宿松2016_2017学年高中数学第三章直线与方程复习教案新人教A版必修2

合集下载

高中数学第三章直线与方程3.2.2直线的两点式方程3.2.3直线的一般式方程学案(含解析)新人教A版必修2

高中数学第三章直线与方程3.2.2直线的两点式方程3.2.3直线的一般式方程学案(含解析)新人教A版必修2

3.2.2 直线的两点式方程3.2.3 直线的一般式方程知识导图学法指导1.体会直线的两点式方程、截距式方程的推导过程,并由此求直线的方程.2.明确平面上的直线和二元一次方程的区别与联系.3.弄清楚直线的一般式方程和其他几种形式之间的关系以及每种形式的适用条件,在解题时注意选择恰当的直线方程.4.明确利用直线方程的几种形式判断直线平行和垂直问题的方法.高考导航1.利用两点坐标求直线的方程或利用直线的截距式求直线的方程是常考知识点,分值5分.2.由直线的一般式方程判断直线的位置关系或求参数的值也是高考的常考题型,以选择题或填空题为主,分值5分.知识点一直线的两点式、截距式方程1.截距式方程中间以“+”相连,右边是1.2.a 叫做直线在x 轴上的截距,a∈R ,不一定有a >0.知识点二 线段的中点坐标公式若点P 1(x 1,y 1),P 2(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y22.知识点三 直线的一般式方程 1.直线与二元一次方程的关系在平面直角坐标系中的直线与二元一次方程的对应关系如下:2.直线的一般式方程式子:关于x ,y 的二元一次方程Ax +By +C =0; 条件:A ,B 不同时为零; 简称:一般式.3.直线的一般式方程与其他四种形式的转化认识直线的一般式方程(1)方程是关于x ,y 的二元一次方程;(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列; (3)x 的系数一般不为分数和负数;(4)平面直角坐标系内的任何一条直线都有一个二元一次方程与它相对应,即直线的一般式方程可以表示任何一条直线.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)不经过原点的直线都可以用方程x a +y b=1表示.( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1) (x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案:(1)× (2)√2.经过点A (-3,2),B (4,4)的直线的两点式方程为( ) A.y -22=x +37 B.y -2-2=x -37C.y +22=x -37D.y -2x +3=27解析:由方程的两点式可得直线方程为y -24-2=x --4--,即y -22=x +37.答案:A3.在x 轴和y 轴上的截距分别为-2,3的直线方程是( ) A.x 3+y -2=1 B.x 2+y-3=1 C.x -2+y 3=1 D.x -3+y2=1 解析:由直线的截距式方程,可得直线方程是x -2+y3=1.答案:C4.直线x 3+y4=1化成一般式方程为( )A .y =-43x +4B .y =-43(x -3)C .4x +3y -12=0D .4x +3y =12解析:直线x 3+y4=1化成一般式方程为4x +3y -12=0. 答案:C。

高中数学 第三章 直线与方程 3.2.2 直线的两点式方程教案 新人教A版必修2

高中数学 第三章 直线与方程 3.2.2 直线的两点式方程教案 新人教A版必修2

§3.2.2直线的两点式方程[教材]人教A版数学必修2:第三章直线与方程 3.2直线的方程第2课时[学情分析]我校为一所普通高中,部分学苗基础较差,学生在态度习惯、知识结构、思维品质、数学能力等方面相对薄弱。

本节课是在学生学习完直线的方程第一节:直线的点斜式方程之后,学生已经建立了两种具体的直线方程:点斜式、斜截式的概念及会应用它们求直线方程,并对直线方程、方程直线的概念有了一定的理解和认识,已形成了一定的认知结构。

另外对于两点确定一条直线,直线的纵截距的概念也已经明确清晰,所以对本节课的学习,学生应该具备了一定的认知和实践能力的条件。

但由于部分学生观察、类比、迁移、化归、计算等方面能力的薄弱,可能在两点式方程形式的导出、综合性应用的问题上会有一定难度。

[学习内容分析]直线方程共有四种特殊形式,本节课是学习第三、四种特殊形式,在本大节3.2直线的方程中重要性略低于前两种形式,使用频率也不高。

但它在体现点斜式方程的应用,衬托点斜式方程的重要性,及为学习一般式方程作铺垫,体现由特殊到一般的知识归纳提升过程有着重要意义。

本节的主要知识点是两个方程的导出及应用,它们的教学基于点斜式方程,同时引领学生学会一个数学方法即待定系数法,说明这种方法在确定曲线方程问题中是常用的重要方法。

另外把方程思想、数形结合思想贯穿于课堂教学的始终,强调解析几何的一般方法和思想。

通过对两点式、截距式方程形式美的认识,让学生感受数学的对称美、和谐美等美的特质。

通过对两点式方程由分式到整式的变形,为学生了解一般式方程中系数A、B的几何意义(直线的方向向量即为(B,-A),法向量为(A,B)),为学习直线的参数方程做一铺垫。

同时教给学生这个整式形式的方程是已知两点求直线方程并化为一般方程的一个小技巧,并为学生感性认识行列式为进一步学习高等数学埋下伏笔。

以体现搭建共同基础,提供发展平台的课程理念。

[教学目标]1.知识与技能:掌握直线的两点式、截距式方程并会用于求直线方程的相关问题;2.过程与方法:理解两点式方程的导出过程,掌握求直线方程的直接法及间接法(待定系数法);3.态度、情感、价值观:通过对方程形式美的发现,感受数学美和数学文化,进一步体会方程思想、数形结合思想、分类讨论思想。

人教A版高中数学必修二第三章直线的方程、直线的三种形式教案新

人教A版高中数学必修二第三章直线的方程、直线的三种形式教案新


y2 x2
y1 x1

【小结】求直线斜率的方法: ①定义法:已知直线的倾斜角为α ,且α ≠90°,则斜率 k=tanα ;
②公式法:已知直线过两点 P1(x1,y1)、P2(x2,y2),且 x1≠x2,则斜率 k= y2 y1 ; x2 x1
③方向向量法:若 a =(m,n)为直线的方向向量,则直线的斜率 k= n 。
,
b

三点共线,则
b
的值为(

A. 1
B. 1
C .2
D. 2
2
2
解:因为三点共线,所以 kAB

k AC

2 3
3 2

1
b3
2

b

1 2
2
2)直线 l1 : x my 6 0,l2 : m 2 x 3y 2m 0 相互平行,则 m 的取值范围( )
求证:不论 取何值,点 P 到直线的距离不大于 13 。
(分析)若直接运用点到直线的距离公式,将 P 到 l 的距离 d 化为关于 的函数,只需证明该函数的最大值是 13 ,
若利用直线系方程,结合图形也可获证。
21 3 11 2 2 5
解:法一:由点到直线的距离公式,得 d
由 PQ 2 12 112 13 可知命题成立。
四、总结反思
(1)两点式方程不能表示与 x 轴、 y 轴平行的直线,但行列式形式的方程能表示所有直线;
(2)设三点 A(x1, y1 ) , B(x2 , y2 ) , C(x3 , y3 ) ,则它们共线的充要条件是 A在直线BC上 。
1 3 2 1 2 2

最新人教A版必修2高中数学 第三章《直线与方程》小结与复习教案

最新人教A版必修2高中数学 第三章《直线与方程》小结与复习教案

1212x x y y k --=高中数学 第三章《直线与方程》小结与复习教案新人教A 版必修2一、教学目标1、知识与技能:(1)掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合应用知识的能力。

2、过程与方法:对本章知识进行系统的小结,直观、简明再现所学知识,化抽象为直观,易于识记,同时凸现数学知识的发展和联系。

3、情感态度与价值观:通过知识的整合、梳理,理会直线的方程及其相互联系,进一步培养学生的数形结合思想和解决问题的能力。

二、教学重点、难点重点:各知识点间的网络关系。

难点:利用直线方程相关知识解决问题。

三、教学过程(一)整合知识,发展思维1、直线的倾斜角和斜率公式:)(tan 211212x x x x y y k ≠--==α; 2、直线方程的五种形式:点斜式:)(00x x k y y -=- 两点式:121121x x x x y y y y --=-- 过点(0,b ) 过点(a ,0),(0,b )斜截式:b kx y += 截距式:1=+by a x 一般式:Ax + By + C = 03、两条直线的位置关系:(1)两条直线相交:求两条直线的交点(解方程组);两条直线垂直:12121-=⇔⊥k k l l 。

(2)两条直线平行::2121//k k l l =⇔; 点到直线的距离公式:2200B A C By Ax d +++=;两条平行直线间的距离:2221B A C C d +-=。

(二)应用举例,深化巩固例1:直线033=--y x 的倾斜角是 。

变式:(1)若20πα<<,则直线x cot α – y – 3 = 0的倾斜角是 。

练习1:若02<<-απ,则直线x cot α – y – 3 = 0的倾斜角是 。

(2)直线x sin α – y – 3 = 0的倾斜角的变化范围是 。

练习2:直线x cos α – 3y – 3 = 0的倾斜角的变化范围是 。

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.2.3

【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.2.3

3.2.3 直线的一般式方程[学习目标] 1.掌握直线的一般式方程.2.了解关于x 、y 的二元一次方程Ax +By +C =0(A 、B 不同时为0)都表示直线,且直线方程都可以化为Ax +By +C =0的形式.3.会进行直线方程不同形式的转化.知识点 直线的一般式方程1.在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x ,y 的二元一次方程;任何关于x ,y 的二元一次方程都表示一条直线.方程Ax +By +C =0(其中A 、B 不同时为0)叫做直线方程的一般式.2.对于直线Ax +By +C =0,当B ≠0时,其斜率为-A B ,在y 轴上的截距为-C B ;当B =0时,在x 轴上的截距为-C A ;当AB ≠0时,在两轴上的截距分别为-C A ,-CB .3.直线一般式方程的结构特征 (1)方程是关于x ,y 的二元一次方程.(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列. (3)x 的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程. 思考 (1)当A ,B 同时为零时,方程Ax +By +C =0表示什么? (2)任何一条直线的一般式方程都能与其他四种形式互化吗?答 (1)当C =0时,方程对任意的x ,y 都成立,故方程表示整个坐标平面; 当C ≠0时,方程无解,方程不表示任何图象.故方程Ax +By +C =0,不一定代表直线,只有当A ,B 不同时为零时,即A 2+B 2≠0时才代表直线.(2)不是.当一般式方程中的B =0时,直线的斜率不存在,不能化成其他形式;当C =0时,直线过原点,不能化为截距式.但其他四种形式都可以化为一般式.题型一 直线的一般形式与其他形式的转化例1 (1)下列直线中,斜率为-43,且不经过第一象限的是( )A.3x +4y +7=0B.4x +3y +7=0C.4x +3y -42=0D.3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A. 3 B.-5 C.95 D.-33答案 (1)B (2)D解析 (1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项正确. (2)令y =0则x =-3 3.反思与感悟 1.一般式化为斜截式的步骤: ①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -CB .2.一般式化为截距式的步骤: 方法一:①把常数项移到方程右边,得Ax +By =-C ;②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C =1;③化为截距式:x -C A +y-C B =1.方法二:①令x =0求直线在y 轴上的截距b ; ②令y =0求直线在x 轴上的截距a ; ③代入截距式方程x a +yb=1.由于直线方程的斜截式和截距式是惟一的,而两点式和点斜式不惟一,因此,通常情况下,一般式不化为两点式和点斜式.跟踪训练1 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线方程.解 设所求直线方程为x a +yb =1,∵点A (-2,2)在直线上,∴-2a +2b =1.①又∵直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.②由①②可得⎩⎪⎨⎪⎧ a -b =1,ab =2,或⎩⎪⎨⎪⎧a -b =-1,ab =-2. 解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-1,b =-2.第二个方程组无解.故所求直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0. 题型二 直线方程的应用例2 已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.解 方法一 l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.方法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.反思与感悟 一般地,直线Ax +By +C =0中系数A 、B 确定直线的斜率,因此,与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +n =0.这是经常采用的解题技巧.跟踪训练2 a 为何值时,直线(a -1)x -2y +4=0与x -ay -1=0. (1)平行;(2)垂直.解 当a =0或1时,两直线既不平行,也不垂直;当a ≠0且a ≠1时,直线(a -1)x -2y +4=0的斜率为k 1=-1+a2,b 1=2;直线x -ay -1=0的斜率为k 2=1a ,b 2=-1a .(1)当两直线平行时,由k 1=k 2,b 1≠b 2, 得1a =-1+a 2,a ≠-12, 解得a =-1或a =2.所以当a =-1或2时,两直线平行. (2)当两直线垂直时,由k 1·k 2=-1, 即1a ·(-1+a )2=-1,解得a =13. 所以当a =13时,两直线垂直.题型三 由含参一般式方程求参数的值或取值范围例3 (1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足______. (2)当实数m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1. ①倾斜角为45°;②在x 轴上的截距为1. (1)答案 m ≠-3解析 若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)解 ①因为已知直线的倾斜角为45°, 所以此直线的斜率是1, 所以-2m 2+m -3m 2-m=1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ), 解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.②因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.反思与感悟 已知含参的直线的一般式方程求参数的值或范围的步骤跟踪训练3 已知直线l :5ax -5y -a +3=0. (1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围. (1)证明 直线方程变形为y -35=a ⎝⎛⎭⎫x -15, 它表示经过点A ⎝⎛⎭⎫15,35,斜率为a 的直线. ∵点A ⎝⎛⎭⎫15,35在第一象限, ∴直线l 必过第一象限.(2)解 如图所示,直线OA 的斜率k =35-015-0=3.∵直线不过第二象限, ∴直线的斜率a ≥3. ∴a 的取值范围为[3,+∞).一般式求斜率考虑不全致误例4 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y -(2m -6)=0,若此直线的斜率为1,试确定实数m 的值.分析 由直线方程的一般式,可转化为斜截式,利用斜率为1,建立方程求解,但要注意分母不为0.解 由题意,得⎩⎪⎨⎪⎧-m 2-2m -32m 2+m -1=1,①2m 2+m -1≠0. ② 由①,得m =-1或m =43.当m =-1时,②式不成立,不符合题意,故应舍去; 当m =43时,②式成立,符合题意.故m =43.解后反思 本题易出现的错误是在由一般式转化为斜截式后,直接得到①式,而忽略了②式.因为本例中斜率已存在且为1,故①式应有意义,所以分母应不为0.1.若方程Ax +By +C =0表示直线,则A 、B 应满足的条件为( ) A.A ≠0 B.B ≠0 C.A ·B ≠0 D.A 2+B 2≠0答案 D解析 方程Ax +By +C =0表示直线的条件为A 、B 不能同时为0,即A 2+B 2≠0. 2.已知ab <0,bc <0,则直线ax +by =c 通过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限 答案 C解析 由ax +by =c ,得y =-a b x +c b ,∵ab <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0 B.x -2y +1=0 C.2x +y -2=0D.x +2y -1=0答案 A解析 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y -1=0.4.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 5.已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a =________. 答案 -3或1解析 两条直线y =ax -2和3x -(a +2)y +1=0互相平行,所以a 3=1a +2≠-21,解得a =-3或a =1.1.根据两直线的一般式方程判定两直线平行的方法(1)判定斜率是否存在,若存在,化成斜截式后,则k 1=k 2且b 1≠b 2;若都不存在,则还要判定不重合.(2)可直接采用如下方法:一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0,或A 1C 2-A 2C 1≠0.这种判定方法避开了斜率存在和不存在两种情况的讨论,可以减小因考虑不周而造成失误的可能性.2.根据两直线的一般式方程判定两直线垂直的方法(1)若一个斜率为零,另一个不存在,则垂直;若两个都存在斜率,化成斜截式后,则k 1k 2=-1.(2)一般地,设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 第二种方法可避免讨论,减小失误.一、选择题1.直线x +y -3=0的倾斜角的大小是( ) A.45° B.135° C.1 D.-1 答案 B解析 直线x +y -3=0,即y =-x +3,它的斜率等于-1,故它的倾斜角为135°,故选B.2.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为( ) A.-2 B.2 C.-3 D.3 答案 D解析 由已知得m 2-4≠0,且2m 2-5m +2m 2-4=1,解得:m =3.3.直线l 的方程为Ax +By +C =0,若直线l 过原点和二、四象限,则( ) A.C =0,B >0 B.A >0,B >0,C =0 C.AB <0,C =0 D.AB >0,C =0答案 D解析 通过直线的斜率和截距进行判断.4.直线ax +3my +2a =0(m ≠0)过点(1,-1),则直线的斜率k 等于( ) A.-3 B.3 C.13 D.-13答案 D解析 由点(1,-1)在直线上可得a -3m +2a =0(m ≠0),解得m =a ,故直线方程为ax +3ay +2a =0(a ≠0),即x +3y +2=0,其斜率k =-13.5.直线y =mx -3m +2(m ∈R )必过定点( ) A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2) 答案 A解析 由y =mx -3m +2,得y -2=m (x -3).所以直线必过点(3,2).6.若三条直线x +y =0,x -y =0,x +ay =3构成三角形,则a 的取值范围是( ) A.a ≠±1 B.a ≠1,a ≠2 C.a ≠-1 D.a ≠±1,a ≠2 答案 A解析 因为直线x +ay =3恒过点(3,0),所以此直线只需不和x +y =0,x -y =0两直线平行就能构成三角形.所以a ≠±1.7.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )答案 C解析 将l 1与l 2的方程化为斜截式得:y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 二、填空题8.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =_______. 答案 35解析 由两直线垂直的条件,得2a +3(a -1)=0,解得a =35.9.若直线mx +3y -5=0经过连接点A (-1,-2),B (3,4)的线段的中点,则m =______. 答案 2解析 线段AB 的中点为(1,1),则m +3-5=0,即m =2.10.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是______________. 答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-aa +1,只要-a a +1>1或者-aa +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是 (-∞,-12)∪(0,+∞).11.已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________. 答案 2x +3y +4=0解析 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求. 三、解答题12.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为0,当然相等,所以a =2,方程即为3x +y =0.当a ≠2时,截距存在且均不为0,所以a -2a +1=a -2,即a +1=1.所以a =0,方程即为x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,所以⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,所以a ≤-1.综上,a 的取值范围是a ≤-1.13.(1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值. (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?解 方法一 (1)由l 1:2x +(m +1)y +4=0, l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3,∴m 的值为2或-3. (2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1, 即(-a +21-a )·(-a -12a +3)=-1,∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 方法二 (1)令2×3=m (m +1), 解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, 显然l 1与l 2不重合,∴l 1∥l 2. ∴m 的值为2或-3. (2)由题意知直线l 1⊥l 2,∴(a+2)(a-1)+(1-a)(2a+3)=0,解得a=±1,将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.第11页共11页。

人教A版高中数学必修2《三章 直线与方程 3.2直线的方程 3.2.2 直线的两点式方程》优质课教案_3

人教A版高中数学必修2《三章 直线与方程  3.2直线的方程  3.2.2 直线的两点式方程》优质课教案_3
二、教学重点、难点:
1、重点:直线方程两点式。
2、难点:两点式推导过程的理解。
三、教学设想
问题
设计意图
师生活动
1、利用点斜式解答如下问题:
(1)已知直线 经过两点 ,求直线 的方程.
(2)已知两点 其中 ,求通过这两点的直线方程。
遵循由浅及深,由特殊到一般的认知规律。使学生在已有的知识基础上获得新结论,达到温故知新的目的。
教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:
(1)
(2)
教师指出:当 时,方程可以写成
由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form).
使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形。
教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线 的方程?那种方法更为简捷?然后由求出直线方程:
教师指出: 的几何意义和截距式方程的概念。
4、例4教学
已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程。
教师提出:(1)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?
(2)要求一条直线的方程,必须知道多少个条件?
7、布置作业
巩固深化,培养学生的独立解决问题的能力。
学生课后完成
2、若点 中有 ,或 ,此时这两点的直线方程是什么?
使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式。

高中数学第三章直线与方程教案理新人教A版必修2

高中数学第三章直线与方程教案理新人教A版必修2

课题: 直线与方程复习教材分析:本节课是对第三章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生基本知识系统化和网络化,基本方法条理化。

本章内容大致分为三个部分:(1)直线的倾斜角和斜率;(2)直线方程;(3)两条直线的位置关系。

可采用分单元小结的方式,让学生自己回顾和小结各单元知识。

再此基础上,教师可对一些关键处予以强调。

比如可重申解析几何的基本思想——坐标法,并用解析几何的基本思想串联全章知识,使全章知识网络更加清晰。

指出本章学习要求和要注意的问题,可让学生阅读教科书中“学习要求和要注意的问题”有关内容。

教师重申坐标法、函数与方程思想、数形结合思想、化归与转化思想及分类与讨论思想等数学思想方法在本章中的特殊地位。

课 型:复习课教学要求:通过总结和归纳直线与方程的知识,对全章知识内容进行一次梳理,突出知识间的内在联系,进一步提高学生综合运用知识解决问题的能力。

能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分析讨论的思想和抽象思维能力。

教学重点:1.直线的倾斜角和斜率.2.直线的方程和直线的位置关系的应用.3.激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.教学难点:1. 数形结合和分类讨论思想的渗透和理解.2. 处理直线综合问题的策略.教学过程:二.知识要点:学生阅读教材113P 的小结部分.二.典例解析1.例1.下列命题正确的有 ⑤ :①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大;③过两点A(1,2),B(m,-5)的直线可以用两点式表示;⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式. ⑥若两直线平行,则它们的斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1.2.例2.若直线062:1=++y ax l 与直线01)1(:22=-+-+a y a x l ,则12l l 与相交时,a_________;21//l l 时,a=__________;这时它们之间的距离是________;21l l ⊥时, a=________ .答案:a 2a 1≠≠-且;a 1=-;655;2a 3=3.例3.求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;答案: (1)2x+3y-1=0 (2)2x-y+5=0(3)x+y-1=0或3x+2y=0 (4)4x+y-6=0或3x+2y-7=04.例4.已知直线L 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B(1)求△AOB 面积为4时L 的方程;解: 设A(a,0),B(0,b) ∴a,b>0∴L 的方程为1=+by a x ∵点(1,2)在直线上 ∴121=+ba ∴=-2ab a 1 ① ∵b>0 ∴a>1 (1) S △AOB =ab 21=⋅-12a a 2a 1 =4 ∴a=2 这时b=4 ∴当a=2,b=4时S △AOB 为4此时直线L 的方程为142=+y x 即2x+y-4=0 (2)求L 在两轴上截距之和为+322时L 的方程. 2) +=+-2a a 322a 1∴=+a 21 这时=+b 22 ∴L 在两轴上截距之和为3+22时,直线L 的方程为y=-2x+2+25.例5.已知△ABC 的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C 的坐标.解: ∵BH 24k 256-==- ∴AC 1k 2=- ∴直线AC 的方程为1y 2(x 10)2-=-+ 即x+2y+6=0 (1)又∵AH k 0= ∴BC 所在直线与x 轴垂直故直线BC 的方程为x=6 (2)解(1)(2)得点C 的坐标为C(6,-6)三.课堂小结:本节课总结了第三章的基本知识并形成知识网络,归纳了常见的解题方法,渗透了几种重要的数学思想方法.四.作业.:P复习参考题教材114课后记:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

高中数学 第三章 直线与方程教案 新人教A版必修2 教案

高中数学 第三章 直线与方程教案 新人教A版必修2 教案

课题: 3.1.1直线的倾斜角和斜率 第个教案课型: 新授课 年 月 日 教 学 目 标1.知识与技能:(1)正确理解直线的倾斜角和斜率的概念. (2)理解直线的倾斜角的唯一性. (3)理解直线的斜率的存在性.(4)斜率公式的推导过程,掌握过两点的直线的斜率公式. 2.过程与方法通过直线的倾斜角 概念的引入学习和直线倾斜角与斜率关系的揭培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力. 3.情感、态度与价值观通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点 直线的倾斜角、斜率的概念和公式. 教学难点 直线的倾斜角、斜率的概念和公式. 教学方法 启发、引导、讨论教学过程:批 注活动一:创设情景,揭示课题 (5分钟)问1:我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P 的直线l 的位置能确定吗? 如图, 过一点P 可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢?(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?活动二:步入新知,师生交流(20分钟)l. 直线的倾斜角的概念: 当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时,规定α= 0°.问2: 倾斜角α的取值范围是什么? 0°≤α<180°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度. 如图, 直线a ∥b ∥c, 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线. 确 定平面直角坐标系内的一条直线位置的几何要素: 一个点P 和一个倾斜角α. 2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1. 学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.3.直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略) 斜率公式要注意下面四点:(1) 当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x 轴垂直;(2)k 与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x 轴平行或重合. (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到._ Y_ X_c _ b_a _ OPcba YXO活动三:合作学习,探究新知学(18分钟)例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断它们的倾斜角是钝角还是锐角.分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k的值;而当k = tanα<0时, 倾斜角α是钝角;而当k = tanα>0时, 倾斜角α是锐角;而当k = tanα=0时, 倾斜角α是0°.略解: 直线AB的斜率k1=1/7>0, 所以它的倾斜角α是锐角;直线BC的斜率k2=-0.5<0, 所以它的倾斜角α是钝角;直线CA的斜率k3=1>0, 所以它的倾斜角α是锐角.例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l.分析:要画出经过原点的直线a, 只要再找出a上的另外一点M. 而M的坐标可以根据直线a的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可.略解: 设直线a上的另外一点M的坐标为(x,y),根据斜率公式有1=(y-0)/(x-0) 所以x = y可令x = 1, 则y = 1, 于是点M的坐标为(1,1).此时过原点和点M(1,1), 可作直线a.同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)练习: P86 1. 2. 3. 4.活动四:归纳整理,提高认识(2分钟)1.直线的倾斜角和斜率的概念.2.直线的斜率公式.活动五:作业布置P89 习题3.1 1. 2. 3.43.1.2两条直线平行与垂直的判断板书设计:§3.1.1……1.直线倾斜角的概念 3.例1……练习1 练习32. 直线的斜率4.例2……练习2 练习4教学后记:课题:3.1.2两条直线平行与垂直的判断第个教案课型:新授课年月日教学目标1.知识与技能: 理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直2.过程与方法: 通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力.通过直线的3.情感、态度与价值观: 通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.通教学重点两条直线平行和垂直的条件教学难点启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.教学方法启发、引导、讨论教学过程:批注活动一:创设情景,揭示课题(5分钟)上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.问题1:两条互相平行或垂直的直线, 它们的斜率有什么关系?活动二:步入新知,师生交流(20分钟)l.研究两条直线互相平行(不重合)的情形.(1) 两条直线中有一条直线没有斜率另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行(2) 两条直线的斜率都存在时,如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.2.下面我们研究两条直线垂直的情形.(1) (1)讨论: 两条直线中有一条直线没有斜率, 当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(2) 两条直线的斜率都存在时如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x 轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2.L1⊥L2.结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1活动三:合作学习,探究新知学(18分钟)例1已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5,直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,因为k1=k2=0.5, 所以直线BA∥PQ.例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. (借助计算机作图, 通过观察猜想: 四边形ABCD是平行四边形,再通过计算加以验证) 解同上.已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2,因为k1·k2 = -1 所以AB⊥PQ.例4已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)课堂练习P89 练习 1. 2.活动四:归纳整理,提高认识(2分钟)(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.活动五:作业布置P89 习题3.1 5. 6.7. 8.板书设计:教学后记:课题:3.2.1直线的点斜式方程第个教案课型:新授课年月日教学目标知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。

高中数学 第三章《直线的一般式方程》教案 新人教A版必修2

高中数学 第三章《直线的一般式方程》教案 新人教A版必修2

高中数学 第三章《直线的一般式方程》教案 新人教A 版必修2一、教学目标 1、知识与技能(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距; (3)会把直线方程的点斜式、两点式化为一般式。

2、过程与方法学会用分类讨论的思想方法解决问题。

3、情态与价值观(1)认识事物之间的普遍联系与相互转化; (2)用联系的观点看问题。

二、教学重点、难点:1、重点:直线方程的一般式。

2、难点:对直线方程一般式的理解与应用。

问 题设计意图师生活动1、(1)平面直角坐标系中的每一条直线都可以用一个关于yx ,的二元一次方程表示吗? (2)每一个关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线吗?使学生理解直线和二元一次方程的关系。

教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。

对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。

为此要对B 分类讨论,即当0≠B 时和当B=0时两种情形进行变形。

然后由学生去变形判断,得出结论:关于y x ,的二元一次方程,它都表示一条直线。

教师概括指出:由于任何一条直线都可以用一个关于y x ,的二元一次方程表示;同时,任何一个关于y x ,的二元一次方程都表示一条直线。

我们把关于关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?使学生理解直线方程的一般式的与其他形 学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:问 题设计意图 师生活动式的不同点。

直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x 轴垂直的直线。

新课标人教A版高中数学必修2第三章《直线与方程》复习课程案例

新课标人教A版高中数学必修2第三章《直线与方程》复习课程案例

分析:直接利用公式求解.
解:直线AB的斜率kAB
12 1; 43 7
B
直线BC的斜率
kBC0 1( 1 4)421 2;
y
A
O C
x
直线CA的斜率 kCA0132 3 31.
已知A(3,5),B(4,7),C(-1,x)三点共线,则x等
于( )
A.-1
B.1
C.-3
D.3
解:选C.因为 k A B=7 4- -3 5=2 , k A C=- 又x 1 - - A5 3 ,=- Bx ,4 -5 C, 三点共线,
1
中点坐标公式
x0
y
0
x1 x 2
2 y1 y 2
2
l2:x-2y=4. l2:3x+2y-12=0.
( 2 ) ( 2 ,3 )
5、3种距离
(1).两点距离公式 |A B |(x1x2)2(y1y2)2
(2)点线距离公式 设点(x0,y0),直线Ax+By+C=0,
d| Ax0 By0 C| A2 B2
(3)两平行线距离:l1:Ax+By+C1=0,l2:Ax+By+C2=0 d | C1 C2 | A2 B2
直线的交点个数与直线位置的关系
方程组:
A1x+B1y+C1=0
A2x+B2y+C2=0的解
一组 无数解
无解
两条直线L1,L2的公共点 一个 无数个 零个
直线L1,L2间的位置关系 相交 重合
平行
求下列各对直线的交点坐标
(1)l1:2x+3y=12, (2)l1:x=2,
答案:( 1 ) ( 3 6 ,4 ) 77

高中数学必修2第三章直线与方程全套教案

高中数学必修2第三章直线与方程全套教案

高中数学:全套教案新课标人教A 版必修2讲义1: 空 间 几 何 体一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.三、教学难点:柱、锥、台、球的结构特征的概括.四、教学过程:(一)、新课导入:1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.(二)、讲授新课:1. 教学棱柱、棱锥的结构特征:①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-A ’B ’C ’D ’E ’④、讨论:埃及金字塔具有什么几何特征?⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示? ⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:① 讨论:圆柱、圆锥如何形成?② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→结合图形认识:底面、轴、侧面、母线、高. → 表示方法③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体.④ 观察书P2若干图形,找出相应几何体;三、巩固练习:1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.3.正四棱锥的底面积为462cm ,侧面等腰三角形面积为62cm ,求正四棱锥侧棱.(四)、教学棱台与圆台的结构特征:①讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?②定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③讨论:棱台、圆台分别具有一些什么几何性质?★棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.★圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.④讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2.教学球体的结构特征:①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→球的表示.②讨论:球有一些什么几何性质?③讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3. 教学简单组合体的结构特征:①讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?②定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.4. 练习:圆锥底面半径为1cm cm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)(五)、巩固练习:1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。

人教A版高中数学必修二第三章直线方程教案新

人教A版高中数学必修二第三章直线方程教案新

学员编号:年级:课时数:学员姓名:辅导科目:数学学科教师:课题教学目的1、初步理解“直线的方程”与“方程的直线”两个概念;2、掌握直线的倾斜角和斜率的概念,能熟悉运用斜率的定义式和坐标式解题。

教学内容一、课前检测判断下列命题是否正确:①一条直线l一定是某个一次函数的图像;②一次函数的图像一定是一条不过原点的直线;③如果一条直线上所有点的坐标都是某一个方程的解,那么这个方程叫做这条直线的方程;④如果以一个二元一次方程的解为坐标的点都在某一条直线上,那么这条直线叫做这个方程的直线.解:①不正确.直线,不是一次函数;②不正确.当时,直线过原点.③不正确.第一、三象限角的平分线上所有的点都是方程的解,但此方程不是第一、三象限角平分线的方程④不正确.以方程()的解为坐标的点都在第一象限的角平分线上,但此直线不是方程()的图像.说明:直线方程概念中的两个条件缺一不可,它们和在一起构成充要条件.二、知识点梳理1、直线的倾斜角与斜率2、过两点的直线的斜率公式:1212x x y y k --=3、直线的方程: 适用范围 (1)点斜式:)(00x x k y y -=- (2)斜截式:b kx y += (3)两点式:121221x x x x y y y y --=-- (4)截距式:1=+bya x (5)一般式方程:0=++C By Ax (A 、B 不同时为0)三、重难点例析1 已知两点A (-3,4),B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点. (1)求直线l 的斜率的取值范围.(2)求直线l 的倾斜角的取值范围.分析:如图1,为使直线l 与线段AB 有公共点,则直线l 的倾斜角应介于直线PB 的倾斜角与直线PA 的倾斜角之间,所以,当l 的倾斜角小于90°时,有 ;当l 的倾斜角大于90°时,则有.解:如图1,有分析知=-1,=3.∴ (1) 或 .(2)arctg3 .2、试用解析法证明:△ ABC 中,M 为BC 中点,则AB 2+AC 2=2(AM 2+MC)2。

安徽省宿松县2016_2017学年高中数学第三章直线与方程3.3.2两点间的距离教案新人教A版必修2

安徽省宿松县2016_2017学年高中数学第三章直线与方程3.3.2两点间的距离教案新人教A版必修2

3.3.2 两点间的距离1.使学生掌握平面内两点间的距离公式及其推导过程;通过具体的例子来体会坐标法对于证明简单的平面几何问题的重要性.教学2.能灵活运用此公式解决一些简单问题;使学生掌握如何建立适当的直角目标坐标系来解决相应问题,培养学生勇于探索,善于发现,独立思考的能力以及不断超越自我的创新品质.教学重点:①平面内两点间的距离公式.教学重、②如何建立适当的直角坐标系.难点教学难点:如何根据具体情况建立适当的直角坐标系来解决问题.教学多媒体课件准备导入新课(1)如果A、B是x轴上两点,C、D是y轴上两点,它们的坐标分别是x A、x B、y C、y D,那么|AB|、|CD|怎样求?(2)求B(3,4)到原点的距离.(3)设A(x1,y1),B(x2,y2),求|AB|.提出问题①如果A、B是x轴上两点,C、D是y轴上两点,它们坐标分别是x A、x B、教学过y C、y D,那么|AB|、|CD|怎样求?程②求点B(3,4)到原点的距离.③已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|.④同学们已知道两点的距离公式,请大家回忆一下我们怎样知道的(回忆过程).讨论结果:①|AB|=|x B-x A|,|CD|=|y C-y D|.②通过画简图,发现一个Rt△BMO,应用勾股定理得到点B到原点的距离是5.③1图1在直角坐标系中,已知两点P1(x1,y1)、P2(x2,y2),如图1,从P1、P2分别向x轴和y轴作垂线P1M1、P1N1和P2M2、P2N2,垂足分别为M1(x1,0)、N1(0,y1)、M2(x2,0)、N2(0,y2),其中直线P1N1和P2M2相交于点Q.在Rt△P1QP2中,|P1P2|2=|P1Q|2+|QP2|2.因为|P1Q|=|M1M2|=|x2-x1|,|QP2|=|N1N2|=|y2-y1|,所以|P1P2|2=|x2-x1|2+|y2-y1|2.由此得到两点P1(x1,y1) 、P2(x2,y2) 的距离公式:|P1P2|=(x 2x)(y y).2 2121④(a)我们先计算在x轴和y轴两点间的距离.(b)又问了B(3,4)到原点的距离,发现了直角三角形.(c)猜想了任意两点间距离公式.(d)最后求平面上任意两点间的距离公式.这种由特殊到一般,由特殊猜测任意的思维方式是数学发现公式或定理到推导公式、证明定理经常应用的方法.同学们在做数学题时可以采用!应用示例例1 如图2,有一线段的长度是13,它的一个端点是A(-4,8),另一个端点B的纵坐标是3,求这个端点的横坐标.图2解:设B(x,3),根据|AB|=13,即(x+4)2+(3-8)2=132,解得x=8或x=-16.点评:学生先找点,有可能找不全,丢掉点,而用代数解比较全面.也可2以引至到A(-4,8)点距离等于13的点的轨迹(或集合)是以A点为圆心、13为半径的圆上与y=3的交点,应交出两个点.例2 已知点A(-1,2),B(2,7),在x轴上求一点,使|PA|=|PB|,并求|PA|的值.解:设所求点P(x,0),于是有(x1)2(02)2(x2)2(07)2. 由|PA|=|PB|,得x2+2x+5=x2-4x+11,解得x=1.即所求点为P(1,0),且|PA|= (11)2(02)2=2 2.知能训练课本本节练习.拓展提升已知0<x<1,0<y<1,求使不等式x2y2x2(1y)2(1x)2y 2(1x)2(1y)2≥22中的等号成立的条件.答案:x=y= 1 2 .课堂小结通过本节学习,要求大家:①掌握平面内两点间的距离公式及其推导过程;②能灵活运用此公式解决一些简单问题;③掌握如何建立适当的直角坐标系来解决相应问题.作业课本习题3.3 A组6、7、8;B组6.板书设计教学反思3。

安徽省宿松中学2016-2017学年高一数学人教A版2教案:第三章直线与方程复习

安徽省宿松中学2016-2017学年高一数学人教A版2教案:第三章直线与方程复习

存在 A1B2-A2B1=0且A1C2—A2C1=0.
④第三章的知识结构图如图1所示。

从几何直观到代数表示(建立直线的方程)
从代数表示到几何直观(通过方程研究几何
性质和度量)
图1
应用示例
例1 求满足下列条件的直线方程:
(1)经过点P(2,-1)且与直线2x+3y+12=0平行;
(2)经过点Q(—1,3)且与直线x+2y—1=0垂直;
(3)经过点R(—2,3)且在两坐标轴上截距
_____________.
4.经过点P(0,—1)作直线l ,若直线l 与连接A (1,-2)、B(2,1)的线段没有公共点,则直线l 的斜率k 的取值范围为_____________.
5。

直线l 1:mx+(m —1)y+5=0与l 2:(m+2)x+my-1=0互相垂直,则m 的值是_____________.
答案:1。

D 2。

x=5或3x —4y+25=0 3。

[-2,0)∪(0,2] 4.(-∞,—1)∪(1,+∞) 5。

m=0或m=—2
1
拓展提升
问题:过点M (2,4)作l 1交x 正半轴于A ,作l 2交y 正半轴于B ,若l 1⊥l 2,且AB 恰平分四边形OAMB 面积,求直线AB 方程.
图2
解:如图2,设l 1:y —2=k(x —1),即kx —y+2—k=0,l 2:y-2=—k
1(x —1),即
x+ky —2k —1=0.
则A(1—k 2,0),B (0,2+k
1).。

安徽省宿松县高中数学 第三章 直线与方程 3.2.3 直线

安徽省宿松县高中数学 第三章 直线与方程 3.2.3 直线

3.2.3 直线的一般式方程图1⑤列表说明如下: 形 式 方程 局限 各常数的几何意义 点斜式y-y 1=k(x-x 1)除x=x 0外(x 1,y 1)是直线上一个定点,k 是斜率 斜截式y=kx+b除x=x 0外k 是斜率,b 是y 轴上的截距两点式121121x x x x y y y y --=-- 除x=x 0和y=y 0外(x 1,y 1)、(x 2,y 2)是直线上两个定点 截距式bya x +=1 除x=x 0、y=y 0及y=kx 外a 是x 轴上的非零截距,b 是y 轴上的非零截距 一般式Ax+By+C=0无当B≠0时,-BA 是斜率,-BC是y 轴上的截距应用示例例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6). 化成一般式,得4x+3y-12=0. 变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线? (2)系数满足什么关系时,与坐标轴都相交? (3)系数满足什么条件时,只与x 轴相交? (4)系数满足什么条件时,是x 轴? (5)设P(x 0,y 0)为直线Ax+By+C=0上一点, 证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0. 答案:(1)C=0; (2)A≠0且B≠0; (3)B=0且C≠0; (4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上, ∴Ax 0+By 0+C+0,C=-Ax 0-By 0. ∴A(x -x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________. 答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形. 解:由方程一般式x -2y +6=0,① 移项,去系数得斜截式y=2x+3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6. 即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2。

安徽省宿松县2016_2017学年高中数学第三章直线与方程3.2.2直线的两点式方程教案新人教A版必

安徽省宿松县2016_2017学年高中数学第三章直线与方程3.2.2直线的两点式方程教案新人教A版必

3.2.2 直线的两点式方程1.让学生掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程.培养学生数形结合的数学思想,为今后的学习打教学下良好的基础.目标2.了解直线方程截距式的形式特点及适用范围,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点:直线方程两点式和截距式.教学重、教学难点:关于两点式的推导以及斜率k不存在或斜率k=0时对两点式方难点程的讨论及变形.教学多媒体课件准备导入新课要学生求直线的方程,题目如下:①A(8,-1),B(-2,4);②A(6,-4),B(-1,2);③A(x1,y1),B(x2,y2)(x1≠x2).(分别找3个同学说上述题的求解过程和答案,并着重要求说求k及求解过程)教学过这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这程种直线方程取一个什么名字呢?提出问题①已知两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),求通过这两点的直线方程.②若点P1(x1,y1),P2(x2,y2)中有x1=x2或y1=y2,此时这两点的直线方程是什么?③两点式公式运用时应注意什么?④已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a≠0,b≠0,求直线l的方程.⑤a、b表示截距是不是直线与坐标轴的两个交点到原点的距离?1⑥截距式不能表示平面坐标系下哪些直线?活动:①教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程.师生共同归纳:已知直线上两个不同点,求直线的方程步骤:a.利用直线的斜率公式求出斜率k;b.利用点斜式写出直线的方程.∵x1≠x2,k= yx22yx11,∴直线的方程为y-y1= yx22yx11(x-x1).∴l的方程为y-y1= yx22yx11(x-x1).①当y1≠y2时,方程①可以写成y y1y y21x x1x x21.②由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式.注意:②式是由①式导出的,它们表示的直线范围不同.①式中只需x1≠x2,它不能表示倾斜角为90°的直线的方程;②式中x1≠x2且y1≠y2,它不能表示倾斜角为0°或90°的直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆. 如果把两点式变成(y-y1)(x2-x1)=(x-x1)(y2-y1),那么就可以用它来求过平面上任意两已知点的直线方程.②使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.教师引导学生通过画图、观察和分析,发现当x1=x2时,直线与x轴垂直,所以直线方程为x=x1;当y1=y2时,直线与y轴垂直,直线方程为y=y1.③引导学生注意分式的分母需满足的条件.④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.教师引导学生分析题目中所给的条件有什么特点?可以用多少2方法来求直线l的方程?哪种方法更为简捷?然后求出直线方程.因为直线l 经过(a,0)和(0,b)两点,将这两点的坐标代入两点式,得y0x a.①b00a x y=1.② 就是a b注意:②这个方程形式对称、美观,其中a是直线与x轴交点的横坐标,称a为直线在x轴上的截距,简称横截距;b是直线与y轴交点的纵坐标,称b为直线在y轴上的截距,简称纵截距.因为方程②是由直线在x轴和y轴上的截距确定的,所以方程②式叫做直线方程的截距式.⑤注意到截距的定义,易知a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.⑥考虑到分母的原因,截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.讨论结果:①若x1≠x2且y1≠y2,则直线l方程为y y1y y21x x1x x21.②当x1=x2时,直线与x轴垂直,直线方程为x=x1;当y1=y2时,直线与y 轴垂直,直线方程为y=y1.③倾斜角是0°或90°的直线不能用两点式公式表示( 因为x1≠x2,y1≠y2).④x=1.y a b⑤a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.⑥截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.应用示例例1 求出下列直线的截距式方程:(1)横截距是3,纵截距是5;(2)横截距是10,纵截距是-7;3(3)横截距是-4,纵截距是-8.答案:(1)5x+3y-15=0;(2)7x-10y-70=0;(3)3x+4y+12=0. 变式训练已知 Rt△ABC 的两直角边 AC=3,BC=4,直角顶点 C 在原点,直角边 AC 在 x 轴负方向上,BC 在 y 轴正方向上,求斜边 AB 所在的直线方程. 答案:4x-3y+12=0.例 2 如图 1,已知三角形的顶点是 A(-5, 0)、B(3,-3)、C(0,2),求 这个三角形三边所在直线的方程.图 1活动:根据 A 、B 、C 三点坐标的特征,求 AB 所在的直线的方程应选用两点 式;求 BC 所在的直线的方程应选用斜截式;求 AC 所在的直线的方程应选 用截距式.解:AB 所在直线的方程,由两点式,得y 0x 3 0 3(5) (5),即 3x+8y+15=0. 5 3 BC 所在直线的方程,由斜截式,得 y=- xAC 所在直线的方程,由截距式,得5 x +2,即 5x+3y-6=0.y=1,即 2x-5y+10=0. 2变式训练如图 2,已知正方形的边长是 4,它的中心在原点,对角线在坐标轴上, 求正方形各边及对称轴所在直线的方程.4图 2活动:由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在 直线的方程.而正方形的对称轴 PQ ,MN ,x 轴,y 轴则不能用截距式,其中 PQ ,MN 应选用斜截式;x 轴,y 轴的方程可以直接写出.4. 解:因为|AB|=4,所以|OA|=|OB|= 2 22因此 A 、B 、C 、D 的坐标分别为(2 2 ,0)、(0,2 2 )、(-2 2 ,0)、(0,-2 2 ).所以 AB 所在直线的方程是 2 x =1,即 x+y-2 2 =0.y2 2 2BC 所在直线的方程是x 2 2 2 y 2 =1,即 x-y+2 2 =0.CD 所在直线的方程是 x 2 2 7 2 2 =1,即 x+y+2 2 =0. DA 所在直线的方程是 x 2 27 2 2 =1,即 x-y-2 2 =0. 对称轴方程分别为 x±y=0,x=0,y=0.课堂小结通过本节学习,要求大家:掌握直线方程两点式和截距式的发现和推 导过程,并能运用这两种形式求出直线的方程.理解数形结合的数学思想, 为今后的学习打下良好的基础.了解直线方程截距式的形式特点及适用范 围,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神. 作业课本习题 3.2 A 组 9、10.板书设计教学反思5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴a= .
由a、b∈N*逐步试解可得 或 ,所以选B.
(方法二)设过点(1,3)的直线l的方程为y-3=k(x-1),则a=- +1,b=3-k.
由a、b∈N*得k=-1或k=-3,相应的有 或
所以选B.
答案:B
知能训练
1.如果直线x+2ay-1=0与直线(3a-1)x-ay-1=0平行,则a等于( )
讨论结果:①直线的倾斜角(α)和斜率(k):倾斜角范围:0°≤α<180°,斜率:k∈R.
k与α的关系:k= ,α∈[0°,90°)∪(90°,180°).
注意倾斜角为90°的直线的斜率不存在(分类讨论).
②直线方程的五种形式及适用范围:
(a)斜截式:y=kx+b,不含与x轴垂直的直线.
(b)点斜式:y-y0=k(x-x0),不含与x轴垂直的直线.
(5)3x+y=0或x-y+4=0.
变式训练
求经过点P(2,3)且被两条平行直线3x+4y-7=0和3x+4y+8=0截得线段长为3 的直线方程.
解:因为已知两条平行直线间的距离d= =3,
所以所求直线与直线3x+4y-7=0的夹角为45°.设所求直线的斜率为k,则tan45°= .
解得k= 或k=-7.
(2)由题意得
(m2-2m-3)×(-1)+(2m2+m-1)×(-1)-2m+6=0,
即3m2+m-10=0,解之,得m=-2或m= .
2.过点(1,3)作直线l,若l经过点(a,0)和(0,b),且a、b∈N*,则可作出的l的条数为( )
A.1 B.2 C.3 D.多于3
解析:Байду номын сангаас方法一)设过点(1,3)的直线l的方程为 =1,则 + =1.
第三章直线与方程
教学
目标
通过总结和归纳直线与方程的知识,对全章知识内容进行一次梳理,突出知识间的内在联系,进一步提高学生综合运用知识解决问题的能力.能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.
教学重、
难点
教学重点:①直线的倾斜角和斜率.
A.0 B. C.0或1 D.0或
2.已知直线l过点P(5,10),且原点到它的距离为5,则直线l的方程为_____________.
3.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是_____________.
4.经过点P(0,-1)作直线l,若直线l与连接A(1,-2)、B(2,1)的线段没有公共点,则直线l的斜率k的取值范围为_____________.
(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;
(3)经过点R(-2,3)且在两坐标轴上截距相等;
(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;
(5)经过点N(-1,3)且在x轴的截距与它在y轴上的截距的和为零.
解:(1)2x+3y-1=0.(2)2x-y+5=0.
(3)x+y-1=0或3x+2y=0.(4)4x+y-6=0或3x+2y-7=0.
②直线的方程和两直线的位置关系的应用.
③激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.
教学难点:①数形结合和分类讨论思想的渗透和理解.
②处理直线综合问题的策略.
教学
准备
多媒体课件
教学过程
导入新课
为了系统掌握第三章的知识,教师直接点出课题.
提出问题
①第一节是直线的倾斜角和斜率,需要注意什么?
∴直线l的方程为3x+4y±24=0.
变式训练
1.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y-2m+6=0,根据下列条件求m的值.
(1)直线l的斜率为1;(2)直线l经过定点P(-1,-1).
解:(1)由题意得-(m2-2m-3)=2m2+m-1,
即3m2-m-4=0,解之,得m=-1(舍去)或m= .
因此x-7y+19=0或7x+y-17=0为所求.
例2已知直线l与直线3x+4y-7=0平行,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.
解:设l:3x+4y+m=0,则当y=0时,x=- ;当x=0时,y=- .
∵直线l与两坐标轴围成的三角形面积为24,
∴ ·|- |·|- |=24.∴m=±24.
5.直线l1:mx+(m-1)y+5=0与l2:(m+2)x+my-1=0互相垂直,则m的值是_____________.
答案:1.D 2.x=5或3x-4y+25=0 3.[-2,0)∪(0,2]4.(-∞,-1)∪(1,+∞) 5.m=0或m=-
设l1:y=k1x+b1,A1x+B1y+C1=0;l2:y=k2x+b2,A2x+B2y+C2=0.
(a)l1∩l2=P k1≠k2或仅有一个不存在 A1B2-A2B1≠0;
l1⊥l2 k1k2=-1或一个为零一个不存在 A1A2+B1B2=0.
(b)l1∥l2 k1=k2且b1≠b2或k1,k2均不存在 A1B2-A2B1=0且A1C2-A2C1≠0.
(c)l1与l2重合 k1=k2且b1=b2或k1,k2均不存在 A1B2-A2B1=0且A1C2-A2C1=0.
④第三章的知识结构图如图1所示.
从几何直观到代数表示(建立直线的方程)
从代数表示到几何直观(通过方程研究几何性质和度量)
图1
应用示例
例1求满足下列条件的直线方程:
(1)经过点P(2,-1)且与直线2x+3y+12=0平行;
②第二节是直线的方程,有几种形式?各自的适用范围怎样?
③第三节是两直线的位置关系,分为哪些内容?如何判断?
④画出本章的知识结构图.
活动:
让学生自己回顾所学知识或结合教材,重新对知识整合,对没有思路的学生,教师可以提示按教材的章节标题来分类.对于画知识结构图,可让学生合作交流,待学生有了不同画法后,先对比分析,再画本章的知识结构图.
(c)两点式: ,不含与x轴、y轴垂直的直线.
(d)截距式: =1,不含过原点和与x轴、y轴垂直的直线.
(e)一般式:Ax+By+C=0(A2+B2≠0),无限制(可表示任何直线).
注:两点式的“改良”(x-x1)(y2-y1)-(y-y1)(x2-x1)=0,可表示任何直线.
③分为:两条直线的位置关系及点到直线的距离和两条平行线间的距离.判定两条直线的位置关系(三种:相交、平行、重合).
相关文档
最新文档