中考数学 第一编 教材知识梳理篇 第七章 圆 第三节 正多边形与圆有关的计算试题

合集下载

九年级上册数学《圆》正多边形和圆知识点整理

九年级上册数学《圆》正多边形和圆知识点整理

正多边形和圆一、本节学习指导本节我们重点了解正多边形的各种概念和性质,在命题中正多边形经常和三角形、圆联合命题,部分地区也会以这部分综合题作为压轴题。

二、知识要点1、正多边形(1)、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

如:正六边形,表示六条边都相等,六个角也相等。

(2)、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

(3)、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。

(4)、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。

(5)、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

(6)、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

2、正多边形的对称性(1)、正多边形的轴对称性正多边形都是轴对称图形。

一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

(2)、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

(3)、正多边形的画法先用量角器或尺规等分圆,再做正多边形。

24.3正多边形和圆一、填空题1. 在一个圆中,如果︒60的弧长是π,那么这个圆的半径r=_________.2. 正n 边形的中心角的度数是_______.3. 边长为2的正方形的外接圆的面积等于________.4. 正六边形的内切圆半径与外接圆半径的比等于_________.二、选择题5.正多边形的一边所对的中心角与该正多边形一个内角的关系是( ).(A ) 两角互余 (B )两角互补 (C )两角互余或互补 (D )不能确定6.圆内接正三角形的边心距与半径的比是( ).(A )2:1 (B )1:2 (C )4:3 (D )2:37.正六边形的内切圆与外接圆面积之比是( )(A )43 (B )23 (C )21 (D )41 8.在四个命题:(1)各边相等的圆内接多边形是正多边形;(2)各边相等的圆外切多边形是正多边形;(3)各角相等的圆内接多边形是正多边形;(4)各角相等的圆外切多边形是正多边形,其中正确的个数为( )(A )1 (B )2 (C )3 (D )49.已知:如图48-1,ABCD 为正方形,边长为a ,以B 为圆心,以BA 为半径画弧,则阴影部分面积为( ).(A )(1-π)a 2 (B )1-π(C )44π- (D )44π-a 21. 3;2. n o360;3. ∏2;4. 2:3; DBABD。

中考总复习正多边形与圆的有关的证明和计算--知识讲解

中考总复习正多边形与圆的有关的证明和计算--知识讲解

中考总复习正多边形与圆的有关的证明和计算--知识讲解【正多边形与圆的有关的证明和计算】一、正多边形的定义与性质:正多边形是指所有边相等、所有角相等的多边形。

正多边形的性质如下:1.所有边相等,所有角相等;2.任意两条边之间的夹角相等;3.对角线相等;4.中心角等于外角。

二、正多边形的内角与外角的关系:1.由正多边形的定义可知,正多边形的内角和为180°(n-2),其中n 为正多边形的边数;2.正多边形的外角和为360°,由此可得正多边形的内角和与外角和之间的关系:内角和=外角和/2三、正多边形的周长和面积的计算:1.正多边形的周长为边长×边数;2.正多边形的面积为面积公式:面积=1/2×边长×边数×正弦(360°/边数)。

四、正多边形内接圆的半径和面积:2.正多边形内接圆的面积等于正多边形面积的一半。

五、正多边形外接圆的半径和面积:1.正多边形外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);2.正多边形外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2六、正多边形的对称轴:正多边形有旋转对称轴和镜像对称轴两类:1.正多边形的旋转对称轴有n条,其中n为正多边形的边数;2.正多边形的镜像对称轴有2n条,其中n为正多边形的边数。

七、圆的性质及计算:1.圆是由一个动点到一个定点的距离保持不变的动点集;2.圆的半径是动点到圆心的距离;3.圆的直径是通过圆心的一条线段,且长度等于半径的两倍;4.圆的周长等于直径的乘以π,即周长=2×半径×π;5.圆的面积等于半径的平方乘以π,即面积=半径×半径×π。

八、正多边形与圆的关系:1.正多边形的内接圆同时是这个正多边形的外接圆,即正多边形的内接圆与外接圆重合;3.正多边形的外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);4.正多边形的外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2;5.正多边形的内接圆和外接圆的关系可以用于计算正多边形的周长和面积。

中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31 .解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=131312222++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.【答案】321::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q 分别表示阴影部分的面积,那么P和Q的大小关系是( ).A.P=Q B.P>Q C.P<Q D.无法确定(2)如图(b),△ABC为等腰直角三角形,AC=3,以BC为直径的半圆与斜边AB交于点D,则图中阴影部分的面积是________.(3)如图(c),△AOB中,OA=3cm,OB=1cm,将△AOB绕点O逆时针旋转90°到△A′OB′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D. 3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA , ∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】解:连接OC 、OD 、CD . ∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD .4.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E .(1)求弧BE 所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(AB)对应的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,连接AC,过点O作AC的垂线交AC于点D,交⊙O于点E.已知AB﹦8,∠P=30°.(1)求线段PC的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048= 3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,∴S△OCD=12DC•OD=12×23×2=23,则S阴影=S扇形OCE-S△OCD=8-233π.【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

正多边形和圆及正多边形的有关计算

正多边形和圆及正多边形的有关计算

中考数学辅导之—正多边形和圆及正多边形的有关计算正多边形和圆是初中几何课本中的最后一单元,它包括正多边形的定义、正多边形的判定、性质,正多边形的有关计算,圆周长及弧长公式,圆、扇形、弓形的面积。

今天我们一起学习正多边形的定义、判定、性质及有关计算.一、基础知识及其说明:1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.此定义中的条件各边相等,各角也相等 “缺一不可”.如:菱形各边相等,因四个角不等,所以菱形不一定是正多边形.矩形的四个角相等,但因四条边不一定相等,故矩形不一定是正四边形,只有正方形是正四边形.2.正多边形的判定,正多边形的定义当然是正多边形的判定方法之一,但如同全等三角形的判定一样,用定义来证明两个三角形全等显然不可取,因此需用判定定理来证.判定定理:把圆几等分()①依次连结各分点所得的多边形是这个圆的内接正边形②经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.也就是说,若要证明一个多边形是圆内接正多边形,只要证明这个多边形的顶点是圆的等分点即可, 如:要证明一个圆内接边形ABCDEF ……是圆内接正边形,就要证A 、B 、C 、D 、E 、F ……各点是圆的n 等分点,就是要证AB=BC=CD=DE=EF=…….同样,要证明一个圆外切边形是圆外切正边形,只要证明各切点是圆的等分点即可例1:证明:各边相等的圆内接多边形是正多边形.已知:在⊙O 中,多边形ABCDE ……是⊙O 的内接n 边形 且AB=BC=CD=DE=…….求证:n 边形ABCDE ……是正n 边形证明: AB=BC=CD=DE=…… ∴ AB=BC=CD=DE ……∴OEB=AEC= BED=COE=……∴ =∠=∠=∠=∠D C B A又∵AB=BC=CD=DE=……∴n 边形ABCDE ……是正n 边形.例2:证明:各角相等的圆外切n 边形是正n 边形.已知:多边形……是圆外切n 边形,切点分别是A,B,C,D,E ……,=…….求证:n 边形……是正n 边形.证明:连结OB,OC,OD ……,在四边形COD 和四边形BOC 中∵切⊙O 于B,C,D∴∴ 0''180=∠+∠=∠+∠COD C BOC B而……∴∴BC=CD(在同圆中,相等的圆 B O心角所对的弧相等).同理BC=CD=DE=FE=……'B D∴A,B,C,D,E,F……是圆的n等分点 C∴多边形ABCDEF……是圆外切n正多边形3.正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.4.正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.5.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.如图:OA,OB是半径,O是中心,OH⊥AB于H,OH是边心距,是中心角6.正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等)来解直角三角形即可.例:已知正六边形ABCDEF的半径是R,求正六边形的边长S6.解:作半径OA、OB,过O做OH⊥AB,则∠AOH==30°∵∴∴∴∵∴S6=同学们在进行正多边形的计算时,应很好的理解、掌握如何用解直角三角形的方法进行计算,但也可以推出公式,然后利用公式变形进行计算.则这是已知半径R,求的公式,若记住公式则正多边形的计算就简单了很多,如已知半径R,求解:再如:已知正三角形的边长为,可以先由,求出半径,再将求得的R代入;若已知边心距求边长,则先用,求出R,再代入求边长公式即可求出,此法好处是不用画图,只需将上面两个公式反复变形即可.7.如何求同圆的圆内接正边形与圆外切正边形的边长比,半径比,边心距比.如:求同圆的圆内接正边形和圆外切正边形的边长比.设⊙O的半径的为R则圆内接正边形的边长是而在Rt△OBC中,OB=R,则,即外切正边形的边长是,∴=实际上,=,OB是的邻边,OC是Rt△BOC的斜边,,希望同学们记住此结论.如圆内接正四边形的边心距与圆外切正四边形的边心距之比是,圆内接正六边形与圆外切正六边形的边长之比是,而圆内接正三角形与圆外切正三角形的面积之比是.(注意:①此结论必须是同圆的边数相同的圆内接正边形与圆外切正边形的相似比是.②若求圆外切正边形与圆内接正边形的相似比则是).二、练习题:1.判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2.填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3.选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D.:1④正六边形的两条平行边间距离是1,则边长是( )A. B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1::C.1::3D.1:2:三、练习答案:1.判断题①×②×③√④√⑤√2.填空题①四②45°,135°,45°③④12⑤1:2 1:4 ⑥8 ⑦⑧:1 ⑨1:3.选择题①D ②A ③C ④C ⑤B ⑥A。

初三数学正多边形和圆公式

初三数学正多边形和圆公式

初三数学正多边形和圆公式
正多边形和圆是中学数学学习中一个重要的课题,其中正多边形和圆的公式是学生必须掌握的知识点。

一、正多边形的公式
1、行心角公式:Σinterior angles = (n - 2 )×180°
其中,Σinterior angles表示角之和,n表示多边形内角的个数。

2、每内角度数公式:interior angle = (n - 2 )×180°/n
3、外角之和公式:Σexterior angles = 360°
其中,Σexterior angles表示外角之和。

4、外角度数公式:exterior angle= 360°/n
5、正多边形的周长公式:P= a × n
二、圆的公式
1、定义公式:圆:(x-a)^2+(y-b)^2=r^2
其中,a和b表示圆心坐标,r表示圆的半径。

2、圆的周长公式:C=2πr
3、圆的面积公式:S=πr^2
4、弦长公式:L=2πr × 角度
5、弦长公式:A=2πR × (1-cosα)
以上就是高中数学关于正多边形和圆的公式,希望可以帮助到大家学习和掌握。

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。

中考数学复习指导《正多边形与圆》知识点归纳

中考数学复习指导《正多边形与圆》知识点归纳

中考数学复习指导《正多边形与圆》知识点归纳一、正多边形的定义正多边形是指所有边相等,所有角相等的多边形。

我们以正n边形来进行讨论,其中n表示边的个数。

二、正多边形的性质1.角的个数:正n边形有n个内角和n个外角。

2.外角和:正n边形的外角和为360°。

3.内角和:正n边形的内角和为(2n-4)×90°。

4.中心角和:正n边形的中心角和为360°。

5. 半径和边长之间的关系:正n边形的边长为a,半径为R,则有R=a/(2×sin(π/n))。

三、正多边形的对称性正n边形有n条对称轴,每条对称轴都把正多边形分成两个对称的部分。

四、圆的性质1.圆心角:圆心角是圆的半径所对应的圆弧所夹的角。

圆心角的大小等于其对应的圆弧的度数。

2.弧长:圆心角对应的圆弧的长度称为弧长。

如果圆的半径为R,圆心角的大小为θ,那么圆弧的长度S=R×θ。

3.弦长:弦是圆上的两点之间的线段,弦长可以通过两角的正弦来计算。

4.弦割定理:圆上的一弦分割出的弧长等于该圆的半径与该弦分割出的小弧的两圆心角的和。

即S=S1+S2=R×θ1+R×θ25.弧度制:弧度制是一种角度的度量方式,将角度定义为弧长与半径的比值:角度=弧长/半径。

单位为弧度。

6.周长和面积:圆的周长等于2πR,面积等于πR²。

五、圆与正多边形的关系1.正多边形逼近圆:正多边形的边数越多,逼近的程度越高,其内接圆越接近于外接圆。

2.正多边形的周长与圆的周长:正n边形的周长与内接圆的周长之比约为n/2π。

3. 正多边形的面积与圆的面积:正n边形的面积与内接圆的面积之比约为(1/2•n•sin(2π/n))/π)。

以上就是《正多边形与圆》的一些重要知识点的归纳。

在复习时,可以通过理论学习、练习习题以及解决实际问题的应用题来巩固和提升自己的理解能力。

加油!。

中考正多边形和圆知识点

中考正多边形和圆知识点

中考正多边形和圆知识点中考数学中的多边形和圆的知识点主要包括多边形的性质、圆的性质以及相关的计算。

一、多边形的性质:1.多边形是由若干条线段组成的封闭图形,它的每个线段都是相邻两个顶点之间的连接线段,多边形的每个顶点都是两个线段的公共顶点。

2.多边形的顶点个数等于线段的个数,多边形的边数等于线段的长度。

3.多边形中,相邻两条边之间的夹角称为内角,多边形中所有内角的和等于180°×(n-2),其中n为多边形的边数。

4.多边形中的对角线是多边形内部两个非连续顶点之间的线段,多边形中的对角线的条数D=(n×(n-3))/2,其中n为多边形的边数。

5.正多边形是所有边和角都相等的多边形,正多边形中的所有内角都相等,且每个内角是(2×180°)/(n),其中n为多边形的边数。

二、圆的性质:1.圆是由所有与圆心的距离相等的点组成的图形。

2.圆心是圆上所有点的中心,圆上的每条线段都通过圆心。

3.圆的半径是圆心到圆上任意一点的距离,圆的直径是经过圆心的两个点之间的距离,直径是半径的2倍。

4.圆的周长是圆的边界的长度,周长等于2π乘以半径,或π乘以直径。

5.圆的面积是圆内部的平面区域,面积等于π乘以半径的平方。

6.弧是圆上的一段弧线,它是圆上两个点之间的连线所对应的圆心角所夹的弧,它的长度等于圆的周长乘以圆心角所占的比例。

7.扇形是圆心和圆上的两个点所围成的图形,扇形的面积是圆的面积乘以圆心角所占的比例。

8.弦是圆上的两个点之间的线段,它的长度可以通过圆心角的正弦、余弦等函数关系进行计算。

三、相关计算:1.根据多边形的边数和边长计算多边形的周长。

2.根据多边形的边数和一个内角的度数计算多边形的内角和。

3.根据圆的半径或直径计算圆的周长和面积。

4.根据圆周角的度数计算弧长和扇形的面积。

5.根据圆心角的度数计算弧长和扇形的面积。

以上就是中考数学中多边形和圆的相关知识点,掌握了这些知识点,同学们就能够正确理解多边形和圆的性质,能够运用相关公式进行计算和解题。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

正多边形与圆的相关计算公式

正多边形与圆的相关计算公式

正多边形与圆的相关计算公式在我们的数学世界里,正多边形与圆可是一对关系紧密的“好伙伴”。

今天,咱们就来好好聊聊它们之间那些神奇的计算公式。

记得有一次,我在公园里散步,看到一个圆形的花坛。

花坛的边缘被修成了正六边形的形状,特别规整漂亮。

当时我就在想,这正多边形和圆之间的关系可真是巧妙。

咱们先来说说正多边形的内角和公式。

对于一个 n 边形,它的内角和等于 (n - 2)×180°。

比如说一个正三角形,也就是三角形啦,n = 3,那内角和就是 (3 - 2)×180° = 180°,这大家都知道。

再比如一个正五边形,n = 5,内角和就是 (5 - 2)×180° = 540°。

那正多边形的每个内角的度数怎么算呢?很简单,用内角和除以边数就行啦。

还是拿正五边形举例,每个内角的度数就是540°÷5 = 108°。

接下来聊聊正多边形和圆的关系。

以正 n 边形为例,把它的 n 个顶点都和圆心连起来,就会分成 n 个等腰三角形。

这些等腰三角形的顶角就是圆心角,每个圆心角的度数是 360°÷n 。

咱们再来说说正多边形的边长和外接圆半径的关系。

假设正 n 边形的边长是 a ,外接圆半径是 R ,那就有 a = 2Rsin(180°/n) 。

比如说一个正六边形,n = 6,要是外接圆半径 R 是 5 厘米,那边长 a 就等于2×5×sin(180°/6) = 5√3 厘米。

还有正多边形的面积公式。

如果正 n 边形的边长是 a ,边心距是 r (就是从正多边形的中心到边的距离),那它的面积就是n×(1/2)×a×r 。

就像我在公园里看到的那个正六边形花坛,我们可以通过测量它的外接圆半径或者边心距,还有边长,就能算出花坛的面积。

初中数学中考复习正多边形与圆的有关的证明和计算

初中数学中考复习正多边形与圆的有关的证明和计算

初中数学中考复习正多边形与圆的有关的证明和计算正多边形与圆的关系是初中数学中重要的内容。

在中考复习中,我们需要掌握正多边形与圆的有关知识,并能够进行证明和计算。

一、正多边形的性质与计算:1.正多边形的定义:正多边形是指所有边相等,所有角也相等的多边形。

2.正多边形的计算:正n边形的内角和为180°(n-2),每个内角为(180°(n-2))/n。

正n边形的外角和为360°,每个外角为360°/n。

正n边形的中心角为360°/n。

例题1:求正六边形的内角和。

解:内角和为180°(6-2)=720°。

例题2:求正五边形的每个内角大小。

解:每个内角为(180°(5-2))/5=108°。

二、正多边形与圆的关系:1.圆的定义:圆是平面上一组到一个固定点(圆心)距离相等的点的集合。

2.正多边形与圆的关系:正多边形的顶点均在圆上,且正多边形的外接圆和内切圆都满足以下性质:①外接圆:正多边形的外接圆的圆心与正多边形的中心重合。

②内切圆:正多边形的内切圆的圆心与正多边形的中心重合,且内接圆的半径等于正多边形的边长的一半。

3.正多边形与圆的证明:①外接圆的证明:由正多边形的定义可知,正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。

而圆心与正多边形的中心重合,所以正多边形的外接圆的圆心与正多边形的中心重合。

②内切圆的证明:首先,通过正多边形的定义,可以证明正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。

其次,由于正多边形的边长相等,所以正多边形的中心到各个顶点的距离也相等。

而内切圆的半径等于正多边形中心到任意一个顶点的距离,所以正多边形的内切圆的圆心与正多边形的中心重合,且内切圆的半径等于正多边形的边长的一半。

例题3:如图,正六边形ABCD中,O为外接圆的圆心,求AB的长。

解:由于正六边形的外接圆的圆心与正多边形的中心重合,所以O即为正六边形的中心。

初三数学正多边形和圆知识点

初三数学正多边形和圆知识点

初三数学正多边形和圆知识点
嘿,同学们!今天咱来聊聊初三数学里超有趣的正多边形和圆的知识点呀!
你看,正多边形多有意思啊!就像那蜂巢,一格一格的,那可都是正六边形呢!比如说一个正六边形,它的各边相等,各角也相等。

假如我们画一个正六边形的地砖,那每一条边都是一样长的,每个角也都是一样大的呀,神奇吧!
再来说说圆,圆就像是一个超级包容的大怀抱!任何正多边形都可以和圆产生奇妙的联系呢。

比如说我们在一个圆里画一个正五边形,那这个正五边形的顶点肯定都在这个圆上呀!就好像五个小不点在圆这个大舞台上表演一样!
正多边形的中心角也很重要哦!就像是一场舞蹈里的节拍。

比如一个正八边形,它的中心角就是 360 度除以 8 等于 45 度呢。

这中心角就好像是指挥棒,引领着正多边形的节奏呀!
我觉得吧,正多边形和圆的知识点真的是太好玩啦!能让我们看到好多奇妙的图形组合。

怎么样,是不是很有意思?大家快来好好探索一下吧!
我的观点结论:正多边形和圆的知识点充满趣味和奇妙,值得我们深入研究和好好掌握!。

初中数学中考复习正多边形与圆的有关的证明和计算

初中数学中考复习正多边形与圆的有关的证明和计算

初中数学中考复习正多边形与圆的有关的证明和计算正多边形与圆的有关证明和计算是初中数学中的基础知识,掌握这些知识将有助于学生在中考中取得好成绩。

下面将详细介绍正多边形与圆的证明和计算相关内容。

一、多边形的内角和在初中数学中,我们首先要了解正多边形的内角和的计算方式。

一个n边形(n≥3)的内角和公式为:(n-2)×180度,也可以写成(n-2)×π弧度。

例如,一个三角形的内角和为(3-2)×180度=180度;一个四边形的内角和为(4-2)×180度=360度。

二、正多边形的性质1.正多边形的内角是相等的。

这是因为正多边形的所有边长和内角都相等。

2.正多边形的外角是相等的。

外角是指在多边形外部,相邻两边的夹角。

3.正多边形的对角线个数为n(n-3)/2,其中n为多边形的边数。

例如,一个六边形有6(6-3)/2=9条对角线。

4.正多边形的对角线长度相等。

如果我们连接正多边形的一个顶点和非相邻顶点,得到的线段即为对角线。

所有对角线的长度均相等。

5.正多边形的中心到顶点的距离称为半径,正多边形的中心到边的距离称为中线。

一个正多边形的半径和中线相等。

三、正多边形的外接圆和内切圆1. 正n边形的外接圆半径r的计算公式为:r = a/2sin(π/n),其中a为正n边形的边长。

例如,一个正六边形的边长为a,那么它的外接圆的半径为r = a/2sin(π/6)。

2. 正n边形的内切圆半径R的计算公式为:R = a/2tan(π/n)。

例如,一个正六边形的边长为a,那么它的内切圆的半径为R =a/2tan(π/6)。

四、正多边形与圆的面积1. 正n边形的面积公式为:S = (1/4) × n × a² × cot(π/n),其中a为正n边形的边长。

例如,一个正六边形的边长为a,那么它的面积为S = (1/4) × 6 × a² × cot(π/6)。

中考数学复习满分突破正多边形与圆与弧长公式扇形面积圆锥侧面积有关的计算

中考数学复习满分突破正多边形与圆与弧长公式扇形面积圆锥侧面积有关的计算

中考数学复习满分突破正多边形与圆与弧长公式扇形面
积圆锥侧面积有关的计算
一、正多边形与圆的关系
正多边形是指所有边和角都相等的多边形。

一个正多边形可以画出一个内接圆,该圆的圆心即为正多边形的中心,且圆心与多边形的各个顶点连线都与多边形的一条边垂直。

正多边形的内角和公式为:
内角和=(n-2)×180°,其中n为正多边形的边数。

正多边形的外角和公式为:
外角和=360°,且每个外角的度数为360°/n,其中n为正多边形的边数。

1.弧长公式
弧长可以理解为一段圆周的长度。

弧长公式为:
弧长=弧度×半径,其中弧度=角度×π/180。

2.弧度制度数转换式
角度=弧度×180/π。

三、扇形面积的计算
扇形是由一条弧和两条半径组成的图形。

扇形面积公式为:
扇形面积=(弧长×半径)/2,其中弧长单位为弧度。

四、圆锥侧面积的计算
圆锥的侧面是由圆锥的母线、底面圆弧以及连接底面圆弧与顶点的三角形组成的。

圆锥侧面积公式为:
圆锥侧面积=弧长×母线/2,其中弧长单位为弧度,母线为连接圆锥顶点和底面圆圆心的线段长度。

以上是正多边形与圆、与弧长公式、扇形面积、圆锥侧面积有关的计算的相关知识点。

希望对你的中考数学复习有所帮助。

计算这些相关内容时,记得要熟记公式,并且注意单位的转换。

祝你取得满意的成绩!。

正多边形和圆知识点归纳

正多边形和圆知识点归纳

正多边形和圆知识点归纳1. 正多边形①定义:各边相等,各角也相等的多边形,叫做正多边形;②定义中两个条件缺一不可.我们知道三边相等的三角形是正三角形,三个角相等的三角形也是正三角形.但菱形四条边相等,却不是正四边形.矩形四角都相等,也不是正四边形.所以正多边形的定义中各边相等和各角相等两个条件缺一不可.2. 正多边形与圆的关系把一个圆分成相等的一些弧,就可以得到这个圆的内接正多边形,这个圆是这个多边形的外接圆.3、正多边形中各元素间的关系一个正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.如图,设正多边形的边长为a n,半径为R,边心距为r n,中心角为αn,则它们有如下关系:;正n边形的中心角;正n边形的周长P n=na n;正n边形的面积.4、正多边形有关计算在解决有关正多边形计算时,通常运用转化的思想方法,将正多边形的有关计算化为一个边长分别是正多边形的半径、正多边形边长的一半,正多边形的边心距的直角三角形来解决.5、正多边形的对称性①多边形都是轴对称图形,当边数为偶数时,它的对称轴是每一边的垂直平分线和正多边形的边心距所在的直线,当边数为奇数时,它的对称轴是边心距所在的直线;②只有正偶边形才是中心对称图形;③正n边形绕着它的中心每旋转就与它本身重合.典例讲解例1、填空题1. 如图,小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则该圆的半径为()A. B. C. D.答案:D2. 正六边形两条平行边间的距离是1,则它的边长为()A. B. C. D.答案:C3. 已知正三角形的边长为2,则它的内切圆和外接圆组成的圆环面积为()A. B. C. D.答案:B4. 边长为a的正三角形的边心距、半径和高之比为()A.1∶2∶3B.C. D.答案:A例2、如图,圆内接正六边形ABCDEF中,对角线BD、EC相交于点G,求∠BGC的度数.解:正六边形ABCDEF中DC=DE,,∴,同理可证:∠2=,∴∠BGC=∠1+∠2=.例3、如图,已知正三角形ABC外接圆的半径为R,求正三角形ABC的边长、边心距、周长和面积.思路点拨:过中心向正多边形的边作垂线得到Rt△OCH,在Rt△OCH中包含了中心角的一半、边心距、半径、边长的一半等基本元素.解:连接OB、OC,作OH⊥BC于H.例4、如图,正方形的边长为4cm,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:由题意知PD=PE=FQ设PD=PE=FQ=xcm,则EF=ED=(4-2x)cm,∵∠P=90°,由勾股定理ED=,∴,∴正八边形的边长为4-2x=cm,面积为.。

中考数学 第一编 教材知识梳理篇 第七章 圆 第三节 正

中考数学 第一编 教材知识梳理篇 第七章 圆 第三节 正

第三节正多边形与圆有关的计算,河北8年中考命题规律)年份题号考查点考查内容分值总分2014填空19 求扇形的面积已知扇形的弧长和半径,求扇形的面积3 32013选择14 求阴影部分面积利用垂径定理求圆半径,结合三角形全等性质将不规则图形转化为求扇形面积3 32010填空17 求圆锥的底面积由某路灯照射为背景,已知圆锥的高及母线与底面半径之间的夹角,求底面积3 32016、2015、2012、2011、2009年未考查命题规律纵观河北8年中考,在正多边形和圆、与圆有关的计算考点中,一般设置一道题,题型为选择、填空,分值为3分,题目难度不大,其中求扇形面积在填空题中考查了1次,选择题中考查了1次,求圆锥的底面积在填空题中考查了1次.命题预测预计2017年中考,本节内容考查的重点是扇形的有关计算题型,阴影部分面积的计算可能以选择或填空题为主,应对扇形有关公式熟练掌握加强训练.,河北8年中考真题及模拟)扇形面积的相关计算(2次)1.(2013河北14题3分)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=23,则阴影部分图形的面积为( D)A.4πB.2πC.πD.2π(第1题图)(第2题图) 2.(2014河北19题3分)如图,将长为8 cm的铁丝AB首尾相接围成半径为 2 cm的扇形.则S扇形=__4__cm2.3.(2010河北17题3分)某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8 m,母线AB与底面半径OB的夹角为α,tanα=43,则圆锥的底面积是__36π__m2.(结果保留π)(第3题图)(第4题图)4.(2016保定模拟)如图,两个同心圆的半径分别为6 cm和3 cm,大圆的弦AB与小圆相切,则劣弧AB的长为( B)A.2πcm B.4πcmC.6πcm D.8πcm5.(2016邯郸二模)如图,圆柱底面半径为2πcm,高为9 cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( C)A.12 cm B.97 cm C.15 cm D.21 cm6.(2016河北石家庄一中一模)如果一个扇形的弧长是43π,半径是6,那么此扇形的圆心角为( A)A.40°B.45°C.60°D.80°7.(2016河北石家庄二十八中三模)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( C)A.πB.4πC.π或4πD.2π或4π,(第7题图)),(第8题图))8.(2016河北石家庄十二中一模)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( B)A.2π3-32B.2π3- 3C.π-32D.π- 39.(2016河北石家庄四十二中三模)如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是__300π__cm2.(不考虑接缝等因素,计算结果用π表示)10.(2016河北保定十七中一模)如图,AB为⊙O的直径,弦AC=2,∠ABC=30°,∠ACB的平分线交⊙O于点D.(1)求BC,AD的长;(2)求图中两阴影部分面积的和.解:(1)在Rt △ABC 中,∠ABC =30°,AC =2,∴AB =4,∴BC =AB 2-AC 2=2 3.∵∠ACB 的平分线交⊙O 于点D ,∴∠DCA =∠BCD,∴AD ︵=BD ︵,∴AD =BD ,∴在Rt △ABD 中,AD =BD =22AB =22;(2)如图,连接OC ,OD.∵∠ABC =30°,∴∠AOC =2∠ABC=60°.∵OA =OB ,∴S △AOC =12S △ABC =12×12×AC ·BC =12×12×2×23= 3.由(1),得∠AOD=90°,∴∠COD =150°,S △AOD =12×AO ×OD =12×22=2,∴S 阴影=S 扇形COD -S △AOC -S △AOD =150π×22360-3-2=53π-3-2.,中考考点清单)如果圆的半径是R ,弧所对的圆心角度数是n ,那么弧长公式 弧长l =①__n πR180__扇形面积公式S 扇=n πR 2360=②__12lR__图形圆锥简介(1)h 是圆锥的高,r 是底面半径;(2)l 是圆锥的母线,其长为侧面展开后所得扇形的③__半径__;(3)圆锥的侧面展开图是半径等于④__l__长,弧长等于圆锥底面⑤__周长__的扇形.圆锥的侧面积S 侧=⑥__πrl __圆锥的全面积S 全=⑦__πr 2+πrl__1.牢记圆的有关计算公式,并灵活处理好公式之间的转换,当出现求不规则图形的面积时,注意利用割补法与等积变换转化为规则图形,再利用规则图形的公式求解.2.圆锥的侧面问题转化为平面问题,如最短路线问题.,中考重难点突破)弧长与扇形面积【例1】(1)(2015苏州中考)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧BC的弧长为________.(结果保留π)例1(1)题图例1(2)题图(2)(2015邯郸二模)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( )A .πaB .2πaC .12πa D .3a【解析】(1)连接OC 、OB ,设法求半径OB 及∠BOC 即可;(2)阴影部分的周长为AC ︵的长的2倍.【学生解答】(1)13π;(2)A1.(2016安徽中考)如图,已知⊙O 的半径为2,A 为⊙O 外一点,过点A 作⊙O 的一条切线AB ,切点是B ,AO的延长线交⊙O 于点C ,若∠BAC=30°,则劣弧BC ︵的长为__4π3__.圆锥的侧面积与全面积【例2】(2016成都中考)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________.(结果保留π)【学生解答】68π2.(2016铜仁中考)已知圆锥的底面直径为20 cm,母线长为90 cm,则圆锥的表面积是__1__000π__cm2.3.(2016遵义中考)有一圆锥,它的高为8 cm ,底面半径为6 cm ,则这个圆锥的侧面积是__60π__cm 2.(结果保留π)4.(2016巴中中考)如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为__18__.5.(2016天津中考)正六边形的边心距为3,则该正六边形的边长是( B ) A . 3 B .2 C .3 D .2 36.(2016石家庄四十三中模拟)如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白=( C )A .3B .4C .5D .6,中考备考方略)1.(2016台州中考)如图,△ABC 的外接圆O 的半径为2,∠C =40°,则AB ︵的长是__89π__.2.(2016长沙中考)如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为__2π__.(结果保留π)3.(2016自贡中考)一个扇形的半径为8 cm,弧长为16π3cm,则扇形的圆心角为( B)A.60°B.120°C.150°D.180°4.(2016德州中考)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5,那么所需扇形铁皮的圆心角应为 ( A)A.288°B.144°C.216°D.120°,(第4题图)),(第5题图))5.(2016苏州中考)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为2.6.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是__3π__.,(第6题图)),(第7题图))7.(2016宁波中考)如图,半圆O 的直径AB =2,弦CD∥AB,∠COD =90°,则图中阴影部分的面积为__π4__.8.(2016邵阳中考)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O ,A ,B 均为格点,则扇形OAB 的面积大小是__5π4__.,(第8题图)),(第9题图))9.(2016德州中考)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O垂合,则图中阴影部分的面积是2-π6__.10.(2016烟台中考)如图,C为半圆内一点,O为圆心,直径AB长为2 cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为__14π__ cm 2.11.(2015烟台中考)如图,将弧长为6π,圆心角为120°的圆形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(粘连部分忽略不计),则圆锥形纸帽的高是__62__.12.(2016石家庄二十八中二模)如图,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上.若∠BAD=120°,则弧BC 的长度等于__π3__.(结果保留π)(第12题图)(第13题图)13.(2016滨州中考)如图,△ABC 是等边三角形,AB =2,分别以A ,B ,C 为圆心,以2为半径作弧,则图中阴影部分的面积是.14.(2016潍坊中考)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8 cm ,水的最大深度是2 cm ,则杯底有水部分的面积是( A )A .(163π-43)cm 2B .(163π-83)cm 2C .(83π-43)cm 2D .(43π-23)cm 2,(第14题图)),(第15题图))15.(2016潍坊中考)如图,在Rt △ABC 中,∠A=30°,BC =23,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( A )A .1534-32πB .1532-32πC .734-π6 D .732-π616.(2015遵义中考)如图,在圆心角为90°的扇形OAB 中,半径OA =2 cm ,C 为AB ︵的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为__⎝ ⎛⎭⎪⎫12π+2-12cm 2__.,(第16题图)),(第17题图))17.(2016泰州中考)如图,⊙O 的半径为2,点A ,C 在⊙O 上,线段BD 经过圆心O ,∠ABD =∠CDB=90°,AB =1,CD =3,则图中阴影部分的面积为__53π__.18.(2016贵港中考)如图,Rt △ABC 中∠C=90°,∠BAC =60°,将△ABC 绕点A 逆时针方向旋转60°后得到△ADE,若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是__π2__.(结果保留π)19.(2016兰州中考)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 边于D.以AB 上某一点O 为圆心作⊙O,使⊙O 经过点A 和点D.(1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC =3,∠B =30°. ①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)解:(1)直线BC 与⊙O 相切;连接OD ,∵OA = OD ,∴∠OAD =∠ODA.∵∠BAC 的角平分线AD 交BC 边于D ,∴∠CAD =∠OAD,∴∠CAD =∠ODA,∴OD ∥AC ,∴∠ODB =∠C=90°,即OD⊥BC.又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切;(2)①设OA =OD =r ,在Rt △BDO 中,∠B =30°,∴OB =2r.在Rt △ACB 中,∠B =30°,∴AB =2AC =6,∴3r =6,解得r =2.②在Rt △ACB 中,∠B =30°.∴∠BOD =60°.∴S 扇形ODE =23π.∴所求图形面积为:S △BOD -S 扇形ODE =23-23π.20.(2016廊坊二模)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,且∠BOD=60°,过点D 作⊙O 的切线CD 交AB 的延长线于点C ,E 为AD ︵的中点,连接DE ,EB.(1)求证:四边形BCDE 是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O 的半径r.解:(1)连接OE ,依题意得,AE ︵=ED ︵=BD ︵,∴∠AOE =∠EOD=∠DOB=60°,∴∠EBA =12∠EOA =30°,∠DEB=12∠DOB =30°,∴∠EBA =∠DEB,∴DE ∥AB ,∵AE ︵=ED ︵=BD ︵,∴OD ⊥BE ,又CD 是⊙O 切线,∴OD ⊥CD ,∴BE ∥CD ,∴四边形BCDE 为平行四边形;(2)∵阴影部分面积为6π,∴60°·π·r 2360°=6π,∴r 2=36,∴r =6.21.(2016邢台二中一模)如图,已知AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD⊥CP 于点D. (1)求证:△ACB∽△CDB;(2)若⊙O 的半径为1,∠BCP =30°,求图中阴影部分的面积.解:(1)∵直线CP 是⊙O 的切线,∴∠BCD =∠BAC.∵AB 是直径,∴∠ACB =90°.又∵BD⊥CP,∴∠CDB =90°,∴∠ACB =∠CDB=90°,∴△ACB ∽△CDB ;(2)如图,连接OC.∵直线CP 是⊙O 的切线,∠BCP =30°,∴∠COB =2∠BCP=30°,∴△OCB 是正三角形.∵⊙O 的半径为1,∴S △OCB =34,S 扇形OCB =60πr 2360=π6,∴S 阴影=S 扇形OCB-S △OCB =π6-34.。

正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算正多边形和圆及圆的有关计算一、知识梳理:1、正多边形和圆各边相等,各角也相等的多边形叫正多边形。

定理:把圆分成n (n >3)等分:(l )依次连结各分点所得的多边形是这个圆的内按正多边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形。

定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

正多边形的外接(或内切)圆的圆心叫正多边形的中心。

外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。

正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。

正n 边形的每个中心角等于360 n正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n边形的中心。

若n 为偶数,则正n 边形又是中心对称图形,它的中心就是对称中心。

边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。

2、正多边形的有关计算(n -2) 180正n 边形的每个内角都等于 n定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。

正多边形的有关计算都归结为解直角三角形的计算。

3、画正多边形(1)用量角器等分圆 (2)用尺规等分圆正三、正六、正八、正四及其倍数(正多边形)。

正五边形的近似作法(等分圆心角)4、圆周长、弧长(1)圆周长C =2πR ;(2)弧长L =5、圆扇形,弓形的面积(l )圆面积:S =πR ;(2)扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

在半径为R 的圆中,圆心角为n °的扇形面积S 扇形的计算公式为:S 扇形注意:因为扇形的弧长L =2n πR 180n πR 2= 3601n πR 。

所以扇形的面积公式又可写为S 扇形=LR 2180(3)弓形的面积由弦及其所对的弧组成的圆形叫做弓形。

弓形面积可以在计算扇形面积和三角形面积的基础上求得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节正多边形与圆有关的计算,河北8年中考命题规律)径,某路灯照3 题预测计算可能以,河北8年中考真题及模拟)扇形面积的相关计算(2次)1.(2013河北14题3分)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=23,则阴影部分图形的面积为( D)A.4πB.2πC.πD.2π3(第1题图)(第2题图)2.(2014河北19题3分)如图,将长为8 cm的铁丝AB首尾相接围成半径为 2 cm的扇形.则S扇形=__4__cm2.圆锥的相关计算(1次)3.(2010河北17题3分)某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8 m,母线AB与底面半径OB的夹角为α,tanα=43,则圆锥的底面积是__36π__m2.(结果保留π)(第3题图)(第4题图)4.(2016保定模拟)如图,两个同心圆的半径分别为6 cm 和3 cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( B )A .2π cmB .4π cmC .6π cmD .8π cm5.(2016邯郸二模)如图,圆柱底面半径为2πcm ,高为9 cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为(C )A .12 cmB .97 cmC .15 cmD .21 cm6.(2016河北石家庄一中一模)如果一个扇形的弧长是43π,半径是6,那么此扇形的圆心角为( A )A .40°B .45°C .60°D .80°7.(2016河北石家庄二十八中三模)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( C )A .πB .4πC .π或4πD .2π或4π,(第7题图)) ,(第8题图))8.(2016河北石家庄十二中一模)如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( B )A .2π3-32B .2π3- 3C .π-32D .π- 39.(2016河北石家庄四十二中三模)如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是__300π__cm 2.(不考虑接缝等因素,计算结果用π表示)10.(2016河北保定十七中一模)如图,AB 为⊙O 的直径,弦AC =2,∠ABC =30°,∠ACB 的平分线交⊙O 于点D.(1)求BC ,AD 的长;(2)求图中两阴影部分面积的和.解:(1)在Rt △ABC 中,∠ABC =30°,AC =2,∴AB =4,∴BC =AB 2-AC 2=2 3.∵∠ACB 的平分线交⊙O 于点D ,∴∠DCA =∠BCD,∴AD ︵=BD ︵,∴AD =BD ,∴在Rt △ABD 中,AD =BD =22AB =22;(2)如图,连接OC ,OD.∵∠ABC =30°,∴∠AOC =2∠ABC=60°.∵OA =OB ,∴S △AOC =12S △ABC =12×12×AC ·BC =12×12×2×23= 3.由(1),得∠AOD=90°,∴∠COD =150°,S △AOD =12×AO ×OD =12×22=2,∴S 阴影=S 扇形COD -S △AOC-S △AOD =150π×22360-3-2=53π-3-2.,中考考点清单)圆的弧长及扇形面积公式)hrl 圆锥的全面积周长C =⑨2nR sin 180°n边心距r n =⑩R cos 180°n1.牢记圆的有关计算公式,并灵活处理好公式之间的转换,当出现求不规则图形的面积时,注意利用割补法与等积变换转化为规则图形,再利用规则图形的公式求解.2.圆锥的侧面问题转化为平面问题,如最短路线问题.,中考重难点突破)弧长与扇形面积【例1】(1)(2015苏州中考)如图,AB 切⊙O 于点B ,OA =2,∠OAB =30°,弦BC∥OA,劣弧BC 的弧长为________.(结果保留π)例1(1)题图例1(2)题图(2)(2015邯郸二模)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( )A .πaB .2πaC .12πa D .3a【解析】(1)连接OC 、OB ,设法求半径OB 及∠BOC 即可;(2)阴影部分的周长为AC ︵的长的2倍.【学生解答】(1)13π;(2)A1.(2016安徽中考)如图,已知⊙O 的半径为2,A 为⊙O 外一点,过点A 作⊙O 的一条切线AB ,切点是B ,AO的延长线交⊙O 于点C ,若∠BAC=30°,则劣弧BC ︵的长为__4π3__.圆锥的侧面积与全面积【例2】(2016成都中考)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________.(结果保留π)【学生解答】68π 2.(2016铜仁中考)已知圆锥的底面直径为20 cm ,母线长为90 cm ,则圆锥的表面积是__1__000π__cm 2.3.(2016遵义中考)有一圆锥,它的高为8 cm ,底面半径为6 cm ,则这个圆锥的侧面积是__60π__cm 2.(结果保留π)4.(2016巴中中考)如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为__18__.5.(2016天津中考)正六边形的边心距为3,则该正六边形的边长是( B ) A . 3 B .2 C .3 D .2 36.(2016石家庄四十三中模拟)如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白=( C )A .3B .4C .5D .6,中考备考方略)1.(2016台州中考)如图,△ABC 的外接圆O 的半径为2,∠C =40°,则AB ︵的长是__89π__.2.(2016长沙中考)如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为__2π__.(结果保留π)3.(2016自贡中考)一个扇形的半径为8 cm ,弧长为16π3cm ,则扇形的圆心角为( B )A .60°B .120°C .150°D .180°4.(2016德州中考)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5,那么所需扇形铁皮的圆心角应为 ( A )A .288°B .144°C .216°D .120°,(第4题图)) ,(第5题图))5.(2016苏州中考)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若∠A=∠D,CD =3,则图中阴影部分的面积为2.6.如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是__3π__.,(第6题图)) ,(第7题图))7.(2016宁波中考)如图,半圆O 的直径AB =2,弦CD∥AB,∠COD =90°,则图中阴影部分的面积为__π4__.8.(2016邵阳中考)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O ,A ,B 均为格点,则扇形OAB 的面积大小是__5π4__.,(第8题图)) ,(第9题图))9.(2016德州中考)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 垂合,则图中阴影部分的面积是2-π6__.10.(2016烟台中考)如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC =60°,∠BCO =90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为__14π__ cm 2.11.(2015烟台中考)如图,将弧长为6π,圆心角为120°的圆形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(粘连部分忽略不计),则圆锥形纸帽的高是2__.12.(2016石家庄二十八中二模)如图,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF上.若∠BAD=120°,则弧BC 的长度等于__π3__.(结果保留π)(第12题图)(第13题图)13.(2016滨州中考)如图,△ABC 是等边三角形,AB =2,分别以A ,B ,C 为圆心,以2为半径作弧,则图中阴影部分的面积是.14.(2016潍坊中考)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8 cm ,水的最大深度是2 cm ,则杯底有水部分的面积是( A )A .(163π-43)cm 2B .(163π-83)cm 2C .(83π-43)cm 2D .(43π-23)cm 2,(第14题图)) ,(第15题图))15.(2016潍坊中考)如图,在Rt △ABC 中,∠A=30°,BC =23,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( A )A .1534-32πB .1532-32πC .734-π6 D .732-π616.(2015遵义中考)如图,在圆心角为90°的扇形OAB 中,半径OA =2 cm ,C 为AB ︵的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为__⎝ ⎛⎭⎪⎫12π+2-12cm 2__.,(第16题图)) ,(第17题图))17.(2016泰州中考)如图,⊙O 的半径为2,点A ,C 在⊙O 上,线段BD 经过圆心O ,∠ABD =∠CDB=90°,AB =1,CD =3,则图中阴影部分的面积为__53π__.18.(2016贵港中考)如图,Rt △ABC 中∠C=90°,∠BAC =60°,将△ABC 绕点A 逆时针方向旋转60°后得到△ADE,若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是__π2__.(结果保留π)19.(2016兰州中考)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 边于D.以AB 上某一点O 为圆心作⊙O,使⊙O 经过点A 和点D.(1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC =3,∠B =30°. ①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)解:(1)直线BC 与⊙O 相切;连接OD ,∵OA = OD ,∴∠OAD =∠ODA.∵∠BAC 的角平分线AD 交BC 边于D ,∴∠CAD =∠OAD,∴∠CAD =∠ODA,∴OD ∥AC ,∴∠ODB =∠C=90°,即OD⊥BC.又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切;(2)①设OA =OD =r ,在Rt △BDO 中,∠B =30°,∴OB =2r.在Rt △ACB 中,∠B =30°,∴AB =2AC =6,∴3r =6,解得r =2.②在Rt △ACB 中,∠B =30°.∴∠BOD =60°.∴S 扇形ODE =23π.∴所求图形面积为:S △BOD -S 扇形ODE =23-23π.20.(2016廊坊二模)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,且∠BOD=60°,过点D 作⊙O 的切线CD 交AB 的延长线于点C ,E 为AD ︵的中点,连接DE ,EB.(1)求证:四边形BCDE 是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O 的半径r.解:(1)连接OE ,依题意得,AE ︵=ED ︵=BD ︵,∴∠AOE =∠EOD=∠DOB=60°,∴∠EBA =12∠EOA =30°,∠DEB=12∠DOB =30°,∴∠EBA =∠DEB,∴DE ∥AB ,∵AE ︵=ED ︵=BD ︵,∴OD ⊥BE ,又CD 是⊙O 切线,∴OD ⊥CD ,∴BE ∥CD ,∴四边形BCDE 为平行四边形;(2)∵阴影部分面积为6π,∴60°·π·r 2360°=6π,∴r 2=36,∴r =6.21.(2016邢台二中一模)如图,已知AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD⊥CP 于点D. (1)求证:△ACB∽△CDB;(2)若⊙O 的半径为1,∠BCP =30°,求图中阴影部分的面积.解:(1)∵直线CP 是⊙O 的切线,∴∠BCD =∠BAC.∵AB 是直径,∴∠ACB =90°.又∵BD⊥CP,∴∠CDB =90°,∴∠ACB =∠CDB=90°,∴△ACB ∽△CDB ;(2)如图,连接OC.∵直线CP 是⊙O 的切线,∠BCP =30°,∴∠COB =2∠BCP=30°,∴△OCB 是正三角形.∵⊙O 的半径为1,∴S △OCB =34,S 扇形OCB =60πr 2360=π6,∴S 阴影=S 扇形OCB-S △OCB =π6-34.。

相关文档
最新文档