已知四棱锥P ABCD -的底面为直角梯形,AB ∥DC ,90DAB ∠=,PA ⊥底面ABCD ,且112PA AD AB ===,M 是PB 的中点。
2005年高考.全国卷Ⅰ.理科数学试题精析详解(河北、河南、安徽、山西)
2005年普通高等学校招生全国统一考试 理科数学(全国卷Ⅰ)河南河北山西安徽第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式)()()(B P A P B A P +=+ 2π4R S =如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么3π34R V =n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn k n P P k P --=)1(C )(k n 一.选择题 (1)复数=--i21i 23( )(A )i(B )i -(C )i 22-(D )i 22+-【解析】∵i i21i i)21(i21i 2i21i 23=--=-+=--,故选A .【点拨】对于复数运算应先观察其特点再计算,会简化运算.(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =321 ,则下面论断正确的是( )(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂()(C )Φ=⋂⋂321S C S C S C I I I (D )123I I S C S C S ⊆⋃()【解析】∵)S (S C S C S C 32I 3I 2I ⋃= 所表示的部分是图中蓝色的部分,I I S C 所表示的部分是图中除去1S 的部分,∴Φ==⋂⋂)S S (C S C 32I I I 321 S C S C S C I I I ,故选C【点拨】利用韦恩图求解.(3)一个与球心距离为1的平面截球所得的圆面面积为π)(A )π28 (B )π8 (C )π24 (D )π4【解析】∵截面圆面积为π,∴截面圆半径1=r ,∴球的半径为2221=+=r OO R ,∴球的表面积为π8,故选B. 【点拨】找相关的直角三角形.(4)已知直线l 过点)02(,-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181- 【解析】将x y x 222=+化为1)1(22=+-y x ,∴该圆的圆心为)0,1(,半径1=r ,设直线的方程为)2(+=x k y ,即02=+-k y kx ,设直线l 到圆心的距离为d ,则 ∵直线l 与圆x y x 222=+有两个交点,∴r d ≤, ∴11|2|2≤++=k k k d ,∴4242≤≤-k .故选C . 【点拨】利用圆心到直线的距离解直线与圆的位置关系.(5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) (A )32(B )33 (C )34(D )23【解析】过A 、B 两点分别作AM 、BN 垂直于EF ,垂足分别为M 、N ,连结DM 、CN ,可证得DM ⊥EF 、CN ⊥EF ,多面体ABCDEF 分为三部分,多面体的体积V 为+=-BNC AMD ABCDEF V VBNC F AMD E V V --+,∵21=NF ,1=BF ,∴23=BN ,作NH 垂直于点H ,则H 为BC的中点,则22=NH ,∴4221=⋅⋅=∆NH BC S BNC ,∴24231=⋅⋅=∆-NF S V BNC BNC F ,242==--BNC F AMD E V V ,42=⋅=∆-MN S V BNC BNC AMD ,∴32=ABCDEF V ,故选A .【点拨】将不规则的多面体分割或补全为规则的几何体进行计算.(6)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )(A )23 (B )23 (C )26 (D )332 【解析】由)0( 1222>=-a y ax 得1=b ,∴221c a =+,抛物线x y 62-=的准线为23=x ,因为双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,所以232=c a ,解得2=c ,所以3=a ,所以离心率为33232===a c e ,故选D . 【点拨】熟悉圆锥曲线各准线方程.(7)当2π0<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为( )(A )2 (B )32 (C )4 (D )34【解析】x xx x x x x x x x x x f cos sin 4sin cos cos sin 2sin 8cos 22sin sin 82cos 1)(222+=+=++=4c o s s i n 4s i n c o s 2=⋅≥x x x x ,当且仅当x x x x cos sin 4sin cos =,即21tan =x 时,取“=”,∵2π0<<x ,∴存在x 使21tan =x ,这时4)(max =x f ,故选C .E FA BCDM N H【点拨】熟练运用三角函数公式进行化简运算.(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a (A )1(B )1-(C )251-- (D)251+- 【解析】∵0>b ,∴图像不能以轴为对称轴,∴一、二两个图不符;第四个图可知,0>a ,故其对称轴为02<-=abx ,所以也不符合;只有第三个图可以,由图象过原点,得012=-a ,开口向下,所以1-=a ,故选B .【点拨】熟悉二次函数图象的特点,分析对称轴、与轴的交点等形与数的关系.(9)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )(A ))0,(-∞(B )),0(∞+(C ))3log ,(a -∞(D )),3(log ∞+a【解析】∵10<<a ,0)(<x f ,∴1222>--x x a a ,解得 3>x a 或1-<x a (舍去), ∴3log a a <,故选C . 【点拨】熟悉对数的性质. (10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||31x y x y 所表示的平面区域的面积为( )(A )2 (B )23(C )223 (D )2 【解析】原不等式化为⎩⎨⎧≥+-≤-≥)0(,131x x y x y 或⎩⎨⎧<+≤-≥)0(,131x x y x y ,所表示的平面区域如右图所示,)2,1(--A ,)21,21(-B , ∴23=S 【点拨】分类讨论,通过画出区域,计算面积. (11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A ④C B A 222sin cos cos =+其中正确的是( ) (A )①③ (B )②④(C )①④(D )②③【解析】∵2sin2cos2cot 2πtan 2tan C CC C B A ==-=+,2cos 2sin 2sin C C C =, ∴222sin =C ,∴︒=90C ,∵A B A 2tan cot tan =⋅,∴①不一定成立,∵=+=+A A B A cos sin sin sin )sin(2θ+A ,∴2sin sin 0≤+<B A ,∴②成立,∵A A A B A 22222sin 2sin sin cos sin =+=+,∴③不一定成立,∵C A A B A 22222sin 1sin cos cos cos ==+=+,∴④成立,故选B .【点拨】考查三角公式的灵活运用.(12)过三棱柱任意两个顶点的直线共15条,其中异面直线有( )(A )18对 (B )24对 (C )30对 (D )36对 【解析】解法一:(直接法)①与上底面的11B A 、11C A 、11C B 成异面直线的有15对;②与下底面的AB 、AC 、BC 成异面直线的有9对(除去与上底面的); ③与侧棱1AA 、1BB 、1CC 成异面直线的有6对(除去与上下底面的);④侧面对角线之间成异面直线的有6对; 所以异面直线总共有36对. 解法二:(间接法)①共一顶点的共面直线有60C 625=对; ②侧面互相平行的直线有6对; ③侧面的对角线有3对共面;所以异面直线总共有363660C 215=---对. 【点拨】解排列组合题的关键是分好类.第Ⅱ卷二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(13)若正整数m 满足m m 102105121<<-,则m = 155 .)3010.02(lg ≈ 【解析】∵m m 102105121<<-,∴m m 10lg 2lg 10lg 5121<<-,即m m <<-2lg 5121,∴m m <<-112.1541,即 112.155112.154<<m ,∴155=m .【点拨】把指数形式化成对数形式.(14)9)12(xx -的展开式中,常数项为 672 .(用数字作答) 【解析】9)12(xx -的通项公式为23999992C )1()1()2(C rrr r r rrx xx ---⋅⋅⋅-=-⋅⋅,令0239=-r 得,6=r ,∴常数项为6722C )1(69696=⋅⋅-- 【点拨】熟悉二项式定理的展开式的通项公式.(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数=m .【解析】(特例法)设ABC ∆为一个直角三角形,则O 点斜边的中点,H 点为直角顶点,这时有OH ++=,∴1=m .1A 1B 1C ABC【点拨】由特殊情况去检验一般情况.(16)在正方体''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则①四边形E BFD '一定是平行四边形 ②四边形E BFD '有可能是正方形③四边形E BFD '在底面ABCD 内的投影一定是正方形 ④四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 .(写出所有正确结论的编号) 【解析】①平面E BFD '与相对侧面相交,交线互相平行,∴四边形E BFD '一定是平行四边形;②四边形E BFD '若是正方形,则D E BE '⊥,又EB AD ⊥,∴⊥EB 平面A ADD ',产生矛盾;③四边形E BFD '在底面ABCD 内的投影是正方形ABCD ;④当E 、F 分别是'AA 、'CC 的中点时,AC EF //,又⊥AC 平面D BB ',∴四边形E BFD '有可能垂直于平面D BB '; 【点拨】边观察、边推导.三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本大题满分12分)设函数)(),0π( )2sin()(x f y x x f =<<-+=ϕϕ图像的一条对称轴是直线8π=x . (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切.17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分. 解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:,2|)432cos(2||))432(sin(|||≤-='-='ππx x y所以曲线)(x f y =的切线斜率取值范围为[-2,2],而直线025=+-c y x 的斜率为225>,所以直线025=+-c y x 与函数)432sin(π-=x y 的图像不相切.(18)(本大题满分12分)已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且ABPMABCDA 'B 'C 'D 'EFP A =AD =DC =21AB =1,M 是PB 的中点. (Ⅰ)证明:面P AD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小.18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP ⊥=⋅==所以故由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==.510||||,cos ,2,5||,2||=⋅>=<=⋅==PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x z y x要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角. ).32arccos(.32),cos(.54,530||,530||--==∴-=⋅==故所求的二面角为BN AN BN AN(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和),2,1( 0 =>n S n . (Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小. 19. 本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分. 解:(Ⅰ)因为}{n a 是等比数列,.0,0,011≠>=>q S a S n 可得 当;0,11>==na S q n 时),2,1(,011,01)1(,11 =>-->--=≠n qqq q a S q nn n 即时当上式等价于不等式组:),2,1(,01,01 =⎩⎨⎧<-<-n q q n① 或),2,1(,01,01 =⎩⎨⎧>->-n q q n② 解①式得q>1;解②,由于n 可为奇数、可为偶数,得-1<q<1. 综上,q 的取值范围是).,0()0,1(+∞⋃- (Ⅱ)由得1223++-=n a n a a b .)23(),23(22n n n n S q q T q q a b -=-=于是)123(2--=-q q S S T n n n ).2)(21(-+=q q S n.,0,2,21;,0,0221;,0,2211,,001,0n n n n n n n n n n n n n S T S T q q S T S T q q S T S T q q q q S ==-=-=<<-≠<<->>->-<<-><<->即时或当即时且当即时或当所以或且又因为(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到01.0)20.本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分.(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为81)5.01(3=-,所以甲坑不需要补 种的概率为 .87811=-3个坑都不需要补种的概率,670.0)87()81(303=⨯⨯ C恰有1个坑需要补种的概率为,287.0)87(81213=⨯⨯C恰有2个坑需要补种的概率为,041.087)81(223=⨯⨯C3个坑都需要补种的概率为.002.0)87()81(0333=⨯⨯C补种费用ξ的分布为75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE(21)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值.21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知训,考查综合运用数学知识解决问题及推理的能力,满分14分.(I )解:设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221ba b a c a x x b a c a x x +-=+=+),,(2121y y x x ++=+由与+-=),1,3(共线,得 .0)()(32121=+++x x y y.36,36.3,232.23,0)()2(3,,22222222121212211===-=∴==+=+∴=++-+∴-=-=a c e ab ac b a c ba c a cx x x x c x x c x y c x y 故离心率所以即又 (II )证明:由(I )知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),,(),(),(),,(2211y x y x y x y x μλ+==由已知得设⎩⎨⎧+=+=∴.,2121y y y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知.21,23,23222221c b c a c x x ===+))((33.8321212121222222221c x c x x x y y x x c ba b a c a x x --++=+∴=+-=∴ .0329233)(3422222121=+-=++-=c c c c c x x x x 又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ故22μλ+为定值,定值为1.(22)(本大题满分12分)(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明:n p p p p p p p p n n -≥++++222323222121log log log log22.本小题主要考查数学归纳法及导数应用等知识,考查综合运用数学知识解决问题的能力.满分12分.(Ⅰ)解:对函数)(x f 求导数:])1(log )1[()log ()(22'--+'='x x x x x f.2ln 12ln 1)1(log log 22-+--=x x ).1(log log 22x x --= 于是.0)21(='f当)(,0)1(log log )(,2122x f x x x f x <--='<时在区间)21,0(是减函数, 当)(,0)1(log log )(,2122x f x x x f x >--='>时在区间)1,21(是增函数.所以21)(=x x f 在时取得最小值,1)21(-=f ,(Ⅱ)证法一:用数学归纳法证明.(i )当n=1时,由(Ⅰ)知命题成立.(ii )假定当k n =时命题成立,即若正数1,,,221221=+++k k p p p p p p 满足, 则.log log log 222222121k p p p p p p k k -≥+++当1+=k n 时,若正数,1,,,11221221=+++++k k p p p p p p 满足令.,,,,222211221xp q x p q x p q p p p x k k k ===+++= 则k q q q 221,,, 为正数,且.1221=+++k q q q由归纳假定知.log log log 222222121k q q p p p q k k -≥+++kk k k q q q q q q x p p p p p p 222222121222222121log log log (log log log +++=+++,l o g )()l o g 22x x k x x +-≥+ ①同理,由x p p p k kk-=++++++1122212 可得1122212212log log ++++++k k k k p p p p).1(log )1())(1(2x x k x --+--≥ ②综合①、②两式11222222121log log log +++++k k p p p p p p).1()1(log )1(log ))](1([22+-≥--++--+≥k x x x x k x x 即当1+=k n 时命题也成立.根据(i )、(ii )可知对一切正整数n 命题成立. 证法二:令函数那么常数)),,0(,0)((log )(log )(22c x c x c x c x x x g ∈>--+=],log )1(log )1(log [)(222c cxc x c x c x c x g +--+=利用(Ⅰ)知,当.)(,)2(21取得最小值函数时即x g cx c x ==对任意都有,0,021>>x x2log 22log log 21221222121x x x x x x x x ++⋅≥+ ]1)()[log (21221-++=x x x x . ① 下面用数学归纳法证明结论.(i )当n=1时,由(I )知命题成立.(ii )设当n=k 时命题成立,即若正数有满足,1,,,221221=+++k k p p p p p p11111122212212222121221221222222121log log log log .1,,,,1.log log log ++++++++++==++++=-≥+++--k k k k k k k k p p p p p p p p H p p p p p p k n k p p p p p p 令满足时当由①得到,1)()(],1)()[log (]1)()[log (11111121221212221221221=++++-++++-++≥++++++---k k k k k k p p p p p p p p p p p p H 因为由归纳法假设得到,)(log )()(log )(1111212221221221k p p p p p p p p k k k k -≥++++++++++-- ).1()(1121221+-=++++--≥+++k p p p p k H k k 即当1+=k n 时命题也成立. 所以对一切正整数n 命题成立.。
2005年高考文科数学试题全国卷1(河北、河南、山西、安徽)
2005年普通高考全国数学卷(一)考区(河北文科卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是( )(A )Φ=⋃⋂)(321S S S C I(B ))(221S C S C S I I ⋂⊆ (C )Φ=⋂⋂)321S C S C S C I I I(D ))(221S C S C S I I ⋃⊆ (2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为()(A )π28(B )π8(C )π24(D )π4(3)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )(A )2 (B )3 (C )4 (D )5(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为( )(A )32 (B )33 (C )34(D )23 (5)已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为( )(A )23(B )23 (C )26 (D )332 (6)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为( )(A )2(B )32(C )4 (D )34(7))21( 22≤≤-=x x x y 反函数是( )(A ))11( 112≤≤--+=x x y(B ))10( 112≤≤-+=x x y(C ))11( 112≤≤---=x x y(D))10( 112≤≤--=x x y(8)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )(A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞(D )),3(log +∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为( )(A )2(B )23(C )223 (D )2(10)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+ 其中正确的是 (A )①③(B )②④(C )①④(D )②③(11)点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的( )(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点(12)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是()(A )1±(B )21±(C )33±(D )3±第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005年高考理科数学试题全国卷1(河北、河南、山西、安徽)
2005年普通高考全国数学卷(一)考区(河北理科卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是( )(A )Φ=⋃⋂)(321S S S C I(B ))(221S C S C S I I ⋂⊆ (C )Φ=⋂⋂)321S C S C S C I I I(D ))(221S C S C S I I ⋃⊆ (2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为()(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181-(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为()(A )32(B )33 (C )34(D )23 (5)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )(A )23 (B )23 (C )26 (D )332 (6)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为( )(A )2(B )32(C )4 (D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+- (8)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )(A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞(D )),3(log +∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为( )(A )2(B )23(C )223 (D )2(10)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是(A )①③ (B )②④ (C )①④ (D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有( )(A )18对 (B )24对 (C )30对(D )36对 (12)复数ii 2123--=( )(A )i(B )i -(C )i -22(D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005年普通高等学校招生全国统一考试数学试卷全国卷I理
2005年全国普通高等学校招生全国统一考试理科数学(必修+选修II )第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn k kn n P P C k P --=)1()(一、选择题 ( 本大题 共 12 题, 共计 60 分)1.复数=(A ) (B )(C )(D )2.设为全集,是的三个非空子集,且,则下面论断正确的是(A )C I S 1∩(S 2∪S 3)=Φ (B )S 1(C I S 2∩C I S 3) (C )C I S 1∩C I S 2∩C I S 3=Φ (D )S 1(C I S 2∪C I S 3)3.一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为 (A )(B )(C )(D )4.已知直线过点,当直线与圆有两个交点时,其斜率k的取值范围是(A)(B)(C)(D)5.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EF∥AB,EF=2,则该多面体的体积为(A)(B)(C)(D)6.已知双曲线的一条准线与抛物线的准线重合,则该双曲线的离心率为(A)(B)(C)(D)7.当时,函数的最小值为(A)2 (B)(C)4 (D)8.设,二次函数的图像为下列之一则的值为(A)(B)a(C)1 (D)-19.设,函数,则使的的取值范围是(A)(B)(C)(D)10.在坐标平面上,不等式组所表示的平面区域的面积为(A)(B)(C)(D)211.在中,已知,给出以下四个论断:①②③④其中正确的是(A)①③(B)②④(C)①④(D)②③12.过三棱柱任意两个顶点的直线共15条,其中异面直线有(A)18对(B)24对(C)30对(D)36对二、填空题 ( 本大题共 4 题, 共计 16 分)(13)若正整数m满足,则m = 。
2005年高考理科数学全国卷Ⅰ试题及答案(河北、河南、安徽、山西、海南等地区用)
2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一、选择题 (1)复数ii 2123--=(A )i(B )i -(C )i -22(D )i +-22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222- (B )),(22- (C )),(4242-(D )),(8181- (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34(D )23(6)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为(A )23(B )23(C )26 (D )332 (7)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(9)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞(D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23 (C )223 (D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02≈(14)9)12(xx -的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=,则实数m =(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n (Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分)(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明n p p p p p p p p n n -≥++++222323222121log log log log2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为 (Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=-=-≤ 所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+-c y x 的斜率为522>, 所以直线025=+-c y x 于函数3()sin(2)4y f x x π==-的图像不相切 18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD. (Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角 ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM.在等腰三角形AMC 中,AN ·MC=AC AC CM ⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==.510,cos ,2,5||,2||=>=<=⋅==PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x z y x要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN 0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.30304||,||,.555AN BN AN BN ==⋅=- 2cos(,).3||||AN BN AN BN AN BN ⋅∴==-⋅2arccos().3-故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃-(Ⅱ)0,100,n S q q >-<<>又因为且或1,12,0,;2n n n n q q T S T S -<<->->>所以当或时即120,0,;2n n n n q q T S T S -<<≠-<<当且时即1,2,0,.2n n n n q q T S T S =-=-==当或时即ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+by a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c b c a c x x ===+ 22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力 满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+--2211log log (1)ln 2ln 2x x =--+- 22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数, 当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立 (ⅱ)假设当n=k 时命题成立即若正数1232,,,,k p p p p 满足12321k p p p p ++++=,则121222323222log log log log k k p p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p +满足112321k p p p p +++++=,令1232k x p p p p =++++11p q x =,22pq x =,……,22k k p q x= 则1232,,,,k q q q q 为正数,且12321k q q q q ++++=,由归纳假定知121222323222log log log log k k q q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()l o g x k x x ≥-+ ①同理,由1212221k k k p p p x ++++++=-,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++--1(1)k k≥--=-+ 即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立。
2005年普通高等学校招生全国统一考试数学及答案(全国卷Ⅰ.理)
2005年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ) 河南 河北 安徽 山西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222-(B )),(22-(C )),(4242-(D )),(8181-(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33 (C )34(D )23 (5)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332 (6)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+- (8)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞(D )),3(log +∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为 (A )2(B )23 (C )223 (D )2(10)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对(12)复数ii 2123--=(A )i(B )i -(C )i -22(D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005年高考文科数学全国卷(一)
2005年高考文科数学全国卷(一)(河北、河南、安徽、山西、海南)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷注意事项:本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()( 球的表面积公式24R S π=,其中R 表示球的半径 球的体积公式334R V π=球,其中R 表示球的半径一、选择题1. 设直线l 过点(-2,0),且与圆x 2+y 2=1相切,则l 的斜率是 ( )A. ±1B. ±21C. ±33D. ±32. 设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( )()()A S S S B S S S C S S S D S S S C C C C C C C C I I I I I I I I ....()123123123123 =∅⊆=∅⊆3. 一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( ) A. 8π2 B. 8π C. 4π2 D. 4π4. 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A. 2 B. 3 C. 4 D. 55. 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A.32 B.33 C.34 D.23 6. 已知双曲线)0(1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为( )A. 23B.23 C.26 D. 332 7. 当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为( ) A. 2 B. 23 C. 4 D. 438. )21(22≤≤-=x x x y 的反函数是( ) A. )11(112≤≤--+=x x yB. )10(112≤≤-+=x x yC. )11(112≤≤---=x x yD. )10(112≤≤--=x x y9. 设x x f a a x f a x x a 的则使函数0)(),22(log )(,102<--=<<的取值范围是( ) A. )0,(-∞ B. ),0(+∞ C. )3log ,(a -∞ D. ),3(log +∞a10. 在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域的面积为( )A. 2B. 23C. 223 D. 211. 在△ABC 中,已知C BA sin 2tan =+,给出以下四个论断 ( )①tanA ²cotB=1 ②0<sinA+sinB ≤2 ③sin 2A+cos 2B=1 ④cosA 2+cos 2B=sin 2C 其中正确的是( ) A. ①③ B. ②④ C. ①④ D. ②③12. 点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是△ABC 的( )A. 三个内角的角平分线的交点B. 三条边的垂直平分线的交点C. 三条中线的交点D. 三条高的交点第Ⅱ卷注意事项:本卷共10小题,共90分。
2005年普通高等学校招生全国统一考试
2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ) (四川,陕西,云南卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:(1)已知α为第三象限角,则2α所在的象限是(A )第一或第二象限 (B )第二或第三象限(C )第一或第三象限 (D )第二或第四象限(2)已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为(A )0 (B )-8 (C )2 (D )10 (3)在8(1)(1)x x -+的展开式中5x的系数是(A )-14 (B )14 (C )-28 (D )28(4)设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为(A )16V (B )14V (C )13V (D )12V (5)设173x=,则 (A )-2<x<-1 (B )-3<x<-2 (C )-1<x<0 (D )0<x<1 (6)若ln 2ln 3ln 5,,235a b c ===,则 (A)a<b<c (B)c<b<a (C)c<a<b (D)b<a<c (7)设02x π≤≤,sin cos x x =-,则(A) 0x π≤≤ (B) 744x ππ≤≤(C) 544x ππ≤≤ (D) 322x ππ≤≤(8)22sin 21cos 2cos 2cos αααα⋅=+ (A) tan α (B) tan 2α (C) 1 (D)12(9)已知双曲线2212y x-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π ,其中R 表示球的半径(A )43 (B )53 (C (D (10)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(A )2 (B )12(C )2 (D 1 (11)不共面的四个定点到平面α的距离都相等,这样的平面α共有(A )3个 (B )4个 (C )6个 (D )7个(12)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的例如,用十六进制表示:E+D=1B ,则A ×B=(A )6E (B )72 (C )5F (D )B0第Ⅱ卷二.填空题(16分)(13)经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人(14)已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=(15)曲线32y x x=-在点(1,1)处的切线方程为(16)已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是三.解答题:(17)(本小题满分12分) 已知函数2()2sin 2,[0,2].sin f x x x x π=+∈求使()f x 为正值的x 的集合.(18)(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
2005高考数学真题--全国数学卷一选择题与填空题详细解答
2005全国数学卷一选择题与填空题详细解答这是我自己写的答案,有谬误和不当之处,恳请指正。
制作:徐永强 Email:jdmath@一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是()(A )Φ=⋃⋂)(321S S S C I (B ))(221S C S C S I I ⋂⊆ (C )Φ=⋂⋂321S C S C S C I I I(D ))(221S C S C S I I ⋃⊆ 解答: 由公式:Φ==⋃⋃=⋂⋂I C S S S C S C S C S C I I I I I )(321321,所以选C(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为()(A )π28(B )π8(C )π24(D )π4解答: 平面截球所得的圆面面积为π,这个圆面的半径为1,如图所示:球的球心为O ,平面截球的圆心为A ,B 为平面截球与球相交的弧上任意一点,所以OB 是球的半径OA=1,AB=1,OA ⊥AB,所以球的半径OB=2球的表面积=24R π=24⨯π=π8,所以选B(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181-解答: 圆方程x y x 222=+改写为1)1(22=+-y x ,圆心O 为(1,0),半径为1点A ),(02-到圆心的距离为3,AC 与AD 与圆O 相切,所以AC 与AD 的斜率分别为42,42-,因此当直线l 与圆x y x 222=+有两个交点时的范围是),(4242-,选C (4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为( )(A )32 (B )33(C )34(D )23解答:如图所示,正三角形ADE ∆的高EI=23,我们在EF 取点G ,H 使得EG=0.5,FH=0.5,容易验证GI ⊥ABCD 、GI ⊥EF ,在直角EGI ∆中,EI=23,EG=0.5,所以GI=22多面体ABCDGH 的体积=)(21高正方形GI ABCD S ⨯⨯=22121⨯⨯=42四面体EADG 的体积是)(31高EG ADG S ⨯⨯∆=214231⨯⨯=242四面体CBFI 与EADG 的体积相同,所以多面体ABCDEF 的体积是42+2242⨯=32,选A(5)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为() (A )23(B )23 (C )26 (D )332解答:抛物线x y 62-=的准线是 x=1.5,1222=-yax 与抛物线x y 62-=重合的准线是x=122+a a=1.5解此方程可得a 2=3,因此离心率为aa 12+=332选D (6)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为( )(A )2 (B )32(C )4(D )34 解答:时等号成立,即2cot 4tan 4cot cos sin 2sin 8cos 22sin sin81cos 212sin sin82cos 1)(22222=≥+=+=+-+=++=x x x xx xx xxx xxx x f最小值为4,选C(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-解答:在第一和第二张图中 y 的根是1和-1, 所以(1) 012=-++a b a (2) 012=-+-a b a(1)-(2)可的002=⇒=b b ,错误 在第三、第四张图中y 的一个根是0 所以(1) 25125101212+-=--=⇒=-+a a a a由于b>0,另外一个根>0 所以a<0,选C(8)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是( )(A ))0,(-∞ (B )),0(+∞(C ))3log,(a-∞ (D )),3(log+∞a解答:0)(<x f 等价于1222>--xxa a,所以32102)1(11)1(22222>⇒>-⇒>>-⇒>--=--xxxxxxxa a a a a a a并且由于由于10<<a ,所以选C (9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为()(A )2 (B )23 (C )223 (D )2解答:如图所示,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域是△ABO ,O 点坐标(0,1),A 点坐标(-1,2),C 点坐标(1,2),B 点是AB(直线y=x-1)与OC(直线y=-3x+1 x ≥0)的交点,解方程可得 B 点坐标(0.5,0.5),而S △OAC=33221=⨯⨯,而△ABC 与△OAC 的底边AC 相同,而高是△OAC 的一半,因此S △ABC=23 ,因此S △ABO=23 ,选B(10)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin cos cos =+其中正确的是(A )①③(B )②④(C )①④ (D )②③解答:2cos 2sin 22sin2cossin 2cot sin 2tan C C C CC C C B A =⇒=⇒=+ ︒=+︒⇒=⇒=⇒909012sin22B AC C①A A B A tan tan cot tan ⋅=⋅,错②)45sin(2cos sin sin sin ︒+=+=+A A A B A ,由于︒<<900A ,对③A B A 222sin 2cos sin =+,错④C A A B A 22222sin 1sin cos cos cos ==+=+,对(11)过三棱柱任意两个顶点的直线共15条,其中异面直线有() (A )18对(B )24对(C )30对(D )36对解答:如图所示, 我们将三棱柱上的直线分为三类,每一类里的直线有相同的性质 第一类底面和顶面上的线有六条AB 、AC 、BC 、A1B1、A1C1、B1C1 第二类 A1A 、B1B 、C1C第三类 A1B 、A1C 、B1A 、B1C 、C1A 、C1B三棱柱每个点作为顶点的直线有5条,所以过一条直线上两个顶点之一的直线有 2×5-1=9(过两个顶点的直线重复一次),这些直线首先排除,其余的就容易观察了第一类每一条和它异面的直线有5条例如AB 的异面直线有A1C1、B1C1、A1C 、B1C 、C1C第一类里的其它直线与AB 相同的性质,所以和第一类里的直线成异面直线有5×6=30对 第二类每一条和它异面的直线有4条例如A1A 的异面直线有B1C 、BC1、BC 、B1C1 4×3=12对第三类每一条和它异面的直线有5条例如AC1的异面直线有A1B1、A1B 、B1B 、BC 、B1C 5×6=30对由于每一对都被重复记数一次 所以异面直线有(30+12+30)/2=36 选D(12)复数ii 2123--=( )(A )i(B )i - (C )i -22 (D )i +-22解答:ii 2123--=ii212-+=i选A二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年普通高等学校招生全国统一考试
文科数学(全国卷Ⅰ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件A 、B 互斥,那么 球是表面积公式
)()()(B P A P B A P +=+ 24R S π=
如果事件A 、B 相互独立,那么 其中R 表示球的半径
)()()(B P A P B A P ⋅=⋅ 球的体积公式
如果事件A 在一次试验中发生的概率是P ,那么
33
4R V π=
n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径
k n k
k n n P P C k P --=)1()(
一.选择题
(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是
(A )Φ=⋃⋂)(321S S S C I
(B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I
(D )123I I S C S C S ⊆⋃()
(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为
(A )π28
(B )π8
(C )π24
(D )π4
(3)函数93)(2
3-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =
(A )2 (B )3 (C )4 (D )5
(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为
(A )
32 (B )33 (C )
3
4
(D )
2
3 (5)已知双曲线)0( 12
22>=-a y a
x 的一条准线为23=x ,则该双曲线的离心率为
(A )
2
3
(B )
2
3 (C )
2
6 (D )
3
3
2 (6)当20π
<<x 时,函数x
x
x x f 2sin sin 82cos 1)(2++=的最小值为
(A )2
(B )32
(C )4
(D )34
(7))21( 22≤≤-=
x x x y 反函数是
(A ))11( 112≤≤--+=x x y
(B ))10( 112≤≤-+=x x y (C ))11( 112≤≤---=x x y
(D ))10( 112≤≤--=x x y
(8)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是
(A ))0,(-∞
(B )),0(+∞
(C ))3log ,(a -∞
(D )),3(log +∞a
(9)在坐标平面上,不等式组⎩⎨
⎧+-≤-≥1
31x y x y 所表示的平面区域的面积为
(A )2
(B )
2
3 (C )
2
2
3 (D )2
(10)在ABC ∆中,已知C B
A sin 2
tan
=+,给出以下四个论断: ①1cot tan =⋅B A
②2sin sin 0≤
+<B A
③1cos sin 2
2=+B A
④C B A 2
22sin cos cos =+
其中正确的是 (A )①③
(B )②④ (C )①④ (D )②③
(11)点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的
(A )三个内角的角平分线的交点
(B )三条边的垂直平分线的交点 (C )三条中线的交点
(D )三条高的交点
(12)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是
(A )1±
(B )2
1±
(C )3
3±
(D )3±
第Ⅱ卷
注意事项:
1.用钢笔或圆珠笔直接答在试题卷上。
2.答卷前将密封线内的项目填写清楚。
二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
(13)若正整数m 满足m m 10210
5121
<<-,则m = 。
)3010.02(lg ≈
(14)8
)1
(x
x -的展开式中,常数项为 。
(用数字作答)
(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 种。
(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'
AA 于E ,交'
CC 于F ,
① 四边形E BFD '
一定是平行四边形 ② 四边形E BFD '
有可能是正方形
③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '
有可能垂直于平面D BB '
以上结论正确的为 。
(写出所有正确结论的编号)
三.解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
(17)(本大题满分12分) 设函数)(),0( )2
sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8
π
=x 。
(Ⅰ)求ϕ;
(Ⅱ)求函数)(x f y =的单调增区间;
(Ⅲ)画出函数)(x f y =在区间],0[π上的图像。
已知四棱锥P-ABCD 的底面为直角梯形,
AB ∥DC ,
⊥=∠PA DAB ,90 底面ABCD ,且
PA=AD=DC=
2
1
AB=1,M 是PB 的中点。
(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;
(Ⅲ)求面AMC 与面BMC 所成二面角的大小。
已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(。
(Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求a 的取值范围。
9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。
(Ⅰ)求甲坑不需要补种的概率;
(Ⅱ)求3个坑中恰有1个坑不需要补种的概率;
(Ⅲ)求有坑需要补种的概率。
.0)
(精确到01
设正项等比数列{}n a 的首项2
1
1=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。
已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与(3,1)a =-共线。
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值。