对顶角与邻补角练习

合集下载

邻补角-对顶角-垂线练习

邻补角-对顶角-垂线练习

邻补角,对顶角,垂线习题1、若点O就是直线AB上得一点,AB⊥OD,OC⊥OE,则图中互余得角有 ( )A、3对B、4对C、5对D、6对2、下列说法中错误得个数就是 ( )(1)一个角得邻补角只有一个(2)一个角得邻补角一定大于这个角(3)如果两个角互为邻补角,则两个角必定一个就是锐角,一个就是钝角(4)钝角得邻补角一定为锐角A、1个B、2个C、3个D、4个3、下列说法中正确得就是 ( )A.因为对顶角相等,所以相等得角就是对顶角B.互为对顶角得两个角度数之与不会超过1800C.有着公共顶点得两个角不一定就是对顶角D.有一条公共边得两个角就是邻补角4、画一条线段得垂线,垂足在 ( )A、线段上B、线段得端点C、线段得延长线上D、以上都有可能5、点到直线得距离就是指这点到这条直线得 ( )A、垂线段B、垂线得长C、长度D、垂线段得长6、下列语句正确得就是 ( )A.直线外一点到这条直线得垂线段叫做点到直线得距离B.直线外一点与直线上得各点连接得所有线段中,垂线最短C.平分线段得直线只有一条D.在平面内过一点有且只有一条直线垂直于已知直线7、下列作图语句正确得就是 ( )A.作直线MN得中垂线B.过点P作线段AB得垂直平分线C.过点O 作OC⊥直线AB,点C为垂足D.过点P作直线PQ,使它平分线段AB8、若点A在直线l外,点B在直线l上,AB两点之间得距离记作a, 点A到直线l得距离记作b,则a与b之间大小关系就是 ( )A、 a<bB、a>bC、a≤bD、a≥b9、若点P到直线l得距离为3,则直线l上到点P 距离为4得点得个数为 ( )A、0个B、1个C、2个D、3个10、若点A,B分别位于直线l得两侧,点A到直线l得距离为5cm,点B到直线l得距离为8cm,则AB两点间得距离( )A、等于13cmB、大于13cmC、不小于13cmD、小于13cm11、两条直线相交所成得四个角中,下列条件中能判定两条直线垂直得就是 ( )A、有两个角相等B、有两对角相等C、有三个角相等D、有四对角相等12、两个角得角平分线互相垂直,则 ( )A、这两角互补B、这两角互为对顶角C、这两角都就是直角D、这两角为邻补角13、点P为直线m外一点,点A,B,C为直线m上得三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m得距离为 ( )A、4cmB、2cmC、小于2cmD、不大于2cm14、如图所示,能表示点到直线(线段)得距离得线段有 ( )A、2条B、3条C、4条D、5条15、两条直线相交,有对对顶角, 对邻补角;三条直线相交,有对对顶角, 对邻补角;四条直线相交,有对对顶角, 对邻补角;由此可见,n条直线相交,有对对顶角, 对邻补角、16、如图,∠ACB=900,CD⊥AB,垂足为D,那么点A到线段BC得距离就是线段得长度,线段CD得长度就是点到得距离、17、自钝角得顶点引它得一边得垂线,把这两个角分成两个角,它们得度数比就是1:2,则这个钝角得度数就是18、如图,直线MN,PQ交于点O,OE⊥PQ于点O,OQ平分∠MOF,若∠MOE=450,则∠NOE= ,∠NOF= , ∠PON=【精解名题】一、简答题:1、如图,已知直线AB,CD,EF相交于点0,∠1=950,∠2=320,则∠BOE得度数2、如图,已知:∠AOC=900,∠BOD=900, ∠BOC比∠AOB少100,求∠COD得补角得度数3、如图,已知:∠AOC=900,∠BOD=900, ∠AOD=3∠BOC,求∠BOC得度数4、如图,直线AB,CD相交于点O,OE⊥AB,且∠DOE=3∠COE,求∠AOD得度数5、如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF, ∠AOE=700,求∠DOG得度数二、作图题:,画出BC边上得高与AB边上得中垂线1、(1)如图,已知ABC(2)如图,分别过点M,N画出OA,OB得垂线2、如图,一辆汽车在笔直得公路AB上由A向B行驶,M,N分别就是位于公路AB两侧得村庄(1)设汽车行驶到公路AB上点P得位置时,距离村庄M最近,行驶到点Q位置时,距离村庄N最近,请在图中得AB上分别画出点P,Q得位置(2)当汽车从A出发向B行驶时,在公路AB得哪一段上距离M,N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而离村庄M越来越远?三、简答计算:1、如图所示,射线OA,OB,OC,OD 有公共端点O,且OA ⊥OB,OC ⊥OD, ∠AOD=45∠BOC,求∠BOC 得度数、 2、如图,已知直线AB,CD 交于点O,OE 平分∠BOD, ∠3:∠2=8:1,求∠AOC 得度数 3、如图,直线AB,CD,EF 与GH 相交于点P,且∠APC=250,∠EPG=250 ,∠BPF=650 ,问哪些直线互相垂直?4、如图,两直线AB,CD 相交于点O,OE 平分∠BOD,如果∠AOC: ∠AOD=7:11、 (1)求∠COE(2)若OF ⊥OE, ∠AOC=700,求∠COF5、如果∠1与∠2有公共顶点,且∠1得两边分别垂直于∠2得两边,则∠1与∠2得关系就是什么?。

第2课时 对顶角邻补角作业

第2课时 对顶角邻补角作业

2题图12121221《邻补角对顶角》作业1、判断题。

①对顶角相等 ( ) ②相等的角是对顶角 ( ) ③若两个角不相等,则这两个角一定不是对顶角 ( ) ④若两个角不是对顶角,则这两个角不相等 ( ) (判断题做法:一般是找出一个反例来否定结论)归纳:若以①作为原命题,则②是它的 命题,③是它的 命题,④是它的 命题。

2、如图,∠1和∠2是对顶角的图形有( )个。

A 、1B 、2C 、3D 、4(本题考的是:对顶角的概念,方法:可以在每个图中分别画出∠1的对顶角,看能不能得到∠2)5、如图,直线AB 与CD 相交所成的四个角中,∠1的邻补角是 ,∠1的对顶角是 。

(本题主要考邻补角概念,要注意的是 邻补角的个数)6、如图,若∠1=25°,则∠2= ,∠3= ,∠4= 。

8、如图,直线AB 、CD ,EF 相交于点O ,则∠AOD 的对顶角是 ,∠AOC 的邻补角 是 ;若∠AOC=50°,则∠BOD= ,∠COB= 。

(本题考复杂图形中寻找邻补角、对顶角) 9、下列说法正确的是(1)两条直线相交所成的四个角中有一个角是直角。

(2)两条直线相交所成的四个角都相等。

(3)两条直线相交,有一组邻补角相等。

(4)两条直线相交,对顶角相等。

10、三条直线两两相交于同一点时,对顶角有m 对;交于不同三点时,对顶角有n 对,则m 与n 的关系是( )(A )m=n (B)m>n (C)m<n (D)m+n=10(本题考多条直线相交于一点时对顶角、邻补角个数规律) 第5、6题图4321D C B A A B C D E F 8题图Ol 3l2l 14题图60°30°43213题图FE D C B A O 9题图O A B C D E 12题图21OF E D C B A 13题图4312c b a邻补角与对顶角之推理计算3、如图,直线AB ,CD ,EF 相交于点O ,则∠AOE+∠DOB+∠COF 等于( )A 、150°B 、180°C 、210°D 、120°4、如图,直线1l ,2l ,3l 相交于一点,则下列答案中,全对的一组是( )A 、∠1=90°,∠2=30°,∠3=∠4=60°B 、∠1=∠3=90°,∠2=∠4=30°C 、∠1=∠3=90°,∠2=∠4=60°D 、∠1=∠3=90°,∠2=60°,∠4=30°9、如图,直线AB 、CD 相交于点O , OA 平分∠EOC,∠EOC=70°,则∠BOD= .10、已知∠α,∠β互为补角,且∠α=∠β,则∠α= 。

13.1邻补角、对顶角

13.1邻补角、对顶角

例题3 如图,已知直线AB、CD相交于点O, ∠AOC=50°, 求∠BOD,∠AOD,∠ BOC的度数.
A 50°
C
D
O B
例题4 如图,直线AB、CD相交于点O,OE平分 ∠BOC,已知∠BOE=65°, 求∠AOD,∠ AOC的度数.
C A
o
E
65°
B
D
同理可证:∠2= ∠4.
A
4
C
1
D
O
3
2
B
E
A 2
D
O C 1
例题2
B
如图,直线AB,CD相交于点O,∠BOE=90°, ∠AOD与∠BOC, ∠AOC与∠1 (1)图中的对顶角是_______________________; ∠AOD与∠BOC (2)∠1的邻补角是______________________; ∠AOC与∠1 (3)∠2的余角是____________概念: 如图:∠1与∠3有一条公共顶点O,并且∠1的两 边OA、OD分别与∠3的两边OB、OC互为反向延长 线,具有这种关系的两个角叫做互为对顶角.
注: (1)对顶角是“两直线相交”所形成的“相对”的两个 (2)上图中互为对顶角的角共2对, 分别为: ∠1与∠3, ∠2与∠4. A 4
O B
C
2、问题:直线AB和CD相交,形成了四个小于平角的角, 如图∠1,∠2,∠3,∠4,任取其中两个角, 它们之间存在着怎样的位置关系和数量关系?
A
4
C
O
1
D
3
2
B
二、新课学习:
1、邻补角的概念: 如图:∠1与∠2有一条公共边OD,它们的另外一条 边为OA、OB互为反向延长线,具有这种关系的两个角 叫做互为邻补角。 注:(1)互为邻补角与互为补角的区别与联系: (2)如图中的互为邻补角共4对, 分别为:∠1与∠2, ∠2与∠3, A ∠3与∠4, 1 4 ∠1与∠4。 C O 2 3

余角、补角、对顶角的概念和习题答案

余角、补角、对顶角的概念和习题答案

余角战补角战对于顶角之阳早格格创做余角:如果二个角的战是一个曲角,那么称那二个角互为余角,简称互余,也不妨道其中一个角是另一个角的余角.∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果二个角的战是一个仄角,那么那二个角喊互为补角.其中一个角喊干另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对于顶角:一个角的二边分别是另一个角的反背延少线,那二个角是对于顶角.二条曲线相接后所得的惟有一个大众顶面且二个角的二边互为反背延少线,那样的二个角喊干互为对于顶角.二条曲线相接,形成二对于对于顶角.对于顶角相等.对于顶角与对于顶角相等.对于顶角是对于二个具备特殊位子的角的称呼;对于顶角相等反映的是二个角间的大小闭系.补角的本量:共角的补角相等.比圆:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B.等角的补角相等.比圆:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D 则:∠C=∠B.余角的本量:共角的余角相等.比圆:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B.等角的余角相等.比圆:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B.注意:①钝角不余角;②互为余角、补角是二个角之间的闭系.如∠A+∠B+∠C=90°,不克不迭道∠A、∠B、∠C互余;共样:如∠A+∠B+∠C=180°,不克不迭道∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相闭,与角的位子无闭.只消它们的度数之战等于90°或者180°,便一定互为余角或者补角.余角与补角观念认识提示:(1)定义中的“互为”一词汇怎么样明白?如果∠1与∠2互余,那么∠1的余角是∠2 ,共样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,共样∠2的补角是∠1.(2)互余、互补的二角是可一定有大众顶面或者大众边?二角互余或者互补,只与角的度数有闭,与位子无闭.(3)∠1 + ∠2 + ∠3 = 90°(180°),能道∠1 、∠2、∠3 互余(互补)吗?不克不迭,互余或者互补是二个角之间的数量闭系.已知∠A与∠B互余,∠B与∠C互补,若∠A=50°,则∠C的度数是[ D ] A.40°B.50°C.130°D.140°如果∠A的补角是它的余角的4倍,则∠A=______度.设∠A 为x ,则∠A 的余角为90°-x ,补角为180°-x ,根据题意得,180°-x=4(90°-x ),解得x=60°.故问案为:60. 已知∠ α=50°17',则∠α的余角战补角分别是[ B ]A .49°43',129°43'B .39°43',129°43'C .39°83',129°83'D .129°43′,39°43′二个角的比是6:4,它们的好为36°,则那二个角的闭系是( )A .互余B .相等C .互补D .以上皆分歧过失设一个角为6x ,则另一个角为4x , 则有6x-4x=36°,∴x=18°,则那二个角分别为108°,72°, 而108°+72°=180°∴那二个角的闭系为互补. 故选C .如果∠A=35°18′,那么∠A 的余角等于______.如果∠A=35°18′,那么∠A 的余角等于90°-35°18′=54°42′. 故挖54°42′.已知∠1战∠2互补,∠3战∠2互余,供证:∠3= =21(∠1-∠2). 道明:由题意得:∠2+∠3=90°,∠1+∠2=180°,∴2(∠2+∠3)=∠1+∠2,故可得:∠3=21(∠1-∠2) 如图,∠1的邻补角是[ ]A.∠BOCB.∠BOC 战∠AOFC.∠AOFD.∠BOE 战∠AOF二个角互为补角,那么那二个角大小 [ D ]如果二个角互为补角,那么那二个角一定互为邻补角,道明此命题真——加本果如果二个角互为补角,那么那二个角一定互为邻补角,那是假命题. 如果二个角互为收补角,那么那二个角一定互为补角,那是真命题. 譬如道,二曲线仄止,共旁内角互补,然而互为共旁内角的二个角一定不互为收补角.如果二个角互补,那它们是邻补角”——————为什么道那个是假命题? 二条仄止线切出的共旁内角也互补,然而是它们不是邻补角.所以道:“如果二个角互补,那它们是邻补角”是假命题!果为邻补角是相邻的二个角互补,那么那二个角是互为邻补角,而互补的二个角有不相邻的,比圆四边形的二个对于角互补,则那四面共圆如果一个角是36°,那么[ D ].它的余角是64°B.它的补角是64°C.它的余角是144°D.它的补角是144°下列道法中:①共位角相等;②二面之间,线段最短;③如果二个角互补,那么它们是邻补角;④二个钝角的战是钝角;⑤共角或者等角的补角相等.精确的个数是()A.2个B.3个C.4个D.5个①共位角相等,道法过失;②二面之间,线段最短,道法精确;③如果二个角互补,那么它们是邻补角,道法过失;④二个钝角的战是钝角,道法过失;⑤共角或者等角的补角相等,道法精确;道法精确的公有2个,故选:A.下列道法精确的是()A.小于仄角的角是钝角B.相等的角是对于顶角C.邻补角的战等于180°D.共位角相A、小于仄角的角有:钝角、曲角、钝角,故本选项过失;B、对于顶角相等,相等的角纷歧定是对于顶角,故本选项过失;C、邻补角的战等于180°精确,故本选项精确;D、惟有二曲线仄止,才有共位角相等,故本选项过失.故选C.下列道法精确的是()A.相等的角是对于顶角B.对于顶角相等C.共位角相等D.钝角大于它的余角A、相等的角是对于顶角,道法过失;B、对于顶角相等,道法精确;C、共位角相等,道法过失;D、钝角大于它的余角,道法过失;故选:B.下列道法中,精确的是()A.对于顶角相等B.内错角相等C.钝角相等D.共位角相等A、对于顶角相等,道法精确;B、内错角相等,道法过失,惟有二曲线仄止时,内错角才相等;C、钝角相等,道法过失,比圆30°角战20°角;D、共位角相等,道法过失,惟有二曲线仄止时,共位角才相等;故选:A.三条曲线相接于一面不妨形成几对于对于顶角?二条曲线出现2*(2-1)=2对于对于顶角三条曲线出现3*(3-1)=6对于对于顶角四条曲线出现4*(4-1)=12对于对于顶角依次类推,n 条曲线相接于一面有n*(n-1)对于对于顶角三条曲线相接于一面,共可组成______对于对于顶角.如图,单个的角是对于顶角的有3对于,二个角的复合角是对于顶角的有3对于,所以,公有对于顶角3+3=6对于.故问案为:6.三条曲线相接与一面,能形成几对于对于顶角?四条呢?五条呢?N条呢?尔要要收战问案!三条曲线相接与一面,6对于;四条曲线相接与一面,12对于;五条曲线相接与一面,20对于;N条曲线相接与一面,N(N-1)对于;如果有n条曲线相接于一面,有几对于对于顶角?n的仄圆减去2条数个数2 2=2x13 6=3x24 12=4x35 20=5x4…………n n(n-1)三条曲线相接于一面,对于顶角最多有______对于.把三条曲线相接于一面,拆成三种二条曲线接于一面的情况,果为二条曲线相接于一面,产生二对于对于顶角,所以三条曲线相接于一面,有3个二对于对于顶角,共6对于对于顶角二条曲线相接,有一个接面.三条曲线相接,最多有几个接面?四条曲线呢?您能创造什么顺序吗?那个本去便是拉拢问题.果为二条线形成一个接面,所以三条线时,从三条线中与二条线,有3*2/2=3种与法,所以有3个接面.四条线中与二条,有4*3/2=6种与法,所以有6个接面.n条线中与二条,有n(n-1)/2种与法,所以有n(n-1)/2个接面.邻补角是互补的角是真命题吗天然是,邻补角相加等于180度便是互补啊互补的角是邻补角是真命题仍旧假命题假如真命题,请举反例二个角有一条大众边,它们的另一条边互为反背延少线,具备那种闭系的二个角称为互为邻补角.不妨随便绘二个不大众边的角,比圆1个60度,另一个120度,隐然它们是互补的,然而是本去不是邻补角所以互补的角是邻补角那是一个假命题该当道邻补角是互补的角,那才是真命题既相邻又互补的二个角是邻补角吗二条仄止线切出的共旁内角也互补,然而是它们不是邻补角.所以道:“如果二个角互补,那它们是邻补角”是假命题!成互补闭系的二个角互为邻补角是对于仍旧错分歧过失相邻的二个角互补称之为邻补角像二曲线仄止,共旁内角互补(那二个互补的角不相邻)、互补的二个角是邻补角用果为所以问果为二个角是邻补角所以二个角互补反过去不可坐。

考点01 平行线与相交线(解析版)

考点01 平行线与相交线(解析版)

人教版2020——2021年七年级下册新题平行线与相交线一.对顶角、邻补角(共3小题)1.(2020•东营)如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM等于()A.159°B.161°C.169°D.138°【分析】直接利用对顶角、邻补角的定义以及角平分线的定义得出∠BOM=∠DOM,进而得出答案.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=42°,∴∠AOD=180°﹣42°=138°,∵射线OM平分∠BOD,∴∠BOM=∠DOM=21°,∴∠AOM=138°+21°=159°.故选:A.2.(2020•贵阳)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.【解答】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.3.(2020•南充)如图,两直线交于点O,若∠1+∠2=76°,则∠1=38度.【分析】直接利用对顶角的性质结合已知得出答案.【解答】解:∵两直线交于点O,∴∠1=∠2,∵∠1+∠2=76°,∴∠1=38°.故答案为:38.二.垂线(共4小题)4.(2020•陕西)如图,AC⊥BC,直线EF经过点C,若∠1=35°,则∠2的大小为()A.65°B.55°C.45°D.35°【分析】由垂线的性质可得∠ACB=90°,由平角的性质可求解.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵∠1+∠ACB+∠2=180°,∴∠2=180°﹣90°﹣35°=55°,故选:B.5.(2020•孝感)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°【分析】直接利用垂直的定义结合对顶角的性质得出答案.【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.6.(2020•河北)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【分析】根据垂直、垂线的定义,可直接得结论.【解答】解:在同一平面内,与已知直线垂直的直线有无数条,所以作已知直线m的垂线,可作无数条.故选:D.7.(2020•乐山)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A.10°B.20°C.30°D.40°【分析】根据平角的定义得到∠CEF=180°﹣∠FEA=180°﹣40°=140°,由角平分线的定义可得,由GE⊥EF可得∠GEF=90°,可得∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,由∠GEB=∠CEB﹣∠CEG可得结果.【解答】解:∵∠FEA=40°,GE⊥EF,∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,∵射线EB平分∠CEF,∴,∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,故选:B.三.平行线的性质(共11小题)8.(2020•枣庄)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.9.(2020•贺州)如图,直线a∥b,∠1=48°,则∠2等于()A.24°B.42°C.48°D.132°【分析】根据两直线平行,内错角相等求解即可.【解答】解:∵直线a∥b,∴∠2=∠1=48°.故选:C.10.(2020•资阳)将一副直角三角板(∠A=30°,∠E=45°)按如图所示的位置摆放,使AB∥EF,则∠DOC的度数是()A.70°B.75°C.80°D.85°【分析】在Rt△DEF中,由两角互余得∠F=45°,根据直线AB∥EF得∠A=∠ACF,再由三角形外角的性质即可求解.【解答】解:∵∠D=90°,∴∠E+∠F=90°,又∵∠E=45°,∴∠F=45°,又∵AB∥EF,∴∠A=∠ACF,又∵∠A=30°,∴∠ACF=30°,∴∠DOC=∠ACF+∠F=30°+45°=75°.故选:B.11.(2020•邵阳)将一张矩形纸片ABCD按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于点M.若P1M⊥AB,则∠DP1M 的大小是()A.135°B.120°C.112.5°D.115°【分析】由折叠前后对应角相等且∠P1MA=90°可先求出∠DMP1=∠DMA=45°,进一步求出∠ADM =45°,再由折叠可求出∠MDP1=∠ADP=∠PDM=22.5°,最后在△DP1M中由三角形内角和定理即可求解.【解答】解:∵折叠,且∠P1MA=90°,∴∠DMP1=∠DMA=45°,即∠ADM=45°,∵折叠,∴∠MDP1=∠ADP=∠PDM=∠ADM=22.5°,∴在△DP1M中,∠DP1M=180°﹣45°﹣22.5°=112.5°,故选:C.12.(2020•广西)如图,已知直线AB,CD被直线ED所截,AB∥CD,∠1=140°,则∠D为()A.40°B.50°C.60°D.70°【分析】根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.【解答】解:如图,∵AB∥CD,∴∠2=∠D,∵∠1=140°,∴∠D=∠2=180°﹣∠1=180°﹣140°=40°,故选:A.13.(2020•兰州)如图,AB∥CD,AE∥CF,∠A=50°,则∠C=()A.40°B.50°C.60°D.70°【分析】利用平行线的性质定理解答即可.【解答】解:如图,∵AE∥CF,∠A=50°,∴∠1=∠A=50°,∵AB∥CD,∴∠C=∠1=50°,故选:B.14.(2020•济南)如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°【分析】由平行线的性质得∠ADC=∠BAD=35°,再由垂线的定义可得三角形ACD是直角三角形,进而得出∠ACD的度数.【解答】解:∵AB∥CD,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.15.(2020•鞍山)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于B,C两点,连接AC,BC,若∠ABC=54°,则∠1的度数为()A.36°B.54°C.72°D.73°【分析】根据平行线的性质得出∠2的度数,再由作图可知AC=AB,根据等边对等角得出∠ACB的度数,最后用180°减去∠2与∠ACB即可得到结果.【解答】解:∵l1∥l2,∠ABC=54°,∴∠2=∠ABC=54°,∵以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,∴AC=AB,∴∠ACB=∠ABC=54°,∵∠1+∠ACB+∠2=180°,∴∠1=72°故选:C.16.(2020•呼伦贝尔)如图,直线AB∥CD,AE⊥CE于点E,若∠EAB=120°,则∠ECD的度数是()A.120°B.100°C.150°D.160°【分析】延长AE,与DC的延长线交于点F,根据平行线的性质,求出∠AFC的度数,再利用外角的性质求出∠ECF,从而求出∠ECD.【解答】解:延长AE,与DC的延长线交于点F,∵AB∥CD,∴∠A+∠AFC=180°,∵∠EAB=120°,∴∠AFC=60°,∵AE⊥CE,∴∠AEC=90°,而∠AEC=∠AFC+∠ECF,∴∠ECF=∠AEC﹣∠F=30°,∴∠ECD=180°﹣30°=150°,故选:C.17.(2020•南通)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°【分析】(方法一)过点E作EF∥AB,则EF∥CD,由EF∥AB,利用“两直线平行,内错角相等”可得出∠AEF的度数,结合∠CEF=∠AEF﹣∠AEC可得出∠CEF的度数,由EF∥CD,利用“两直线平行,内错角相等”可求出∠C的度数;(方法二)设AE与CD交于点O,由AB∥CD,利用“两直线平行,同位角相等”可得出∠DOE的度数,再利用三角形外角的性质,即可求出∠C的度数.【解答】解:(方法一)过点E作EF∥AB,则EF∥CD,如图1所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.18.(2020•娄底)如图,将直尺与三角尺叠放在一起,如果∠1=28°,那么∠2的度数为()A.62°B.56°C.28°D.72°【分析】由两锐角互余的性质可求∠DAC度数,由平行线的性质可求解.【解答】解:如图,标注字母,由题意可得:∠BAC=90°,∠DAC=∠BAC﹣∠1=62°,∵EF∥AD,∴∠2=∠DAC=62°,故选:A.四.平行线的判定与性质(共3小题)19.(2020•岳阳)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是()A.154°B.144°C.134°D.124°【分析】根据平行线的判定和性质定理即可得到结论.【解答】解:∵DA⊥AB,CD⊥DA,∴∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠B+∠C=180°,∵∠B=56°,∴∠C=180°﹣∠B=124°,故选:D.20.(2020•金华)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据垂直于同一条直线的两条直线平行判断即可.【解答】解:由题意a⊥AB,b⊥AB,∴a∥b(垂直于同一条直线的两条直线平行),故选:B.21.(2020•武汉)如图,直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.【分析】根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC,进而得出AB∥CD.【解答】证明:∵EM∥FN,∴∠FEM=∠EFN,又∵EM平分∠BEF,FN平分∠CFE,∴∠BEF=2∠FEM,∠EFC=2∠EFN,∴∠FEB=∠EFC,∴AB∥CD.五.平移的性质(共4小题)22.(2020•上海)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【分析】证明平行四边形是平移重合图形即可.【解答】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFDC重合,∴平行四边形ABCD是平移重合图形,故选:A.23.(2020•镇江)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于.【分析】取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,根据平移的性质和三角形的三边关系即可得到结论.【解答】解:取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,∵将△ABC平移5个单位长度得到△A1B1C1,∴B1C1=BC=3,PN=5,∵点P、Q分别是AB、A1C1的中点,∴NQ=B1C1=,∴5﹣≤PQ≤5+,即≤PQ≤,∴PQ的最小值等于,故答案为:.24.(2020•淄博)如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为1.【分析】利用平移的性质得到BE=CF,然后利用EC=2BE=2得到BE的长,从而得到CF的长.【解答】解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.25.(2020•青海)如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD 的周长为12.【分析】利用平移的性质得到AD=CF=2,AC=DF,而AB+BC+AC=8,所以AB+BC+DF=8,然后计算四边形ABFD的周长.【解答】解:∵△ABC沿BC边向右平移2个单位,得到△DEF,∴AD=CF=2,AC=DF,∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+DF+AD+CF=8+2+2=12.故答案为12.。

对顶角、邻补角、同位角、内错角练习

对顶角、邻补角、同位角、内错角练习

O F E D C B A 34D C B A 12O D C B A 12O D C B A(一)邻补角、对顶角的内容一、邻补角、对顶角的定义1、(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。

用量角器量一量这两个角的度数,会发现它们的数量关系是(2)∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD两边的 ,称这两个角互为2.如图3所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.(3) (4) (5)3.如图3所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.4.如图4所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.5.如图5所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.二、邻补角、对顶角的性质1、邻补角的性质:邻补角 。

注意:邻补角是互补的一种特殊的情况,数量上 ,位置上有一条 。

2、对顶角 。

3、 如图,已知直线a 、b 相交。

∠1=40°,求∠2、∠3、∠4的度数解:∠3=∠1=40°( )。

∠2=180°-∠1=180°-40°=140°( )。

∠4=∠2=140°( )。

4、如图,直线AB 、CD 相交于点O (1)若∠AOC+∠BOD=100°,求各角的度数. (2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数(二)同位角、内错角、同旁内角(一)如图,直线AB、CD与EF相交(或两条直线AB、CD被第三条直线EF所截)构成个角。

我们来研究其中没有公共顶点......的两个角的关系。

苏科版七年级数学上册阶段综合练(范围6-2角~6-3余角、补角、对顶角)【含答案】

苏科版七年级数学上册阶段综合练(范围6-2角~6-3余角、补角、对顶角)【含答案】

苏科版七年级数学上册阶段综合练(范围6.2角~6.3余角、补角、对顶角)一、选择题1、如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .2、如图所示,∠1和∠2是对顶角的图形是( )A .B .C .D .3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④(3题) (4题) (6题)4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误6、如图,射线平分,以为一边作,60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒则 (BOP ∠=)A . B . C .或 D .或15︒45︒15︒30︒15︒45︒7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .(8题) (9题) (10题)9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC ∠=∠AOC AOE∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20(13题) (14题) (16题)14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.(17题) (18题)18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角; ③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).三、解答题19、计算:(1); (2); (3); (4).32175342427︒'''+︒'''90361215︒-︒'''2512355︒'''⨯536︒÷20、完成推理填空:如图,直线AB 、CD 相交于O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC =90°,∠COF =34° ( )∴∠EOF = °又∵OF 是∠AOE 的角平分线 ( )∴∠AOF ═ =56° ( )∴∠AOC =∠ ﹣∠ = °∴∠BOD =∠AOC = °( )21、如图,已知直线,相交于点,平分,平AB CD O OE BOD ∠OF 分.若,COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF ?并说明理由.23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠苏科版七年级数学上册阶段综合练(范围6.2角~6.3余角、补角、对顶角)(解析)一、选择题1、如图,下列各个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是( )A.B.C.D.【解题思路】根据角的表示方法判断即可.【解答过程】解:A、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;B、图形中的∠1,能用∠AOB,∠O表示,本选项符合题意;C、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;D、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;故选:B.2、如图所示,∠1和∠2是对顶角的图形是( )A.B.C.D.B【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可求解.【详解】解:对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,满足条件的只有B.故选:B.3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④B【分析】根据对顶角和邻补角的定义逐个判断即可得.【详解】解:和不是对顶角,互为邻补角,则①错误,②正确;1∠2∠,但和不一定相等,则③错误;12180∠+∠=︒1∠2∠由对顶角相等得:,则④正确;13∠=∠综上,正确的是②④,故选:B .4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF .将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数C【分析】由角平分线性质解得,根据对角线性质、平角性质解得,90EOF ∠=︒180AOD BOD ∠=︒-∠,据此解题.1,2AOC BOD DOF BOD ∠=∠∠=∠【详解】解: OE ,OF 平分∠AOD ,∠BOD 11,22AOE EOD AOD DOF FOB BOD ∴∠=∠=∠∠=∠=∠180AOD BOD ∠+∠=︒ 111()90222EOD DOF AOD BOD AOD BOD ∴∠+∠=∠+∠=∠+∠=︒90EOF ∴∠=︒180AOD BOD∴∠=︒-∠1,2AOC BOD DOF BOD ∴∠=∠∠=∠都与∠BOD 大小变化有关,只有∠EOF 的度数与∠BOD 大小变化无关,故选:C .5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误【解题思路】根据方向角定义即可进行判断.【解答过程】解:根据方向角定义可知:灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,画出灯塔C 的位置如图3.故选:D .6、如图,射线平分,以为一边作,则 60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒(BOP ∠=)A .B .C .或D .或15︒45︒15︒30︒15︒45︒【分析】根据,射线平分,可得,分在内,在60AOB ∠=︒OC AOB ∠30BOC ∠=︒OP BOC ∠OP 内,两种情况讨论求解即可.AOC ∠,射线平分,60AOB ∠=︒ OC AOB ∠,1302AOC BOC AOB ∴∠=∠=∠=︒又15COP ∠=︒①当在内,OP BOC ∠,301515BOP BOC COP ∠=∠-∠=︒-︒=︒②当在内,OP AOC ∠,301545BOP BOC COP ∠=∠+∠=︒+︒=︒综上所述:或.15BOP ∠=︒45︒故选:.D 7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°∵∠BOD =75°,∴∠AOC =75°,∵∠AOE :∠EOC =2:3,∴设∠AOE =2x °,∠EOC =3x °,则2x +3x =75,解得:x =15,∴∠AOE =30°,故选:B .8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .【分析】根据角平分线的定义得出∠BOD =2∠BOF ,∠BOF =∠DOF ,根据∠AOD :∠BOF =4:1求出∠AOD :∠BOD =4:2,根据邻补角互补求出∠AOD =120°,∠BOD =60°,求出∠AOC =60°,根据角平分线定义求出∠COE ,再求出答案即可.∵OF 平分∠BOD ,∴∠BOD =2∠BOF ,∠BOF =∠DOF ,∵∠AOD :∠BOF =4:1,∴∠AOD :∠BOD =4:2,∵∠AOD +∠BOD =180°,∴∠AOD =120°,∠BOD =60°,∴∠AOC =∠BOD =60°,∴∠BOF =∠DOF==30°, 6021⨯∴∠COF =180°﹣∠DOF =150°,∵OE 平分∠COF ,∴∠COE=COF=,∠21 7515021=⨯∴∠AOE =∠AOC +∠COE =60°+75°=135°,故135°.9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC∠=∠AOC AOE ∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒【分析】根据对顶角相等可得,不是的角平分线,因此和不一AOD BOC ∠=∠AO COE ∠AOC ∠AOE ∠定相等,根据,利用平角定义可得,根据邻补角互补可得90EOD ∠=︒90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒、,说法正确;A AOD BOC ∠=∠、,说法错误;B AOC AOE ∠=∠、,说法正确;C 90AOE BOD ∠+∠=︒、,说法正确;D 180AOD BOD ∠+∠=︒故选:.B 10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒【分析】根据角平分线的定义和对顶角的性质即可得到结论.设,,2EOC x ∠=9EOB x ∠=平分,OA EOC ∠,12AOE EOC x ∴∠=∠=根据题意得,解得,9180x x +=︒18x =︒,18EOA AOC x ∴∠=∠==︒,18BOD AOC ∴∠=∠=︒故选:.C 二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠ 外部1∠【分析】根据角的画法步骤,先画出∠AOB=∠1,再在∠AOB 的外部画出∠2,即可得到∠AOC画法详解:(1)画∠AOB=∠1.(2)以点O 为顶点,OB 为始边,在∠AOB 的外部作∠BOC=∠2;则∠AOC=∠1+∠2.故答案: (1)∠1 (2)外部12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠【分析】根据补角定义可得的度数,再根据对顶角相等可得答案.α∠的补角为,α∠ 100︒,18010080α∴∠=︒-︒=︒与是对顶角,α∠ β∠,80βα∴∠=∠=︒的余角的度为,β∴∠10︒故.10︒13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20110︒【分析】根据时针在钟面上每分钟转,分针每分钟转,然后分别求出时针、分针转过的角度,即可得到答0.5 6案.【详解】解:∵时针在钟面上每分钟转,分针每分钟转,0.5 6 ∴钟表上12时20分钟时,时针转过的角度为,分针转过的角度为,0.52010⨯= 620120⨯= 所以时分针与时针的夹角为.12:2012010110-= 14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠75°.【分析】由邻补角的定义可求得∠COB =150°,然后根据角平分线的定义可求得∠2.【详解】解:∵∠1+∠COB =180°,∠1=30°,∴∠COB =180°﹣30°=150°.∵OE 是∠BOC 的平分线,∴∠2= ∠COB =75°.12故75°.15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=【分析】分两种情况:当在内时;当在外时.根据角平分线的定义,角的和差进行OC AOB ∠OC AOB ∠解答便可.当在内时,如图1,OC AOB ∠;11119020352222EOF BOE BOF AOB BOC ∠=∠-∠=∠-∠=⨯︒-⨯︒=︒当在外时,如图2,OC AOB ∠,11119020552222EOF BOE BOF AOB BOC ∠=∠+∠=∠+∠=⨯︒+⨯︒=︒故或.35︒55︒16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠【分析】首先根据余角的性质可得,再根据角平分线的性质可算出905040AOM ∠=︒-︒'=︒,再根据对顶角相等可得的度数,40280AOC ∠=︒⨯=︒BOD ∠.,90MON ∠=︒ 50BON ∠=︒,905040AOM ∴∠=︒-︒'=︒射线平分,OM AOC ∠,40280AOC ∴∠=︒⨯=︒.80BOD AOC ∴∠=∠=︒故.80︒17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.63°【分析】先求出∠AOD =54°,再求出∠BOD 和∠DOF ,即可求出∠BOF .【详解】解:∵∠DOE =90°,∠AOE =36°,∴∠AOD =90°﹣36°=54°,∵∠AOB =90°,∴∠BOD =90°﹣54°=36°,∵OF 平分∠AOD ,∴∠DOF ∠AOD =27°,12=∴∠BOF =36°+27°=63°.18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角; ③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.,相交于点,,AB CD O 90BOE ∠=︒①与互为余角,正确;∴AOC ∠COE ∠②与互为余角,正确;BOD ∠COE ∠③,正确;AOC BOD ∠=∠④与互为补角,正确;COE ∠DOE ∠⑤设,则,,故与互为补角错误;30AOC ∠=︒120DOE ∠=︒180AOC DOE ∠+∠≠︒AOC ∠BOC DOE ∠=∠⑥,错误;AOC BOD COE ∠=∠≠∠故⑤⑥.三、解答题19、计算:(1);(2);(3);(4).︒'''⨯536︒-︒'''2512355︒÷32175342427︒'''+︒'''90361215【分析】(1)1度分,即,1分秒,即,依此计算加法;'=''=16060=160︒='60(2)1度分,即,1分秒,即,依此计算减法;60'=''=160︒='60=160(3)1度分,即,1分秒,即,依此计算乘法;'=''=16060=160︒='60(4)1度分,即,1分秒,即,依此计算除法.'=''=16060=160︒='60(1)原式;=︒'''=︒74596075(2)原式;=︒'''534745(3)原式;=︒'''=︒'''12560175126255(4)原式.=︒'85020、完成推理填空:如图,直线AB、CD相交于O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC=90°,∠COF=34°( )∴∠EOF= °又∵OF是∠AOE的角平分线( )∴∠AOF═ =56°( )∴∠AOC=∠ ﹣∠ = °∴∠BOD=∠AOC= °( )【分析】利用角的和差关系和角平分线定义可得∠AOF 的度数,然后利用垂垂线定义计算出∠AOC 的度数,再根据对顶角相等可得∠BOD 的度数.∵∠EOC =90°,∠COF =34° (已知),∴∠EOF =56°,又∵OF 是∠AOE 的角平分线 (已知),∴∠AOF ═∠EOF =56° (角平分线定义),∴∠AOC =∠AOF ﹣∠COF =22°,∴∠BOD =∠AOC =22°(对顶角相等).故已知;56;已知;∠EOF ;角平分线定义;AOF ;COF ;22;22;对顶角相等.21、如图,已知直线,相交于点,平分,平分.若,AB CD O OE BOD ∠OF COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠(1)40°;(2)150°【分析】(1)根据邻补角的性质,可求出的度数,再根据角平分线的性质即可求出的度数,DOB ∠DOE ∠(2)根据邻补角的性质,可求出的度数,再根据角平分线的性质,求出,在根据对顶角COE ∠COF ∠的性质求出,即可求出的度数.AOC ∠AOF ∠【详解】(1)∵直线,相交于点,AB CD O ∴,180AOD BOD ∠+∠=︒∵,100AOD ∠=︒∴,18080BOD AOD ∠=-∠=°°∵平分,OE BOD ∠∴.1402DOE BOD ∠=∠=°(2)∵,180COE DOE ∠+∠=°∴,180140COE DOE ∠=-∠=°°∵平分,OF COE ∠∴,1702COF COE ∠=∠=°∵,80AOC BOD ∠=∠=︒∴.150AOF AOC COF ∠=∠+∠=°22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF?并说明理由.(1)30°;(2)平分,理由见解析.【分析】(1)根据邻补角的概念求出,根据角平分线的定义计算,得到答案;BOC ∠(2)求出,根据题意分别求出,根据角平分线的定义证明即可.AOE ∠AOF EOF ∠∠、【详解】解:(1)∵∠AOC =120°,∴∠BOC =180°﹣120°=60°,∵OE 平分∠BOC ,∴∠BOE =∠BOC =×60°=30°;1212(2)OA 平分∠DOF ,理由如下:∵∠BOE =30°,∴∠AOE =180°﹣30°=150°,∵∠AOF :∠EOF =2:3,∴∠AOF =60°,∠EOF =90°,∵∠AOD =∠BOC =60°,∴∠AOD =∠AOF ,∴OA 平分∠DOF .23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠【分析】(1)根据互余、互补以及角平分线的定义可得答案;(2)由(1)的方法列出方程可求出答案.(1),,90DOE ∠=︒ 20AOE ∠=︒.902070AOD DOE AOE ∴∠=∠-∠=︒-︒=︒.180********BOD AOD ∴∠=︒-∠=︒-︒=︒平分.OF BOD ∠.∴111105522BOF BOD ∠=∠=⨯︒=︒故.55︒(2)设,AOE x ∠=则.5BOF x ∠=.90AOD x ∴∠=︒-.180(90)90BOD x x ∠=︒-︒-=︒+平分,OF BOD ∠.∴11(90)4522BOF x x ∠=︒+=︒+,∴14552x x ︒+=即9452x =︒,∴245109x =︒⨯=︒.10AOE ∴∠=︒24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠(1)10°;(2)①;②60°1602COF AOE ∠=︒-∠【分析】(1)利用角平分线的定义以及角的和差计算即可求解;(2)利用角平分线的定义以及角的和差列式即可;(3)利用邻补角的定义结合(2)的结论即可求解.【详解】解:(1)∵,,∴,.80BOE ∠=︒60COE ∠=︒40AOC ∠=︒100AOE ∠=︒∵是的平分线,∴,OF AOE ∠1502AOF AOE ∠=∠=︒∴;10COF AOF AOC ∠=∠-∠=︒(2)①∵是的平分线,∴,OF AOE ∠12EOF AOE ∠=∠∴;1602COF COE EOF AOE ∠=∠-∠=︒-∠②∵∠BOE=180-∠AOE ,︒∴∠BOE-2∠COF=180-∠AOE-2(60-∠AOE)=180-∠AOE-120+∠AOE .︒︒12︒︒60=︒25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α【分析】(1)根据角平分线的定义先求出,再根据互补求出即可;AOD ∠BOD ∠(2)根据互余求出,再根据角平分线的定义求出,最后根据互补求出的答案;DOE ∠AOD ∠(3)由(2)的解题过程可得答案;(4)根据互余、互补、角平分线的定义可求出答案.(1)射线平分,,OE AOD ∠22250100AOD AOE DOE ∴∠=∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(2),,,90COD ∠=︒ 30COE ∠=︒903060DOE ∴∠=︒-︒=︒又平分,,OE AOD ∠2260120AOD DOE ∴∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(3),,,90COD ∠=︒ COE α∠=90DOE α∴∠=︒-又平分,,OE AOD ∠22(90)1802AOD DOE αα∴∠=∠=⨯︒-=︒-,180********BOD AOD αα∴∠=︒-∠=︒-︒+=故;2α(4)由图②得,,90DOE α∠=-︒平分,,OE AOD ∠22180AOD DOE α∴∠=∠=-︒,18018021803602BOD AOD αα∴∠=︒-∠=︒-+︒=︒-故.3602α︒-26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠(1)2,、,对顶角相等;(2)90°;(3)105°=COB AOD ∠∠=AOC BOD ∠∠【分析】(1)根据对顶角相等证明即可;(2)设,表示已知条件中的角推理计算即可;=AOC x ∠(3)结合(2)中的关系列方程即可求出x 的值,再由和互补求AOC COF ∠∠、DOF ∠COF ∠出.DOF ∠【详解】(1)根据对顶角相等可得图1中有2对相等的角(平角除外)分别是:,.=COB AOD ∠∠=AOC BOD ∠∠故2,、,对顶角相等;=COB AOD ∠∠=AOC BOD ∠∠(2)设°,则=AOC x ∠180BOC x ∠=︒-︒∵平分∴OF COB ∠11=9022COF BOC x ∠∠=︒-︒∴1==90+2AOF AOC COF x ∠∠+∠︒︒∵∴90COE ∠=︒1=2EOF COE COF x ∠∠-∠=︒∴;11=90+=9022AOF EOF x x ∠-∠-︒(3)∵:2:5AOC COF ∠∠=∴5=2AOC COF∠∠由(2)可知:,=AOC x ∠1=902COF x ∠︒-︒∴解得15=2(90)2x x ︒︒-︒30x =︒∴, ∴190=752COF x ∠=-︒180105DOF COF ∠=-∠=︒。

(完整版)邻补角-对顶角-垂线练习

(完整版)邻补角-对顶角-垂线练习

邻补角,对顶角,垂线习题1.若点O是直线AB上的一点,AB⊥OD,OC⊥OE,则图中互余的角有 ( )A。

3对 B.4对 C。

5对 D.6对2.下列说法中错误的个数是( )(1)一个角的邻补角只有一个(2)一个角的邻补角一定大于这个角(3)如果两个角互为邻补角,则两个角必定一个是锐角,一个是钝角(4)钝角的邻补角一定为锐角A.1个B.2个 C。

3个 D。

4个3.下列说法中正确的是()A.因为对顶角相等,所以相等的角是对顶角B.互为对顶角的两个角度数之和不会超过1800C.有着公共顶点的两个角不一定是对顶角D.有一条公共边的两个角是邻补角4.画一条线段的垂线,垂足在()A.线段上 B。

线段的端点 C.线段的延长线上 D。

以上都有可能5.点到直线的距离是指这点到这条直线的 ( )A。

垂线段 B。

垂线的长 C。

长度 D.垂线段的长6.下列语句正确的是( )A.直线外一点到这条直线的垂线段叫做点到直线的距离B.直线外一点与直线上的各点连接的所有线段中,垂线最短C.平分线段的直线只有一条D.在平面内过一点有且只有一条直线垂直于已知直线7.下列作图语句正确的是()A.作直线MN的中垂线B.过点P作线段AB的垂直平分线C.过点O 作OC⊥直线AB,点C为垂足D.过点P作直线PQ,使它平分线段AB8。

若点A在直线l外,点B在直线l上,AB两点之间的距离记作a, 点A到直线l的距离记作b,则a和b之间大小关系是( )A. a<bB. a>b C。

a≤b D。

a≥b9.若点P到直线l的距离为3,则直线l上到点P 距离为4的点的个数为()A。

0个 B。

1个 C.2个 D.3个10。

若点A,B分别位于直线l的两侧,点A到直线l的距离为5cm,点B到直线l的距离为8cm,则AB两点间的距离()A.等于13cmB.大于13cmC.不小于13cmD.小于13cm11。

两条直线相交所成的四个角中,下列条件中能判定两条直线垂直的是()A。

沪教版七年级(下)数学第十三章相交线-平行线课课练及单元测试卷一和参考答案

沪教版七年级(下)数学第十三章相交线-平行线课课练及单元测试卷一和参考答案

数学七年级下第十三章相交线平行线13.1 邻补角、对顶角(1)一、选择题1、图中是对顶角的是( )A B C D2 如图,∠AOC的邻补角是( )A. ∠AODB. ∠BOCC. ∠AOD和∠BOCD. ∠AOE和∠COF第2题第4题3.下列说法中,正确的是()A、有公共顶点,没有公共边的两个角是对顶角;B、相等的两个角是对顶角;C、如果两个角是对顶角,那么这两个角相等;D、有公共顶点且和为180°的两个角为邻补角。

4. 如图,三条直线l1、l2、l3相交于点O,则∠1+∠2+∠3= ()A、270°B、180°C、120°D、90°5、平面上三条直线两两相交最多能构成对顶角的对数是()A、6B、8C、10D、46、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是()A、相等但不是对顶角B、邻补角C、互补但不是邻补角D、对顶角7. 三条直线相交于同一点时,对顶角有m对,相交于不同三点时,对顶角为n对,则m与n的关系是()A、m=nB、m>nC、m<nD、m+n=10二、填空题8. 平面内两条直线相交有个交点,三条直线相交可能有个交点,四条直线相交可能有个交点,五条直线相交最多有个交点。

9、如图,直线AB、CD相交于O点,∠AOE=90°。

∠1和∠2互为______角;∠2和∠4互为______角,∠1和∠3互为_______角。

10、如图,∠2=∠3,∠1=65°,则∠4= ,∠5= 。

11、如图,三条直线AB、CD、EF相交于点O,∠1=62°,∠2=50°,则∠COE= ,∠DOE= , ∠AOE= 。

第9题第10题第11题第12题12.如图,三条直线交于同一点,∠1:∠2:∠3=3:5:2,则∠4=___ ______.三、简答题13、如图,直线ABCDEF都经过O点,∠AOC =38°,∠COE=54°,求∠EOB、∠BOC、∠DOF、∠COF和∠FOA的度数。

沪教新版七年级下学期 中考题同步试卷:13.1 邻补角、对顶角(01)

沪教新版七年级下学期 中考题同步试卷:13.1 邻补角、对顶角(01)

C.140° )
A.
B.
D.130°
C.
D.
4.已知∠α 和∠β 是对顶角,若∠α=30°,则∠β 的度数为(
A.30°
B.60°
C.70°
5.下列图形中,∠1 与∠2 是对顶角的是( )
) D.150°
A.
B.
第1页(共4页)
C.
D.
6.如图,图中∠α 的度数等于(115°
第3页(共4页)
沪教新版七年级(下)中考题同步试卷:13.1 邻补角、 对顶角(01)
参考答案
一、选择题(共 8 小题) 1.B; 2.A; 3.B; 4.A; 5.C; 6.A; 7.C; 8.B; 二、填空题(共 8 小题) 9.对顶角相等; 10.50°; 11.50; 12.40°; 13.50; 14.80; 15.145; 16.20°;
度.
14.如图,直线 AB 和 OC 相交于点 O,∠AOC=100°,则∠1=
度.
15.如图,已知直线 AB 与 CD 交于点 O,ON 平分∠DOB,若∠BOC=110°,则∠AON 的
度数为
度.
16.如图,直线 AB 和 CD 相交于点 O,OE 平分∠DOB,∠AOC=40°,则∠DOE=
度.

D.∠1 和∠5
10.如图,直线 a 和直线 b 相交于点 O,∠1=50°,则∠2=

第2页(共4页)
11.如图,直线 AB 与 CD 相交于点 O,∠AOD=50°,则∠BOC=
°.
12.如图,直线 AB、CD 相交于点 O,若∠BOD=40°,OA 平分∠COE,则∠AOE=

13.如图,直线 a、b 相交于点 O,∠1=50°,则∠2=

对顶角邻补角考点训练含答案解析

对顶角邻补角考点训练含答案解析

5. (2013?贺州)下面各图中 7 1和7 2是对顶角的是( )4. (2012?梧州)如图,直线 AB 和CD 相交于点 O ,若 7 AOC=125 ° 贝9 7 AOD=(A50 ° B . 55 C . 60 ° D . 65 °【考点训练】对顶角、邻补角 一1、选择题(共6小题)1.( 2012?北京)如图,直线 AB , CD 交于点 O ,射线 OM 平分/ AOC ,若/ BOD=76 °,贝U / BOM 等于(A38 ° D . 144 °2 .如图,AB 是一条直线,OC 是/ AOD EOB=A36 ° B . 72° 108 °3. ( 2011?台湾)如图中有四条互相不平行的直线 L 1、L 2、L 3、L 4所截出的七个角.关于这七个角的度数关系, 何者正确( )D . 7 2+ 7 3+7 5=360 (第1(第2则/ 的平分线,0E 在/ BOD 内, (第4C.6. (2012?卯州)如图,直线a与直线c相交于点O, / 1的度数是(A60 ° B . 50 C. 40 D . 30 °、填空题(共3小题)(除非特别说明,请填准确值)7.(2012?泉州)如图,在厶ABC中,/ A=60。

,/ B=40。

,点D、E分别在BC、AC的延长线上,则/仁___________________ &(2013?湘西州)如图,直线a和直线b相交于点O, /仁50 °,则/ 2 ______________________ .9. (2013?曲靖)如图,直线AB、CD相交于点O,若/ BOD =40 ° OA平分/ COE,则/ AOE= ____________________三、解答题(共2小题)(选答题,不自动判卷)10. (2011?泉州)如图,直线a、b相交于点O,若/仁30 °则/ 2= _____________________(第10(第1111. (2012?泉州)(2)如图,点A、O、B在同一直线上,已知/ BOC=50 ° 贝U / AOC= _ _参考答案与试题解析、选择题(共6小题)1. (2012?北京)如图,直线AB, CD交于点O,射线OM平分/ AOC,若/ BOD=76 °贝U / BOM等于(占DA. 38°B. 104C. 142 D . 144考点:对顶角、邻补角;角平分线的定义.专题:常规题型.分析:根据对顶角相等求出Z AOC的度数,再根据角平分线的定义求出Z AOM的度数,然后根据平角等于180°列式计算即可得解.解答:解:•/ Z BOD=76°,••• / AOC= / BOD=76 °•/射线OM平分/ AOC ,•/ AOM=u/ AOC」X76 °38 °I I•/ BOM=180 ° Z AOM=180 - 38 =142 :故选C.点评:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.2 .如图,AB是一条直线, OC是Z AOD的平分线, OE 在Z BOD 内,Z BOD , Z COE=72 ° 贝U Z EOB=A. 36°B. 72 D . 120°考点:角平分线的定义;对顶角、邻补角.专题:计算题.分析:设/DOE=x,根据题意得到 / B0E=2x, / AOC= / COD=72°- X,再根据平角为180度,得到2X( 72°-x) +3x=180 °,解得x=36 °,即可得到/ BOE的度数.解答:解:如图,设/ DOE=x,/ DOE)/ BOD ,3••• / BOE=2x,又••• OC 是/ AOD 的平分线,/ COE=72°,•/ AOC= / COD=72 °- x;• 2 X( 72 °- x) +3x=180 °解得x=36°,•/ BOE=2x=2 X6 =72 °故选B.点评:本题考查了角的有关计算以及角平分线的性质和平角的定义,是基础知识比较简单.3. ( 2011?台湾)如图中有四条互相不平行的直线L i、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确( )C. / 1 + / 4+ / 6=180° D . / 2+ / 3+ / 5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出 /仁/ AOB,再用三角形内角和定理得出/ AOB+ / 4+ / 6=180°,即可得出答案.解:•••四条互相不平行的直线L1、L2、L3、L4所截出的七个角,解答:•/ / 1 = / AOB,•/ / AOB+ / 4+ / 6=180 ,°• / 1 + / 4+Z 6=180 °故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理, 正确的应用三角形内角和定理是解决问题的关键.4. (2012?梧州)如图,直线贝U / AOD=(A. 50° D . 65考点:对顶角、邻补角.分析:根据邻补角的和等于180°列式进行计算即可得解.解答:解:•/ Z AOC=125°,••• Z AOD=180 ° 125 =55 °故选B.点评:本题考查了邻补角的两个角的和等于180°的性质,是基础题5. (2013?贺州)下面各图中/1和/2是对顶角的是(考点:对顶角、邻补角.分析:根据对顶角的定义对各选项分析判断后利用排除法求解.解答:解:A、/ 1和/ 2不是对顶角,故本选项错误;B、 /1和/2是对顶角,故本选项正确;C、 /1和/2不是对顶角,故本选项错误;D、 / 1和/2不是对顶角,是邻补角,故本选项错误.故选B.点评:本题考查了对顶角、邻补角,熟记概念并准确识图是解题的关键.6. (2012?卯州)如图,直线 a 与直线c 相交于点O ,/ 1的度数是(考点:对顶角、邻补角.分析:根据邻补角的和等于 180。

对顶角、邻补角性质应用举例

对顶角、邻补角性质应用举例

对顶角、邻补角性质应用举例我们知道对顶角相等、邻补角的和为180°.利用对顶角、邻补角的性质,可以解决与相交线有关的角度计算问题.请看下面几例.例1 如图1,直线AB 、CD 相交于点O ,若∠AOD -∠BOD =80°,求∠AOC 的度数. 分析 ∠AOD 与∠BOD 互为邻补角,结合已知条件∠AOD -∠BOD =80°,即可求出∠BOD 的度数, 而∠AOC 与∠BOD 是一对对顶角,故可得∠AOC 的度数.解 因为∠AOD 与∠BOD 互为邻补角,所以∠AOD +∠BOD =180°.又因为∠AOD -∠BOD=80°,所以∠AOD =∠BOD +80°.于是得∠BOD +∠BOD +80°=180°,解之得,∠BOD =50°,由对顶角相等,可得∠AOC =∠BOD =50°.例2 如图2,直线AB 与CD 相交于O 点,∠EOC :∠EOD =3:2,OA 是∠EOC 的平分线,求∠BOD 的度数.分析 图中∠EOC 与∠EOD 是邻补角,结合已知条件可以求出∠EOC 的度数,又OA 是∠EOC 的平分线,因而可得∠AOC 的度数,根据对顶角相等即可求出∠BOD .解 设∠EOC =3x°,则∠EOD =2x°. 由邻补角的定义,可得3x +2x =180,解之得,x=36. 所以∠EOC =36°×3=108°. 因为OA 是∠EOC 的平分线,所以∠AOC =21∠EOC =21×108°=54°.由对顶角相等,可得∠BOD =∠AOC =54°.例3 如图3,直线AB 、CD 、EF 相交于O 点,∠AOE =30°,∠BOC=3∠AOC,求∠DOF的度数.Array分析∠AOC与∠BOC是邻补角,所求的∠DOF只要能求出∠EOC就可以了.解设∠AOC=x°,则∠BOC=3x°,由邻补角的定义,得x+3x=180,解得,x=45,所以∠AOC=45°.所以∠EOC=∠AOC-∠AOE=45°-30°=15°,由对顶角相等,可得∠DOF=∠EOC=15°.评注:解决这类问题要善于寻找对顶角和邻补角,利用它们把所求的角与已知角联系起来,对于较复杂的问题,我们还可以列方程来解决,利用方程的方法解决有时较为简捷.。

知识点246 对顶角、邻补角(填空题)

知识点246  对顶角、邻补角(填空题)

246 对顶角、邻补角(填空题)1、(2011•)一块直角三角板放在两平行直线上,如图所示,∠1+∠2= _________ 度.2、(2011•广西)如图,O是直线AB上一点,∠COB=30°,则∠1= _________ °.3、(2010•湘西州)如图,两条直线a、b相交于点O,若∠1=70°,则∠2= _________ .4、(2010•)如图,直线AB、CD相交于点O.OE平分∠AOD,若∠BOD=100°,则∠AOE= _________ 度.5、(2006•)用剪刀剪东西时,剪刀开的角度如图所示,若∠1=25°,则∠2= _________ 度.6、(2002•)如图,直线AB、CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE,若∠AOC=28°,则∠EOF= _________ 度.7、(2002•)如图,是用对顶角的量角器测量圆锥形零件的锥角的示意图,则此零件的锥角等于_________ 度.8、(2002•)如图,AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_________ 度.9、(1998•)如图,直线AB与CD相交于点O,已知∠AOD=120°,则∠COB的补角是_________ 度.10、如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于_________ 度.11、如图,当剪子口∠AOB增大15°时,∠COD增大_________ 度.12、如图,已知AB、CD相交于O,OE平分∠AOC,∠AOE=30°,则∠BOD= _________ 度.13、如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE= _________ 度.14、若∠1与∠2是对顶角,∠3与∠2互补,又知∠3=60°,则∠1= _________ .15、如图,已知直线a、b、c相交于点O,∠1=30°,∠2=70°,则∠3= _________ .16、如图,直线AB,CD相交于点O,∠AOC=54°,∠1比∠2大10°,则∠1= _________ 度;∠2= _________ 度.17、如图,a、b直线相交,∠1=36°,则∠3= _________ 度,∠2= _________ 度.18、如图,三条直线相交于一点,则∠1+∠2+∠3= _________ 度.19、若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为_________ .20、如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4= _________ 度.21、如图,直线a与直线b相交于点O,∠1=30°,∠2= _________ .22、如图直线AB,CD,EF相交于点O,图中∠AOE的对顶角是_________ ,∠COF的邻补角是_________ .23、如图,三条直线相交于O点,则图中相等的角(平角除外)有_________ 对.24、下列说法:①射线OA和射线AO是同一条射线;②两直线相交,只有一个交点;③相等的两个角的余角相等;④相等的两个角是对顶角.其中错误的是_________ .25、图中有_________ 对对顶角.26、如图所示,直线AB、CD交于点O,OE⊥AB且∠DOE=40°,则∠COE= _________ 度.26、如图,直线AB、CD相交于O,OE⊥OD,且∠AOC=40°,则∠BOD=_________,∠AOD=_________ .28、如图直线AB、CD、EF相交于同一点O,而且∠BOC=∠AOC,∠DOF=∠AOD,那么∠FOC= _________ 度.29、如图,直线AB、CD,EF相交于点O,则∠AOD的对顶角是_________ ,∠AOC的邻补角是_________ ;若∠AOC=50°,则∠BOD= _________ ,∠COB= _________ .30、如图,若∠3+∠6=190°,则∠1+∠5= _________ ;若∠3+∠4=130°,则∠2+∠5= _________ .31、如图,直线AB,CD,EF相交于点O,若∠DOF=30°,∠AOE=20°,则∠BOC= _________ .32、如图,直线AB、CD、EF相交于点O,∠AOD=140°,∠DOE=70°,则∠AOF=_________ °.33、如图所示,当光线从空气射入水中时,光线的传播向发生了改变,这就是光的折射现象.若∠1=42°,∠2=28°,则光的传播向改变了_________ 度.34、如图,两条直线MN、PQ相交于点O,OG平分∠NOQ,∠1:∠2=2:5,则∠1= _________ 度,∠2= _________ 度.34、如图所示,直线a,b,c两两相交,∠1=60°,∠2=∠4,则∠3= _________ 度,∠5= _________ 度.36、三条直线两两相交于3个交点,共有_________ 对对顶角,_________ 对邻补角.37、如图,直线AB与直线CD相交于点0,E是∠AOD一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数为_________ 度.38、已知直线AB和CD相交于点O,OE平分∠BOC,已知∠BOE=65°,则∠AOC= _________ .39、如图,直线AB、CD相交于点O,∠1=50°,则∠2= _________ 度.40、如图,AB、CD相交于点O,OE平分∠BOD,∠AOC=80°,则∠BOE= _________ °.41、如图,直线AB、CD相交于O,∠1=30°,∠2=75°,则∠EOB= _________ .42、如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是_________ .43、如图对顶角有_________ 对.44、如图,AB、CD相交于点O,∠AOD+∠COB=278°,则∠AOD= _________ °,∠DOB= _________ °,若OE 平分∠AOC,则∠AOE= _________ °.45、已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD= _________ 度;若OF平分∠DOB,则∠EOF 的度数是_________ 度.46、如图,∠1=15°,∠AOC=90°,点B、O、D在同一直线上,则∠2的度数为_________ .47、已知直线AB与直线CD相交于点O,∠AOD=150°,那么直线AB与直线CD的夹角为_________ 度.48、如图,三条直线交于同一点,∠1:∠2:∠3=2:3:1,则∠4= _________ .49、如图所示,直线AB、CD相交于点O,OP是∠BOD的平分线,已知∠AOC=100°,那么∠BOP= _________ .答案与评分标准1、(2011•)一块直角三角板放在两平行直线上,如图所示,∠1+∠2= 90 度.考点:对顶角、邻补角;余角和补角。

7年级寒假班05-邻补角、对顶角及垂直-学生版

7年级寒假班05-邻补角、对顶角及垂直-学生版

邻补角、对顶角及垂线知识结构模块一:邻补角的意义和性质知识精讲1、平面上两条不重合直线的位置关系相交:两条直线有一个交点;平行:两条直线没有交点.2、邻补角的意义两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.3、邻补角的性质互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角.【例1】 如图,三条直线AB 、CD 、EF 相交于一点O ,问一共可以构成多少对邻补角,并把他们写出来.【例2】 判断:(1)平面内两条直线的位置关系,不是相交就是平行; ( ) (2)平面内两条直线有交点,则这两条直线相交; ( ) (3)有一条边是公共边的两个角互为邻补角.() (4)有两个角互为补角,并且有一条公共边,那么他们互为邻补角.( )【例3】 如图,∠AOD 的邻补角是__________.【例4】 如图,OC 平分∠AOB ,∠AOD =2∠BOD ,∠COD =28°,求∠AOC 的大小.【例5】 如图,直线a 、b 相交,∠1=40°,求∠2,∠3,∠4的度数.例题解析Aab12 34ABC DEFOAB C D OOE DCBA 【例6】 如图所示,AB 、CD 相交于点O ,OE 平分∠AOD ,∠AOC=120°,求∠BOD ,∠AOE 的度数.【例7】 同一平面上的任意三条直线,可以有__________个交点.1、对顶角的意义两个角有公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关 系的两个角叫做互为对顶角. 2、对顶角的性质 对顶角相等.【例8】 下列说法中,正确的是()A . 有公共的顶点,且方向相反的两个角是对顶角B . 有公共顶点,且又相等的两个角是对顶角C . 由两条直线相交所成的角是对顶角D . 角的两边互为反向延长线的两个角是对顶角【例9】 如图,三条直线AB 、CD 、EF 相交于一点O ,问一共可以构成多少对对顶角,并 把他们写出来.例题解析知识精讲模块二:对顶角的意义和性质ABC DEFO【例10】 判断:(1)有公共顶点,且度数相等的两个角是对顶角.( ) (2)相等的两个角是对顶角.()【例11】 若∠1与∠2是对顶角,∠3与∠2互余,且∠3=60°,那么∠1=__________.若∠1与∠2是对顶角,且∠1与∠2互余,则∠1=__________,∠2=__________. 【例12】 如图,直线AB 、CD 交于点O ,则(1)若∠1+∠3=68度,则∠1=__________. (2)若∠2:∠3=4:1,则∠2=__________. (3)若∠2-∠1=100度,则∠3=__________.【例13】 如图(1)所示,两条直线AB 与CD 相交成几对对顶角?(2)如图(2)所示,三条直线AB 、CD 、EF 相交呢? (3)试猜想n 条直线相交会成多少对对顶角?1、垂线的意义如果两条直线的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 2、垂直的符号记作:“⊥”,读作:“垂直于”,如:CD AB ,读作“AB 垂直于CD ”.注:垂直是特殊的相交.知识精讲模块三:垂线(段)的意义和性质321ODBCA3、垂直公理:在平面内,过直线上或直线外的一点作已知直线的垂线可以作一条,并且只能作一条.简记为:过一点,有且仅有一条直线与已知直线垂直 4、中垂线过线段中点且垂直于这条线段的直线,叫做这条线段的垂直平分线,简称中垂线.5、垂线段的性质联结直线外一点与直线上各点的所有线段中,垂线段最短.6、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离.如果一个点在直线l 上,那么就说这个点到直线l 的距离为零.【例14】 判断:(1)经过直线外一点只有一条直线与已知直线垂直.( ) (2)两条直线的交点叫垂足. ( ) (3)线段和射线没有垂线.() (4)两条直线不是平行就是互相垂直.()(5)直线外一点到这条直线的垂线段,叫做这个点到直线的距离.(【例15】 如图,∠ACB =90°,CD ⊥AB ,垂足为点D ,那么点B 到线段CD 的距离是线段__________的长度;线段CD 的长度是点C 到线段__________的距离;线段AC 是点___________到线段__________的距离.【例16】 下列选项中,哪个是直线l 的垂线( )【例17】 如图,AC BC ,垂足为C ,AC =4,BC =3,那么点A 与BC 的距离为______.例题解析ABCDllllABN【例18】 如图,直线AB ,CD 交于点O ,OE ⊥AB ,:1:2AOC COE ∠∠=,则 COE ∠=_________.【例19】 作图题:1、已知直线AB 和点C ,过点C 做AB 的垂线;2、作线段MN 的中垂线.【例20】 B 两厂在公路同侧,拟在公路边建一货场C ,若由B 厂独家兴建,并考虑B 厂的利益,则要求货物离B 厂最近,请在图10中作出此时货场C 的位置,并说出这样做的道理.【例21】 如图,已知OA ⊥OB ,OC ⊥OD ,BOC ∠比AOC ∠大20︒,则BOD ∠的 度数为_______.【例22】 如图,一棵小树生长时与地面成80°角,它的主根深入泥土,如果主根和小树在同一条直线上,那么∠2等于多少度?AB C DEOAB公路ABCDO【例23】 如图,已知直线AB 、CD 相交于点O ,OE ⊥AB ,OB 平分∠DOF ,∠COF =47∠BOD .求∠AOC 、∠EOD 、∠COE 的度数.【例24】 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.【例25】 下列结论不正确的是()A .互为邻补角的两个角的平分线所成的角为90°B .相等的两个角是对顶角是对顶角C .两直线相交,若有一个交角为90°,则这四个角中任取两个角都互为补角D .同角的余角相等例题解析模块四:综合运用A【例26】 如图,AB 与CD 为直线,图中共有对顶角().A .1对B .2对C .3对D .4对【例27】 如图,运动会上,甲、乙两名同学测得小明的跳远成绩分别为DA =4.5米,DB =4.15米,则小明的跳远成绩应该为______米.【例28】 如图所示,已知AB 、CD 相交于O 点,OE ⊥AB ,∠EOC =28°,则∠AOD =_______.【例29】 如图,直线AD 和BE 相交于O 点,OC ⊥AD ,∠COE =70°,求∠AOB 的度数.【例30】 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE , ∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.【例31】 已知直线AB 、CD 、EF 相交于点O ,∠1:∠3=3:1,∠2=20°,求∠DOE 的度数.【例32】 如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,且∠AOC =∠AOD -80°,A BCD EFABCDE O28 AA B CD E F12 O3F E ODCB AEOD CB求∠AOE 的度数.【习题1】 下列语句中正确的是()A .过直线AB 的中点且和AB 垂直的直线叫做中垂线 B .过线段CD 的中点且和CD 垂直的直线叫做CD 的中垂线C .和直线AB 相交且过A 点的直线是AB 的中垂线D .和线段AB 相交且成90度的直线是AB 的中垂线 【习题2】 下列图中,∠1与∠2是对顶角的是()ABCD【习题3】 如图5,直线a ,b 相交,∠1=40°,则∠2=_______,∠3=_______,∠4=_______.【习题4】 如图,直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE =30°,那么∠BOE =_______,∠BOF =_______【习题5】 如图7,直线AB 、CD 相交于点O ,∠COE =90°,∠12121212随堂检测E a b1 23 4OE DCBA AOC =30°,∠FOB =90°,则∠EOF =________.【习题6】 如图所示,AB 、CD 相交于点O ,OE 平分∠AOD ,∠AOC =120°,求BOD ,∠AOE 的度数.【习题7】 如图所示,直线a ,b ,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.【习题8】 如图,直线AB 、CD 、EF 相交于点O ,∠AOE =40°,∠BOC =2∠AOC ,求∠DOF .【习题9】 如图,已知∠2与∠BOD 是邻补角,OE 平分∠BOD ,OF 平分∠COE ,∠2∶∠1=4∶1,求∠AOF 的度数.【习题10】 已知点O 是直线AB 上一点,OC ,OD 是两条射线,且∠AOC =∠BOD ,则∠ABCD EFOb a c2314AOC 与∠BOD 是对顶角吗?为什么?【作业1】 判断:(1)两个角开口相反且有公共点,则他们是对顶角( )(2)∠A 与∠B 互为邻补角,所以他们相等()(3)∠1和∠2相等,并且他们有一条边在同一直线上,那么∠1=∠2=90°( )(4)同一平面内,两条不相交的直线,一定不会垂直( )(5)经过一点有且仅有一条直线与已知直线垂直()(6)同一平面内,点到直线的各条线段中,垂线段最短( ) (7)邻补角一定是补角,补角不一定是邻补角()【作业2】 如图所示AB ,CD 相交于点O ,EO ⊥AB 于O ,FO ⊥CD 于O ,∠EOD 与∠FOB 的大小关系是( ) A .∠EOD 比∠FOB 大B .∠EOD 比∠FOB 小C .∠EOD 与∠FOB 相等D .∠EOD 与∠FOB 大小关系不确定【作业3】 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 是分别位于公路AB两侧的加油站.设汽车行驶到公路AB 上点M 的位置时,距离加油站C 最近;行驶到点N 的位置时,距离加油站D 最近,请在图中的公路上分别画出点M ,N 的位置并说明理由.【作业4】 如图,AOB 为直线,∠AOD :∠DOB =3:1,OD 平分∠COB .(1)求∠AOC 的度数;(2)判断AB 与OC 的位置关系.【作业5】 若两个角互为邻补角,则它们的角平分线所夹的角为_________度.【作业6】 作图:已知线段AB 及线段外一点P .课后作业(1) 过点P 作线段AB 的垂线; (2) 画线段AB 的垂直平分线.【作业7】 如图所示,这是某位同学在体育课上跳远后留下的脚印,他的跳远成绩是多少?(比例尺为1:100)【作业8】 如图所示,直线、b 、c 相交,∠1=60°,∠2=23∠4,求∠3、∠5的度数.【作业9】 如图,OD ⊥OC ,且2:13:2∠∠=,那么1∠=________,3∠=_______.【作业10】 如图,直线AB 、CD 、EF 交于点O ,DOB ∠是它的余角的2倍,2AOE DOF ∠=∠,且有OG OA ⊥,求EOG ∠的度数.a bc1 2 34 5 ACD O123 ABP起跳线。

邻补角、对顶角、同位角、内错角、同旁内角经典习题-一对一专用

邻补角、对顶角、同位角、内错角、同旁内角经典习题-一对一专用

邻补角、对顶角、同位角、内错角、同旁内角一、学习目标1、了解两条直线相交所构成的角,理解并掌握邻补角、对顶角的概念和性质;2、理解并掌握垂线的概念和性质;3、了解同位角、内错角、同旁内角的概念并会辨别二、主要内容1、邻补角:两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

2、对顶角:两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角;对顶角的性质:对顶角相等。

注意:1、对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;2、如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角3、如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

4、两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

习题巩固1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3121212122、下面各图中∠1和∠2是对顶角的是()A.B.C.D.3、下列语句正确的是().A、相等的角是对顶角B、相等的两个角是邻补角C、对顶角相等D、邻补角不一定互补,但可能相等4、下列语句错误的有()个.(1)两个角的两边分别在同一条直线上,这两个角互为对顶角(2)有公共顶点并且相等的两个角是对顶角(3)如果两个角相等,那么这两个角互补(4)如果两个角不相等,那么这两个角不是对顶角A、1B、2C、3D、45、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是().A、对顶角B、相等但不是对顶角C、邻补角D、互补但不是邻补角6、下列说法正确的是().A、有公共顶点的两个角是对顶角B、两条直线相交所成的两个角是对顶角C、有公共顶点且有一条公共边的两个角是邻补角D、两条直线相交所成的无公共边的两个角是对顶角7、已知:如图所示,AB⊥CD,垂足为点O,EF为过点O•的一条直线,则∠1与∠2的关系一定成立的是()A.相等 B.互余 C.互补 D.互为对顶角8、下列判断正确的个数是_____个。

2023年春上海七年级下数学辅导讲义(沪教版)第5讲邻补角、对顶角及垂直(练习)解析版

2023年春上海七年级下数学辅导讲义(沪教版)第5讲邻补角、对顶角及垂直(练习)解析版

第5讲邻补角、对顶角及垂直(练习)夯实基础1.下列语句中正确的是()A.有一条公共边且和为180°的两个角是邻补角B.互为邻补角的两个角不等C.两边互为反向延长线的两个角是对顶角D.交于一点的三条直线形成3对对顶角【难度】★【答案】C【解析】A错误,另一边互为反向延长线;B错误,不一定,有可能相等;D错误,6对.【总结】考察邻补角,对顶角的内容.2.直线AB上有一点P和此直线外的一点Q的距离为3cm,则Q到直线AB的距离()A.等于3cm B.大于或等于3cmC.小于或等于3cm D.都不对【难度】★【答案】C【解析】考察点到直线的距离的知识点及其运用.⊥,垂足为O.若3.(2018·上海松江区·七年级期中)如图,已知BO DE∠=︒,则AODBOC42∠=_______︒.【答案】48【分析】先根据垂直求得BOC ∠的余角EOC ∠的度数,再根据对顶角相等即可得出答案.【详解】,42BO DE BOC ⊥∠=︒90904248EOC BOC ∴∠=︒-∠=︒-︒=︒48AOD EOC ∴∠=∠=︒故答案为:48.【点睛】本题考查了余角、对顶角的计算,熟练掌握余角和对顶角的定义是解题的关键.4.(2018·上海松江区·七年级期中)如图,已知直线,a b 相交,12280∠+∠=︒,则1∠=_______︒.【答案】140【分析】根据对顶角相等可得12∠=∠,然后求解即可.【详解】12280,12∠+∠=︒∠=∠112801402∴∠=⨯︒=︒ 故答案为:140.【点睛】本题考查了对顶角,熟练掌握对顶角相等是解题的关键.5.(2018·上海杨浦区·七年级期末)已知直线AB 和直线CD 相交于点O ,200AOC BOD ∠+∠=︒,那么这两条直线的夹角等于___________度.【答案】80【分析】如下图,先根据对顶角相等求得∠AOC 的大小,再根据邻补角互补可得∠AOD 的大小,两直线的夹角用小于90°的那个角表示,据此可得夹角大小.【详解】如下图∵200AOC BOD ∠+∠=︒∴∠AOC=∠BOD=100°∴∠AOD=80°故答案为:80【点睛】本题考查对顶角和邻补角的性质,解题关键是绘制出图形,然后才好方便分析求解.6.(2016·上海奉贤区·七年级期中)如图,已知直线AB 、CD 相交于O 点,∠AOC +∠BOD =80°,那么∠BOC=_____度.【答案】140【分析】本题考查的是对顶角知识,根据∠AOC与∠BOD是对顶角,相等且和为80°解答即可【详解】∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD;又∵∠AOC+∠BOD=80°,∴∠AOC=∠BOD=40°,∴∠BOC=180°-∠BOD=180°-40°=140°【点睛】本题的关键是掌握对顶角相等的知识7.直线AB与直线CD相交于点O,EO⊥AB于O,则图中∠1和∠2的关系是__________.【难度】★【答案】互余.【解析】考察对顶角的性质以及互余的意义及运用.8.(2019·上海七年级单元测试)如图所示,直线AB、CD、EF相交于点O,若∠1+∠2=90°,∠3=40°,求∠1的度数,并说明理由.【答案】50°【分析】根据题意已知了∠1与∠2的关系,要求∠1的角度,只要求出∠2的度数即可.观察图形,可得知∠2与∠3是对顶角,而题目中又已知了∠3的角度,计算即可得到∠1的度数. 【详解】解:因为∠2=∠3(对顶角相等),∠3=40°(已知),所以∠2=40°(等量代换).又因为∠1+∠2=90°(已知),所以∠1=90°-∠2=50°.【点睛】此题考查对顶角、邻补角,解题关键在于掌握其性质定义.能力提升1.(2018·上海金山区·七年级期中)如图,直线AB、CD相交于点O,∠=︒,则直线AB与直线CD的夹角是______︒.BOC135【答案】45【分析】先根据邻补角的定义求出∠AOC,再根据直线的夹角为锐角解答.【详解】解:∵∠BOC=135°,∴∠AOC=180°-∠BOC=180°-135°=45°,∴直线AB与直线CD的夹角是45°.故答案为:45.【点睛】本题考查了邻补角的定义,要注意直线的夹角是锐角.2.(2017·上海长宁区·七年级期末)如图,直线AC与直线BD交于点O,∠=∠,那么AOD2AOB BOC∠=______度.【答案】60【分析】直接利用已知结合邻补角的定义得出答案.【详解】∵直线AC 与直线BD 交于点O ,∠AOB=2∠BOC ,∴∠AOB+∠BOC=180°,∴2∠BOC+∠BOC=180°,∴∠BOC=60°,∴∠AOD=∠BOC=60°.故答案为:60.【点睛】此题考查邻补角以及对顶角,正确得出∠BOC 的度数是解题关键.3.(2018·上海嘉定区·七年级期中)如图,直线AB 与CD 相交于点O ,135BOC ∠=︒,那么它们的夹角的度数是____.【答案】45︒【分析】根据邻补角和夹角的定义,结合题意即可得到答案.【详解】因为135BOC ∠=︒,BOC ∠和AOC ∠是邻补角,则18013545AOC ∠=︒-︒=︒,则夹角的度数是45︒.【点睛】本题考查邻补角和夹角的定义,解题的关键是掌握邻补角和夹角的定义.4.(2018·上海浦东新区·七年级期中)如图,直线AB 与CD 相交于点O ,∠AOE=90°,且∠EOD=14∠COE ,∠BOD=__________°.【答案】54°【解析】解:设∠EOD=x,则∠COE=4x,∴x+4x=180°,解得:x=36°.∵∠AOE=90°,∴∠EOB=90°,∴∠BOD=90°-36°=54°.故答案为54.5.(2018·上海普陀区·七年级期中)如图,直线AB、CD相交于点O,COE∠=___________°.∠=︒,则BOE∠=︒,20140AOD【答案】120分析:观察图形可知∠AOD与∠COB是一对对顶角,根据对顶角相等可得∠COB的度数;结合图中的隐含条件∠BOE=∠COB-∠COE,即可求出∠BOE的度数.详解:∵直线AB、CD相交于点O.∴∠AOD=∠COB=140°.∵∠COE=20°,∠COB=140°,∴∠BOE=∠COB-∠COE=140°-20°=120°.点睛:本题考查了角的运算,关键是观察图形中各角之间的关系.6.从钝角∠AOB的顶点O在∠AOB内引射线OC使OC⊥OA,若∠AOC:∠COB=3:1,求∠AOB的度数.【难度】★★【答案】120︒.【解析】因为OC OA⊥(已知),所以90∠=︒(垂线的意义)AOC因为∠AOC:∠COB=3:1(已知)所以30∠=︒(等式性质)COB所以120∠=︒(等式性质)AOB【总结】考查学生画图能力,并且学会分析题目.7.如图:AO⊥BC于点O,OA平分∠DOE,∠COE=64°,求∠AOD的度数.【难度】★★【答案】26︒.【解析】因为AO BC⊥(已知)所以90∠=︒(垂直的意义)AOC因为64COE∠=︒(已知)所以26∠=︒(等式性质)AOE因为OA平分∠DOE(已知)所以26∠=∠=︒(角平分线的意义)AOD AOEQ P Q P B OAB O A 【总结】考察学生对简单几何题的分析,注意互余,角平分线等概念的理解及运用.8.作图:已知线段AB 上一点Q 及线段外一点P .(1) 过点Q 作线段AB 的垂线;(2) 过点P 作线段AB 的垂线.【难度】★★【答案】如下图.【解析】注意标注垂直符号,以及字母的标注.【总结】画图一定要写结论.9.(1)用三角尺画一个30°的∠AOB ,在边OA 上任取一点P ,过P 作PQ ⊥OB ,垂足为Q ,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?(2)若所画的∠AOB 为60°,重复上面的测量,你会发现什么?【难度】★★【答案】(1)12PQ OP =; (2)12PQ OP ≠,12OQ OP =.【解析】画图,测量,猜想结论.【总结】考察学生的作图能力,并且量出相应的长度,从而得出结论.10.如图所示,直线AB、CD、EF相交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,求∠DOG的度数.【难度】★★【答案】55︒.【解析】因为BOF AOE∠=∠(对顶角相等)又70AOE∠=︒(已知)所以70BOF∠=︒(等量代换)因为OG平分∠BOF(已知)所以35FOG BOG∠=∠=︒(角平分线的意义)因为CD EF⊥(已知)所以90EOD FOD∠=∠=︒(垂线的意义)所以903555DOG∠=︒-︒=︒(互余的意义)【总结】考察角平分线,垂线的意义,对顶角的内容等等.11.如图所示,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线(1)求∠DOC的度数;(2)判断OD与AB的位置关系,并说明理由.【难度】★★【答案】(1)45︒;(2)垂直.【解析】(1)因为180AOC BOC∠+∠=︒(邻补角的意义)又∠AOC=13∠BOC(已知),所以11803BOC BOC∠+∠=︒(等量代换),所以135BOC∠=︒(等式性质),所以45AOC∠=︒(等式性质)因为OC是∠AOD的平分线(已知),所以45AOC DOC∠=∠=︒(角平分线的意义)(2)垂直.因为45AOC DOC∠=∠=︒(已知),所以90AOD∠=︒(等式性质)所以OD AB⊥(垂直的意义).【总结】本题主要考查邻补角的意义及角平分线的意义的理解及运用.12.如图,直线AB、CD、EF相交于点O,AB⊥EF,OG平分∠FOC,OH平分∠DOG,(1)若∠AOC:∠COG=4:7,求∠DOF的度数;(2)若∠AOC:∠DOH=8:29,求∠COH的度数.【难度】★★★【答案】(1)110︒;(2)107.5︒.【解析】(1)因为OG平分∠FOC(已知)所以COG GOF∠=∠(角平分线的意义)因为∠AOC:∠COG=4:7(已知)所以设4COG x∠=,∠=,7AOC x因为AB⊥EF(已知),所以90∠=︒(垂直的意义)AOF即47790x=︒,x x x++=︒,解得:5所以20∠=︒(等式性质)COG∠=︒,35AOC因为180∠+∠=︒(邻补角的意义)COF DOF所以1803535110∠=︒-︒-︒=︒(等式性质)DOF(2)因为OG平分∠FOC(已知)所以COG GOF∠=∠(角平分线的意义)因为∠AOC:∠DOH=8:29(已知)所以设8∠=.∠=,COG xAOC kDOH k∠=,29因为AB⊥EF(已知),所以90AOF ∠=︒(垂直的意义), 即890k x x ++=︒①因为180DOH GOH COG ∠+∠+∠=︒(平角的意义),即2929180k k x ++=︒②联立①、②,解得:35x =︒,52k =. 所以35GOC ∠=︒,52972.52HOG ∠=⨯=(等式性质) 因为COH COG GOH ∠=∠+∠(角的和差)所以3572.5107.5COH ∠=︒+︒=︒(等式性质)【总结】本题综合性较强,主要考查角平分线意义与邻补角意义的综合运用,解题时注意对题目中的条件认真分析.13.如图,直线AB 、CD 、EF 交于点O ,DOB ∠是它的余角的2倍,2AOE DOF ∠=∠,且有OG OA ⊥,求EOG ∠的度数.【难度】★★★【答案】50︒.【解析】因为DOB ∠是它的余角的2倍所以设DOB x ∠=, 则2(90)x x =-, 解得:60x =︒因为AOC BOD ∠=∠(对顶角相等),所以60AOC ∠=︒(等量代换)设DOF y ∠=,则由2AOE DOF ∠=∠,得2AOE y ∠=,因为DOF EOC ∠=∠(对顶角相等), 所以EOC y ∠=, 即360y =︒.解得:20y =︒, 所以40AOE ∠=︒(等式性质)因为OG OA ⊥(已知), 所以90AOG ∠=︒(垂直的意义)所以50EOG ∠=︒(等式性质)【总结】主要考察学生对基本知识点的掌握,以及对题目的分析,包括垂线的意义,对顶角的意义,设未知数解方程等等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图所示,∠1和∠2是对顶角的图形有( )
1
2
12
1
2
2
1
个 个 个 个
2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )
° ° ° °
O
F
E D C
B A O D
C
B
A 60︒30︒
34
l 3
l 2
l 1
12
(1) (2) (3) 3.下列说法正确的有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一
定不是对顶角;④若两个角不是对顶角,则这两个角不相等. 个 个 个 个
4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠
AOC•的度数为( ) ° ° ° °
5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30 C.∠1=∠3=90°,∠2=∠4=60°; D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题
1.
如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.
3
4D C
B
A 12O
F
E
D C
B A O
E D C
B
A
(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______. 3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的
邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.
4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠
BOD=•______.
5.对顶角的性质是______________________.
6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.
O
D
C B
A 1
2
O
E D C
B
A O
E D
C
B
A
(7) (8) (9)
7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•
则∠EOB=______________.
8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部
分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、训练平台
1.
如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.
O
F
E
D
C
B
A
1
2
2.
如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.
34
l 3
l 2l 1
1
2
四、提高训练
1.
如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的度数.
O
E D
C
B
A
2.
如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.
O
D
C
B
A
3.
如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.
c
b
a
3
4
1
2
答案:
一、
二、1.∠2和∠4 ∠3 ° 25° 155° ° 5.对顶角相等 •6 .125° 55° °
三、1.∠2=60° 2.∠4=36°
四、1.∠BOD=120°,∠AOE=30° 2.∠BOD=72° 3.∠4=° 五、
条不同的直线相交于一点,图中共有12对对顶角(平角除外),n 条不同的直线相交于一点,图中共有(n 2-n)对对顶角(平角除外).
条直线最多可以把平面分成22个部分,n 条直线最多可以把平面分成(1)12n n +⎡⎤
+⎢⎥⎣⎦
个部分.
六、∠AOC 与∠BOD 不一定是对顶角.如图1所示,当射线OC,OD 位于直线AB 的一侧 时,不是对顶角;如图2所示,当射线OC,OD 位于直线AB 的两侧时,是对顶角.
(1)
O
D C B
A
2
1
(2)
O C
B
A
七、140°.。

相关文档
最新文档