数字水印英文资料

合集下载

数字水印概况

数字水印概况

数字水印概况随着因特网的日益普及,多媒体信息的交流和发布形式愈加丰富了。

人们可以通过因特网发布自己的作品、重要信息和进行网络贸易等,但是随之而出现的问题也十分严重:如作品侵权更加容易,篡改也更加方便。

因此如何既充分利用因特网的便利,又能有效地保护知识产权,已受到人们的高度重视。

这样就诞生了一门新兴的交叉学科--信息隐藏学。

1、信息隐藏信息隐藏(Information Hiding)不同于传统的密码学技术。

密码技术主要是研究如何将机密信息进行特殊的编码,以形成不可识别的密码形式(密文)进行传递;而信息隐藏则主要研究如何将某一机密信息秘密隐藏于另一公开的信息中,然后通过公开信息的传输来传递机密信息。

对加密通信而言,可能的监测者或非法拦截者可通过截取密文,并对其进行破译,或将密文进行破坏后再发送,从而影响机密信息的安全;但对信息隐藏而言,可能的监测者或非法拦截者则难以从公开信息中判断机密信息是否存在,难以截获机密信息,从而能保证机密信息的安全。

多媒体技术的广泛应用,为信息隐藏技术的发展提供了更加广阔的领域。

待隐藏的信息为秘密信息(secret message),它可以是版权信息或秘密数据,也可以是一个序列号;而公开信息则称为载体信息(cover message),如视频、音频片段。

这种信息隐藏过程一般由密钥(Key)来控制,即通过嵌入算法(Embedding algorithm)将秘密信息隐藏于公开信息中,而隐蔽载体(隐藏有秘密信息的公开信息)则通过信道(Communication channel)传递,然后检测器(Detector)利用密钥从隐蔽载体中恢复/检测出秘密信息。

信息隐藏技术主要由下述两部分组成:(1)信息嵌入算法,它利用密钥来实现秘密信息的隐藏。

(2)隐蔽信息检测/提取算法(检测器),它利用密钥从隐蔽载体中检测/恢复出秘密信息。

在密钥未知的前提下,第三者很难从隐秘载体中得到或删除,甚至发现秘密信息。

数字水印与隐写术

数字水印与隐写术
外的DCT系数的最低位加以替换 (5)进行熵编码,产生JPEG隐写图像
Jpeg-steg法的优点、缺点
Jpeg-steg法的优点在于针对广泛应用的 JPEG图像进行隐写,具有较好的实用性;
缺点是是利用x2分析可以很容易地检测出 秘密信息的存在,因此,其安全性并不好 。
F3算法
F3密写可以对抗x2分析。但由于在隐藏 秘密信息0时,可能产生无效隐藏。相当 于增加了0的隐藏数量,因此,嵌入后 DCT系数直方图中,偶数位置的灰色柱 要比奇数位置上灰色柱突出。分析者可 根据这个特征分析出秘密信息的存在。
对于“健壮性”的要求不同,与隐写术相比, 水印技 术需要更好健壮性
在发送者与接收者之间的通信方式不同。隐写术通 常是点对点的, 而数字水印技术通常是一点对多点的
隐写术时信息隐藏的一个重要分支,专门研究如何 隐藏实际存在的信息隐藏信息可以与被保护信息无 任何关联水印并不总需隐藏,如可见水印,隐藏信 息与被保护信息间由密切关系
高安全性:隐藏的秘密信息难以被移除或篡改, 必须能抵御拦截者的检测及分析。
大容量:在隐蔽能力相同的情况下,能嵌入更多 信息量的隐写方法更好。多数情况下隐蔽性和隐 写容量相互制约:隐写容量越大,则对掩护媒体 的改变愈多,被检测察觉的可能性就越高。
高效:隐写方法应使用简单,秘密信息的嵌入与 提取操作要快速便捷,系统的执行时间应当尽量 少。
马赛克攻击
其攻击方法是首先把图象分割成为 许多个小图象,然后将每个小图象放在 HTML页面上拼凑成一个完整的图象。一 般的Web浏览器都可以在组织这些图象 时在图象中间不留任何缝隙,并且使其 看起来这些图象的整体效果和原图一模 一样,从而使得探测器无法从中检测到 侵权行为。
串谋攻击
所谓串谋攻击就是利用同一原始多 媒体数据集合的不同水印信号版本,来 生成一个近似的多媒体数据集合,以此 来逼近和恢复原始数据,其目的是使检 测系统无法在这一近似的数据集合中检 测出水印信号的存在。

数字水印

数字水印

Corr取值在[-1,1]之间,如果这一相关值依 赖一个给定的阈值,当Corr超过这个阈值, 则可以判定图像中含有此水印。这实际上 是一个假设检验戒水印相似性检验的问题。 检测器的输出结果如果充分可信,则可在 法庭上作为版权保护的潜在证据。
• 空域的典型算法有:最低有效位算法和 Patchwork水印算法。 • (1)最低有效位算法(Least significant Bits-LSB) 最低有效位(LSB)是一种典型的空 间域信息隐藏算法。LSB算法使用特定的密钥通 过m序列发生器产生随机信号,然后按一定的规 则排列成二维水印信号,并逐一插入到原始图像 相应像素值的最低几位。由于水印信号隐藏在最 低位,相当于叠加了一个能量微弱的信号,因而 在视觉和听觉上难察觉。LSB水印的检测是通过 待检测图像与水印图像的相关运算和统计决策实 现的。LSB算法虽然可以隐藏较多的信息,但隐 藏的信息可以被轻易除去,无法满足数字水印的 鲁棒性要求,因此现在的数字水印软件已经很少 采用LSB算法了。不过,作为一种大数据量的信 息隐藏方法,LSB在隐蔽通信中仍占据着相当重 要的地位。 •
原始图像 水印图像
DCT变换
DCT变换
DCT 系数 组合
反DCT变换
含水 印的 图像
水印嵌入框图
待测图像 原始图像 水印 提取
提取的水印
水印检测
水印检测框图
第七章 频域处理 算法实现过程为: (1)计算图像和水印的离散余弦变换 (DCT)。 (2)将水印叠加到DCT域中幅值最大的前k系数上(不包括直流分量),通常为图 像的低频分量。 若DCT系数的前k个最大分量表示为Pi ={di},i=1 ,… ,k,水印信息为 Wi ={wi},i=1 ,… ,k,那么水印的嵌入算法为P=Pi+Wi×a,其中常数a为

DRM技术

DRM技术

DRM技术简介EPUB简介一、DRM简介DRM(Digital Rights Management),通常翻译为数字版权保护或数字版权管理,是用来保护数字产品版权的一种技术手段。

主要分为两类:一类是多媒体保护,如加密电影、音乐、音视频或流媒体文件;另外一类是加密文档,如DOC、XLS、PPT和PDF等。

同样的,电子文件的安全,主要也有两方面问题:一是非法用户对电子文件的获取和使用;二是文档中敏感信息被恶意传播泄密。

可以看出,DRM技术可以解决上述问题,实现对电子文件的控制。

数字版权管理(DRM)技术的核心是通过安全和加密技术锁定和限制数字内容及其分发途径,从而防范对数字产品无授权的复制。

DRM技术在电子文件管理中的应用,通过对数字内容进行加密和附加使用规则,将有效地解决电子文件分发和使用过程中的安全性和控制性保护问题,这也对电子文件的安全性同样具有重要意义。

二、现有的数字版权保护分类Ⅰ、对于电子书的DRM保护国外有Microsoft DAS 、Adobe Content Server等等,国内的eBook DRM 系统有方正Apabi 数字版权保护技术、书生的SEP技术、超星的PDG等。

1.Microsoft 的Digital Asset Server版权保护方案微软的电子图书DRM系统主要包括服务器端的Digital Asset Server(简称DAS)和客户端的Microsoft Reader。

DAS有两个组件:DAS Server,包括repository(内容服务器数据库)和packager(完成DRM封装功能);DAS电子商务组件,集成到零售商的电子商务网站。

DAS可被服务提供者或电子图书零售商部署。

微软电子图书技术的DRM模型是一种非常紧密的集成,不仅包括DAS和Microsoft Reader,而且包括微软的Passport用户标识和注册系统。

2.Adobe 公司用于PDF 格式的Adobe Content Server(ACS )电子书籍的版权保护方案Adobe在传统印刷出版领域内一直有着深刻的影响,Adobe的可移植文档格式(PDF)早已成为电子版文档分发的公开实用标准。

数字图像水印技术的研究与实现-外文翻译

数字图像水印技术的研究与实现-外文翻译

数字水印R. Chandramouli &Majid Rabbani1.介绍:因特网的出现在以数字化形式的内容和传递方面产生了很多新的应用。

其应用包括电子广告业,实时的图像和音频的传递,数字仓库和图书馆和网上出版业。

在这些应用中出现一个重要问题就是保护所有参与者的权利。

然而当前一些保护数字数据的版权法律是公认的还不够完善,这就导致一个新的方向-防拷贝和保护体制,在此基础上吸引了越来越多的基于数字水印技术的兴趣。

数字水印是把信息嵌入数字媒体并能在之后把信息(我们称之为水印)提取出来或者探测到以防止复制的过程。

数字水印已成为研究中一个活跃和重要的领域,面对高速发展的数字化进程,水印技术的发展和商业化被认为可以从根本上应对这个挑战。

在这章剩下的部分我们讨论的是静止图象的水印,当然,水印技术在原则上同样适用于音频和视频数据。

数字水印可以是可见的也可以是不可见的。

一个可见的水印一般包含一个易见的消息和公司标识所有权。

另一方面一个不可见水印的图像看起来和原来的很相似,隐形水印的存在只有在运用合适的水印提取或者检测算法才能发现。

在这篇章节我们讨论的是不可见水印。

不可见水印技术在一般来讲,包含了编码和解码的过程。

一般水印的编码过程如图2所示。

这儿,提出了水印插入的方法:(1)X是原始的图像,W是被插入的水印信息,K是用户的密钥,而E代表插入水印的函数。

这个章节我们采用对原始图像X注释,嵌入过水印的图像我们称为X′。

鉴于水印嵌入的方式和嵌入算法的不同,检测和提取能采取截然不同的方法。

两者之间的最大区别是在于是否需要得到原始图像,在水印提取算法中如果不要求得到原始图像,我们就称之为盲水印技术,对盲水印技术来说,水印提取过程如下:(2)其中是一个可能被嵌入水印的图像,K′是提取密钥,D代表水印提取/检测的函数,而是提取出来的水印信息,盲水印对不需要原始图像而破译水印有很大的吸引力。

不可见水印也能被分成强健性或者易损性的水印。

数字水印技术英文材料

数字水印技术英文材料

A.Lumini,D.Maio.A wavelet-based image watermarking scheme,Proc of IntConf.On Information Technology:Coding and Computing,2000:122-127.与Fourier变换相比,小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。

通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。

小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。

数学家认为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处理专家认为,小波分析是时间—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、计算机视觉、数据压缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的成果。

小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。

所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。

与Fourier 变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。

有人把小波变换称为“数学显微镜”。

[C]小波分析的应用是与小波分析的理论研究紧密地结合在一起的。

现在,它已经在科技信息产业领域取得了令人瞩目的成就。

电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。

现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。

数字水印报告

数字水印报告



数字图像处理的术语
数字图像处理的应用

图像数字水印
16
数字图像水印概述——什么是数字图像

数字图像是指由被称作像素的小块区域组成的二维矩阵。将物 理图像行列划分后,每个小块区域称为像素(pixel)。

每个像素包括两个属性:位置和灰度。
数字图像在显示屏幕上显示时,它的每个像素对应显示器的一个点。显示 时采用扫描的方式:电子枪每次从左到右扫描一行,为每个像素着色,然
21
数字图像水印概述——什么是数字图像

彩色图像可以用红、绿、蓝三元组的二维矩阵来 表示。

通常,三元组的每个数值也是在0到255之间,0表示 相应的基色在该象素中没有,而255则代表相应的基 色在该象素中取得最大值,这种情况下每个象素可用 三个字节来表示。

彩色图像(128x128)及其对应的数值矩阵(仅列 出一部分(25x31))
25
数字图像水印概述——什么是数字图像
(2) HSI色系 S:表示饱和度,饱和度参数是色环的原点到彩色点的半 径长度。在环的外围圆周是纯的或称饱和的颜色,其饱和 度值为1。在中心是中性(灰)影调,即饱和度为0。
26
数字图像水印概述——什么是数字图像
RGB到HSI的转换:
I
1 3
( R G B)
数字水印技术
内容
数字水印简介 图像数字水印
网格数字水印
Ontologies 研究展望
2
for IPR Protection
数字水印简介
随着多媒体技术和网络技术的飞速发展和 广泛应用,对图象、音频、视频等多媒体内容 的保护成为迫切需要的问题。对多媒体内容的 保护分为两个部分: 一、版权保护

数字水印

数字水印

数字水印数字水印的背景大约 700 年前,在手工造纸技术中出现了纸张上的水印。

纸上的水印与现在所谈的数字水印之间是有相似性的:就是因为在银行票据或邮票上的纸上水印才激发了“ 水印” 这一术语在数字产品环境当中的使用,不过现在的水印已经不是单纯用在钞票等环境当中!直到现在,数字水印技术才逐渐引起大家的注意,并且得到了迅速的发展,它的主要应用就在于版权保护。

数字水印是指嵌入数字产品中的数字信号,可以是图像、文字、符号、数字等一切可以作为标记、标识的信息。

随着数字技术和因特网的发展,各种形式的多媒体数字作品 (图象、视频、音频等 )纷纷以网络形式发表,其版权保护成为一个迫切需要解决的问题。

由于数字水印 (digital watermarking)是实现版权保护的有效办法,因此如今已成为多媒体信息安全研究领域的一个热点,也是信息隐藏技术研究领域的重要分支。

该技术即是通过在原始数据中嵌入秘密信息--水印 (watermark)来证实该数据的所有权。

这种被嵌入的水印可以是一段文字、标识、序列号等,而且这种水印通常是不可见或不可察的,它与原始数据 (如图象、音频、视频数据 )紧密结合并隐藏其中,并可以经历一些不破坏源数据使用价值或商用价值的操作而能保存下来。

数字水印技术除了应具备信息隐藏技术的一般特点外,还有着其固有的特点和研究方法。

在数字水印系统中,隐藏信息的丢失,即意味着版权信息的丢失,从而也就失去了版权保护的功能,也就是说,这一系统就是失败的。

由此可见,数字水印技术必须具有较强的鲁棒性、安全性和透明性。

数字水印技术及其发展数字水印是目前国内外科学研究的一个前沿热门领域,是国际上最新的一门信息隐藏技术。

印刷打印数字水印是数字水印技术的一个分支,是以印刷品为载体的防伪及版权保护技术。

数字水印技术是通过对媒体数据做微量修改来嵌入水印信息,从而达到信息隐藏的目的。

该过程不影响原来数据的正常使用,不改变原来数据量的大小,不改变媒体的外观。

数字水印参考文献

数字水印参考文献

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 12, DECEMBER 20103271A Blind Watermarking Scheme Using New Nontensor Product Wavelet Filter BanksXinge You, Senior Member, IEEE, Liang Du, Member, IEEE, Yiu-ming Cheung, Senior Member, IEEE, and Qiuhui ChenAbstract—As an effective method for copyright protection of digital products against illegal usage, watermarking in wavelet domain has recently received considerable attention due to the desirable multiresolution property of wavelet transform. In general, images can be represented with different resolutions by the wavelet decomposition, analogous to the human visual system (HVS). Usually, human eyes are insensitive to image singularities revealed by different high frequency subbands of wavelet decomposed images. Hence, adding watermarks into these singularities will improve the imperceptibility that is a desired property of a watermarking scheme. That is, the capability for revealing singularities of images plays a key role in designing wavelet-based watermarking algorithms. Unfortunately, the existing wavelets have a limited ability in revealing singularities in different directions. This motivates us to construct new wavelet filter banks that can reveal singularities in all directions. In this paper, we utilize special symmetric matrices to construct the new nontensor product wavelet filter banks, which can capture the singularities in all directions. Empirical studies will show their advantages of revealing singularities in comparison with the existing wavelets. Based upon these new wavelet filter banks, we, therefore, propose a modified significant difference watermarking algorithm. Experimental results show its promising results. Index Terms—Nontensor product wavelet filter, singularities, watermarking.I. INTRODUCTIONWITH the rapid development of Internet and multimedia technology, how to protect the copyright of products from the illegal usage has been becoming a crucial issue. In general, digital watermarking plays an important role in copyright protection. In the literature, one major kind of watermarking is to embed a watermark imperceptibly into a host image. Since digital products may suffer from a variety of distortions, e.g.,Manuscript received June 02, 2009; revised January 08, 2010 and May 31, 2010; accepted June 12, 2010. Date of publication June 28, 2010; date of current version November 17, 2010. This work was supported in part by the NSFC under Grants 607731871 and 60973154, the Ministry of Education, China under Grant NCET-07-0338, the Research Grant Council of Hong Kong SAR under Project HKBU 210309, and a Faculty Research Grant of Hong Kong Baptist University (Project Code: FRG2/09-10/098). The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Xuelong Li. X. You and L. Du are with the Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Hongshan, Wuhuan, Hubei 430074, China (e-mail: you1231cncn@; liang.du.hust@). Y. Cheung is with the Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong (e-mail: ymc@.hk). Q. Chen is with the School of Informatics, Guangdong University of Foreign Studies Telephone, Guangzhou, Guangdong 510090, China (e-mail: chenqiuhui@). Color versions of one or more of the figures in this paper are available online at . Digital Object Identifier 10.1109/TIP.2010.2055570JPEG compression, additive noise, cropping, and so on, watermarking algorithms should be robust against these distortions. The robustness means that watermark should be well preserved even if the host image is distorted. Researchers have made the great efforts in developing robust watermarking algorithms [1]–[5]. Basically, the watermark can be embedded in either the spatial domain, or the transform domain. The former embeds a watermark into the host image by directly modifying the pixel value of the host image [6], [7]. In contrast, the latter firstly performs the domain transformation and then embeds a watermarking by modifying the coefficients in transform domain. In general, watermarking in transform domain is more robust than the one in spatial domain. In the past decade, a lot of watermarking algorithms have been developed in transform domain, e.g., discrete cosine transform (DCT) [8]. Besides the DCT, an increasing number of watermarking algorithms [9]–[24] in wavelet domain have been proposed in the literature. For example, Kundur et al. [9] employs multiresolution fusion techniques and incorporates a model of the human visual system (HVS) for watermark embedding. It is well known that a watermarking algorithm should largely exploit the nature of HVS. That is, the way that wavelet transform gives a multiresolution representation of images should resemble the procedure of image processing by the human eyes. Nevertheless, the watermarking in [9] is a nonblind watermarking scheme, in which the original image is needed in the watermark extraction phase. In [10], wavelet coefficients of all subbands in the same level are modified according to their relative values. Barni et al. [11] utilized the pixel-wise masking in watermark embedding. This method well exploits the similarity between wavelet transform and HVS. Furthermore, as the high frequency subbands of wavelet decomposed images reflect image singularities (e.g., edges and textures), in which a small change is hardly perceptible by human being. Hence, the significant coefficients in high frequency subbands are quite suitable for watermark embedding [13]. For instance, Xia et al. [12] added the pseudorandom codes to the large coefficients at high and middle frequency subbands of wavelet decomposed image. Dugad et al. [13] embedded the watermarks in wavelet coefficients above a given threshold . Then, another threshold is utilized for watermark detection. Along this line, it is evidently that the wavelet transform should reveal more singularities so that watermarking in singularities can make a good tradeoff between the two desirable properties of watermarking: robustness and imperceptibility, as stated before. Hence, it is conjectured that the capability of revealing singularities for wavelet determines the performance of the corresponding wavelet-based watermarking.1057-7149/$26.00 © 2010 IEEE3272IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 12, DECEMBER 2010More recently, some sophisticated wavelet domain watermarking schemes have been proposed. For instance, Wang et al. [19] proposed a watermarking algorithm in wavelet domain by adopting different threshold values in different DWT subimages [i.e., multithreshold wavelet coder (MTWC)]. Since this approach is compatible with the evolution of the distortion distribution in each subimage as image data are compressed in the embedded coding process, its error rate is relatively low. Nevertheless, this method is not desirable because it is nonblind watermarking [19]. In [16]–[18], and [20], watermarks are embedded according to the wavelet tree structure. Specifically, Hsieh et al. [17] embedded watermark based upon the qualified significant wavelet tree (QSWT), in which watermark was embedded in Level 2 and Level 3 high-frequency subimages. Wang and Lin [20] have made use of the wavelet trees in such a way that they selectively discarded the least significant bits (LSB) of wavelet trees. In this method, an original image is decomposed into the three levels and then each two so-called super trees are utilized to embedded one watermark bit. By comparing values of LSB bits of each super tree group, watermark can be extracted. Nevertheless, the inconsistence of error accumulation between encoder and decoder may aggravate the watermark distinction [18]. Furthermore, [16] has applied the idea of DEW [25], a methodology derived from DCT domain watermarking, to design robust watermarking algorithm in wavelet domain, in which watermark is embedded by differentiating the energy of cross blinding wavelet trees (CBWT). Compared with [20], CBWT has the smaller energy rate which is more suitable for differentiation (i.e., suitable to create energy differences). By setting a threshold to ensure the fidelity of watermarked image, paper [16] has achieved a good tradeoff between the fidelity and robustness. However, a large number of wavelet coefficients are not suitable for watermark embedding [16], thus, the corresponding capacity is very limited. Lin et al. [21] have developed a wavelet domain watermarking scheme by embedding watermarks blockwise, in which every seven nonoverlapped wavelet coefficients of host image are grouped into a block by analyzing the distribution of wavelet coefficients with the consideration of watermarking capacity. Then, the difference of the two largest wavelet coefficients (i.e., significant coefficients) in each group is modified according to the watermark bit to be embedded. In the extracting phase, the extracting threshold is adaptively selected based upon the distribution of all significant differences of a watermarked image. Experimental results show that this algorithm is quite robust against the distortions. Evidently, the performance of this scheme is closely related to the significant difference. Unfortunately, significant difference in this scheme is not so desirable because of traditional wavelet’s limitations on revealing singularities. Subsequently, it makes the scheme vulnerable to the attacks like noising. Those algorithms stated previously [9]–[24] are carried out in the domain of tensor wavelet. In general, 2-D tensor wavelet filter banks are simply the tensor product of 1-D wavelet filter banks [26]. Although 1-D wavelet filter banks are proved to be compact supported, its tensor product can reveal the singularities in the three directions (i.e., horizontal, vertical, and diagonal) only [27]. In fact, a natural image contains the singulari-ties in all directions. Tensor wavelets are unable to reveal them. Consequently, tensor wavelet filter banks cannot meet the watermarking requirements as follows [28], [29]. • Significant coefficients: considering the capacity of a watermarking scheme, the number of wavelet coefficients with large absolute values (i.e., significant coefficients) is of great importance [12], [13], [30]. • Invariances toward attacks: as watermarked images may encounter different kinds of distortions, the invariant property of wavelet transform, e.g., rotation invariance and scaling invariance, are quite meaningful [31]. • Abilities in revealing singularities: imperceptivity is an important requirement of a watermarking scheme. Considering the characteristics of HVS, singulary areas like edges and textural areas are suitable for watermark embedding. Thus, wavelet filter banks capable of capturing singularities are always desirable [32]. Further, according to [28], tensor wavelets suffer from the four shortcomings: 1) oscillations, 2) shift variance, 3) aliasing, and 4) lack of directionality. In contrast, following the seminal work of Jelena Kovaˇ evic, c ´ nontensor product wavelets featuring revealing the singularities in all directions have been received much attention in the literature. In general, the high-frequency subbands of nontensor product wavelet transform can reveal more features than that of commonly used tensor wavelet one. Actually, the discrete nontensor product wavelet transform (DNWT) [33] has been used widely in the past decade. Nevertheless, the nontensor product wavelets within the framework of DNWT are problem-oriented. In this paper, we construct the new nontensor product wavelets for watermarking with linear phase that is constructed from the special symmetric matrices. This method provides a general way to construct wavelets. Actually, the proposed nontensor product wavelet filter banks are a general method for image processing and representation. It can be applied to image retrieval [34], [35], face recognition [36], [37], image quality assessment [38], and object categorization [39]. Tensor wavelets could be regarded as a special case of it by taking some specific parameters (see Section II-C for an example). With these new wavelets, more singularities can be utilized to embed watermark than that of discrete tensor wavelet transform (DWT). Moreover, the imperceptibility and robustness requirements of watermarking are fulfilled and optimized. Based upon the newly constructed nontensor product wavelet banks, we propose a watermarking scheme based upon significant differences in DNWT (SD-DNWT). In our previous work [40], we have partially exploited the new wavelet filter banks. However, [40] is a nonblind watermarking, in which the original image is need for watermarking extraction. In contrast, the proposed SD-DNWT watermarking is a blind watermarking. Experiments have shown that the performance of SD-DNWT watermarking outperforms the existing ones in tensor wavelet domain. The rest of this paper is organized as follows. In Section II, the construction of new nontensor product wavelet filter banks is presented. Also, some examples and experimental results are shown. The detailed watermarking scheme is given in Section III. In Section IV, experiments are conducted to compare SD-DNWT with the existing ones. Finally, we draw a conclusion in Section V.YOU et al.: A BLIND WATERMARKING SCHEME USING NEW NONTENSOR PRODUCT WAVELET FILTER BANKS3273II. CONSTRUCTION OF NONTENSOR WAVELET FILTER BANKS A. Wavelet Construction Survey The signal can be recovered from these subsampled signals by cancelling the aliasing terms with a particular class of filters called conjugate mirror filters (CMF) [41]. Design of the filter bank is still an active research topic in both signal and image processing. The sufficient and necessary conditions for decomposing a signal in subsampled components with a filtering scheme, and recovering the same signal with an inverse transform, were established in [42], [43]. Filter banks are closely associated with wavelets. The multiresolution theory shows that conjugate mirror filters and orare intimately linked. In thonormal wavelet basis of fact, continuous-time wavelet basis can be obtained by the iterated filter banks, and filter banks can be considered as a discrete wavelet transform. The equivalence between the continuous time wavelet theory and discrete filter banks leads to a new fruitful interface between digital signal processing and harmonic analysis. Multiresolution analysis (MRA) theory provides a natural framework for understanding wavelets and filter banks. According to MRA, refinable functions (scaling functions) and wavelets are completely determined by a low-pass filter and high-pass filters, respectively. In subband code schemes, a low-pass filter and high-pass filters are used, respectively, as analysis filter and synthesis filters which form perfect reconstruction filter banks. Daubechies [44] designed univariate two-channel perfect reconstruction filter banks having finite impulse response (FIR) corresponding to a univariate orthonormal wavelet having a compact support and vanishing moments. It is well known that there does not exist an orthonormal symmetric wavelet with a compact support in the univariate dyadic dilation case. That is, two-channel perfect reconstruction FIR banks having a linear phase are not available in the univariate case. Historically, this led to an intense interest in univariate multichannel, high-dimensional and vector-valued filter banks which correspond to M-band wavelets, multivariate wavelets and multiwavelets, respectively. This paper concentrates on the multivariate filter banks [43]. Indeed, the study of the 2-D case is crucial for digital image processing. A commonly used method builds multivariate filter banks by the tensor products of univariate filters. This construction of filter banks focuses excessively on the coordinate direction. Therefore, nontensor product approaches for construction of multivariate filter banks or wavelets are desirable. Much interest has been given to the study of nontensor product wavelets [33], [45], [46] as well as to multiwavelets and corin responding vector-valued filter banks [47], [48]. However, it is not easy to design multivariate filter banks. At present, no general method is available for designing multivariate filter banks and vector-valued filter banks. There are two fundamental difficulties that one encounters in the design of the low-pass filters and high-pass filters which are used for the construction of refinable functions and wavelets, respectively. The first challenge lies in finding trigonometric polynomials that satisfy the perfect reconstruction condition, and the second is metwhen we extend a block unit vector of trigonometric polynomials to a unitary matrix. Most of the current studies in multivariate wavelets are given to a dilation matrix with the determinant two [33], [43]. In this case, only one high-pass filter is needed to be constructed and the matrix extension is the same as the univariate two-channel case [45]. Often, one seeks filter banks leading to smooth wavelets. However, in the application of filter banks to watermarking, experiments show that “smooth” filter banks are not suitable because images are not always smooth. Here, we describe a general construction of bivariate nontensor product wavelet filter banks with linear phase by using special symmetric matrices. The family of filter banks given in this paper is suitable in this context although it is difficult to achieve smoothness. These filter banks have a matrix factorization. It could reveal more singularities of image. This makes it more suitable for watermarking to optimize its performance in terms of imperceptibility and robustness. B. Construction of Nontensor Wavelet Filter Banks In this subsection, we describe a general construction of nontensor bivariate wavelet filter banks with a linear phase. To construct two channel filter banks suitable for revealing image singularities at the whole orientations, we consider a special kind of symmetric orthogonal matrix of order 4 (1) whereand and both of order 2 2 are orthogonal matrices. It is easily found that orthogonal matrices B has the following form:(2)with real numberssatisfyingThe parametrization solutions of the previously shown equa, , tions for these real numbers are , , and , for any real numbers and . Therefore, any of the previously shown has the more simple special symmetric orthogonal matrix parametrization representation, i.e.,(3)for some real numberand .3274IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 12, DECEMBER 2010It can be written aswhereis a 14 matrix defined by(4) where , , , . , , we define a bivariate trigonoLetting metric polynomials as follows:and is the identity matrix of order . b) Find three bivariate trigonometric polynomials such that the 4 4 matrix composed of their polyphase factors given bywhere , . Its polyphase defined factors are the bivariate trigonometric polynomials 0, 1, 2, and 3 as for(6) is a unitary matrix. Here, has the property that , , with 0, 1, 2, 3 denotes the for fixed polyphase factors of . Both of Problems 1) and 2) [equivalently a) and b)] are nonlinear and, essentially, quadratic algebraic equations with multiple variables. There is no general solution for such a problem presently. Now we will offer a class of solutions of Problem 1) and 2) starting from special symmetric matrix. Let(7) Reversing the process, we can construct the bivariate trigonofrom its polyphase factors , 0, 1, metric polynomials 2, and 3 by the formula and denote the matrix of trigonometric polynomial by with(8)The construction of bivariate compactly supported orthonormal multiwavelets using multiresolution analysis (MRA) is equivalent to the design of orthogonal FIR and QMF filter banks, which leads to the following two problems: satisfying the orthogonal 1) find the low-pass filter conditionFor any fixed positive integer , we arbitrarily choose real , (for , number pairs may equal to ). The low-pass filter is defined as follows:(9) 2) find three high-pass filters such that the matrix is a special symmetric orthogonal matrix dewhere , which means that fined in (4). It is easy to see that is a low-pass filter. We will show that satisfies the condition (5) and has the uniform linear phase. Here we say has a and such uniform linear phase if there exists two integers that (10) 1, 2, Next, we will construct the three high-pass filters , 3 with respect to the previously shown low-pass filter and show that they form perfect reconstructional filter banks. Letis unitary. Given the orthogonal filter banks , 0, 1, 2, 3 at hand, one can use Pyramid algorithm [49] to decompose and reconstruct the signal (i.e., image). It will benefit us from the point view of polyphase to understand the conditions in Problem 1) and 2). such that a) Find a bivariate trigonometric polynomials its polyphase factors , 0, 1, 2, 3, satisfy (5)(11)YOU et al.: A BLIND WATERMARKING SCHEME USING NEW NONTENSOR PRODUCT WAVELET FILTER BANKS3275with defined in (7). It is easy to find that , 1, 1, 2, 3 are the high-pass filters. 2, 3. That is, , defined in (9) has a linear Theorem: The low-pass filter phase and defined in (9) and (11) form the perfect reconstructional FIR orthogonal filter banks. satisfies the perfect Proof: To prove reconstructional conditions, it is sufficient to show that the generated from , 0, 1, 2, 3 polyphase matrix satisfiesCombining this equation with the factswe conclude thatIt follows from (9) and (11) that the polyphase matrix is of the formThe proof of this theorem is completed. These filter banks have a matrix factorization and can be used in image. In signal processing, a linear phase is a central property of filters. Under this condition, if an input signal has energy confined to the pass-band of the filter, the out signal is approximately equal to the input. It is well known that, in the univariate case, the only two channel CMF and FIR filter banks with a linear phase are the Haar filters. C. Examples of Nontensor Bivariate Wavelet FilterSince all the matrices unitary and the matrix conclude that the matrix Now we turn to prove definition of , we have, and are is orthogonal, we is unitary as well. has a uniform linear phase. By the,Next we will give several concrete examples of filter banks obtained by the proposed method. , , by (4), we can lead to the Example 1: Let important special symmetric orthogonal matrixFurther, setting , the previous matrix following filter banks: By using the equationsleads to theand The filter banks can be represented in matrix form as follows: where(12) We conclude thatfrom which it follows that:(13)In fact, these filters are tensors. They are tensor products of two and . In other 1-D filter words, a tensor filter can be generated by taking some special ,3276IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 12, DECEMBER 2010. Thus, the tensor filter bank can be regarded as a special case of the proposed nontensor filter banks. Example 1 is a simple and special implementation of our method. A more complicated and general example are shown as follows. Example 2: According to (9) and (11), the filter size grows with (i.e., ). This means that the filter banks could be constructed adaptively to the image size pairs of parameters , by changing . Meanwhile, , could be selected to reveal singularities in var,( , ), ( , ious directions. Let ), respectively, from (4), (9), and (11). We will have the nontensor filter banks shown in (14)–(17) at the bottom of the page. The size of nontensor product wavelet filter grows with pa. Fig. 1 rameter . The size of each filter is , in shows a nontensor product wavelet filter banks with which the size of these filters is 26 26. Thus far, we have presented a method for constructing nontensor wavelet filter banks. D. Evaluation of Nontensor Filter Banks Based Upon Experimental Realization In this subsection, we will show the improvement of revealing singularities achieved by nontensor product wavelet filter banks in contract with tensor wavelets. For nontensor product wavelet construction, parameters , and were set at 1, 0.78, and 1.05, respectively, by a rule of thumb. Meanwhile, waveletFig. 1. Nontensor product wavelet filter bank withN = 12.filter banks were selected as a representative of tensor wavelet banks. Firstly, we utilized the newly constructed wavelet filter banks to decompose image “window”(see Fig. 2). It contains various directional singularities which cannot be revealed by conventional wavelet banks (see Fig. 4). The result is shown in Fig. 5. It can be seen that much more singularities are revealed in the three subimages.(14)(15)(16)(17)YOU et al.: A BLIND WATERMARKING SCHEME USING NEW NONTENSOR PRODUCT WAVELET FILTER BANKS3277Fig. 2. Original image “window.”Fig. 4. “Haar” wavelet decomposed the image of “window:” The upper left subimage is the approximation subimage. The upper right subimage reveals the singularities in the horizontal direction. The left bottom subimage reveals the singularities in the vertical direction. The right bottom subimage reveals the singularities in the diagonal direction. Singularities orienting at the other directions are unable to be revealed by the tensor wavelet.Fig. 3. “db4” wavelet decomposed the image of “window:” The upper left subimage is the approximation subimage. The upper right subimage reveals the singularities in the horizontal direction. The left bottom subimage reveals the singularities in the vertical direction. The right bottom subimage reveals the singularities in the diagonal direction. Singularities orienting at the other directions are unable to be revealed by the tensor wavelet.Fig. 5. Nontensor product wavelet decomposed the image of “window,” in which much more singularities are revealed in subimages compared to Fig. 4.The comparisons of the number of significant coefficients are shown from Fig. 6 to Fig. 9, where the vertical coordinate means the natural logarithms of the number of coefficients. It clearly shows that there are much more significant coefficients in nontensor product wavelet high frequency subbands than both “haar” and “db4” wavelets. Significant coefficients indicate the singularities of images. Larger number of significant coefficients means the higher ability in revealing image singularities. Then we utilized the standard image “fishing boat” (see Fig. 10) for further analysis. Nontensor product wavelet transform and tensor wavelet transform were applied to “boat,” respectively (see Fig. 11). In the high-frequency subimages of nontensor product wavelet decomposition, more features are revealed than that of tensor wavelet decomposition. To make this difference more intuitively, we binarized the upper left high-frequency subimage of Fig. 11(a) and (b). Notethat other subimages were also feasible. The positive coefficients were set at 1, while the negative coefficients were set at 0 (see Fig. 12). It could be observed clearly that singularities (e.g., edges) of the boat are apparent in Fig. 12(a), while its counterpart in Fig. 12(b) is almost unnoticable. For the purpose of comparing nontensor product wavelet’s ability in revealing singularities in various directions with tensor wavelet, we utilized the image “copper coins” (Fig. 13) which contains several apparent directional components. From Figs. 14 and 15, in the high-frequency subimages of nontensor product wavelet, more singularities in various directions were revealed. But in the subimages of tensor wavelet, only singularities in a single direction were revealed in each subimage. In order to quantitatively analyze the ability in revealing singularities of nontensor product wavelet filter banks, we applied the DNWT and DWT to 10 images obtained from [50]. 512. We computed the All these images were of size 512。

数字水印技术PPT课件

数字水印技术PPT课件

3
.
PART1 研究背景
信息媒体数字化
• 信息存取非常方便 • 信息表达效率提高 • 准确度提高
4
.
• 但随之而来的副作用:有恶意的个人或团体有可能在没 有得到作品所有者的许可下拷贝和传播有版权的内容
盗版
5
.
• 保护数字产品的知识产权和阻止盗版已经成为数字产 品和网络应用面临的严峻问题。
• 对数字图像、音频、视频等多媒体产品进行水印处理 已经成为近年来研究的热点领域之一
10
.
特点
• 数字水印技术具有以下几个方面的特点:
• 不可感知性:数字水印应是不可知觉的,而且不影响被保护数据的正常使
用,不会降质,隐藏的数据无法人为地看见或听见。
• 安全性:指隐藏算法有较强的抗攻击能力,能够承受一定程度的人为攻击,
而使隐藏信息不会被破坏。
• 鲁棒性:是指在经历多种无意或有意的信号处理过程后,数字水印仍能保
gR (x, y) H ( ,)exp[2i( x y)]dd
将(3)、(5)代入(6)可得:
(6)
gR (x, y) g(x a, y b) g*[(x a), ( y b)] (7)
(7)式表明,原始像和共轭像同时出现在再现平面 上,中心分别为(a,b),(-a,-b),适当地选择参 量a,b可以调节两个像的位置,这两个复振幅的 模便是在计算机上所能看到的再现像。
19
.
感谢聆听!
持部分完整性并能被准确鉴别。可能的信号处理过程包括信道噪声、滤波、 数/模与模/数转换、重采样、剪切、位移、尺度变化以及有损压缩编码等。
特点
11
.
• 不可检测性:指隐蔽载体与原始载体具有一致的特性,如具有一致的

信息安全报告-图像数字水印技术参考模板

信息安全报告-图像数字水印技术参考模板

目录1.数字水印技术背景及意义 (2)1.1背景 (2)1.2意义 (2)2.图像水印技术概念及特征 (4)2.1概念 (4)2.2特征 (4)3.水印技术的分类及应用 (5)3.1分类 (5)3.2应用 (8)4.图像数字水印系统的组成 (9)4.1图像数字水印系统基本框架 (9)4.2数字水印系统 (11)5.数字图像水印技术的典型算法 (13)5.1典型的算法 (13)5.2其他算法 (14)6.水印技术工作流程 (15)6.1生成水印工作流程 (15)6.2嵌入水印工作流程 (15)6.3提取水印工作流程 (16)6.4水印攻击工作流程 (18)7. 总结 (19)1.数字水印技术背景及意义1.1背景从上世纪90年代初开始,计算机网络通讯技术飞速发展,数字化信息的存取变得非常便捷,计算机、数字扫描仪、打印机等电子设备实现了人们将信息向世界各地迅速而准确传输的理想。

但是,随之而来的负面效应也相当严重,有恶意的个人或团体可以在并没有得到作品所有者许可的情况下拷贝和传播有版权的数字作品,这对数字媒体信息的版权保护和信息安全造成了严重的威胁,由此而显现的盗版问题和版权纠纷已成为日益严重的社会问题。

然而,传统的信息安全技术已经无法在这种新兴的、信息开发性的计算机网络环境下实施知识产权保护及重要信息的保密等工作。

因此,近年来,国内外许多学者提出了一系列新的信息安全技术思想,数字水印技术就是其中最重要的一种,它作为信息隐藏技术在多媒体领域的一项重要应用,为多媒体信息版权保护以及信息的合法使用提供了一种有效的解决办法。

1.2意义数字水印(Digital Watermarking)技术已经成为现代信息安全领域中非常重要且有效的数字信息版权保护手段。

数字水印技术是将具有特定意义的标记(版权标志,用户序列号,产品的相关信息或者是其它有意义的数据)运用一定的嵌入算法隐藏在数字图像、音频和视频等多媒体数字产品中,用以证明数字产品的版权、数字产品的完整性、跟踪盗版行为或者提供产品的附加信息等。

数字水印技术英文文献

数字水印技术英文文献

Discussion on the digital watermarking technology in electronic reading business applicationsAbstract: the business era, the market competition is fierce day by day. Have broad prospects of electronic reading business may become the carrier of new profit growth point. Digital watermark technology in electronic reading content copyright protection of some of the application, make a preliminary study and discussion, and puts forward some suggestionsKey words: digital watermarking; copyright protection of electronic reading;PrefaceSince China telecom carrier recombination and 3G licences, the domestic telecommunication market competition is intense with each passing day. Facing market competition pressure, how to play their own advantages to gain competitive advantage, has become the major operators must solve the problem.In the telephone business is gradually replacing mobile communication, broadband market is nearing saturation, the traditional mobile voice revenue ARPU values in the great pressure of competition is also very difficult to have the breakthrough of the severe form, as an emerging business electronic reading become carriers of potential revenue growth.Electronic reading, is defined in PC, laptop, mobile phone and other portable electronic terminal reading novels, newspapers, magazines and pictures and other traditionally printed on paper carrier content reading. Compared with traditional way of reading, reading in the acquisition mode, distribution channels, sales management, payment means and environmental protection has natural advantage. With the 3G network of perfection and the mobile phone terminal screen, intelligent development trend, relying on more than 700000000 of mobile phone users, electronic reading have a broad market prospect.Electronic reading business core content is the use of the traditional means of communication to provide rich multimedia resources. At present, China's copyright protection situation is not optimistic, the literature works of infringement acts have occurred. Electronic reading success, largely dependent on the copyright management. Therefore, for copyright protection and digital watermarking technology in electronic reading business will play a very positive role.1 digital watermark1.1 What is the digital watermarking technologyDigital watermark technology is through a certain algorithm will landmark information directly embedded into the multimedia content, but not affect the original content value and use, and can not be aware of the perceptual system or pay attention to, only through a special detector or reader to extract. Digital watermarking technique can distinguish whether the object is under protection, monitoring of the protected data transmission, authentication and illegal copy, resolve copyright disputes, and to provide evidence to the court.Copyright protection digital watermarking to requirements1) validity: in copyright protection digital watermarking embedded content shouldhave authority, that is to say should be able to show that the carrier file ownership is recognized; 2): a robust watermarking anti-attack ability; 3) capacity: refers to embed information in the file number; 4) imperceptibility: refers to the embedded watermark information file with the original documents should be almost the same or does not influence the normal use of the files, but also users can not feel the existence of watermark.2 Digital watermarking technology in application of electronic readingDigital watermarking of a series of technical characteristics show that, in the rapid development of the electronic reading service, digital watermarking will be widely used.For image, video watermarking algorithmDiscrete cosine transform digital watermarking is often used as a basic transformation. First introduced the definition of discrete cosine transform:On digital image,The two dimensional DCT transform is defined as:Two dimensional inverse DCT transform ( IDCT ) is defined as:By 3.2 the original image can be expressed as, for a series of weightsWhen a pair of pixels in an image matrix after discrete cosine transform, the frequency domain matrix in left corner element value maximum, for the DC component, representing the whole image of the average brightness; while the remainder of each element value according to the corner element for fixed-pointtriangle lateral snaking arranged successively, representing the image low frequency, medium frequency components and high frequency components.Cox presents a global DCT domain watermarking algorithm:Selection of sequences of X = x1, x2, ... , xn as watermark, where Xi is satisfy the Gauss distribution of N (0, 1) of a random number. The algorithm first uses the discrete cosine transform of the original image I is transformed into the frequency domain, using the D representation of the data obtained. From the coefficient of D select n most important frequency component, consisting of sequences of V = V1,v2, ... , VN, in order to improve the robustness of image compression.Get the watermark array and frequency domain array, using the formula: Vi=vi ( 1+α XI ) digital watermark is embedded into the frequency domain array carrying watermark information, get new frequency domain array sequence of V = V1, v2, ... , VN, then the V' of each element in the frequency domain matrix D in the corresponding position of the V element replacement out, get a new frequency domain matrix D, the D inverse discrete cosine transform be containing the watermark watermark image I. In the watermark image I* for watermark detection, the whole process is the reverse process of embedding process almost. The first is to I* through DCT to obtain the frequency domain array sequence of V* = v1*, v2*, ... , vn*, then according to the formula Vi=vi ( 1+α XI ) inverse formula one watermark sequence of X* = x1*, x2*, ... , xn*, then calculate the watermark with the original watermark correlation of X* X.The algorithm is robust, can resist including scaling, JPEG compression, shear and jitter, printing and copy - scanning, image processing, and then embeddingMulti-watermarking, also can resist attacks multiple users, is a very effective watermarking algorithm.2.2 text digital watermarkingWith the picture or video files, text files without too much redundant information space, so the text based watermarking technique is far less than the image or video. Commonly used text watermarking is based mainly on the fixed format text watermarking. Commonly used methods: Based on the spacing of information representation, based on the word spacing information representation method and based on the character attribute information representation. In actual use, can these three kinds of information hiding methods combination.Based on the fixed format text watermarking, its biggest weakness is to retain the text but change the text format of soft copy sensitive. In order to solve this problem, people put forward based on the text semantic watermarking technology, but thistechnique is difficult to realize and watermark extraction need to provide source file control, maneuverability is not strong.In the actual electronic reading, we will be able to distribute content using the format developers to provide tools for content set can not be copied ( word, PDF have this feature ), to avoid illegal user to destroy the watermark information. In addition, also can be a text scanning for picture format, using the discrete cosine transform technology to embed the watermark, and then provided to the user.3 SummaryIn an electronic reading business applications, digital watermarking technology mainly focuses on the identification of the infringement, also cannot prevent and stop the infringement occurred. And the robustness of digital watermarking algorithm can not completely meet the needs of. But with the continuous progress of watermarking algorithm, and with the use of CA technology and the encryption technology, digital watermarking technology in electronic reading areas will have more extensive application.。

数字水印技术毕业论文中英文资料对照外文翻译文献综述

数字水印技术毕业论文中英文资料对照外文翻译文献综述

数字水印技术毕业论文中英文资料对照外文翻译文献综述附件1 外文资料翻译译文:一种新的基于中国剩余数定理的多媒体内容认证水印算法关键字:数字水印中国剩余定理奇异值分解摘要数字水印技术已被提议作为一个解决保护多媒体数据版权问题的办法。

在本文中,我们提出一种新颖的基于中国剩余定理(CRT)的数字水印技术。

使用CRT 为这个目的提供了更多的安全以及抵抗常见的攻击。

我们已经表明这种技术对于添加的噪音有很强的适应性。

我们已经比较了所提出两种技术的性能,基于水印技术-奇异值分解(SVD)在篡改评估函数(TAF)、计算效率和峰值信噪比(PSNR)方面有更优越的表现。

例如,提出的基于CRT方法的嵌入时间比两种基于SVD方法的快6和3倍。

这种技术也可以应用于文档、音频和视频内容。

1、介绍现今的信息驱动经济是由巨大的互联网增长和爆炸式的大量的日常多媒体数据处理所支配的。

内容编辑软件的易获得,移动紧凑数码设备和英特网,使数字生活方式的普通人完全不同于几年前。

数字多媒体内容,例如,文本、图像、视频和音频,可以轻易改变,存储或立即传输到地球的任何地点。

然而,多媒体数字内容所有者怀疑把内容在互联网上由于缺乏知识产权保护可用。

为了解决这种情况,数字水印确实是解决保护这些内容所有权的方案。

在数字水印技术中,一些数字签名是所有者所独有的或把版权信息嵌入到宿主的多媒体内容。

签名嵌入仍然是无形的、难以察觉的,不能轻易删除甚至在某些操作,例如,添加噪声、压缩、篡改和缩放操作。

只有经过授权的接收者的数字内容可以从有水印的提取水印内容与知识的一些关键信息。

用这种方法可以提供给业主安全、内容完整性和知识产权保护。

在这个方向,从1990年代中期开始,一些研究人员报道许多数字水印技术在空间和变换域[1-3]。

一些重要的属性的一个有效的数字水印方案[1-3]:(i)未知性:不应该有任何明显的区别原始有水印的内容,(ii)鲁棒性:嵌入的水印应该能够承受某种程度上的内容操作。

数字水印技术在DRM中的应用

数字水印技术在DRM中的应用

数字水印技术在DRM中的应用2012年6月汇报提纲引言DRM(数字版权管理)数字水印技术数字水印技术在DRM中的应用结束语汇报提纲引言DRM(数字版权管理)数字水印技术数字水印技术在DRM中的应用结束语引言互联网和多媒体技术的快速发展,使得数字化媒体的传播越来越迅捷。

由于数字化作品易于修改、复制和二次传播的特点,网上存在大量的盗版和侵权问题,严重侵犯了内容原创者和提供商的知识产权以及经济利益,使得数字版权的保护问题越来越重要。

在此背景下,能对数字化信息内容进行存取控制和版权保护的数字版权管理(Digital Rights Management, DRM)技术和数字水印(Digital Watermarking)技术便应运而生,本文着重探讨了数字水印技术在DRM中的应用。

汇报提纲引言DRM(数字版权管理)数字水印技术数字水印技术在DRM中的应用结束语DRM基本概念数字版权管理(Digital Rights Management, DRM),就是对各类数字内容的知识产权进行保护的一系列软硬件技术的结合,用以保证数字内容在整个生命周期内的合法使用,平衡数字内容价值链中各个角色的利益和需求,促进整个数字化市场的发展和信息的传播。

DRM的核心就是通过安全和加密技术锁定和限制数字内容的使用及分发途径,从而达到防范对数字产品无授权复制和使用的基本目标。

DRM应贯穿数字媒体的整个生命周期,包括:内容制作、内容存储、内容发行、内容接收、内容播放、内容显示等。

DRM功能模型不同的DRM系统虽然在所侧重的保护对象、支持的商业模式和采用的技术方面不尽相同,但是它们的核心思想是相同的,都是通过使用数字许可证来保护数字内容的版权。

用户得到数字内容后,必须获得相应的数字许可证才可以使用该内容。

如图1所示,DRM的功能模型主要分为三个部分:内容服务器、许可证服务器和客户端。

三个模块必须协同工作,才能构成完整的数字版权管理系统。

第11章信息隐藏与数字水印

第11章信息隐藏与数字水印
山东警察学院 2
称待隐藏的信息为秘密信息 (secret message),它可以是 版权信息或秘密数据,也可以是一个序列号;而公开信息 则称为载体信息 (cover message),如视频、音频片段。 这种信息隐藏过程一般由密钥 (Key)来控制,即通过嵌 入算法(Embedding algorithm)将秘密信息隐藏于公开信 息中,而隐蔽载体 (隐藏有秘密信息的公开信息 )则通 过信道 (Communication channel)传递 ,然后检测器 (Detector)利用密钥从隐蔽载体中恢复 /检测出秘密信息 。 Detector /
山东警察学院 16
数字水印的特征: 隐蔽性:在数字作品中嵌入数字水印不会引起明显的降质,并且不易被 察觉。 隐藏位置的安全性:水印信息隐藏于数据而非文件头中,文件格式的变 换不应导致水印数据的丢失。 鲁棒性:所谓鲁棒性是指在经历多种无意或有意的信号处理过程后,数 字水印仍能保持完整性或仍能被准确鉴别移、尺度变化以 及有损压缩编码等。 安全性:指水印的嵌入过程应该是秘密的,嵌入的水印在统计上是不可 检测的。数字水印的安全性主要通过密码学中的密码算法何密钥来实现 的。
信息隐藏与数字水印技术
信息隐藏 (Information Hiding)不同于传统的密码学 技术。密码技术主要是研究如何将机密信息进行特殊 的编码,以形成不可识别的密码形式 (密文 )进行 传递;而信息隐藏则主要研究如何将某一机密信息秘 密隐藏于另一公开的信息中,然后通过公开信息的传 输来传递机密信息。对加密通信而言,可能的监测者 或非法拦截者可通过截取密文,并对其进行破译,或 将密文进行破坏后再发送,从而影响机密信息的安全; 但对信息隐藏而言,可能的监测者或非法拦截者则难 以从公开信息中判断机密信息是否存在,难以截获机 密信息,从而能保证机密信息的安全。

用于网络多媒体资源版权保护的数字水印方法

用于网络多媒体资源版权保护的数字水印方法

Digital Watermarking Technology for Copyright Protection of Network Multimedia Resources 作者: 李旭东
作者机构: 浙江财经大学数学与统计学院,杭州310018
出版物刊名: 情报杂志
页码: 171-174页
年卷期: 2014年 第10期
主题词: 网络 多媒体 版权保护 数字水印 奇异值分解
摘要:网络多媒体资源被非授权使用者非法复制、篡改和使用愈来愈容易,由此产生的网络多媒体资源的版权保护问题愈来愈突出。

数字水印技术作为潜在的可以有效解决网络多媒体资源版权保护问题的手段,愈来愈受到了广大学者的关注。

首先讨论和分析了网络多媒体资源版权保护的现状和发展趋势,然后提出了一种新的简便、实用的基于奇异值分解的用于网络多媒体资源版权保护的数字水印方法。

实验结果表明,该文方法具有很好的水印透明性,并且方法对JPEG 压缩、亮度和对比度调整等攻击具有很强的稳健性。

非常适用于网络多媒体资源的版权保护。

数字水印技术简介与应用

数字水印技术简介与应用

专业导论课程论文题目:数字水印技术简介与应用姓名:XXX鹏飞班级:信息研1002班学号:xxxxxx目录摘要...................................................................... I ABSTRACT ................................................................... II 1绪论. (1)1.1专业导论课程综述 (1)1.1.1 计算机视觉技术 (1)1.1.2 光纤传感技术与应用 (2)1.1.3嵌入式技术 (2)1.1.4物联网基本介绍及技术特点 (3)1.2研究的目的及意义 (3)1.3论文主要研究内容 (4)2 数字水印技术简介 (5)2.1数字水印的基本原理 (5)2.1.1 水印的生成 (5)2.1.2 水印的嵌入 (5)2.1.3 水印的提取和检测 (6)2.2数字水印的特点 (7)2.3数字水印算法 (8)3数字水印系统 (10)3.1系统总体设计及其原理 (10)3.2系统特点 (11)3.3数字水印的性能参数 (11)3.3.1 感知质量 (12)3.3.2 检测性能 (12)3.3.3 负载 (12)3.3.4 算法复杂度 (12)4数字水印的典型应用 (14)4.1版权保护 (14)4.2数字签名 (14)4.3数字指纹 (14)5 全文总结与展望 (16)参考文献 (17)数字水印技术简介与应用摘要随着数字技术和因特网的的飞速发展及多媒体的广泛应用,图像、音视频和文本等多媒体信息可以很方便地被传播、拷贝、存储和处理。

数字水印技术作为一种信息安全和版权保护的新技术 ,成为了数字领域一个重要的研究内容。

数字水印一般要满足不可见性、安全性和鲁棒性。

本文研究了基于动态安全许可下的数字版权保护技术——数字水印技术。

分析了数字水印技术的原理、特点、基本参数、水印系统以及数字水印技术的几个典型的应用,通过数字水印保护技术构建基于开放框架和标准的网络多媒体数字版权保护系统模型。

数字水印技术及其应用

数字水印技术及其应用

数字水印技术及其应用引言随着计算机通信技术的迅速发展,多媒体存储和传输技术的进步使存储和传输数字化信息成为可能,然而,这也使盗版者能以低廉的成本复制及传播未经授权的数字产品内容,出于对利益的考虑,数字产品的版权所有者迫切需要解决知识产权(Intellectual Property Rights)的保护问题。

密码学的加解密技术是保护数字产品的一种方法,它能够保护数字产品安全传输,并可作为存取控制和征收费用的手段,但它不能保证数字产品解密后的盗版问题,因此,1995 年,人们提出了信息伪装技术,其中,数字水印就是近年来比较热门的数字产权保护技术,下面我们主要谈谈数字水印技术的有关问题。

数字水印的定义综合众多学者的定义和分析已有的数字水印方案,现给出数字水印的定义:数字水印是永久镶嵌在其它数据(宿主数据)中具有可鉴别性的数字信号或模式,而且并不影响宿主数据的可用性。

作为数字水印技术基本上应当满足下面几个方面的要求:(1)安全性:数字水印的信息应是安全的,难以篡改或伪造,同时,应当有较低的误检测率,当宿主内容发生变法时,数字水印应当发生变化,从而可以检测原始数据的变更;(2)隐蔽性:数字水印应是不可知觉的,而且应不影响被保护数据的正常使用;(3)稳健性:数字水印必须难以被除去,如果只知道部分数字水印信息,那么试图除去或破坏数字水印将导致严重降质或不可用。

同时,数字水印在一般信号处理和几何变换中应具有稳健性;(4)水印容量:嵌入的水印信息必须足以表示多媒体内容的创建者或所有者的标志信息,或购买者的序列号,这样有利于解决版权纠纷,保护数字产权合法拥有者的利益。

水印信息嵌入过程含水印的信号3 数字水印技术的基本原理原始信息数字水印技术是通过一定的算法将一些标志性信息直接嵌到多媒体内容中,目前大多数水印制作方案都采用密码学中的加密(包括公开密钥、私有密钥)体系来加强,在水印的嵌入,提取时采用一种密钥,甚至几种密钥的联合使用。

LSB的名词解释

LSB的名词解释

LSB的名词解释随着科技的发展,越来越多的缩略词和术语涌现在我们的生活中。

其中,LSB是一个广泛被使用的缩略词,尤其在计算机科学和信息技术领域中。

本文旨在解释和探讨LSB的含义、用途和相关领域。

LSB是Least Significant Bit(最低有效位)的英文缩写。

在计算机科学中,二进制是一种最基本的数据表示形式,它由0和1组成。

而在二进制数中,每一位都具有特定的重要性。

最低有效位指的是二进制中的最后一位,它在整个数值表示中具有最低的权重。

根据数值是偶数还是奇数,最低有效位的值可以为0或1。

接下来,我们将LSB应用到图像和音频领域中。

在数字图像中,每个像素值可以表示为二进制数。

与此相似,在音频文件中,每个采样值也可以用二进制数表示。

通过利用LSB算法,我们可以在这些文件中嵌入隐藏信息。

隐写术是一种信息安全领域的技术,它允许我们隐藏一些机密的信息,而不引起外部观察者的怀疑。

借助LSB算法,我们可以在包含图像或音频数据的文件中隐藏其他信息,而不会影响原始文件的正常视听觉质量。

这一过程中,我们将待隐藏信息的二进制表示从最低有效位逐渐替换到原始文件中的像素或采样值中的最低位。

由于最低位的影响较小,所以改变不会被察觉到。

然而,LSB算法也面临一些挑战和限制。

首先,为了嵌入足够数量的信息,需要有足够大的嵌入容量。

然而,增加嵌入容量会对文件的质量产生负面影响,例如图像有可能变得模糊,音频可能变得失真。

此外,隐写术也易受到恶意攻击者的攻击。

他们可能利用安全漏洞来发现隐藏信息或修改嵌入容量,以便破解隐藏信息。

除了隐写术的应用,LSB算法还在其他领域得到了广泛的应用。

比如,在数据存储领域,LSB算法被使用来进行错误检测和纠正。

通过在数据中插入校验位,我们可以检测到数据中的错误,并尝试通过纠正最低有效位来修复这些错误。

此外,LSB算法还被应用于数字水印领域。

数字水印是一种信息隐藏技术,它可以将特定信息嵌入到图像或音频文件中,以确定其所有者或保护知识产权。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tamkang Journal of Science and Engineering, Vol. 4, No. 3, pp. 201-208 (2001) 201 Digital Image Multiresolution Watermark Based onHuman Visual System Using Error Correcting CodeChing-Tang Hsieh and Yeh-Kuang WuDepartment of Electrical EngineeringTamkang UniversityTamsui, Taipei, Taiwan 251, R.O.C.E-mail: hsieh@.twAbstractDigital watermarking has been proposed as a way to claimprotection. In this paper, we try to use the error-correcting code skill,the multiresolution of wavelet transformation, and the human visualsystem to improve the traditional watermarking. Error-correctingbased watermarking will have the property that corrects errors of theextracted watermark automatically. The HVS (Human Visual System)model will be presented to investigate perceptually characteristic partsof human (e.g. intensity or hue) and how to insert the watermark intothe original data, where the perceptual sensitivity of human isrelatively low. A multiresolution watermarking based on the wavelettransformation is selected in each frequency band of the DiscreteWavelet Transform (DWT) domain and therefore it can resist thedestruction of image processing. In our experiments, the results showthat the robustness of a watermark with ECC (Error Correct Coding) ismuch better than the traditional one without ECC.Key Words: DWT, Watermark, HVS, Error-correcting Code, BCH1. IntroductionThe rapid development of Internet introduces a new set of challenging problems regarding security. One of the most significant problems is to prevent unauthorized copying of digital production from distribution. Digital watermarking has provided a powerful way to claim intellectual protection [3,6,7,10,11,23-25]. Watermark must have two most important properties: transparency and robustness.y Transparency refers to the perceptual quality ofthe watermarked data. The watermark should beinvisible over all types.y The digital watermark is still presented in theimage after distortion and the watermark detectorcan detect it. Ideally, the amount of imagedistortion necessary to remove the watermarkshould degrade the desired image quality to thepoint of becoming commercially valueless. It iscalled the robustness of digital watermark toimage processing. The common distortion ofsignal processing includes lossy compression (inparticular JPEG), resampling, requantization,image enhancement, cropping, etc.A key point of the watermarking technique is the trade-off between the transparency and the robustness. We must determine where to insert watermark and how to enhance the robustness of the watermark. In this paper a wavelet based watermarking method using the HVS [11,24] is presented. In [14], Lee adopted the RS code (Reed-Solomon code) to generate ECC codewords, and regarded the codeword’s parities as watermark. They used watermark to recover the damaged image. But from the viewpoint of intellectual protection, the watermark is more important than the image, while the image quality is maintained. They did not handle the watermark.We proposed an idea for enhancing the robustness of extracted watermarks. Watermark can be treated as a transmitted signal, while the destruction from attackers is regarded as a noisy distortion in channel. According to the viewpoint mentioned above, we provide an idea using ECC to202 Ching-Tang Hsieh and Yeh-Kuang Wudetect and correct the error part of the extracted watermarks. The organization of this paper is as follows. Section 2 presents the schemes of this paper. Section 3 describes the watermark insertion and Section 4 presents the watermark detection. Experimental results and discussions are given in Section 5 and conclusions are drawn in Section 6.2. Method2.1 Human Visual System ModelThe experiment result indicates that human vision reacts with different sensitivity to each frequency band [4,13], which is divided into several narrow band channels. This property of human vision is represented by contrast sensitivity function: Modulation Transfer Function (MTF). Mannos and Sakrison’s work [18] may be the first major breakthrough in image coding incorporating the Human Visual System (HVS). They proposed the MTF to model the HVS.d cf cf b a f MTF )exp()()(−+=(1) where f is the radial frequency incycles/degree (CPD) of the visual angle subtended and a, b, c, and d are constants. In this paper, we will follow Mannos and Sakrison’s transfer function:1.1))114.0(exp()114.0192.0(6.2)(f f f MTF −+= (2) The transformation from spatial frequency domain of MTF to normalized frequency domain is shown in Figure 1.Because a human observer evaluates the quality of image, the properties of HVS will use as the weight estimator for enhancing the transparency effect of watermark [11].2.2 Error-Correction CodingError-correction coding theory was proposed in 1948. It was used for resisting the corrosion of noise in data communications [15,19]. We regard the inserted watermark as transmitted information and encode it by ECC before inserting. In this paper, we compare the result of extracted watermark with ECC and without ECC and we use two kinds of ECC for our experiments: the repetition coding and the BCH (Bose, Chaudhuri, and Hocquenghem) coding [2,5,15,19,21]. 2.2.1 Repetition CodingThe rule of repetition encoding is repeating each original signal of a watermark N times in a block section, named block section (N, 1). In the decoding process, we use the majority elements of the block section to reconstruct the original signal. For example, we set N=5 in the binary signal and the (00000) represents 0, the (11111) represents 1. In the decoding process, the reconstructed signal is ‘0’ if the number of ‘0’ is more than 3 in a block section; otherwise it is ‘1’.2.2.2 BCH CodingThe Bose-Chaudhuri-Hocquenghem (BCH) codes are a class of most extensively studied random-error- correcting cyclic codes [1,5]. The cyclic structure of BCH codes is the standard algebraic decoding method consisting of three major step [5,15]:(1) Calculate the syndrome valuest i S i 2,...,2,1,= form the received-word polynomial )(x r ;(2) Determine the error-locationpolynomial )(x σ from the syndrome values of the received word; and(3) Solve for the roots of )(x σ, which arethe error locators.In our experiment, we use a 3-error-correcting binary BCH for coding, whose block-length is 15-bits.3. Watermark InsertionThe block diagram of our digital watermarking method is shown in Figure 2.Function Normalized frequencyM a g n i t u d eFigure 1. Normalized Modulation TransferFunction.Digital Image Multiresolution Watermark Based on Human Visual System Using Error Correcting Code 203Figure 2. Digital watermarking methodFirst, we use a pseudo-random sequence as watermark W . W e decompose the original image by DWT in three levels to obtain the wavelet coefficient in each band as shown in Figure 3. In order to enhance the transparency of watermark, we multiply ith band by different weighting value [11,19,24]. The ith weighting value i w is the integral of a Modulation Transfer Function (MTF) over the frequency interval in each band:()∫∫=iiWB ss WB si df f H df w (3)where ()s f H and i WB are MTF and the bandwidth of ith band respectively.()()()ts s s sf rf q p f H −+=exp (4)⎟⎠⎞⎜⎝⎛=+i i i WB 21,211 (5)The procedure of insertion is described as follows: Step 1.We decompose the original image Y with athree-level DWT to obtain the wavelet coefficient y(m,n). The parameter m, n, represent the spatial location of each pixel in the decomposed image.Step 2.Calculate the weighting value i w of each bandaccording to equation (3), (4) and (5). The parameter p, q, r, s and t are constants in our experiment (p=2.6, q=0.192, r=s=0.114, t=1.1). Step 3.We encode the watermark W using ECCalgorithm to obtain W ′. Set a threshold T.Step 4.If the absolute magnitude of wavelet coefficientis larger than the threshold T (i.e. ≥),(n m y T)we insert the watermark into the wavelet coefficient y(m,n) according to the order shownin Figure 4.:(6) where ()n m y ,′and α are modified wavelet coefficient and parameter to control the level of the watermark respectively.Step 5.Finally, we take inverse DWT of the modifiedwavelet coefficient to obtain watermarked image Y ′.Figure 3. The decomposed Lena in three levelsFigure 4. The order of inserting the watermark4. Watermark DetectionWe can extract the watermark X essentially taking the inverse steps described in section 3. The extraction of watermark requires both original image Y and watermarked image Y ′. For watermark detection, a similarity measure ()W X sim , used in [6] is defined by eq.5:()XX W X W X sim ⋅⋅=, (5)where ‘⋅’ denotes the inner product of two vectors.5. System EvaluationWe use three test images in our experiments of which sizes are all 512 ×512 in pixels. The quantity of watermark actually inserted is 5000. The parameter α is set to 0.15 and a smaller value of 0.01α is set for the lowest frequency band LL 3. The threshold T is()()()W n m y w n m y n m y i ′⋅⋅⋅+=′,,,α204 Ching-Tang Hsieh and Yeh-Kuang Wuset to 4.We use two ECC algorithms and one mixed ECC algorithm in our experiments: I. Repetition coding:T he encoded watermark is 4 and 8 multiple of the original watermark respectively. II. 3-error-correcting binary BCH coding.T he encoded watermark is 3 multiple of the original watermark.III. 3-error-correcting binary BCH coding togetherwith repetition 4 times coding (Mixed-BCH coding).T he encoded watermark is 12 multiple of the original watermark. 5.1 Uniqueness of the WatermarkFigure 5 shows the detection response Sim of the watermark detector to 1000 random watermarks, among which there is only one matches the watermark we actually insert and the detection response is 70.71.5.2 PSNR of the Watermarked ImagesWe evaluate the PSNRs of the three watermarked test images with and without various ECC algorithms. Figure 6 (a), (b) and (c) show the three test images and Figure 6 (d), (d) and (f) show the watermarked versions of Figure 6 (a), (b) and (c). Table 1 tabulates the PSNRs of the three watermarked images with different ECC algorithms. Even if the three images are watermarked in different ECC algorithms, the PSNRs are very high (not smaller than 34) and the image qualities are still very well (Figure 6 (d), (e) and (f)).When the watermarked image are compressed into JPEG images (with quality 100), the detection responses Sim are tabulated in Table 2. We can distinguish the owner according to the enough high detection responses. Especially when we use the BCH+repeat coding, the responses of the watermarked images almost reach to the peak value (71.71). 5.3 JPEG CompressionWe demonstrate the JPEG compression of the watermarked images with different JPEG qualities. Figure 7 shows the watermarked Lena and the JPEG compression of the watermarked Lena. Table 3 tabulates the detection responses of the watermarked images under different JPEG qualities. No matter which ECC algorithm we adopt, the detection responses are much better than the responses without using ECC algorithm. Figure 8 shows the results graphically for easily distinguishing the differences between various ECC algorithms.Even though when the JPEG qualities are smaller than 20, the responses of the watermarked image can provide a certification of the owner. However when the JPEG quality downs to 40 or more below, the watermarked images are strictly destructed and commercially valueless.(a)Original Lena (b)Original Cat (c)OriginalFlower(d)Watermarked Lena (e)Watermarked Cat (f)Watermarked FlowerD e t e c t i o n r e s p o n s e S i mFigure 5. Response of the watermark detector to 1000 random watermarks1000 random watermarkDigital Image Multiresolution Watermark Based on Human Visual System Using Error Correcting Code 205 Figure 6. Original images (a)Lena (b)Cat (c)Flower and watermarked images using BCH coding (d)Watermarked Lena(e)Watermarked Cat and (f)Watermarked Flower206 Ching-Tang Hsieh and Yeh-Kuang WuTable 1. The PSNR of watermarked images with variousECC algorithmsTable 2. Detection responses of the three test images with various ECC algorithm. (JPEG quality=100)Table 3. Detection responses of the watermarked Lena with various ECC algorithm under different JPEG qualitiesRepetition code Images Without ecc N=4N=8BCHcodeBCH code +repetition code (N=4) Watermark length k 4k 8k 3k 12k PSNR of watermarkedLena 52.25 39.9938.94 40.30 38.80 PSNR of watermarkedCat 51.69 43.4042.56 43.70 42.42 PSNR of watermarked Flower46.43 36.1234.99 36.5334.83Repetition code ImagesWithout ecc N=4N=8 BCH code BCH code +repetition code Lena 11.74 55.4463.07 50.91 70.43 Cat 12.42 56.7963.87 51.76 70.71 Flower 14.09 57.0863.98 52.27 70.71 Repetition codeJPEG QualityCompress ratioWithout eccN =4 N =8BCH codeBCH code + repetition code(N=4)100 1.69 11.74 55.44 63.07 50.91 70.43 90 4.60 10.66 51.28 56.06 46.81 55.92 80 7.08 9.11 44.35 49.04 41.55 45.20 70 9.038.6638.6142.7738.2737.56 60 10.92 7.38 35.02 38.13 32.84 31.42 50 12.48 6.90 33.15 34.87 29.70 25.68 40 14.56 6.31 29.39 31.20 26.36 23.65 30 16.38 4.92 23.96 24.58 22.17 17.48 20 20.15 3.51 19.32 18.41 15.92 10.89 10 29.11 1.41 9.64 9.53 6.76 4.67 043.67- 0.65- 0.25- 0.140.25D e t e c t i o n r e s p o n s e S i mFigure 8. Detection response of the watermarked images with various ECC algorithm under different JPEG qualities JPEG qualityDigital Image Multiresolution Watermark Based on Human Visual System Using Error Correcting Code 207(a)Watermarked Lena (b)JPEG compression of (a)Figure 7. (a) The watermarked Lena and, (b) the JPEG compression of the watermarked LenaTable 4. Detection responses with lowpass filtering onceand twiceTable 5. The PSNR of watermarked images comparingwith various ECC algorithmsTable 6. Detection responses with some geometricimage processing5.4 Geometric AttacksRobustness against geometric manipulation, such as filtering, scaling, or stirmark, is very important because these manipulations are very common and usually do not degrade too much the quality of the image. And here we present the robustness with some quite general kinds of geometric manipulation.Table 4 tabulates the results with a 3x3 averaging filtering once and twice. The Table 4 shows that the order of the nice quality is: repetition coding (4,1), BCH, repetition coding (8,1), and Mixed-BCH coding. It shows that too much extra coding will induce the most part of a watermark inserted into the wavelet coefficient in higher band and easily destroyed by an average filter. Consequently, the length of ECC code should be as short as possible.The results of comparing to the previous method with ECC are shown in Table 5. In Niu’s method [20], a decomposed watermark is added to the subbands of the DWT decomposition of the host image including the highest frequency subband. Each bitplane of the gray-scale watermark is embedded directly with the hamming code. Although the method can be hidden much information than ours, we prefer to maintain the high image quality according to the imperceptibility, the basic requirement of watermarking scheme.Table 6 shows the results with some general attacks. StirMark [1,22] is a generic tool developed for simple robustness testing of image marking algorithms and it simulates a re-sampling process. These simple transformations are more likely to be used and include: horizontal flip, scaling (with the factor of 0.5), 3x3 median filter, mosaic and StirMark 1.0.6. ConclusionIn this paper, we propose an idea to enhance the robustness of the watermarkusing the ECC algorithm. According to thesensitivity of human, HVS keeps awatermarked image quality from thedistortion induced by watermark-insertionmethods. With the characteristic of ECC, thedetection response of the processed image isrelatively higher than the traditional one without using the ECC algorithm. In this experiment, we demonstrate the performance Repetitioncode Times of lowpass filtering Without ecc N=4N=8BCH codeBCH code + repetition code(N=4) 1 33.40 34.9923.08 33.06 12.78 2 23.02 23.0513.52 20.05 4.04==Repetition code N=4 BCH code Median Filter35.8030.27Scaling 32.64 32.35 StirMark 26.66 24.82 Mosaic 35.50 34.42 Horizontal flip 48.25 43.68208 Ching-Tang Hsieh and Yeh-Kuang Wuof the proposed method by computer simulation. Further research will focus on the development of robust watermarking methods with more powerful error-correcting capability algorithm.References[1]Barni, M., Bartolini, F. and Piva, A.,“Improved wavelet-based watermarkingthrough pixel- wise masking,” ImageProcessing, IEEE Trans., Vol. 10, pp.783-791 (2001).[2]Blahut, R. E., Theory and Practice ofError Control Codes, Reading,Addison-Wesley (1983).[3]Bors, A. G. and Pitas, I., “Imagewatermarking using DCT domainconstraints,” Proc. of Int. Conf. onImage Processing, Vol. 3, pp. 231-234(1996).[4]Chitprasert, B., Rao, K. R., “Humanvisual weighted progressive imagetransmission,” Communications, IEEETrans., Vol. 38, pp. 1040-1044 (1990). [5]Clark, C. C. and Cain, J. B., ErrorCorrecting Coding for Digital Communication, Plenum (1981).[6]Cox, I. J., Kilian, J., Leighton, T. andShamoon, T., “Secure spread spectrumwatermarking for multimedia,” ImageProcessing, IEEE Trans., Vol. 6, pp.1673- 1687 (1997).[7]Cox, I. J., Kilian, J., Leighton, T. andShamoon, T., “Secure spread spectrumfor multimedia,” Image Processing 97,IEEE Trans., Vol. I, pp. 548-551(1997). [8]Haykin, S., Communication Systems 3/e,John Wiley & Sons, U. S. A. (1994).[9]Hsieh, C. T., Lu, Y. L., Luo, C. P. and Kuo,F. J., “A study of enhancing therobustness of watermark,” Proc. IEEE Int.Sym. on Multimedia Software Engineering,Taiwan, pp. 325-327 (2000).[10]Hsu, C. T. and Wu, J. L., ”Multiresolutionwatermarking for digital images,”Circuits and Systems II: Analog andDigital Signal Processing, IEEE Trans.,Vol. 45, pp. 1097-1101 (1998).[11]Kim, Y. S., Kwon, O. H. and Park, R. H.,“Wavelet based watermarking method fordigital images using the human visualsystem,” Proc. IEEE Int. Sym. on ISCAS'99,Orlando, FL, U. S. A., Vol. 4, pp.80-83 (1999). [12]Kuo, C. J. and Chen, M. S., “A newsignal encryption technique and its attackstudy, Proc. Int. Conf. on SecurityTechnology,” Taipei, Taiwan, pp.149-153 (1991).[13]Lee, I., Kim, J., Kim, Y., Kim, S., Park, G.and Park, K. T., “Wavelet transformimage coding using human visualsystem,” Proc.IEEE Circuits andSystems, Taiwan, pp. 619-623 (1994).[14]Lee, J, Won, C. S., “Authentication andcorrection of digital watermarkingimages,” Electronics Letters, Vol. 35, pp.886-887 (1999).[15]Lin, S. and Costello, D. J., Error ControlCoding, Prentice Hall (1983).[16]Lu, Y. L., “Static image security withlow human visual respond characteristic& multi-frequency wavelet watermark,”Master Thesis, University of Tamkang,Taiwan, R. O. C. (2001).[17]Luo, C. P.,“A study of the robustness ofwatermark,” Master Thesis, University ofTamkang, Taiwan, R. O. C. (2001).[18]Mannos, J. L. and Sakrison, D. J., “Theeffect of a visual fidelity criterion onthe encoding of images,” IEEEInformation Theory, Vol. IT-20, pp.525-536 (1974).[19]Michelson, A. M. and Levesque, A. H.,Error-Control Techniques for DigitalCommunication, Wiley, U. S. A. (1985).[20]Niu, X. M., Lu, Z. M. and Sun, S. H.,“Digital image watermarking based onmultiresolution decomposition,”Electronics Letters, Vol. 36, pp.1108-1110 (2000).[21]Peterson, W. W. and Weldom, E. J.,Error- Correcting Codes, M.I.T. Press,Cambridge, M.A., U. S. A. (1972).[22]Petitcolas, F. A. P., Anderson, R. J. andKuhn, M. G., “Attacks on copyrightmarking systems,” Proc. Int. onInformation Hiding, Portland, Oregon, U.S. A., pp. 219-239 (1998).[23]Piva, A., Barni, M., Bartolini, F. andCappellini, V., “DCT-based watermarkrecovering without resorting to theuncorrupted original image,” Proc. Int.Conf. on Image Processing, Vol. 1, pp.520-523 (1997).[24]Wei, Z. H., Qin, P. and Fu, Y. Q.,“Perceptual digital watermark of imagesusing wavelet transform,” ConsumerDigital Image Multiresolution Watermark Based on Human Visual System Using Error Correcting Code 209 Electronics, IEEE Trans., Vol. 44, pp.1267-1272 (1998).[25]Xia, X. G., Boncelet, C. G. and Arce, G.R., “A multiresolution watermark fordigital images,” Proc. Int. Conf. onImage Processing 97, Santa Barbara, CA,U. S. A. Vol. I, pp. 548-551, (1997).Manuscript Received: Jul. 15, 2001Revision Received: Aug. 15, 2001and Accepted: Aug. 20, 2001。

相关文档
最新文档