第25章初期量子论
13-1 黑体辐射及量子论的提出
早期量子论
普朗克能量量子化假说 爱因斯坦光子假说 康普顿效应 玻尔的氢原子理论
量子力学
德布罗意实物粒子波粒二象性 薛定谔方程 波恩的物质波统计解释 海森伯的测不准关系
狄拉克把量子力学与 狭义相对论相结合
研究辐射的量子理 论,发现基本量子, 提出能量量子化的 假设
0
M (T ) M (T )d
0
4 2
/ 1014 Hz
0 2 4 6 8 10 12
二 黑体辐射的瑞利—金斯公式
M B ( T )
经典物理的困难
实验值
紫 外 灾 难
维恩
M B ( T ) C1 5 e
C2 T
M B ( T ) C 34T
瑞利--金斯
第 13 章
早期量子论和量子力学基础
13-1 黑体辐射及量子论的提出
量子概念是 1900 年普朗克首先提出的,距今已 有一百多年的历史.其间,经过爱因斯坦、玻尔、德 布罗意、玻恩、海森伯、薛定谔、狄拉克等许多物理 大师的创新努力,到 20 世纪 30 年代,就建立了一 套完整的量子力学理论. 微观世界的理论 量子力学
h
M (T )(109 W/(m 2 Hz ))
瑞利 - 金斯公式
6 5 * * 普朗克公式的理论曲线 * * 4 * * 3 * * * 2 * 实验值 T 2000k * * 1 * * * * 0 1 2 3 14
/ 10 Hz
1918诺贝尔物理学奖
M.V.普朗克
相对论量子力学
一
黑体 黑体辐射 (1)热辐射 实验证明不同温度下物体能发出
初中物理中考必考知识点总结
初中物理中考必考知识点总结第一章:物理量和单位1.物理量的定义及分类2.国际单位制(如长度的单位、质量的单位等)3.基本量和导出量的关系4.物理量的计算和换算第二章:运动和力5.运动的描述(如位置、速度、加速度等)6.运动的图像表示和图像解析7.平均速度和瞬时速度的关系8.力的概念和分类(如重力、摩擦力等)9.牛顿第一定律和惯性10.牛顿第二定律和力的计算公式11.牛顿第三定律和作用反作用定律12.简单机械装置(如斜面、滑轮、杠杆等)第三章:能量和功率13.动能和势能的概念和计算14.功的概念和计算15.功率的概念和计算16.机械能守恒定律和能量转化第四章:电17.静电电荷的产生和性质18.电流的概念和计算19.电阻、电压和电功率的关系20.电阻的分类和计算21.并联电路和串联电路的特点和计算22.单节电池和干电池的工作原理第五章:光与光学器件23.光的传播方式和光的直线传播特性24.光的反射和折射现象25.曲率半径和球面镜的焦距计算26.光的色散和光的合成27.凸透镜和凹透镜的焦距计算28.光的衍射和干涉现象第六章:声与声学器件29.声的产生和传播方式30.声音的高低和强弱31.回声的产生和原理32.声的全反射和声的折射第七章:热与热学器件33.温度的概念和计量34.热传导、热对流和热辐射35.物体的膨胀和收缩现象36.热量的传递和热量的计算37.相变和热力学38.理想气体的状态方程和计算第八章:今日物理与科技39.物理与科技的关系40.物理与环境的关系41.物理与生活的关系42.物理与社会的关系第九章:电磁学原理43.电磁感应和法拉第电磁感应定律44.各类电磁场的基本特性和规律45.电动机和发电机的工作原理46.变压器的工作原理和变压比计算第十章:力学奥秘与机械原理47.地球的运动和万有引力48.地球的自转和公转49.日、地、月的相对运动和日食、月食的产生50.行星和卫星的运动规律51.太阳系和宇宙的基本结构和特征52.飞行器的基本原理(如火箭和喷气机等)第十一章:光学奥秘与光的特性53.可见光的反射、折射、散射和吸收特性54.白光的组成和光的彩色性质55.光的波动性质(如波长、频率、速度等)56.光的粒子性质(如光子的能量和动量等)第十二章:声学奥秘与声的特性57.声音的传播和声音的声强(如分贝的计算)58.声音的频率和音调(如共振的产生条件等)59.声音的速度和传导(如声速的计算等)60.声波的干涉和衍射现象第十三章:热学奥秘与热的特性61.热的概念和热的传递方式62.热机和热能的转换(如热力学效率的计算)63.热胀冷缩现象和温度测量(如热膨胀系数的计算等)64.理想气体的状态变化(如等压过程、等温过程等)第十四章:原子与电磁辐射65.原子的结构和基本粒子(如质子、中子、电子等)66.光子的产生和光的色散现象67.带电粒子和电磁辐射的相互作用68.X射线和伽马射线的特性和应用69.电磁辐射的能量计算和能量转化第十五章:相对论与量子论70.狭义相对论的基本原理和公式71.引力场和弯曲时空的产生(如黑洞的形成原理等)72.量子理论的基本概念和原理73.光的粒子性质和波动性质的统一性(如光的粒子性质与量子论的关系)74.微观粒子的本性和运动规律(如不确定原理等)第十六章:科学哲学与科学方法75.科学哲学的基本理念和科学的内涵76.科学的独立性和客观性原则77.科学方法的基本步骤和推理规律79.科学研究的伦理道德和社会责任以上是初中物理中考必考的知识点总结,共涉及到16章,共93个重点知识点。
普朗克常数
第二十四章早期量子论和量子力学的诞生电磁波的能量的量子化.1900年, 普朗克提出黑体辐射公式; 1905年, 爱因斯坦解释光电效应.原子中电子轨道的角动量和能量的量子化.1913年, 玻尔给出了关于氢原子中的电子轨道的理论,很好地解释了氢原子的光谱.量子力学的诞生1924年, 德布罗意提出物质波的概念; 1925年, 海森堡提出矩阵力学; 1925年, 薛定谔得到薛定谔方程.黑体辐射的实验结果1881年,美国人兰利发明了热辐射计. 1886年他测到了相当精确的热辐射的能量分布曲线.德国人维恩领导的实验室对黑体辐射做了系统的研究.1995年维恩和卢梅尔建议用加热的空腔代替涂黑的铂片来代表黑体.随后卢梅尔和普林舍母用专门设计的空腔进行实验.后来普朗克成了这个实验组的理论核心人物.•他认为可以将构成黑体腔壁的物质看做带电的线性谐振子,它们和腔内的电磁场交换能量(辐射或吸收能量)。
而这些微观谐振子只能处于某些特定的状态,在这些状态中它们的能量是最小能量的整数倍。
它辐射或吸收能量时只能由一个可能状态跃迁到另一可能状态,即能量只可一份一份地改变,而不能连续地变化。
这最小能量称为量子,它与振子的振动频率成正比,比例系数就是(又称普朗克常数),。
根据这些假设可以成功地导出普朗克黑体辐射公式。
0E 0E νh E =0νh 理想气体中原子间没有相互作用, 这种条件下才可以导出麦克斯韦分布. 有相互作用时, 不满足麦克斯韦分布, 一个明显的例子是液体.黑体能吸收和发射所有频率的电磁波, 这种条件下才能导出黑体辐射. 一般的物质不满足这一点.实际物体的单色辐射能力随波长及温度的变化是不规则的,并不服从普朗克定律。
灰体及黑度A.实际物体的单色辐射能力与同温度下黑体单色辐射能力之比为该物体的单色发射率或叫单色黑度以表示。
则B.实际物体的辐射能力与同温度下黑体辐射能力之比称为该物体的发射率或叫黑度以表示。
则C.若某一物体,其单色黑度不随波长而变化,则该物体被称为灰体。
量子力学基本原理与基本概念小结-第16讲
薛定谔方程的评论
2、薛定谔方程是时间一次、坐标二次偏微分方程, 不具有相对论协变性(时空对称性),因而不是 微观粒子的相对论性量子力学运动方程。薛定谔 方程是建立在非相对论时空和非相对论运动学基 础之上的非相对论量子力学。
3、非相对论性量子多体理论,虽然引进了粒子产生、 消灭算符和二次量子化表象,但它们描述的是粒子 从一个量子态向另一个量子态的跃迁与转变,并没 有真正涉及粒子的产生和消灭。
薛定谔方程中的波函数的物理本质是什么呢?
波恩的观点:
薛定谔方程中的波函数代表的是一种概率,而 绝对不是薛定谔本人所理解的是电荷(电子) 在空间中的实际分布。波函数,准确地说 r 2 代表了电子在某个地点出现的概率,电子本身 不会像波那样扩展开去,但它的出现概率则像 一个波。
“微观粒子的运动状态用波函数描述,描写粒 子的波是概率波”,这是量子力学的一个基本 假设(基本原理)
WII
WII
N
III
(c e c e ) III iknIII ( xb) n
III iknIII ( xb) n
n1
2 ny
sin( ).
WIII
WIII
超晶格结构中电子的薛定谔方程与波函数如何写?
理想超晶格
d
含缺陷结构超晶格
复杂体系中电子运动
多粒子系统的Schrődinger方程
原则上只要对上式进行求解即可得出所有物理性质,然而由于电子之间的相互作用的复杂性, 要严格求出多电子体系的Schrődinger方程解是不可能的,必须在物理模型上进一步作一系列 的近似。
(一)薛定谔方程
Schrodinger 的方程一般表达式
i
(r,t)
Hˆ (r, t )
《进阶的量子世界:人人都能看懂的量子科学漫画》笔记
《进阶的量子世界:人人都能看懂的量子科学漫画》读书札记目录一、量子世界的初探 (3)1.1 量子科学的兴起 (4)1.1.1 科学背景与意义 (5)1.1.2 量子科学的发展历程 (7)1.2 量子世界的奇异特性 (7)1.2.1 波粒二象性 (8)1.2.2 测不准原理 (10)1.2.3 超距作用与量子纠缠 (10)二、量子力学的基础 (11)2.1 量子力学的定义 (12)2.1.1 经典物理的局限 (14)2.1.2 量子力学的提出 (15)2.2 量子力学的基本原理 (16)2.2.1 波函数与薛定谔方程 (18)2.2.2 测量与观测的作用 (19)2.2.3 超定态与叠加态 (20)三、量子世界的应用 (21)3.1 量子计算 (22)3.1.1 传统计算机与量子计算机的区别 (23)3.1.2 量子算法与量子通信 (24)3.2 量子传感 (25)3.2.1 原子钟与量子陀螺仪 (26)3.2.2 量子成像技术 (28)3.3 量子材料与器件 (29)3.3.1 半导体与超导体 (30)3.3.2 量子点与量子阱 (32)四、量子世界的挑战与未来 (32)4.1 量子力学与相对论的统一 (34)4.1.1 爱因斯坦的广义相对论 (35)4.1.2 量子场论的发展 (35)4.2 量子计算机的实现难题 (37)4.2.1 硬件要求与技术挑战 (39)4.2.2 量子计算机的潜在应用 (40)4.3 量子世界的伦理与安全性问题 (41)4.3.1 量子黑客与信息窃取 (42)4.3.2 量子技术的潜在风险 (43)五、结语 (44)5.1 量子科学的魅力与影响 (45)5.2 人类对量子世界的探索与展望 (46)一、量子世界的初探在我手中翻阅这本名为《进阶的量子世界:人人都能看懂的量子科学漫画》时,我仿佛踏上了一次奇妙的探险之旅。
这部作品的魅力不仅仅在于其独特的漫画形式,更在于它成功地将深奥的量子科学知识与生动的视觉元素结合,引领我走进这个神秘而又充满魅力的量子世界。
量子力学发展简史优秀文档
哈斯是奥地利的一位年表物理学家,他在研究黑体辐射时很早就 注意到了量子论。汤姆生专门讨论原子结构的书《电与物质》和 维恩的文章促使他运用量子公式来阐述原子结构,这是将量子假 说运用于原子结构的最初尝试。 丹麦人玻尔坚信卢瑟福的有核原 子模型学说,为了证实其正确性,玻尔利用量子假说来解决原子 的稳定性问题。要描述原子现象,就必须对经典概念进行一番彻 底的改造,因为一致公认的经典电动力学并不适于描述原子规模 的系统行为。1913年,玻尔在他的第二篇论文中以角动量量子化 条件作为出发点来处理氢原子的状态问题,得到能量、角频率和 轨道半径的量子方程。可见,玻尔的对应原理思想早在1913就有 了萌芽,并成功地应用于原子模型理论。玻尔的原子理论完满地 解释了氢光谱的巴耳末公式;从他的理论推算,各基本常数如e、 m、h和R(里德伯常数)之间取得了定量的协调。他阐明了光谱 的发射和吸收,并且成功地解释了元素的周期表,使量子理论取 得了重大的进展。
从力学的普遍理论直接推出新的辐射定律。最 爱因斯坦发表的关于量子统计理论的论文中提到了德布罗意的物质波假说,这引起了薛定谔的注意,使他萌发了用新的观点研究原子
结论的想法。
后只好用玻尔兹曼的统计方法来试一试。他根 爱因斯坦最早明确地认识到,普朗克的发现标志了物理学的新纪元.
普朗克在黑体辐射的维恩公式和瑞利公式之间寻求协调统一,找到了与实际结果符合极好的内插公式,迫使他致力于从理论上推导这 一新定律。
据黑体辐射的测量数据计算出普适常数,后来 哈斯是奥地利的一位年表物理学家,他在研究黑体辐射时很早就注意到了量子论。
哈斯是奥地利的一位年表物理学家,他在研究黑体辐射时很早就注意到了量子论。
人们称这个常数为普朗克常数,也就是普朗克 这样,海森伯就不再需要电子轨道等经典概念代之以频率和振幅的二维数集。 所谓的“作用量子”,而把能量元称为能量子。
道与真空量子零点场
(3)真空相变 从物理学中场的物质性和真空作为量子场系统的基态这两点出发,不少理论家推测:对于某些量子场来说,在不同的条件(温度、外场强度、费米子密度等)下,系统可能处于不同的基态,即处于不同的真空相。当这些条件改变时,这些场之间的相互作用会使它们的基态(真空)从一种相转变为另一种相,即发生真空相变。卡伦(C·G·Callan)等人对真空相变问题进行了长期研究,研究结果表明,量子色动力学真空像顺磁介质。那么人们是否也可以把量子色动力学真空看成是像电介质呢?李政道最早在这方面进行了研究,1978年他发表了“量子色动力学和强子的孤子模型”一文,把夸克禁闭看作是一个无限的、完全“抗电”介质中的真空,其抗电常数趋近于零。在强子内部,真空为正常,即抗电常数等于1。这说明,无限范围的真空的行为像一种完全抗电的介质。
一、建立在量子力学基础上的真空概念
1900年普朗克首次提出了能量子假说。此后,爱因斯坦为了解释光电效应提出了光量子假说。在此基础上,法国科学家德布罗依于1923年把光的波粒二象性理论进一步推广到所有物质粒子,提出了所谓的波粒二象性假说,1927年这一假说被电子束衍射实验所证实。微观粒子的波粒二象性是量子力学的核心内容,因此,这一理论的诞生必然会影响到人们对真空的认识。事实正是如此,在此之后人们对真空的认识完全建立在量子场论的基础上。量子场论认为,每一种基本粒子都与某种场相对应,将场量子化后相应的粒子就被看成场量子。当空间存在某种基本粒子时,表明那种量子场处于激发态。但由于量子场不可能像经典场那样可以完全“冻结”,至少具有零点振荡或零点能,因此,当其不存在粒子时并不意味着不存在这种量子场,而只是说它处于基态。这样,在量子场论中,真空就定义为没有任何场量子被激发的状态,也就是量子场系统的基态,当然这也就是能量最低的状态。换句话说,按照量子力学理论,真空实际上一点也不空,其内部永远存在着各种各样的量子场,只不过这些场都处于基态而已。在量子力学基础上人们对真空的认识又有了一次新的飞跃,并逐渐形成了一个专门学科——真空物理学。具体来看,在量子力学基础上人们对真空的理解主要包括四方面内容:
量子物理物理课件.ppt
1927年获诺贝尔奖
例:波长为 2.0A0 的X射线射到碳块上,由于康普顿 散射 ,频率改变 0.04%。求: (1)该光子的散射角 (2) 反冲电子的动能
解:(1)
解出
(2)
0.04%
第 25 章 玻尔的原子量子理论
§25—1 氢原子光谱的实验规律
2、频率跃迁假设:当原子能级 跃迁时,才发射(或吸收)光子,
3、量子化条件:稳态时电子角动量应等于 的整数倍。
)
1,2,
(n
2
L
h
=
p
=
=
h
n
n
L
h
E
E
k
n
-
=
n
其频率为
+
-
E E3 E2 E1
1913发表‘论原子分子结构’
E1 , E2 , E3 …… En (定态)
2、量子理论的成功:
光子与束缚电子作弹性碰撞时,不改变能量,故 不变 , 不变。
解释实验现象( 有 、 ’, ’> )
光子与自由电子作弹性碰撞时,要传 一 部分能量给 电子
n
=
=
l
c
cT
如何解释实验规律?
n
=
l
c
频率为 的 X射线,是 能量为 = h 的光子流
一、卢瑟福原子模型(原子的有核模型)
严重的问题:
原子的稳定性问题?
原子分立的线状光谱?
)
1
1
(
2
2
n
k
Rc
-
=
n
广义的巴尔末公式
2
2
n
量子自由电子理论
散射过程的描述与计算
散射过程的描述
量子自由电子在散射过程中,其波函数会受到障碍物的散射,导致电子的运动状态发生 改变。
散射的计算方法
通过求解薛定谔方程,可以得到散射态的波函数和散射振幅,进而计算出散射截面和散 射概率。
干涉现象的解释与实验验证
干涉现象的解释
当两个或多个量子自由电子的波函数相 互叠加时,它们之间会发生干涉,导致 电子的分布出现明暗相间的干涉条纹。
推动科技发展
该理论在微电子学、光电子学、半 导体技术等领域有广泛应用,对现 代科技发展做出了重要贡献。
量子自由电子理论的历史与发展
起源量子自由电子理论起Fra bibliotek于20世纪 初,伴随着量子力学的兴起而发
展。
发展历程
在20世纪中期,该理论得到进一 步完善和扩展,应用于更多材料
和现象的研究。
当前研究
目前,量子自由电子理论仍然是 凝聚态物理、材料科学等领域的 重要研究工具,随着实验技术的 进步,该理论仍有许多未解之谜
金属物理
解释金属的电导、热导等现象,为金属材料 设计提供理论支持。
量子计算
为量子计算提供理论基础,为量子计算机的 设计和实现提供指导。
量子自由电子理论的发展前景
拓展应用领域
01
随着科学技术的发展,量子自由电子理论的应用领域将不断拓
展,如拓扑材料、超导材料等。
完善理论体系
02
随着实验技术的进步和理论研究的深入,量子自由电子理论将
意义
散射与干涉是量子力学中的重要概念,它们不仅在理论上具有重要意义, 而且在实验技术和应用领域中也有广泛的应用价值。
05
量子自由电子理论的实 验验证与应用
实验验证的方法与技术
曾谨言量子力学课后答案
∴ px = nxh / 2a ,
同理可得,
p y = ny h / 2b , pz = nz h / 2c ,
nx , ny , nz = 1, 2,3,L
粒子能量
Enxnynz
=
1 2m
(
p
2 x
+
p
2 y
+
p
2 z
)
=
π 2h2 2m
n x2 a2
+
n
2 y
b2
+
n
2 z
c2
nx , ny , nz = 1, 2,3,L
p = h/λ
1
(1) (2)
而能量
E = p 2 / 2m = h 2 / 2mλ2 = h2n2 = π 2h2n2 2m ⋅ 4a 2 2ma 2
(n = 1, 2,3,L)
(3)
1.2 设粒子限制在长、宽、高分别为 a, b, c 的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
(4)
且能量平均值
∫ E = d 3r ⋅ w 。
(b)由(4)式,得
∂w ∂t
=
h2 2m
∇ψ. *⋅ ∇ψ
+
∇ψ
*
⋅ ∇ψ.
.
+ψ * Vψ
+ψ
*V ψ.
=
h2 2m
∇
⋅
ψ.
*
∇ψ
+ψ.
∇ψ
*
− ψ. *
∇ 2ψ
+ψ.
∇ 2ψ
_量子论的提出及初期发展简介
山西师范大学本科毕业论文量子论的提出及初期发展简介姓名院系物信学院专业物理学班级07520101学号0752010140指导教师答辩日期成绩量子论的提出及初期发展简介内容摘要科学史上重要的创造性首先是由于理念的彻底转变而来的。
“量子化”这一假定及推广在各个科学领域不仅仅是在物理学上都有着无法估量的深远的推动效应。
下面的重要内容介绍了“量子化“的提出及初期最重要的三个“量子化”及它们各自的贡献。
19世纪末,多数物理学家认为整个物理理论系统相当完备,接下来的工作仅仅是一些修补的事项,遗留的也是小问题。
其中便包含辐射问题。
基于前辈们的研究成果普朗克大胆地提出“能量量子化”假设,解决了黑体辐射问题。
但他本人却极其推崇经典物理,企图将作用量子拉进经典物理的系列中,把能量的不连续纳入能量连续性的经典理论框架中,但各种努力均以失败告终。
青年物理学家爱因斯坦对作用量子却有极大的兴趣,在作用量子的启发下,提出“光量子”假说,释释的现象。
玻尔用“轨道量子化”模型解释了原子结构及氢原子的分立光谱。
正是由于上述三位科学家等无数科学家的相互作用使量子化逐步成熟起来,发展成现在的量子论。
如今,量子论已有不少分支,且在交叉学科中起着重要的作用,应用前景十分美好。
【关键词】:量子化作用量子光量子轨道量子化The initial development of quantum theory put forward andintroductionAbstractHistory of vital creative ideas first is due to thoroughly changing. "Quantization" this assumption and promotion in all fields of science is not only in the physics has inestimable far-reaching pushing effects. Below is an important content of "are introduced the quantization" put forward and the initial three of the most important "quantization" and their respective contributions.19 century, most physicists believe that the whole physics theory system quite complete, the next job are only some of the items, repair legacy is small problems. Which will include radiation problems. Based on the predecessor research Planck boldly proposed "energy quantization" assumption, solved blackbody radiation problems. But he himself is extremely highly classical physics, attempting to quantum pulls into the role of classical physics, the energy in the series of continuity of discontinuous into energy classical theory frame, but every effort failed. Young physicist Albert Einstein to the acting quantum have great interest in the role of quantum inspired, put forward "light quantum hypothesis explain photoelectric effect those classical physics unexplained phenomena. Boulder with "track quantization" model explains the atomic structure and hydrogen atoms and the schism of spectrum. It is due to the above three scientists untold scientists interaction make quantization gradually mature and evolved into what is now the quantum theory.Nowadays, quantum theory has quite a few branches, and in interdisciplinary plays an important role, the application prospect of very good.【key word】quantization; quantum effect; light quantum; rail quantization目录一、量子论之于物理领域的意义 (1)二、量子化提出的物理背景与前提 (1)三、量子论的发展 (1)(一)普朗克在此方面的贡献 (1)(二)爱因斯坦子在此方面的贡献 (3)(三) 波尔在此方面的贡献 (3)四、量子论的现状及应用分支学 (5)五、结束语 (5)参考文献 (6)致谢 (6)量子论的提出及初期发展简介学生姓名:樊云燕 指导教师:冀玉领一、量子论之于物理领域的意义在物理学发展到一定深度,出现了一些经典力学无法解决的问题。
《大学物理讲义》 习题答案
dr i dt
v0 v0 r 2 h 2
-
r
1 2 r h2 2
3 2
2rv0 i
2 2 2 v0 r h
- r
1 2
2
h2
r 2 i
2 2 2 2 r h -r v0 i 2 2 3 ( r h )
船的加速度矢量为
d dx d a i v0 [r r 2 h 2 dt dt dt
-
1 2
]i
4
《大学物理讲义》习题解答
dr v0 r 2 h 2 dt
-
1 2
-r
1 2
1 2 r h2 2
3 2
2r
3 2
3i 54 j i 2 j 2i 52 j i 26 jm / s
2 2
t 1s
1 ~ 3s 内的平均加速度为 v t 3 s v a 3 1
i 54 j i 6 j 24 jm / s
x2 x3 x2 2 1 1m
a
t 2s O
1
习题 1-1 解答图
t 0 5 x/m
前 3s 内它的路程
S x1 x2 4 1 5m
前 3s 内它的位移
x x1 x2 4 1 3m
1-2 有一质点沿 x 轴作直线运动,t 时刻的坐标为
dr v i 6t 2 j m / s dt
量子力学发展史
鬼话连篇:荒诞量子力学原创 2017-01-15 小学僧老和山下的小学僧先来个绕口令渲染一下诡异的氛围,量子力学奠基人波尔曾曰:“如果你第一次学量子力学认为自己懂了,那说明你还没懂。
”为了理解这个叹为观止的理论的伟大,只能把起点设得低一些,就从“认识论”说起吧!中学僧请跳过,直接看后半篇。
人类为了生存,一直试图认识和解释这个世界。
最早的“认识论”充满了想象,后来逐渐演化成了“宗教”,比如上帝创造了万物。
过了一阵子,有些人发现这种“认识论”不靠谱,跪了半天祈雨,还不如萧敬腾管用!脑袋瓜好使的人就在思考“世界的本源是什么”、“东西为什么往下掉”,如此云云。
早期的聪明人只是坐在办公室研究世界,于是这种单纯的思辨就慢慢变成了“哲学”。
大家围坐论道,逼格是挺高,但只能争个面红耳赤,张三说世界在乌龟背上,李四说世界在大象背上。
我说哥们儿,你们就不能验证一下吗?当然不能!土鳖才动手,君子只动口,这种风气夸张到什么程度呢?亚里士多德认为“女性的牙齿比男性少”,就这么一个理论,愣是被奉为经典几百年。
很长一段时间,大家就是这么靠拍脑袋研究世界。
拍着拍着,突然有个家伙灵光一闪,拍出了逻辑思维,做起了实验,这就是“伽利略”。
伽利略是第一个系统地用严密的逻辑和实验来研究事物的人,这便是“科学”的雏形,所以伽利略很伟大,属于“一流伟大”这个范畴。
是不是觉得早生几百年,你我都是科学家?别天真了,其实经常以负面形象出现的亚里士多德,绝对属于当时最聪明的人,时代局限性造成的“无知”不是无知。
打个补丁,本文说的“科学”是单纯的一门学科,而不是形容词。
啥意思呢?因为某党的某些需求,科学这个词在国内的意义急剧扩大化,以至于现在“科学就是“真理”的代名词,很多地方可以把“科学”和“合理”两个词互换。
“你的做法很科学”,“你的做法很合理”,这两句话有区别吗?再看英文版:“你的做法很Science ”,这可就是语病了。
本文说的“科学”就是“ Science,”是一门学科,而不是“理”。
高校化工专业课件第25章量子力学基础(分析化学)
解: 电子横向位置的不确定量
x
2mx
1.051034 J s 29.111031 kg1104 m
0.58 m s
x 0.01cm
eU 1 mv2 2
v 6107 m / s
n E E 以,经典物理可以看作是量子物理中量子数 n
时的极限情况。
n
n
一维无限深势阱
例题: 试求在一维无限深势阱中粒子概率密度的最大 值的位置。
高校化工专业课件第25章量子力学基 础(分析化学)
§25-1 德布罗意假设 波-粒二象性
1. 德布罗意假设
德布罗意在光的波粒二象性的启发下,提出了实物粒子(如电子、质子等)也 具有波-粒二象性的假设。
E mc2 h
p mv h
——德布罗意公式
与实物粒子相联系的波 —— 德布罗意波(物质波)
1927年德国物理学家海森伯(W.Heisenberg)根据量子力学 推出微观粒子在位置与动量两者不确定量间的关系
在某一方向(如x方向)粒子的位置不确定量x和该方向上的动量的不确定量 px有
xpx / 2 h 1.051034 J s
2
二. 简单推导 x
电子束v x
电子的单缝衍射
px
p
2
——概率密度
表示在某一时刻在某点处单位体积内粒子出现的概率。
3. 波函数的归一化条件 粒子在任意时刻在整个空间出现的概率等于1
2dV 1
——波函数的归一化条件 4. 波函数的标准条件
单值, 有限, 连续, 归一化
三. 薛定锷方程
量子的概念是谁提出来的
量子的概念是谁提出来的
量子概念的提出者是马克斯·普朗克。
量子是现代物理的重要概念,最早是由德国物理学家普朗克在1900年提出的。
从学术的角度讲,量子至少有三重含义。
第一重义就是普朗克提出的量子论,他认为能量是非连续的,有一个最小的单位,并将其称为量子。
第二重含义则是把量子当成一个形容词,指代某些遵循量子力学规律而运行的事物,比如量子计算、量子信息。
此外,科学家把一些微观的基本粒子,比如希格斯玻色子等也叫做量子,这就是量子的第三种含义。
第25章波粒二象性
(三)不确定关系
1927年,海森伯提出了不确定关系。 以电子的单缝衍射为例导出不确定关系。
X
d
Y
I
电子位置不确定量 x d(缝宽)
仅考虑零级极大,电子被限制在第一级极小的衍射范围,
sin (k 1)
d x
电子动量在x轴方向分量的不确定量
Px
P sin
P
极大值。玻恩(Born)认为是一种干涉现象,可能与德布 罗意波有关,这引起了戴维逊和革末(Lester Germer)继 续对慢电子在镍单晶表面散射进行研究。
1)戴维逊--革末实验与汤姆逊实验
实验装置: 加
B速
电 极
K
发射电
M Ni单晶
子阴级 U
Ni单晶
I
a
d
I
G
电 流 计
实验结果:
电流出现了周期性变化 a=0.215nm d=0.0908nm
1)实验装置
1
原始
0.71Å
0
光 X光 栏
2
强
度
石墨
3
=450
X射线分析仪
=900
2)实验结果:
散射线中有与入射线相同的散 射线存在,也有波长>0的散 射线存在(Compton散射)。
4
=1350
0.70 0.75 (Å)
1
原始
散散射射2 角线有波关长(的增=增4量5加0 与,
第二十五 章波粒二象性
(一)光的波粒二象性
一、光电效应
光电管
IS
A
1、光电效应现象
K
iS
V
E
K2
量子力学钱伯初版
量子力学钱伯初版
量子力学(Quantum Mechanics)是物理学的重要分支,它是研究原子和分子结构以及物质物理性质的基础理论。
量子力学的创始人有当时的一位德国物理学家钱伯(Werner Heisenberg)。
1925年,钱伯发表了第一版量子力学的文章,这是量子力学受广泛关注的开端,也是现代量子力学的根源。
钱伯的量子力学模型是以矩阵方程的形式出现的,它的核心思想是对粒子的运动这个绝对的概念进行反思,改用相对论的概念来描述量子系统的物理状态。
他的研究发现:虽然量子力学可以用来描述粒子的状态,但是不能精确描述它们的运动轨迹。
这就是现代量子力学中的“不确定性原理”。
钱伯的量子力学初版也提出了量子纠缠(Quantum Entanglement),它是量子力学中著名的“涨”法则。
量子纠缠使两个或更多的量子系统“暂时态”的耦合到一起,在一起他们的行为不在受到他们的距离的限制。
这一理论的发现极大拓展了物理学的可能性,它为今天的量子信息学和量子计算机技术提供了理论基础和实用基础。
总之,量子力学钱伯初版是量子力学发展的重要起点,它极大地拓展了物理学的可能性,为我们探索宇宙之谜提供了重要的理论和实验支撑。