Riemannian Manifolds with Diagonal Metric. The Lam'e and Bourlet Systems

合集下载

美国数学学生推荐书目

美国数学学生推荐书目
4、An introduction to homological algebra ,by weibel:较新的研究生二年级同调代数教材;
5、A Course in Homological Algebra by P.J.Hilton,U.Stammbach:经典全面的同调代数参考书;
6、Homological Algebra by Cartan:经典的同调代数参考书;
9、Measure Theory, Donald L. Cohn:经典的测度论参考书。
微分拓扑 李群、李代数
1、Hirsch, Differential topology:标准的研究生微分拓扑教材,有相当难度;
2、Lang, Differential and Riemannian manifolds:研究生微分流形的参考书,难度较高;
第三学年
微分几何:
1、Peter Petersen, Riemannian Geometry:标准的黎曼几何教材;
2、Riemannian Manifolds: An Introduction to Curvature by John M. Lee:最新的黎曼几何教材;
3、doCarmo, Riemannian Geometry.:标准的黎曼几何教材;
2、Algebraic Geometry Robin Hartshorne :经典的代数几何教材,难度很高;
3、Basic Algebraic Geometry 1&2 2nd ed. I.R.Shafarevich.:非常好的代数几何入门教材;
4、Principles of Algebraic Geometry by giffiths/harris:全面、经典的代数几何参考书,偏复代数几何;

通过具有去甲肾上腺素重摄取抑制剂活性和5-HT2A拮抗活性的化合物

通过具有去甲肾上腺素重摄取抑制剂活性和5-HT2A拮抗活性的化合物

专利名称:通过具有去甲肾上腺素重摄取抑制剂活性和5-HT2A拮抗活性的化合物治疗血管舒缩症的方法专利类型:发明专利
发明人:达莱内·科莱曼·迪克尔,伊斯特万·约瑟夫·梅尔肯塔勒申请号:CN200380101558.9
申请日:20031015
公开号:CN1705475A
公开日:
20051207
专利内容由知识产权出版社提供
摘要:本发明涉及调节去甲肾上腺素水平治疗的化合物及其组合物在治疗血管舒缩症诸如体温调节紊乱中的用途。

此外,本发明涉及利用具有单一去甲肾上腺素重摄取抑制剂(NRI)活性或去甲肾上腺素重摄取抑制剂和5-羟色胺重摄取抑制剂(NRI/SRI)双重活性以及与5-HT受体拮抗剂活性组合的化合物及其组合物的用途。

申请人:惠氏公司
地址:美国新泽西州
国籍:US
代理机构:中原信达知识产权代理有限责任公司
更多信息请下载全文后查看。

黎曼流形上具有凸约束最优控制问题的必要条件

黎曼流形上具有凸约束最优控制问题的必要条件

2.2. 平行移动
对于一些细节的定义可以参考文献([8] [9] [13] [14])。
对于任意的 x ∈ M 及 r, s ∈ N ,所谓 M 在 x 处的一个 (r, s) 型张量 Γ 是指: r + s 重线性映射:
F : Tx*M × × Tx*M × TxM × × TxM → R
r
s
其中 r 称为 Γ 的反变阶数,s 称为 Γ 的协变阶数。 Γrs ( x) 表示 M 在 x 点的所有 (r, s) 型张量构成的集合,
集,因此做的是凸变分,[9]中的二阶必要条件是针对使得庞特里亚金形最大值原理退化的控制所满足的 条件。本文所得到的二阶必要条件,是针对庞特里亚金型最大值原理在古典意义下退化的控制所满足的 条件。参考文献[9]所考虑的控制集合是开集的情况。本文结果对文献[9]和文献[10]有重要补充。对不同 控制给予不同的条件得到的结果的强弱也是不同的,每种方法各有优势。因此在弯曲空间中依然还有事 情要做。
Open Access
1. 引言
设 n ∈ N , M 是一个具有黎曼度量 g 的完全单连通的黎曼流形。设 ∇ 是 M 上与 g 相关的 Levi-Civita
联络,ρ (⋅,⋅) 是 M 上的距离函数,TxM 是 M 在 x ∈ M 处的切空间,Tx*M 为该余切空间。我们用 ⋅,⋅ 和 ⋅
分别表示与 g 相关的内积和 TxM 上的范数。另外,= 分别用 TM
Necessary Conditions for Optimal Control Problems with Convex Constraints on Riemannian Manifolds
Yanjun Zeng Department of Mathematics, Southwest Jiaotong University, Chengdu Sichuan

[黎曼几何]比较定理的应用(直径估计、基本群)

[黎曼几何]比较定理的应用(直径估计、基本群)

LECTURE40:APPLICATIONS OF THE VOLUME COMPARISONTHEOREM1.Volume Growth of Geodesic BallsLet(M,g)be a complete Riemannian manifold with Ric≥0.According to Bishop-Gromov volume comparison theorem,Vol(B r(p))≤Vol(B0r)=ωm r m,whereωm is the volume of unit ball in R m with equality holds if and only if(M,g)is isometric with(R m,g0).A natural question is:what is the lower bound of the volume growth?Of course this question is reasonable only for non-compact Riemannian manifolds.Theorem1.1(Calabi-Yau).Let(M,g)be a complete non-compact Riemannian man-ifold with Ric≥0.Then there exists a positive constant c depending only on p and m so thatVol(B r(p))≥crfor any r>2.Proof.(This proof is due to Gromov.)Since M is complete and non-compact,for any p∈M there exists a ray,i.e.a geodesicγ:[0,∞)→M withγ(0)=p such that dist(p,γ(t))=t for all t>0.(See PSet3problem4for more details.) For any t>32,using the Bishop-Gromov volume comparison theorem,we getVol(B t+1(γ(t))) Vol(B t−1(γ(t)))≤ωm(t+1)mωm(t−1)m=(t+1)m(t−1)m.On the other hand,by triangle inequality,B1(p)⊂B t+1(γ(t))\B t−1(γ(t)).It followsVol(B1(p)) Vol(B t−1(γ(t)))≤Vol(B t+1(γ(t))\B t−1(γ(t)))Vol(B t−1(γ(t)))≤(t+1)m−(t−1)m(t−1)m,i.e.Vol(B t−1(γ(t)))≥Vol(B1(p))(t−1)m(t+1)m−(t−1)m≥C(m)Vol(B1(p))t,wehre C(m)is the infimum of the function1t(t−1)m(t+1)m−(t−1)mon[32,∞),which is positive.Now the theorem follows from the factB r(p)⊃B r+12−1(γ(r+12)).12LECTURE40:APPLICATIONS OF THE VOLUME COMPARISON THEOREM2.Cheng’s Maximal Diameter TheoremAs a second application of volume comparison theorem,we will proveTheorem2.1(S.Y.Cheng).Let(M,g)be a complete Riemanniian manifold withRic≥(n−1)k for some k>0,and diam(M,g)=π√k ,then M is isometric to thestandard sphere of radius1√k.Proof.(This proof is due to Shiohama)For simplicity we may assume k=1.By Bishop-Gromov volume comparison theorem,for any p∈M,Vol(Bπ/2(p)) Vol(M)=Vol(Bπ/2(p))Vol(Bπ(p))≥Vol(B1π/2)Vol(B1π)=12.Now let p,q∈M so that dist(p,q)=π.The the above inequality impliesVol(Bπ/2(p))≥12Vol(M),Vol(Bπ/2(q))≥12Vol(M).Since Bπ/2(p)∩Bπ/2(q)=∅,we must haveVol(Bπ/2(p)) Vol(Bπ(p))=Vol(B1π/2)Vol(B1π)=12,Vol(Bπ/2(q))Vol(Bπ(q))=Vol(B1π/2)Vol(B1π)=12.According to Bishop-Gromov comparison theorem,Bπ/2(p)and Bπ/2(q)are both iso-metric to half sphere.It follows that M is isometric to S m.3.Fundamental Group and Milnor’s ConjectureLet’s start with some abstract definitions in algebra.Let G be a group.G is said to befinitely generated if there exists afinite subsetΓ={g1,···,g N}of G so that any element in G can be represented as group multiplications of elements inΓ.Note that if the group identity element e is inΓ,we can always remove it.Now let’sfix a setΓof generators of G.The growth function of G with respect toΓis defined to be the number of group elements that can be represented as a product of at most k generators,i.e.NΓG (k)=#{g∈G|∃l≤k and g i1,···,g il∈Γs.t.g=g i1···g il}.We say that G is of(at most)polynomial growth if NΓG (k)≤ck n for some constant cdepending only on G,Γ,and similarly G is of(at least)exponential growth if NΓG (k)≥ce k.Note that ifΓ is anotherfinite set of generators,then there exists integers c1,c2 so that any element ofΓcan be represented via at most c1elements ofΓ ,and any element ofΓ can be represented via at most c2elements ofΓ.It follows thatNΓG (k)≥NΓG(c1k),NΓG(k)≥NΓG(c2k).So the conception of polynomial/exponential growth is independent of the choice of the generating set.LECTURE40:APPLICATIONS OF THE VOLUME COMPARISON THEOREM3Coming back to Riemannian manifolds.If(M,g)is a compact Riemannian man-ifold,and M its universal covering endowed with pull-back metric.Then the funda-mental groupπ1(M)acts isometrically on M as the group of deck transformations.If M is compact,the following results are well-known:•π1(M)isfinitely generated.•(Gromov)If K≥0,then the set of generates can be choose to be no more than c(m)for some constant c depending only on m.A similar results holds for manifolds with K≥−k2and diam(M,g)≤D.(The proof uses Toporogov comparison theorem.)•(Milnor)If Ric≥0,then NΓ(k)≤ck m;if K<0,then NΓ(k)≥ce k.(The proof uses volume comparison theorem.See the following theorem for thefirst part.)For non-compact Riemannian manifolds,the fundamental group might be not finitely generated in general.However,we haveTheorem3.1(Milnor).Let M be a complete Riemannian manifold with Ric≥0 and let G⊂π1(M)be anyfinitely generated subgroup.Then there exists a constant c depending only on M and the chosefinite generating setΓof G so that NΓ(k)≤ck m. Proof.LetΓbe afinite set of generators of G.Fix a point˜p∈ M and letl=max{dist(˜p,g i˜p)|g i∈Γ}.Then by triangle inequality,for any g=g i1···g ik∈Γk⊂G,dist(˜p,g˜p)≤kl.One theother hand side,we can pickε=13min{dist(˜p,g˜p)|e=g∈G}>0so that the balls Bε(g˜p)are all disjoint for g∈G.It followsB kl+ε(˜p)⊃∪g∈Γk Bε(g˜p)and thusVol(B kl+ε(˜p))≥NΓGVol(Bε(p)). Applying the Bishop-Gromov’s volume comparison theorem,we getNΓG ≤Vol(B kl+ε(˜p))Vol(Bε(p))≤(kl+ε)mεm≤ck m.We end this course by stating the following major conjecture in this subject: Conjecture3.2(Milnor).Let M be a complete Riemannian manifold with Ric≥0, thenπ1(M)isfinitely generated.。

丘成桐大学生数学竞赛参考书

丘成桐大学生数学竞赛参考书

丘成桐大学生数学竞赛参考书Geometry and Topology (the second draft)Space curves and surfacesCurves and Parametrization, Regular Surfaces; Inverse Images of Regular Values.Gauss Map and Fundamental Properties; Isometries; Conformal Maps; Rigidity of the Sphere.Topological spaceSpace, maps, compactness and connectedness, quotients; Paths and Homotopy. The Fundamental Group of the Circle. Induced Homomorphisms. Free Products of Groups. The van Kampen Theorem. Covering Spaces and Lifting Properties; Simplex and complexes. Triangulations. Surfaces and its classification.Differential ManifoldsDifferentiable Manifolds and Submanifolds, Differentiable Functions and Mappings; The Tangent Space, Vector Field and Covector Fields. Tensors and Tensor Fields and differential forms. The Riemannian Metrics as examples, Orientation and Volume Element; Exterior Differentiation and Frobenius's Theorem; Integration on manifolds, Manifolds with Boundary and Stokes' Theorem.Homology and cohomologySimplicial and Singular Homology. Homotopy Invariance. Exact Sequences and Excision. Degree. Cellular Homology. Mayer-Vietoris Sequences. Homology with Coefficients. The Universal Coefficient Theorem. Cohomology of Spaces. The Cohomology Ring. A Kunneth Formula. Spaces with Polynomial Cohomology. Orientations and Homology. Cup Product and Duality.Riemannian ManifoldsDifferentiation and connection, Constant Vector Fields and Parallel DisplacementRiemann Curvatures and the Equations of Structure Manifolds of Constant Curvature,Spaces of Positive Curvature, Spaces of Zero Curvature, Spaces of Constant Negative CurvatureReferences:M. do Carmo , Differentia geometry of curves and surfaces.Prentice- Hall, 1976 (25th printing)Chen Qing and Chia Kuai Peng, Differential GeometryM. Armstrong, Basic Topology Undergraduate texts in mathematicsW.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry Academic Press, Inc., Orlando, FL, 1986M. Spivak, A comprehensive introduction to differential geometryN. Hicks, Notes on differential geometry, Van Nostrand.T. Frenkel, Geometry of PhysicsJ. Milnor, Morse TheoryA Hatcher, Algebraic Topology(/~hatcher/AT/ATpage.html)J. Milnor, Topology from the differentiable viewpointR. Bott and L. Tu, Differential forms in algebraic topologyV. Guillemin, A. Pollack, Differential topologyAlgebra, Number Theory and Combinatorics (second draft)Linear AlgebraAbstract vector spaces; subspaces; dimension; matrices and linear transformations; matrix algebras and groups; determinants and traces; eigenvectors and eigenvalues, characteristic and minimal polynomials; diagonalization and triangularization of operators; invariant subspaces and canonical forms; inner products and orthogonalbases; reduction of quadratic forms; hermitian and unitary operators, bilinear forms; dual spaces; adjoints. tensor products and tensor algebras;Integers and polynomialsIntegers, Euclidean algorithm, unique decomposition; congruence and the Chinese Remainder theorem; Quadratic reciprocity ; Indeterminate Equations. Polynomials, Euclidean algorithm, uniqueness decomposition, zeros; The fundamental theorem of algebra; Polynomials of integer coefficients, the Gauss lemma and the Eisenstein criterion; Polynomials of several variables, homogenous and symmetric polynomials, the fundamental theorem of symmetric polynomials.GroupGroups and homomorphisms, Sylow theorem, finitely generated abelian groups. Examples: permutation groups, cyclic groups, dihedral groups, matrix groups, simple groups, Jordan-Holder theorem, linear groups (GL(n, F) and its subgroups), p-groups, solvable and nilpotent groups, group extensions, semi-direct products, free groups, amalgamated products and group presentations.RingBasic properties of rings, units, ideals, homomorphisms, quotient rings, prime and maximal ideals, fields of fractions, Euclidean domains, principal ideal domains and unique factorization domains, polynomial and power series rings, Chinese Remainder Theorem, local rings and localization, Nakayama's lemma, chain conditions and Noetherian rings, Hilbert basis theorem, Artin rings, integral ring extensions, Nullstellensatz, Dedekind domains,algebraic sets, Spec(A).ModuleModules and algebra Free and projective; tensor products; irreducible modules and Schur’s lemma; semisimple, simple and primitive rings; density and Wederburn theorems; the structure of finitely generated modules over principal ideal domains, with application to abelian groups and canonical forms; categories and functors; complexes, injective modues, cohomology; Tor and Ext.FieldField extensions, algebraic extensions, transcendence bases; cyclic and cyclotomic extensions; solvability of polynomial equations; finite fields; separable and inseparable extensions; Galois theory, norms and traces, cyclic extensions, Galois theory of number fields, transcendence degree, function fields.Group representationIrreducible representations, Schur's lemma, characters, Schur orthogonality, character tables, semisimple group rings, induced representations, Frobenius reciprocity, tensor products, symmetric and exterior powers, complex, real, and rational representations.Lie AlgebraBasic concepts, semisimple Lie algebras, root systems, isomorphism and conjugacy theorems, representation theory.Combinatorics (TBA)References:Strang, Linear algebra, Academic Press.I.M. Gelfand, Linear Algebra《整数与多项式》冯克勤余红兵著高等教育出版社Jacobson, Nathan Basic algebra. I. Second edition. W. H. Freeman and Company, New York, 1985. xviii+499 pp.。

微分几何与广义相对论 英文

微分几何与广义相对论 英文

微分几何与广义相对论英文English Answer:Differential geometry is a branch of mathematics that studies smooth manifolds, which are spaces that are locally Euclidean. It is a fundamental tool in general relativity, which is a theory of gravity that describes the universe on a large scale.In general relativity, spacetime is modeled as a smooth manifold. The curvature of spacetime is determined by the distribution of mass and energy in the universe. The equations of general relativity describe how the curvature of spacetime affects the motion of objects.Differential geometry provides the mathematical tools that are needed to understand the curvature of spacetime. These tools include the concepts of Riemannian manifolds, curvature tensors, and geodesics.Riemannian manifolds are smooth manifolds that are equipped with a metric tensor. The metric tensor is a field that assigns a length to each tangent vector at each point on the manifold. The curvature tensor is a field that measures the curvature of the manifold. Geodesics are curves on the manifold that minimize the distance between two points.The equations of general relativity can be expressed in terms of the curvature tensor and the metric tensor. These equations describe how the curvature of spacetime affects the motion of objects.Differential geometry is a powerful tool that has been used to make significant advances in our understanding of gravity. It is a fundamental part of general relativity, and it continues to be used to explore the nature of the universe.Chinese Answer:微分几何是数学的一个分支,它研究光滑流形,即局部欧几里得空间。

四元数射影空间中全实2-调和子流形的一些注记

四元数射影空间中全实2-调和子流形的一些注记

四元数射影空间中全实2-调和子流形的一些注记周俊东;宋卫东;徐传友【摘要】The authors studied totally real biharmonic submanifolds in a quaternion projective space by the moving-frame method under the guidance of maximum principle,proved the minimum of pseudo-umbilical biharmonic submanifolds and the rigidity theorem on the square of the lenghth of the second fundamental form.And we also gave several sufficient conditions under which complete totally real biharmonic submanifolds are minimal.%利用活动标架法和广义极值原理研究四元数射影空间中的全实2-调和子流形,得到了这类子流形在伪脐条件下是极小的,并给出关于第二基本形式模长平方的刚性定理和完备全实2-调和子流形是极小的充分条件。

【期刊名称】《吉林大学学报(理学版)》【年(卷),期】2014(000)004【总页数】4页(P733-736)【关键词】四元数射影空间;2-调和;极小子流形【作者】周俊东;宋卫东;徐传友【作者单位】阜阳师范学院数学与金融学院,安徽阜阳 236037;安徽师范大学数学与计算机科学学院,安徽芜湖 241003;阜阳师范学院数学与金融学院,安徽阜阳 236037【正文语种】中文【中图分类】O186.1设Qn(c)是具有常四元数截面曲率c的四元数空间形式,若c>0,则称其为四元数射影空间,记为QPn(c).关于四元数射影空间中子流形的研究目前已取得许多结果[1-9].范胜雪等[6]研究了四元数射影空间中的全实2-调和伪脐子流形,给出了这类子流形是极小的几个条件和一个积分不等式.本文研究四元数射影空间QPn(c)中的全实2-调和子流形,通过使用活动标架法和广义极值原理[7],得到完备2-调和子流形是极小的一些条件,改进并推广了文献[6]的相关结果.四元数射影空间QPn(c)在局部存在3个复结构{I,J,K},满足若对每个点p∈Mn,切空间TpM 垂直于I(TpM),J(TpM),K(TpM),则Mn是QPn(c)中的全实子流形.在QPn(c)中选取局部正交标架场:e1,…,en,eI(1),…,eI(n),eJ(1),…,eJ(n),eK(1),…,eK(n),当标架场限制在 Mn 上时,e1,…,en 是Mn 上切向量场,eI(1),…,eI (n),eJ(1),…,eJ(n),eK(1),…,eK(n)是 Mn 上的法向量场.本文采用如下指标约定:设ωA和是QPn(c)上的对偶标架场和联络形式,QPn(c)的结构方程为QPn(c)的结构方程限制在 Mn 上,则有[1]:其中:Rijkl和Rαβkl是Mn的曲率张量和法曲率张量;是QPn(c)的曲率张量.记Mn的第二基本形式平均曲率向量平均曲率H=‖ξ‖.设H>0,选择适当的法向量场,使得eI(1)平行于ξ,则定义S,SH 为由Cauchy-Schwarz不等式可得SH≥nH2.参照文献[8],可得QPn(c)中2-调和子流形的等价条件.引理1[8] Mn 是QPn(c)中2-调和子流形的充要条件是引理2[9]设M 是完备的Riemann流形,L是M 上的非负光滑函数,若∫Mf2dV <∞ 且Δf=Lf,则f是常数.引理3[7]设M是一个完备的Riemann流形,若M的Ricci曲率有下界,则对于任何有下界的函数f∈C2(M),对于∀ε>0,总存在一点p∈M,使得函数f满足定理1 设Mn是QPn(c)中的伪脐全实2-调和子流形,则Mn是极小子流形.证明:假设平均曲率向量ξ为非零向量(H≠0),由于Mn是伪脐的,所以把代入引理1的第一式,得所以有由式(5)可得即Mn具有平行平均曲率向量.又由于所以有由此及式(2)可得RI(1)φ(j)kl=0.进一步,由式(3)和伪脐条件可得根据式(1)可得¯RI(1)I(2)12=c/4,这与式(7)矛盾,所以H≠0不成立,即Mn是极小的.定理2 设Mn是QPn(c)中紧致全实2-调和子流形,若Mn上第二基本形式模长平方则Mn是极小子流形或者Mn具有常平均曲率和常截面曲率.证明:Mn 是QPn(c)中紧致2-调和子流形,由引理1的第二式和式(1),(5)可得当时,显然有所以Δ(nH)≤0.由于Mn是紧致的,故由Hopf引理可得Δ(nH)=0,由式(8)可得H=0(即Mn是极小的)或若则有从而因此又因为故只有而其他第二基本形式的分量由式(5)可得和SH=n2 H2,所以即平均曲率是常数.根据式(3)得所以Mn的截面曲率是常数.定理3 设Mn是QPn(c)中的完备全实2-调和子流形,且Mn的平均曲率平方H2满足∫MnH2dV<∞,若则Mn是极小子流形或者具有常平均曲率,且证明:令因为所以L是非负的.由式(8)和引理2可知,H 是常数,进一步,有所以有H=0(即Mn是极小的)或者当Mn非极小时,因为nH2≤SH,所以有若则nH2=SH,Mn是伪脐的.根据定理1可得Mn是极小的,矛盾.所以注1 定理3中,由∫MnH2dV<∞,若Vol(Mn,g)=∞,则Mn一定是极小子流形.定理4 设Mn是QPn(c)中的完备全实2-调和子流形,若Mn的Ricci曲率有下界,且则Mn是极小子流形或者证明:固定任一正常数a>0,对于Mn上具有下界的光滑函数由引理3知,对于∀ε>0,总存在一点p∈M,使得函数F满足:另一方面,有因为所以在上述p点有利用式(8)和式(9)可推出令ε→0,根据引理3可得即H2→sup H2,于是由定理4的条件可得sup H2=0或者参考文献【相关文献】[1]CHEN Bangyen,Houh C S.Totally Real Submanifolds of a Quaternion Projective Space [J].Annali di Matematica Pura ed Applicata,1979,120(1):185-199.[2]SHU Shichang.Totally Real Submanifolds in a Quaternion Projective Space[J].Tokyo J Math,1996,19(2):411-418.[3]LIU Ximin.Totally Real Submanifolds in a Quaternion Projective Space [J].Soochow J Math,1997,23(1):91-96.[4]WU Baoqiang,XU Xianghong.Totally Real Pseudo-umbilical Submanifolds of a Quaternion Projective Space[J].J of Math,2005,25(1):13-20.[5]DENG Shangrong.Improved Chen-Ricci Inequality for Lagrangian Submanifolds in Quaternion Space Forms[J].International Electronic Journal of Geomtry,2012,5(1):163-170.[6]范胜雪,宋卫东.四元数射影空间中的全实2-调和伪脐子流形[J].吉林大学学报:理学版,2013,51(2):199-202.(FAN Shengxue,SONG Weidong.Totally Real 2-Harmonic and Pseudo-umbilical Submanifolds in a Quaternion Projective Space[J].Journal of JilinUniversity:Science Edition,2013,51(2):199-202.)[7]Yau S T.Harmonic Functions on Complete Riemannian Manifolds [J].Comm Pure Appl Math,1975,28:201-228.[8]姜国英.Riemann流形间的2-调和的等距浸入[J].数学年刊:A辑,1986,7(2):130-144.(JIANG Guoying.2-Harmonic Isometric Immersion between Riemannian Manifolds[J].Chinese Ann Math:Ser A,1986,7(2):130-144.)[9]Nobumitsu Nakauchi,Hajime Urakawa.Biharmonic Hypersurfaces in a Riemannian Manifold with Non-positive Ricci Curvature[J].Ann Glob Anal Geom,2011,40(2):125-131.。

organizedby

organizedby

Manifolds with nonnegative sectional curvatureorganized byKristopher Tapp and Wolfgang ZillerWorkshop SummaryIn the past few years,the study of Riemannian manifolds with nonnegative and positive curvature has been reinvigorated by breakthroughs and by new connections to other topics, including Ricciflow and Alexandrov Geometry.Our workshop brought together experts and newcomers to thefield,including5graduate students and researchers representing a diverse range of sub-specialties.Our goal was to discuss future directions for thefield and to initiate progress solving significant open problems.We had on average two talks every morning.These talks were primarily surveys em-phasizing open problems and possible future directions for continued progress.The talks were roughly divided between the following three sub-topics,which we identified as key to continued progress in thefield:(1)Riemannian submersions and group actions in nonnegative curvature(2)Alexandrov Geometry and Collapse(3)RicciflowOn Monday afternoon,all participants gathered to list and discuss open problems related to nonnegative curvature.The lively discussion lasted almost3hours,and resulted in a preliminary list of about30open problems.Many of these problems prompted interesting discussions.Participants continued to add problems to this list during subsequent days of the workshop.The list will continue to evolve,and has the potential to become a useful resource for future researchers in thefield.On Tuesday afternoon,we divided the workshop participants into three groups,cor-responding to the three sub-topics enumerated above.This subdivision remained roughly constant through the remainder of the week,with a few participants choosing tofloat be-tween the groups.The groups learned of each other’s activities informally each evening during happy hour,and more formally through group reports on Friday afternoon.Thefirst group explored Riemannian submersions and group actions.This group was the largest,and its members decided to further subdivide.They began by brainstorming pos-sible problems to attack in smaller subgroups.Before splitting up,they scheduled mini-talks to explain some recent unpublished work.These mini-talks helped participants(especially newcomers to thefield)decide which subgroup they felt best equipped to join.One sub-group formed to begin classifying the Riemannian submersions from a compact Lie group with a bi-invariant metric.This subgroup quickly discovered an interesting non-homogeneous example,which contradicts the naive conjecture that all such submersions are bi-quotient submersions.This subgroup then spent most of the remaining time considering the case of totally geodesicfibers.This collaboration will likely lead to a paper in the coming months.A second subgroup formed to bound the dimension of a torus acting freely on a manifold12with nonnegative curvature,and to consider related problems.The third(largest)subgroup investigated cohomogeneity-one manifolds with nonnegative curvature.They discussed this topic from several angles.They considered cohomogeneity one manifolds with a totally ge-odesic principle orbit,and came to believe that the classification of such spaces is within reach.A collaboration on this problem will continue and probably lead to the complete solution in the near future.They also considered obstructions to metrics of nonnegative curvature and smoothness conditions for cohomogeneity one actions.Finally,some of the members of this subgroup considered topological aspect of cohomogeneity-one manifolds,in-cluding topological invariants of known and candidate examples and the problem offinding cohomogeneity-one manifolds which are topologically interesting,and for which the prob-lem of constructing new metrics with nonnegative curvature or obstructions should thus be investigated.The second group explored Alexandrov geometry and collapse.This group began by generating a list of about20interesting open problems.They then chose three of these problems to explore in more depth.Thefirst of these problems was to extend(the dual version of)Wilking’s connectivity lemma to Alexandrov spaces.The group mapped out a proposal involving Morse functions to solve this problem.This work will hopefully lead to a collaborative solution in the near future.The second problem was to discover topological properties of an Alexandrov space which sits at the top of afinite tower offiber bundles. The third problem was the conjecture that all manifolds with almost nonnegative curvature are rationally elliptic.The group discussed a rough strategy for how a proof by induction on dimension might go.One important step in such a proof would be to show that any Alexandrov space which collapses to a point also admits nontrivial collapse.In exploring this issue,the group constructed an essentially complete proof that the torus does not collapse to an interval.The third group studied Ricciflow.Recent progress in the applications of the Ricci flow to manifolds with positive curvature operator,positive isotropic curvature and manifolds with1/4pinching were discussed in the morning survey talks.The Ricciflow subsection gave a simple proof of Tachibana’s theorem that an Einstein metric with positive curvature operator is a space form.Two of the participants generalized recent work by Boehm and Wilking on even dimensional manifolds with small Weyl tensor to the odd dimensional case and gave a simple proof of the algebraic part needed in the proof of the weakly1/4pinching theorem.Furthermore,existence and stability of singularity models and the nonexistence of noncompact3dimensional shrinkers was discussed.They also discussed the problem of ruling out noncompact gradient shrinking solitons with positive curvature operator,or more generally classify the gradient shrinking solitons with certain positivity of the curvature.The participants were almost unanimous in feeling that the workshop was successful. One participant stated that“all conferences should be structured this way”.Of course one should add that this is only possible with a narrowly focused research area.The afternoon group-work varied between brainstorming ideas for solving very difficult open problems and solving easier problems.Work at either extreme of this spectrum was felt to be productive and meaningful.Often the groups continued working past the5:00beginning of happy hour (even the most beer-loving of the groups)which demonstrates the energy that the group members felt.We expect that new collaborations will develop as a result of the workshop. Further,participants are returning home with new ideas that could shape the long term development of thefield in less tangible ways.3 We are very thankful for the generous support of the AIM.We appreciate the guidance and hard work of the AIM staffin helping us conduct a successful workshop.。

黎曼流形上梯度算法的发展与研究

黎曼流形上梯度算法的发展与研究

黎曼流形上梯度算法的发展与研究张 鹏 牡丹江师范学院数学科学学院摘要:黎曼流形上的梯度算法及相关问题一直是优化热点问题之一,这种算法在实际领域的应用也十分广泛。

本文在介绍了黎曼流形的发展和优化理论与梯度算法的发展的基础上,进一步给出了黎曼流形上梯度算法的相关研究。

关键词:黎曼流形;优化理论;梯度算法中图分类号:O186.12 文献识别码:A 文章编号:1001-828X(2017)018-0389-02一、黎曼流形的发展起初微分几何的发展是与微积分的发展同步的,当时有许多数学家用微积分解决几何问题,特别是德国数学家高斯,他的数学研究几乎遍及数学的所有领域,在代数、数论、复变函数、非欧几何、微分几何等领域都做出过开创性的贡献。

1827年他出版了一本名为《曲线与曲面的一般研究》的著作,而这本著作一直被认为是微分几何作为独立学科的开始。

1943年前后,陈省身先生为微分几何的发展做出了杰出的贡献,他证明了被积函数是由曲率张量组成的代数式子,这个式子在整个流形上的积分,应该等于这个流形拓扑不变量。

在此基础上陈先生又发展了示性类理论,即“陈省身示性类”,简称陈类,这不仅在微分几何中很重要,在代数几何,甚至数学物理、理论物理中都很重要。

在高斯之后的19世纪,推动微分几何发展的最重要的数学家当属德国数学家黎曼,他在1954年做的教师资格报告,标志着黎曼几何的开始。

高斯研究的是三维欧式空间的曲线曲面性质,而黎曼把几何对象推广到高维的同时,通过将高斯曲面的度量所决定的性质与曲面放在高维欧式空间中,这两者区分开来,从而把高斯曲面中内含的和外在的几何性质分开来了。

在黎曼几何提出之后,主要发展是Ricci为代表的意大利几何学派,他们为发展黎曼几何研究了张量分析。

爱因斯坦在发表了狭义相对论七年之后才建立了广义相对论,而该理论的建立也用到了张量分析,这使得黎曼几何作为一门学科热了起来,几乎搞相对物理的人都得学几何。

近几十年由于偏微分方程的发展,使得几何中的许多问题都得到了解决,以丘成桐为代表,他解决了很多重要问题,例如解决了Calabi猜想,广义相对论中的正质量猜想等,并以此获得了1983年的菲尔兹奖和2010年的沃尔夫奖,而同时获得这两项国际数学界最高奖项的数学家可以说是凤毛麟角。

使用源自干细胞的施旺细胞的药物发现方法[发明专利]

使用源自干细胞的施旺细胞的药物发现方法[发明专利]

专利名称:使用源自干细胞的施旺细胞的药物发现方法专利类型:发明专利
发明人:L·施图德,F·法塔希,Z·加扎扎德,S·陈
申请号:CN201780083272.4
申请日:20171114
公开号:CN110249047A
公开日:
20190917
专利内容由知识产权出版社提供
摘要:本发明公开的主题涉及源自干细胞(例如人干细胞)的施旺细胞前体和施旺细胞用于周围神经系统(PNS)和/或中枢神经系统(CNS)的再生、髓鞘损伤的预防和/或修复、和/或施旺细胞相关疾病(例如周围神经病变糖尿病性周围神经病变)的预防和/或治疗的药物发现的用途。

申请人:纪念斯隆-凯特琳癌症中心,康奈尔大学
地址:美国纽约州
国籍:US
代理机构:北京尚诚知识产权代理有限公司
代理人:龙淳
更多信息请下载全文后查看。

用于调节β2肾上腺素受体活性的4-羟基-2-氧代-2,3-二氢-1,3

用于调节β2肾上腺素受体活性的4-羟基-2-氧代-2,3-二氢-1,3

专利名称:用于调节β2肾上腺素受体活性的4-羟基-2-氧代-2,3-二氢-1,3-苯并噻唑-7-基化合物专利类型:发明专利
发明人:斯蒂芬·康诺利,亚历山大·汉弗莱斯,普雷姆吉·梅格哈尼
申请号:CN200780051602.8
申请日:20071219
公开号:CN101611020A
公开日:
20091223
专利内容由知识产权出版社提供
摘要:本发明披露了式(I)化合物、制备它们的方法、包含它们的药物组合物和它们在治疗中的用途,其中R、R、R、R、R、R、R、R和R如说明书中定义。

申请人:阿斯利康(瑞典)有限公司
地址:瑞典南泰利耶
国籍:SE
代理机构:北京市柳沈律师事务所
代理人:陈桉
更多信息请下载全文后查看。

黎曼流形上的caccioppoli不等式

黎曼流形上的caccioppoli不等式

哈尔滨工业大学理学硕士学位论文AbstractAs one of the important branches of mathematics.The concept of Riemannian manifolds is involved in many diverse mathematical fields and applied in wide, effective and productive fields on theoretical physics. Because of the definition itself, we can deal with the questions relative with Riemannian manifolds by utilizing the property that a neighborhood of each point of the manifolds is homeomorphic with a open set of Euclidean space. Therefore, the complicated structure of the manifolds can be simply handled, comprehended and indicated by the relative properties in Euclidean space. In addition, The manifolds have the property of analysis, algebra, geometry, moreover, we can obtain Riemannian manifolds by introducing Riemannian matric in Riemannian tangent space. As a sort of means of Riemannian manifolds, we introduce the concept of exterior differential form ultimately.This paper involves harmonic Caccioppoli-type estimates, which isA−widely applicable in the following respects: tensor analysis, potential theory, partial differential equation, quasi-regular mappings. The purpose of this paper is to obtain Caccioppoli-type estimates in Riemannian manifold by the knowledge of Euclidean space.According to the different integral area, this paper classify Caccioppoli-type estimates as local Caccioppoli-type estimates, global Caccioppoli-type estimates. In final, what we are to elaborate are two-weight Caccioppoli-type estimates and ()Aλ− Caccioppoli-type estimates.rKeywords: Riemannian manifold, A−harmonic equation, Caccioppoli-type estimates-II-哈尔滨工业大学理学硕士学位论文目录摘要 (I)Abstract (II)目录 (III)第1章绪论 (1)1.1 Caccioppoli不等式的来源和意义 (1)1.2 国内外关于Caccioppoli的研究现状 (1)1.3 黎曼流形的相关知识 (4)1.4 本文的主要工作 (7)第2章 黎曼流形上局部的Caccioppoli不等式 (8)2.1 流形上的积分与测度 (8)2.2 流形上的几类空间与算子 (13)2.3 流形上局部的Caccioppoli不等式 (16)2.4 本章小结 (23)第3章 黎曼流形上整体的Caccioppoli不等式 (24)3.1 流形上整体的积分与测度 (24)3.2 流形上整体的Caccioppoli不等式 (26)3.3 本章小结 (28)第4章黎曼流形上双权Caccioppoli不等式 (29)4.1 流形上双权的定义与性质 (29)4.2 流形上加双权的Caccioppoli不等式 (31)4.3 本章小结 (34)第5章关于()Aλ−权Caccioppoli不等式 (35)r5.1 流形上()Aλ−权的定义与性质 (35)r5.2 流形上加()Aλ−权的Caccioppoli不等式 (36)r5.3 本章小结 (37)结论 (38)参考文献 (39)哈尔滨工业大学硕士学位论文原创性声明 (43)-III-哈尔滨工业大学理学硕士学位论文哈尔滨工业大学硕士学位论文使用授权书 (43)致谢 (44)-IV-哈尔滨工业大学理学硕士学位论文第1章 绪论1.1 Caccioppoli 估计的来源和意义R. Caccioppoli 可以说是他那个时代最好的分析家之一,我们可以将他和C.B. Morrey, J. Leray, J. Schauder, L. Niren-berg, L. Bers, A. Lavrentiev, E. De Giorgi 相比较。

【高中生物】科学家发现癌症治疗的一条关键通路

【高中生物】科学家发现癌症治疗的一条关键通路

【高中生物】科学家发现癌症治疗的一条关键通路2021年1月12日,在美国癌症研究协会杂志《molecularcancerresearch》发表的一项研究报道称,一个信号通路可产生缓慢增殖的癌细胞,这些癌细胞用当前治疗方法很难消除,并被认为是是随后疾病复发的一个原因。

斯里德哈拉马斯瓦米博士是马萨诸塞州总医院癌症中心和哈佛医学院的医学副教授,说:“我们已经确定了一种新的途径,在这种途径中,经过充分研究的信号分子连接在一起,以调节细胞增殖。

由于许多这些分子已经被深入研究,并被用作不同类型癌症的治疗靶点,我们目前正在设计策略,在动物模型中针对这一途径,以更好地阐明pote这些发现具有重要的临床意义。

"ramaswamy也是布罗德研究所和哈佛干细胞研究所的会员,他解释说:“所有癌症都包含一些快速增殖的细胞,也包含许多增殖很缓慢的细胞。

大多数癌症治疗方法所靶定的是快速分裂的癌细胞,但是留下了分裂缓慢的癌细胞,它们完好无损,仍然能够在初始治疗后引起疾病复发。

我们的目标是为了了解这些缓慢增殖的细胞是如何产生的,以设计更好的方法来消灭它们。

”在实验室中生长的癌细胞分裂时,通常会产生两个子细胞,它们的增殖速度相同,但有时一个子细胞的增殖速度比另一个子细胞慢。

ramaswamy及其同事们多年来一直在研究,为什么癌细胞会经历这种不对称的细胞分裂。

在之前发表的一项研究中,他们发现,如果一个癌细胞正好在分裂之前不对称地抑制一个称为akt的蛋白质表达,那么它就会产生两个子细胞:一个子细胞有正常的akt蛋白水平,并像亲代细胞那样迅速增殖;另一个子细胞则具有较低的akt水平,并且增殖较慢。

他们还在乳腺癌患者中检测到了这些罕见的、具有低水平akt的癌细胞,发现这些细胞可高度对抗用以治疗患者的联合化疗。

在这项新的研究中,研究人员使用了大量的分子生物学技术来探索在实验室分裂的癌细胞如何产生具有不同Akt水平的子细胞。

他们发现,通过β1整合素(一种位于大多数癌细胞表面的分子)减少信号,并降低信号分子FAK的活性。

关于循环矩阵求逆方法的研究

关于循环矩阵求逆方法的研究

现代经济信息关于循环矩阵求逆方法的研究朱亚培 河北农业大学薛 娇 兰州财经大学摘要:讨论并证明了初等循环矩阵的若干性质,借助循环矩阵本身性质的特殊性,给出了这类矩阵求其逆矩阵的两种简便实用的方法.关键词:初等循环矩阵;欧几里德算法;逆矩阵中图分类号:O151 文献识别码:A 文章编号:1001-828X(2017)018-0388-02一、初等循环矩阵的主要结果定义[1] 称一个n×n矩阵A为初等循环矩阵,如果存在多项式满足,称多项式f(x)为A的关联多项式,这里系数正好是的第一行元素。

定理1 设A是一个初等循环矩阵,矩阵A的行和为,则(ⅰ)AE n=sE n;(ⅱ)当A可逆且s≠0证明 (ⅰ) 由定义有(ⅱ)对(ⅰ)定理2 设A是一个初等循环阵且可逆,则(2)其中是A的行和,常数证明 因为,所以A-1也是一个初等循环矩阵,而任意两个初等循环矩阵的乘积也是初等循环矩阵且可交换。

用A-1右乘上式的两端,有两边同时右乘以E n,得,(3),又因为把(4)式代入(3)式即得(2)式。

通过(2)式我们知道,如果可用A+cE n来表示一个初等循环矩阵B,其中A是一个初等循环矩阵并且A的逆矩阵易求,则(2)式就给我们提供了一种求B的逆矩阵简单、快捷、实用的理论方法。

二、欧几里德算法的主要结果引理[2] 设R[x]是R上的一元多项式环,A为R上的全体循环定理3 循可逆当且仅当,即存在使得,其中.证明 由定理可知,可逆当且仅当即,即,则.利用该定理可以构造如下求逆的算法:1.利用欧几里德算法求出f(x)与x n-1的最大公因式d(x)及使得(6)2.做d(x)是非零常数,则判断可逆。

3.当d(x)为非零常数P时,将代入(6)式得,从而三、应用举例例 1 设,求B-1。

下接(第391页)文化视野解 是一个初等循环矩阵且, ,s=4,c=7,n=4,由(2)式有[1]高殿伟.广义循环矩阵[J].辽宁师范大学学报,1988(2):7-11.[2]江兆林,周章鑫.循环矩阵[M].成都:成都科技大学出版社,1999.[3]Zhang Shenggui,Jiang Zhaolin and Liu Sanyang. An application of the Gr öbner basis in computation for the minimal polynomials and inverses of block circulant matrices[J],Linear Algebra and its Applications,2001:101-114.基金项目:基于化学工程与工艺专业的数理化基础课程体系建设(编号:2016GJJG057)。

共振喇曼光谱法检测人体皮肤中类胡萝卜素

共振喇曼光谱法检测人体皮肤中类胡萝卜素

共振喇曼光谱法检测人体皮肤中类胡萝卜素南楠;邵永红;姜耀亮;檀慧明【期刊名称】《激光技术》【年(卷),期】2008(32)5【摘要】类胡萝卜素作为一种强抗氧化剂在人体的抗氧化防御系统中起着重要作用,它在人体中的含量可以用来表征人体的健康状况.为了研究人体中的类胡萝卜素含量,采用了共振喇曼光谱法检测人体皮肤中的类胡萝卜素.经过反复实验得到了实验参量的最佳选择.例如选择测量部位为拇指内侧,入射波长473nm、入射光强度20mW、曝光时间5s.同时通过甘油匹配的方法增加了探测到的喇曼信号的强度.利用拟合差分算法有效去除了荧光背景噪声.最终获得了明显的人体皮肤中类胡萝卜素的喇曼光谱.结果表明,用共振喇曼光谱法检测人体皮肤中类胡萝卜素是一种行之有效的方法.【总页数】3页(P490-492)【作者】南楠;邵永红;姜耀亮;檀慧明【作者单位】中国科学院,长春光学精密机械与物理研究所,长春,130033;中国科学院,研究生院,北京,100039;深圳大学,光电工程学院,深圳,518060;中国科学院,长春光学精密机械与物理研究所,长春,130033;中国科学院,长春光学精密机械与物理研究所,长春,130033【正文语种】中文【中图分类】R318.51【相关文献】1.核磁共振电信号内标法在人体尿液定量分析中的应用 [J], 杨亮;茹阁英;唐惠儒;刘朝阳2.高效液相色谱法检测枸杞中类胡萝卜素研究进展 [J], 郑晓冬;潘少香;孟晓萌;宋烨;闫新焕;刘雪梅3.免疫印迹法与皮肤点刺法在过敏性皮肤疾病过敏原检测中的应用价值分析 [J], 孙院芳4.高效液相色谱-共振瑞利散射联用检测人体尿液中的法莫替丁与雷尼替丁 [J], 陈方;张钰玉;龙登莹;鲜红;彭敬东5.光度法检测核桃青皮中类胡萝卜素含量 [J], 赵雪卿;段嘉瑞;侯欣颖;胡云斐;段续续;杨卫民因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ˆ ı ˆ i j ı Ωˆ ˆ = k θ ∧ θ = k βi βj dz ∧ dz .
Therefore, taking into account (1.4), one sees that the Riemannian submanifold (U, g |U ) is of constant curvature with the sectional curvature k if and only if the rotation coefficients satisfy the equations ∂k γij = γik γkj , ∂i γij + ∂j γji +
n
∂/∂k
k =1
γij = 0,
i = j.
(1.8)
The corresponding solutions are represented in the form βi2 = ∂i F where F is some function of the coordinates z i . The system consisting of equations (1.5) and (1.8) is called sometimes the Darboux-Egoroff equations. If (U, g |U ) is a Riemannian manifold of constant curvature with the sectional curvature k , then we have [1]
n
g |U =
∗ †
i=1
βi2 dz i ⊗ dz i .
(1.1)
E-mail: razumov@mx.ihep.su E-mail: saveliev@mx.ihep.su
1
In such a situation the metric tensor g is said to be diagonal with respect to the coordinates z i . The functions βi are called the Lam´ e coefficients. Introduce an orthonormal basis in the space of 1-forms on U defining
n
g |U =
i=1
ı ı θˆ ⊗ θˆ .
ı Let us find the curvature two-forms Ωˆ ˆ of the Levi-Civita connection corresponding to the metrics given by (1.1). The simplest way here is to use the second Cartan structural equation [1] n ı Ωˆ ˆ ı dωˆ ˆ+ k =1 k ı ωˆ ˆ ∧ω ˆ, k ˆ
satisfied, and we can find the functions βi which play the role of the Lam´ e coefficients having γij as the corresponding rotation coefficients. If we define a metric tensor on U by
ı θˆ = βi dz i .
Here and in what follows we use for the indices referring to the orthonormal basis the same letters as for ones referring to the coordinate basis, but supply them with a hat. Note that for an orthonormal basis there is no actual ı distinction between lower and upper indices. In terms of the forms θˆ the metric tensor is written as
and we come to the following expression for the connection forms
ı i j ωˆ ˆ = γji dz − γij dz .
Substituting this expression in (1.2), we obtain
ı Ωˆ ˆ= −
1
Introduction
The classical differential geometry serves as an injector of many equations integrable in this or that sense. Among them, the Lam´ e and Bourlet equations play especially remarkable role. These equations arise, in particular, in the following way. Let (U ; z 1 , . . . , z n ) be a chart on a Riemannian manifold (M, g ), such that the metric tensor g has on U the form
k =i,j
i = j = k, γki γkj + kβi βj = 0, i = j.
(1.9) (1.10)
We call equations (1.9), (1.10) and (1.3) the Bourlet type equations. The Bourlet equations in the precise sense correspond to the case with k = 1 and n 2 i=1 βi = 1, see, for example, [2, 3]. Sometimes it is suitable to rewrite at least a part of equations (1.9), (1.10) in a ‘Laplacian’ type form. Impose the condition
Institute for High Energy Physics, 142284, Protvino, Moscow region, Russia
Abstract We discuss a Lie algebraic and differential geometry construction of solutions to some multidimensional nonlinear integrable systems describing diagonal metrics on Riemannian manifolds, in particular those of zero and constant curvature. Here some special solutions to the Lam´ e and Bourlet type equations, determining by n arbitrary functions of one variable are obtained in an explicit form. For the case when the sum of the diagonal elements of the metric is a constant, these solutions are expressed as a product of the Jacobi elliptic functions and are determined by 2n arbitrary constants.
k =i,j
(∂k γji − γkiγjk ) dz i ∧ dz k − − (∂i γij + ∂j γji +
k =i,j
(∂k γij − γik γkj ) dz k ∧ dz j (1.4)
k =i,j
γkiγkj ) dz i ∧ dz j .
Using (1.4) we conclude that the Riemannian submanifold (U, g |U ) of the Riemannian manifold (M, g ) is flat if and only if the rotation coefficients γij satisfy the following system of partial differential equations ∂k γij = γik γkj , ∂i γij + ∂j γji +
n
g=
i=1
βi2 dz i ⊗ dz i ,
(1.7)
then submanifold U becomes a flat Riemannian manifold whose metric is diagonal with respect to the coordinates z i . Equations (1.5), (1.6) are called the Lam´ e equations. With the so called Egoroff property, γij = γji, equations (1.6) are equivalent to the following ones:
ı dθˆ =−
1 ˆ k ı ˆ cˆ ˆθ ∧ θ . ˆk 2 i,j =1
n
Defining the so called rotation coefficients γij = 1 ∂i βj , βi 2 i = j, (1.3)
相关文档
最新文档