工程数学复变函数复习题
复变函数积分变换复习卷及答案
复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。
2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。
3、62111i i i -æö==-ç÷+èø。
10125212131i i i i i +-=+-=-。
4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。
5、()()231,f z z z =-+则()61f i i ¢-=--。
6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。
7、()(2)1321,(13)2ik i iiee i p p p -++==+。
8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。
1224(4)2i i -==±。
9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。
11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。
1()s i n f z z=,0z =是本性奇点。
二、判断下列函数在何处可导?何处解析?在可导处求出导数。
(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。
复变函数考试试题及参考答案
复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。
答案:$(1+i)^3=-2+2i$。
2.计算下列复数的幂函数:$z=-2+i$,$n=4$。
答案:$(-2+i)^4=7-24i$。
3.求解方程:$z^2+4z+5=0$。
答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。
4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。
答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。
5.计算下列复数的共轭复数:$z=2-i$。
答案:$z^*=2+i$。
6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。
答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。
7.计算下列复数的实部和虚部:$z=3+2i$。
答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。
答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。
9.求复数的幂函数:$z=-1-i$,$n=2$。
答案:$(-1-i)^2=1-2i-1=-2i$。
10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。
答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。
复变函数习题及答案解释
第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
《复变函数》考试试题与答案各种总结.docx
---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
复变函数期末试题及答案
复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。
答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。
答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。
复变函数复习题
复变函数复习题复变函数复习题复变函数是数学中一个重要的分支,它研究的是定义在复数域上的函数。
复变函数的研究不仅在理论上具有重要意义,而且在实际应用中也有广泛的应用。
在这篇文章中,我将为大家整理一些复变函数的复习题,希望能够帮助大家巩固相关知识。
1. 计算下列复变函数的导数:a) f(z) = z^3 - 2z^2 + z + 1b) f(z) = e^z + z^2c) f(z) = sin(z) + cos(z)d) f(z) = ln(z) + z^22. 计算下列复变函数的积分:a) ∫(z^2 - 3z) dz,其中积分路径为沿着单位圆逆时针方向b) ∫(e^z + z) dz,其中积分路径为从0到1的直线段c) ∫(sin(z) + cos(z)) dz,其中积分路径为沿着单位圆逆时针方向d) ∫(1/z) dz,其中积分路径为沿着单位圆逆时针方向3. 判断下列函数是否解析:a) f(z) = z^2 + 3z + 2b) f(z) = e^z + sin(z)c) f(z) = ln(z) + z^2d) f(z) = 1/z4. 判断下列函数是否是调和函数:a) f(z) = x^2 - y^2b) f(z) = e^x * sin(y)c) f(z) = ln|z|d) f(z) = x^3 - 3xy^25. 利用柯西-黎曼方程,求下列函数的实部和虚部:a) f(z) = z^2 + 2z - 1b) f(z) = e^z + sin(z)c) f(z) = ln(z) + z^2d) f(z) = 1/z在解答这些问题时,我们需要熟练掌握复数的运算规则、复变函数的导数和积分计算方法,以及判断函数解析性和调和性的条件。
此外,柯西-黎曼方程是判断函数实部和虚部的关键工具,需要灵活运用。
通过复习这些复变函数的问题,我们可以加深对复变函数理论的理解,并提高解题能力。
掌握复变函数的基本概念和计算方法,对于后续学习更高级的数学分析、物理学和工程学等学科都具有重要的作用。
复变函数复习题一(参考答案)
复习题一一、 判断题(正确打∨,错误打⨯,把判断结果填入下表):1、若函数f (z )在0z 解析,则f (z )在0z 的某个邻域内可导。
(∨)2、若函数f (z )在0z 处解析,则f (z )在0z 满足C.-R.条件。
( ∨)3、如果0z 是f (z )的可去奇点,则)(lim 0z f z z →不存在。
(⨯ )4、若函数f (z )在区域D 内解析,则)('z f 在区域D 内解析。
(∨ )5、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展为幂级数。
( ∨)6、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
(∨ )7、若函数f (z )在区域D 内的解析,且在D 内某一条曲线上恒为常数,则f (z )在区域D 内恒等于常数。
(∨ )8、若0z 是f (z )的m 阶零点,则0z 是)(1z f 的m 阶极点。
(∨ ) 9、如果函数f (z )在闭圆3||k ≤z :上解析,且时当3|z |=,有)0(|)(|>≤m m z f ,则m z f ≤∈∀|)(|,k z 有。
( ∨ ) 10、lim z z e →∞=∞。
(⨯ )二、 单项选择题(将选择结果填入下表。
)1、方程| z + 3 | + | z + 1 | = 4所表示的图形是:(A )双曲线; (B )椭圆; (C )直线; (D )圆。
.)(()()()()()()()(2)(22轴上可导仅在;仅在原点可导;处处不可导;处处可微,那么设、x z f D z f C z f B z f A x i xy z f-=3、设c :,1=-i z 则⎰=-C dz i z z2)(cos(A )eiπ2 (B )1sinh 2π (C )0 (D )i i cos.0)(;0)(;)(;)()(41232但发散,通项趋于通项不趋于条件收敛绝对收敛为级数、D C B A ne n in ∑∞=.)(;)(;)(;)()(353sin 二级极点一级极点可去奇点本性奇点是在点函数、D C B A z e zz =-三、填空题,2,1,0;23arctan ,311±±=+-=--=k k Argz i z ππ则设、 2、=-+22i i __543i +-__。
完整版)复变函数测试题及答案
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
复变函数复习题详细答案
复变函数复习题详细答案复变函数复习题详细答案如下:1. 复数的代数形式和几何解释复数 \( z = a + bi \) 可以表示为平面上的一个点 \( (a, b) \),其中 \( a \) 是实部,\( b \) 是虚部。
复数的模 \( |z| \) 表示该点到原点的距离,即 \( |z| = \sqrt{a^2 + b^2} \)。
2. 复数的运算两个复数 \( z_1 = a + bi \) 和 \( z_2 = c + di \) 的加法和乘法运算如下:\[ z_1 + z_2 = (a + c) + (b + d)i \]\[ z_1 \cdot z_2 = (ac - bd) + (ad + bc)i \]3. 复数的共轭和模复数 \( z = a + bi \) 的共轭为 \( \overline{z} = a - bi \),模为 \( |z| = \sqrt{a^2 + b^2} \)。
4. 复数的指数形式复数 \( z \) 可以表示为指数形式 \( z = re^{i\theta} \),其中\( r = |z| \) 是模,\( \theta \) 是 \( z \) 的辐角,满足\( \cos\theta = \frac{a}{r} \) 和 \( \sin\theta = \frac{b}{r} \)。
5. 复数的对数复数 \( z \) 的对数定义为 \( \log z = \log r + i\theta \),其中 \( r = |z| \),\( \theta \) 是 \( z \) 的主辐角。
6. 复数的导数设 \( f(z) = u(x, y) + iv(x, y) \) 是复函数,其中 \( z = x +iy \),则 \( f(z) \) 的导数为:\[ f'(z) = \frac{\partial u}{\partial x} + i\frac{\partialv}{\partial x} \]前提是 \( u \) 和 \( v \) 的偏导数满足柯西-黎曼方程。
复变函数考试复习资料
一、单选题1.设f(z)=sin z,则下列命题中,不正确的是( )。
A、f(z)在复平面上处处解析B、f(z)以2T为周期C、D、丨f(z)丨是无界的答案: C2.A、iB、-iC、1D、-1答案: B3.下列命题中,不正确的是()。
A、B、C、若在区域D内有f '(z)=g(z),则在D内g'(z)存在且解析D、答案: D4.设f(z)在区域D内解析,c为D内任一条正向简单闭曲线,它的内部全属于D.如果f(z)在c上的值为2,那么对c内任一点z0,f(z0)( )A、等于0B、等于1C、等于2D、不能确定答案: C5.下列函数中,为解析函数的是()。
A、x²-y²-2xyB、x²+xyiC、2(x-1)y+i(y²-x²+2x)D、x³+iy³答案: C6.下列方程所表示的曲线中,不是圆周的为( ).A、B、C、D、答案: B7.函数f(z)在点z可导是f(z)在点z解析的( )A、充分不必要条件B、必要不充分条件C、充分必要条件D、既非充分条件也非必要条件答案: B8.A、2B、2iC、1+iD、2+2i答案: A9.A、不存在的B、唯一的C、纯虚数D、实数答案: D10.A、有界区域B、无界区域C、有界闭区域D、无界闭区域答案: D11.设v(x,y)在区域D内为u(x,y)的共辄调和函数,则下列函数中为D内解析函数的是()。
A、v(x,y)+iu(x,y)B、v(x,y)-iu(x, y)二、 判断题C 、u(x,y)-iv(x,y)D 、答案: B12.下列数中,为实数的是( )。
A 、B 、cos iC 、In iD 、答案: B1.若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件.A 、正确B 、错误答案: 正确2.若a 是f(z)和g(z)的一个奇点,则a 也是f(z)+g(z)的奇点。
复变函数期末考试复习题及答案详解
《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
《复变函数》期末复习题及答案
第 1 页 共 12 页复变函数复习题及答案一、选择题1.下列各式中表示有界区域的是( C ).A.0Re >zB.0Im >zC.2|2|<-zD.2||>z2.在映射2z w =下,双曲线122=-y x 在w 平面上的象是(A ).A.平行于u 的直线B.平行于v 的直线C.双曲线D.圆3.方程2|||1|=+++i z z 所表示的曲线是( B ).A .圆 B.椭圆 C .双曲线 D.直线4.下列方程中表示直线的是( C ).A.1Re 2=z B.1=z z C.1=+z z D.1||||=+z z5.复数iiz -+=21在第( A )象限.A.一B.二C.三D.四 6.=Lni ( A ),其中k 是整数.A.i k ⎪⎭⎫ ⎝⎛+ππ22B.i k ⎪⎭⎫ ⎝⎛+-ππ22C.i k ⎪⎭⎫⎝⎛+ππ24 D.i k ⎪⎭⎫ ⎝⎛+-ππ24 7.对于幂级数,下列命题中正确的是( B ).A.在收敛圆内,其条件收敛B.在收敛圆内,其绝对收敛C.在收敛圆上,其处处收敛 D 在收敛圆上,其处处发散8.0=z 是()zz z f 2sin =的( D ).A.本性奇点B.极点C.连续点D.可去奇点9.在复平面内,关于z sin 的命题中,错误的是( C ).A.z sin 是周期函数B.z sin 是解析函数C.1|sin |≤zD.()z z cos sin /=10.设C 为正向曲线1||=z ,则()=--⎰Ci z dz21( A ).A.0B.iπ1C.i πD. i π211.设()zz z z f 222-+=,则()[]=0,Re z f s ( C ).A.0B.1C.1-D. 2第 2 页 共 12 页12.函数()zz f 1=将z 平面上的曲线1=x 映射成w 平面内的一条( A ).A .圆 B.椭圆 C .双曲线 D.直线13. 下列积分中,值不为零的是( D )(其中C 是正向曲线1||=z ). A.⎰Czdz B.⎰C dz z zsin C.()⎰-Cdz z z 5.01D.()⎰-Cdz z z 2114. 下列级数中,绝对收敛的级数为( D ). A.∑∞=1n )1(1n i n + B.∑∞=1n ]2)1([n n i n +- C.∑∞=2n n i n ln D.∑∞=1n n ni 215. 2lim1n n nini→∞+-=( A ).A.12i -+B.12i +C.2i +D.∞16. 0=z 为函数()()zz z z z f 1sin11)(+-=的( A ).A.非孤立奇点B.极点C.本性奇点D.可去奇点17.下列式子中成立的是( D ). A.ii 2< B.1sin ≤z C.z z ln 2ln 2=D.z Lnz Lnz ln 2+=18.若幂级数∑+∞=0n nn z c 在点12i +收敛,则∑+∞=1n nn n z c 在点2=z 处的敛散性为( A ).A.绝对收敛B.条件收敛C.发散D.不能确定(∑+∞=1n nn n z c 与∑+∞=0n n n z c 收敛半径是一样的,再根据阿贝尔定理)19.0=z 是函数()zzz f 1sin =的( D ). A.可去奇点 B.极点 C.本性起点 D.非孤立奇点20.下列级数中条件收敛的是( B ).A. nn i ∑∞+=⎪⎭⎫⎝⎛+021 B.∑+∞=0n nn i C. ∑+∞=02n nn i D. ∑+∞=+021n nni21.下列级数绝对收敛的是( B ).第 3 页 共 12 页()()()()()221111112nnnn n n n i i i A B C i D nnn ∞∞∞∞====⎛⎫++ ⎪⎝⎭∑∑∑∑22、级数∑∞=++-111)1(n n n nz 的收敛半径R 和和函数为( B ). A.1),1ln(=+R z B.1),1ln(=+R z z C.1),1ln(=-R zD.1),1ln(=-R z z (∑∞=++-111)1(n n n nz = ∑⎰∑∑∞=∞=++∞=+-=+-=-0001211d )1(1)1()1(n z n n n n n n n n z z z n z z n z z()z z dz zz dz z z z z z zz n nn znn +=+=-=-=⎰⎰∑∑⎰∞=∞=+1ln 11)(d )1(001)23.设C 为椭圆1422=+y x ,则积分⎰Cz z d 1= ( A ). A.i π2 B.π C.0 D.i π2- 24.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则( B )为D 内解析函数.A.),(),(y x iu y x v +B.),(),(y x iu y x v -C.),(),(y x iv y x u -D.xvi x u ∂∂-∂∂ 25. 级数∑∑+∞=+∞=+01n n nn n n bz z a b a ,(是复常数),则其收敛域是( D ).A.||||a z <B.||||b z <C.+∞<<||0zD.当||||b a <时||||||b z a <<二、填空题第 4 页 共 12 页1. 设42πiez -=,则=z Re 12. ()()112-+=z z z z f 在奇点0=z 附近的洛朗级数的收敛圆环域为1||0<<Z .3. 方程0=chz 的根是i k π⎪⎭⎫ ⎝⎛+21 4. -⎰=1||12sin z dz z zπ____i π_________.5. =⎥⎦⎤⎢⎣⎡-0,sin Re 4z z z s 61. 6.=⎰=1||z dz z i π2.7. ()()by x i ay x z f +++=在复平面内解析,则=a 1-,=b 1 .8.设i e z +=1,则=z Im i k ⎪⎭⎫⎝⎛+24π;9.函数2z w =将z 平面内的曲线222=-y x 映射成w 平面内曲线的方程为2=u .10.=⎰+idz z 102()3131i +. 11.设()12-=z ze z f z,则()=0///f__-9_____________.(()12-=z ze z f z z z z e zze z z z ze 222111--=-=-= ()⎪⎪⎭⎫ ⎝⎛++++++++-=...!31 (3)253z z z z z z z = (2)332----=z z z ()()()()()32///!3002100z f z f z f f z f '''+++=所以()()9!3230,23!30-=-='''-='''f f ) 12.设()∑+∞=-=+02111n nn z c z ,则此幂级数的收敛半径是2 .13.=⎥⎦⎤⎢⎣⎡-+0,1sin Re 6z chz z s 1201. 14.=-⎰=3||24z dz z i π2第 5 页 共 12 页15. =⎥⎦⎤⎢⎣⎡∞+,11Re 3z s ___0_______.16. 设i z 22-=,则z arg =4π-,z ln =i 48ln π-.17.dz zez z⎰=11= i π18.设i z 432+=,则=||z 5.19. 若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a ____-3 .20. 0=z 是函数()121sin z e z z f z --=的__10__级极点.21. =⎥⎥⎦⎤⎢⎢⎣⎡∞,Re 21z e 0 .22.函数()4ln 2-=z zz f 的奇点的集合是}2{]0,( -∞ 23. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __-1+ie________. 24.()1-=z zz f 将区域2||=z 映射成___________________.25. z=0为()()122-=z e z z f 的 4 级零点.三、计算题1. 计算()i -1ln ,()1sin -i π和21的值解:()()i i i i i 42ln 211arg |1|ln 1ln π-=-+-=- ()i ee sh i ch i 211cos 1sin sin 2--=+=+πππ(()xshy i xchy iy x cos sin sin +=+)()()ππππ2sin 2cos 12)1(ln 2122i eeeii Ln +====+2. 求解析函数()iv u z f +=其中()01,22=+=f y x yu 解:()()()222222222/2z iy xy x iy x xy y u i x u z f =+-++=∂∂-∂∂= ()()c zidz z fz f +-==⎰/由()01=f 得到,i c = 3. 求满足方程i y iix 21+=++的x 和y 的值。
复变函数考试题及答案
复变函数考试题及答案一、选择题(每题2分,共40分)1. 下列哪个不是复数的实部?A. 2B. -3iC. -4D. 5i答案:B2. 设z = x + yi,其中x和y都是实数,若z和z*的虚部相等,则x和y满足的关系是:A. x = yB. x = -yC. x = 0D. y = 0答案:C3. 设复函数f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)是光滑函数,若f(z)满足Cauchy-Riemann方程,则u和v满足的关系是:A. ∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂xB. ∂u/∂x = ∂v/∂y,∂u/∂y = ∂v/∂xC. ∂u/∂y = -∂v/∂x,∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x,∂u/∂x = -∂v/∂y答案:A4. 设f(z)是复平面上的解析函数,若f(z)的实部为2x^2 + 3y,则f(z)的虚部为:A. 2x^2 - 3yB. 3yC. 2x^2D. 2x^3 + 3y答案:C5. 若f(z) = z^3,其中z为复数,则f(z)的导数为:A. 3z^2B. z^2C. 2zD. 0答案:A......二、计算题(共60分)1. 计算下列复数的模和辐角:(1)z1 = 3 + 4i(2)z2 = -2 + 2i(3)z3 = -4 - 3i答案:(1)|z1| = sqrt(3^2 + 4^2) = 5,arg(z1) = arctan(4/3)(2)|z2| = sqrt((-2)^2 + 2^2) = 2sqrt(2),arg(z2) = arctan(2/(-2)) + π = -π/4(3)|z3| = sqrt((-4)^2 + (-3)^2) = 5,arg(z3) = arctan((-3)/(-4)) + π = π/42. 设复数z满足|z-2| = 3,且arg(z-2) = π/3,求z的值答案:由题意得,z-2的模为3,即|z-2| = 3,且z-2的辐角为π/3,即arg(z-2) = π/3根据复数的模和辐角定义,可以得到:3 = |z-2| = sqrt((Re(z-2))^2 + (Im(z-2))^2)π/3 = arg(z-2) = arctan((Im(z-2))/(Re(z-2)))解方程组可以得到:Re(z-2) = 3/2Im(z-2) = 3sqrt(3)/2再加上z-2 = Re(z-2) + Im(z-2)i,可以计算得到:z = 3/2 + 3sqrt(3)/2 + 2 = 2 + 3sqrt(3)/23. 将复数z = 1 + i转化为极坐标形式,并计算z^3的值。
复变函数复习考卷及其答案好!
复变函数复习考卷一、选择题(每题4分,共40分)A. $e^z$B. $\frac{1}{z}$C. $\sqrt{z}$D. $\ln(z)$2. 复变函数在孤立奇点处的洛朗级数展开中,负幂项系数的含义是?()A. 函数在该点的留数B. 函数在该点的导数C. 函数在该点的极限D. 函数在该点的幅角3. 复变函数在解析区域内解析的充分必要条件是?()A. 柯西黎曼方程成立B. 洛朗级数展开存在C. 原函数存在D. 哈尔迪惠特尼定理成立A. 柯西积分定理B. 奇点定理C. 留数定理5. 复变函数在孤立奇点处的留数等于?()A. 奇点处的函数值B. 奇点处的导数C. 奇点处的极限D. 奇点处 Laurent 展开式中负幂项系数的和6. 复变函数的导数等于?()A. 实部关于 x 的偏导数B. 虚部关于 y 的偏导数C. 实部关于 x 的偏导数与虚部关于 y 的偏导数的和D. 实部关于 x 的偏导数与虚部关于 y 的偏导数的差7. 复变函数在区域 D 内解析,则其在 D 内的积分与路径无关的条件是?()A. D 为单连通区域B. D 为多连通区域C. D 为有界区域D. D 为无界区域8. 复变函数的泰勒级数展开式在收敛圆内的性质是?()A. 绝对收敛B. 条件收敛C. 无条件收敛D. 不能确定二、填空题(每题4分,共40分)1. 复变函数 $f(z) = e^z$ 在 $z=0$ 处的泰勒级数展开式为______。
2. 复变函数的导数 $f'(z)$ 满足______方程。
3. 若复变函数 $f(z)$ 在区域 D 内解析,则其在 D 内的积分与路径______。
4. 复变函数在孤立奇点处的留数等于该点______项系数的和。
5. 复变函数在解析区域内解析的充分必要条件是______。
6. 复变函数在区域 D 内解析,则其在 D 内的积分与路径无关的条件是 D 为______区域。
7. 复变函数的泰勒级数展开式在收敛圆内的性质是______。
(完整版)工程数学习题集复变函数积分变换
第1次 复变函数(1)一、填空题.1. 设(1)(2)(3)(3)(2)i i i z i i +--=++,则z =__________2.设z =3arg()4z i π-=,则z=________________ 3. 不等式522<++-z z 所表示的区域是曲线_______________的内部. 4. 复数i 31-的三角表达式为二、请计算i +1的值。
三、已知21z z 和是两个复数,证明)Re(2212221221z z z z z z ++=+四、下列坐标变换公式写成复数形式;1) 平移公式:1111x x a y y b =+⎧⎨=+⎩,2)旋转公式:1111cos sin sin cos x x y y x y αααα=-⎧⎨=+⎩五、指出下列各题中点z 的轨迹或所在范围,并作图。
1)56z -=; 2)21z i +≥;3)314z z +++=. 4)312z z -≥-六、将下列方程(t 为实参数)给出的曲线用一个实直角坐标方程表出: 1)(1)z t i =+; 2)t ib t a z sin cos += (b a ,为实常数)3)22iz t t=+。
4) it it z ae be -=+第2次 复变函数(2)一、填空题1. 241lim (12)z iz z →+++=________________2。
由映射2)(z z f =得到的两个二元实函数=),(y x u =),(y x v . 3. 函数zzz f =)( 在0→z 时极限为 4. 已知映射3z =ω, 则点i z =在该映射下在ω平面的象为 二、对于映射11()2w z z=+,求出圆周|z|=4的像。
三、函数1w z=把下列z 平面上的曲线映射成w 平面上怎样的曲线? 1)224x y +=; 2) y x =。
3) 1x =。
4) 22(1)1x y -+=。
四、设函数()f z 在0z 连续且0()0f z ≠,那么可找到0z 的小邻域,在这邻域内()0f z ≠。
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。
2zz +2z z -i z z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:+∞→n lim +∞→n lim ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i ii i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-i i i i -+-114、求根式 的值。
解:四、证明题1、证明若 ,则a 2+b 2=1。
复变函数期末考试分章节复习题
复变函数期末考试分章节复习题复变函数是数学分析中的重要内容之一,它研究的是具有复数作为自变量和因变量的函数。
它在物理学、工程学、经济学等领域有着广泛的应用。
以下是关于复变函数的各个章节的复习题,供期末考试复习使用。
一、复数及其运算1.什么是复数?它的一般形式是什么?2.复数的共轭对有什么性质?3.复数的乘法有什么性质?4.复数的除法有什么性质?二、复变函数的基本概念1.复变函数的定义是什么?2.复变函数的实部与虚部的定义是什么?3.复变函数的连续性的定义是什么?4.复变函数的可导性的定义是什么?三、柯西-黎曼方程1.什么是柯西-黎曼方程?它的表达式是什么?2.如何判断一个复变函数是否满足柯西-黎曼方程?四、初等复变函数1.对数函数、指数函数的定义是什么?2.对数函数、指数函数的主支与多值性的关系是什么?3.幂函数、三角函数的定义是什么?五、复积分1.复积分的定义是什么?2.复积分的性质有哪些?3.如何计算简单的复积分?六、柯西定理与柯西公式1.什么是柯西定理?它的表述是什么?2.什么是柯西公式?它的表述是什么?3.如何利用柯西公式计算复积分?七、洛朗级数与留数定理1.什么是洛朗级数展开?它的公式是什么?2.什么是留数?它的定义是什么?3.如何计算函数在一些孤立奇点处的留数?八、解析函数与调和函数1.什么是解析函数?它与可导性有什么关系?2.什么是调和函数?它与解析函数有什么关系?3.如何求解析函数的调和共轭函数?九、辐角原理与辐角定理1.什么是辐角原理?它的表述是什么?2.什么是辐角定理?它的表述是什么?3.如何利用辐角定理解决问题?以上是复变函数的主要章节及其复习题,每个章节都涵盖了该章节的基本概念、定理和计算方法。
希望这些题目能够帮助你复习复变函数,并在期末考试中取得好成绩。
复变函数试题及答案
复变函数试题及答案一、选择题(每题4分,共40分)1. 下列哪个函数在全平面上是解析的?A. f(z) = |z|^2B. f(z) = e^zC. f(z) = ln(z)D. f(z) = 1/z答案:B2. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
下列哪个条件是解析函数的充分必要条件?A. u满足柯西-黎曼方程B. v满足柯西-黎曼方程C. u和v满足柯西-黎曼方程D. u和v的一阶偏导数满足柯西-黎曼方程答案:C3. 设f(z) = u(r, θ)是解析函数,其中r和θ是极坐标系下的变量。
下列哪个条件是解析函数的充分必要条件?A. u满足极坐标下的柯西-黎曼方程B. f(z)在全平面上是解析的C. f(z)在圆心附近是解析的D. f(z)在正实轴上是解析的答案:A4. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若u和v满足柯西-黎曼方程,则A. f(z)在全平面上是解析的B. f(z)在实轴上是解析的C. f(z)在虚轴上是解析的D. f(z)在解析的那部分上满足柯西-黎曼方程答案:A5. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若f(z)在实轴上是解析的,则A. u(x, y)在全平面上是解析的B. v(x, y)在全平面上是解析的C. u(x, y)和v(x, y)满足柯西-黎曼方程D. u(x, y)和v(x, y)处处可微分答案:C二、填空题(每空5分,共30分)1. 若f(z) = x^2 - y^2 + 2xyi是解析函数,则它的共轭函数为________。
答案:f*(z) = x^2 - y^2 - 2xyi2. 设f(z) = u(x, y)是解析函数,且满足柯西-黎曼方程的实部形式,则函数f(z)可表示为f(z) = ________。
《复变函数》复习题
1 dz.
1 dz. y
z 1 2z 3
z- 3 1 2z 3
2
C1
C2
o
•
3
x
2
复习题
21
例 3.2.6
计算积分
C
2z 1
z2
dz, z
其中 C为包含圆周
z 1 在内的任意分段光滑正向简单闭曲线.
例 3.3.1
解:
求积分(1)
cos z dz,
|z2|1 z 2
复习题
22
z2
(2)
lim cn1 c n
n
n3
lim
n
(n 1)3
1
R 1
复习题
24
复习题
25
例4.8 求 (n 1)zn 的收敛半径.
n0
解 因为 lim cn1 lim n 2 1, 所以 R 1.
c n n
n n 1
25
附: 常见函数的Taylor展开式
复习题
26
(1) ez 1 z z2
3
2
由复合闭路定理,得:
dz
dz
dz
C z(z2 1) C1 z(z2 1) C2 z(z2 1)
1
1
(z2 1) dz z(z i) dz
z C1
C2 (z i)
2 if1(0) 2 if2 (i)
2 i 2 i( 1 ) i.
2
幂级数
zn n3
n1
的收敛半径为?
复习题
29
例4.15 将函数 f (z)
1
在圆环域
(z 1)(z 2)
(1) 0 z 1;
(2) 1 z 2;
复变函数复习题答案
复变函数复习题答案1. 复数的代数形式是什么?复数的代数形式为 \( z = a + bi \),其中 \( a \) 和 \( b \) 是实数,\( i \) 是虚数单位,满足 \( i^2 = -1 \)。
2. 复数的模和辐角的定义是什么?复数 \( z = a + bi \) 的模定义为 \( |z| = \sqrt{a^2 + b^2} \),辐角定义为 \( \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) \)(考虑主值)。
3. 复数的乘法和除法如何进行?两个复数 \( z_1 = a_1 + b_1i \) 和 \( z_2 = a_2 + b_2i \) 的乘法为:\[ z_1 \cdot z_2 = (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i \]除法为:\[ \frac{z_1}{z_2} = \frac{(a_1 + b_1i)(a_2 - b_2i)}{a_2^2 +b_2^2} \]4. 复数的共轭是什么?复数 \( z = a + bi \) 的共轭为 \( \overline{z} = a - bi \)。
5. 复数的实部和虚部如何表示?复数 \( z = a + bi \) 的实部表示为 \( \Re(z) = a \),虚部表示为 \( \Im(z) = b \)。
6. 复数的指数形式和对数形式是什么?复数的指数形式为 \( z = |z|e^{i\arg(z)} \),对数形式为\( \log(z) = \ln|z| + i\arg(z) \)。
7. 复变函数的导数定义是什么?设 \( f(z) \) 在 \( z_0 \) 处可导,则导数定义为:\[ f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) -f(z_0)}{\Delta z} \]8. 柯西-黎曼方程是什么?对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),柯西-黎曼方程为:\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \]\[ \frac{\partial u}{\partial y} = -\frac{\partialv}{\partial x} \]9. 复变函数的积分定义是什么?复变函数 \( f(z) \) 在曲线 \( C \) 上的积分定义为:\[ \int_C f(z) \, dz = \int_C (u(x, y) + iv(x, y)) \, (dx + idy) \]10. 留数定理的内容是什么?留数定理指出,对于在简单闭合曲线 \( C \) 内部及其上除了有限个奇点外处处解析的函数 \( f(z) \),其在 \( C \) 上的积分可以表示为:\[ \int_C f(z) \, dz = 2\pi i \sum \text{Res}(f, z_k) \]其中 \( z_k \) 是 \( f(z) \) 在 \( C \) 内部的奇点,\( \text{Res}(f, z_k) \) 是 \( f(z) \) 在 \( z_k \) 处的留数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.下列复数中,位于第三象限的复数是( B )A . 12i +B .12i --C . 12i -D .12i -+ 2.下列命题中,正确的是( C ) A .1z >表示圆的内部 B .Re()0z >表示上半平面C .0arg 4z π<<表示角形区域D .Im()0z <表示上半平面3.下列函数中,在整个复平面上解析的函数是( D ) A .z z e + B .2sin 1zz + C .tan z z e + D.sin z z e +4.已知31z i =+,则下列正确的是( B ) A .3122iz e π= B .3642i z eπ=C .73122i z eπ=D .632iz e π=5.积分||342z dz z =-⎰的值为( A )A . 8i πB .2C . 2i πD .4i π6.0=z 是函数(1cos )z e z z -的( D )A . 可去奇点B .一级极点C .二级极点D . 三级极点7.1(2)z z -在点 z =∞ 处的留数为( C )A .0B .1C . 12D .12-8.复数i z +=3的幅角主值为 ( A )A.6π B . 3π C . 65π D . 32π 9.函数)(z f w =在点0z 处解析的特征为 ( A )A. 在0z 的邻域内可导 B .在0z 可导 C . 在0z 连续 D . 在0z 有界 10.复积分⎰cdz z f )(与路径无关的充分必要条件为 ( C )A. )(z f 连续 B .)(z f 有界 C . )(z f 解析 D . )(z f 可积分 11.复变函数z z z f cos )(=的原函数为 ( B )A. z z z sin cos + B .z z z cos sin + C . )1(cos +z z D . z z cos12.下列函数中那一个为调和函数 (A )A. 22y x - B .)sin(xy C .)cos(y x + D .xy x 22+13.下列级数绝对收敛的是( B )A. ∑∞=+1)1(1n n in B .∑∞=1!)8(n n n i C .∑∞=⎥⎦⎤⎢⎣⎡+-121)1(n nn i n D . ()∑∞=+1sin cos n n i n14.下列命题正确的是( A )A. 若z 为纯虚数,则z z ≠ B . i<2i C .仅存在一个数z ,使得z1=z - D .1z +2z =21z z + 15. 当ii z -+=11时,5075100z z z ++的值等于(B ) A .i B .i - C .1 D.1- 16.设z 为复数,则方程i z z +=+2的解是( B )A .i +-43 B .i +43 C .i -43 D.i --43 17. 函数)(z f 在点z 可导是)(z f 在点z 解析的( B )A .充分不必要条件B .必要不充分条件C .充分必要条件 D. 既非充分条件也非必要条件 18.下列函数中,为解析函数的是( C )A .xyi y x 222--B .xyi x +2C .)2()1(222x x y i y x +-+- D.33iy x +19. 幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( A ) A .)1ln(z + B .)1ln(z - C .z +11ln D. z-11ln 20.若幂级数∑∞=0n nn z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( A ) A .绝对收敛 B .条件收敛 C .发散 D.不能确定 21.设z z f sin )(=,则下列命题中,不正确的是( C ) A .)(z f 在复平面上处处解析 B .)(z f 以π2为周期C .2)(iziz e e z f --= D.)(z f 是无界的22.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( A ) A .i 31+- B .i +-3 C . i 2321+-D .i 2123+- 23.若z 为非零复数,则22z z -与z z 2的关系是( C )A .z z z z 222≥-B .z z z z 222=-C . z z z z 222≤- D .不能比较大小24.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( C )A .0B .1C . 2D .2- 25.满足不等式2≤+-iz iz 的所有点z 构成的集合是( D ) A .有界区域 B .无界区域 C . 有界闭区域 D .无界闭区域 26.方程232=-+i z 所代表的曲线是( C )A .中心为i 32-,半径为2的圆周B .中心为i 32+-,半径为2的圆周C .中心为i 32+-,半径为2的圆周D .中心为i 32-,半径为2的圆周27.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( D )A .i 6561- B .i 6561+- C . i 6561-- D .i 6561+ 28.1=z 是函数11sin)1(--z z 的( A ) A .可去奇点 B .一级极点 C . 一级零点 D .本性奇点29.下列方程所表示的曲线中,不是圆周的为( B ) A .221=+-z z B.433=--+z z C .)1(11<=--a azaz D .)0(0>=-+++c c a a z a z a z z30.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( A )A .3- B.2- C .1- D .131.函数)Im()(2z z z f =在0=z 处的导数( A )A .等于0 B.等于1 C .等于1- D .不存在 32.ze 在复平面上( D )A .无可导点 B.有可导点,但不解析 C .有可导点,且在可导点集上解析 D .处处解析 33.设R c ∈,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( D )A .c iz +2 B. ic iz +2 C .c z +2 D .ic z +234.=-],[Re 12i ez s iz ( B)(A )i +-61 B.i +-65C .i +61D .i+6535.积分=⎰=121sin z dz z z ( C ) (A )0 B.61-C .3i π-D .i π-36.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B ) A .圆 B .椭圆 C . 双曲线 D .抛物线 37.使得22z z=成立的复数z 是( D )A .不存在的B .唯一的C . 纯虚数D .实数 38.函数23)(z z f =在点0=z 处是( B )A .解析的B .可导的C . 不可导的D .既不解析也不可导 39.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( B ) A .i π2- B .0 C . i π2 D .i π4 40.下列级数中,绝对收敛的级数为( D )A .∑∞=+1)1(1n n in B .∑∞=+-1]2)1([n n n i n C . ∑∞=2ln n n n i D .∑∞=-12)1(n nn n i 41.级数+++++22111z z zz 的收敛域是( B ) A .1<z B .10<<z C . +∞<<z 1 D .不存在的42.∞=z 是函数2323zz z ++的( B ) A .可去奇点 B .一级极点 C . 二级极点 D .本性奇点 43.复数i z 31+-=的幅角主值为( D ) A .6π B . 3π C . 65π D . 32π44.下列命题中,正确的是( C ) A .1z >表示圆的内部 B .Re()0z >表示上半平面C .0arg 4z π<<表示角形区域D .Im()0z <表示上半平面45.函数11)(2++=z z z f 的不解析点为( A )A . i z ±=B . 1=zC . i z =D . 1-=z46.复积分⎰cdz z f )(与路径无关的充分必要条件为( C )A .)(z f 连续B . )(z f 有界C .)(z f 解析D .)(z f 可积分 47.复变函数z z z f cos 2)(+=的原函数为( B )A .z z z sin cos +B .z z z cos sin +C . )1(cos +z zD . z z sin 2+48.设0=z 为函数zz e xsin 142-的m 级极点,那么=m ( C )A .5B .4C .3D .2 49.在下列函数中,0]0),([Re =z f s 的是( D )A .21)(z e z f z -= B .z z z z f 1sin )(-= C .z z z z f cos sin )(+= D .z e z f z 111)(--= 50.设z 为复数,则方程i z z +=+2的解是( B )A .i +-43 B .i +43 C .i -43 D.i --4351.复数)2(tan πθπθ<<-=i z 的三角表示式是( D ) A .)]2sin()2[cos(sec θπθπθ+++i B .)]23sin()23[cos(sec θπθπθ+++i C .)]23sin()23[cos(sec θπθπθ+++-i D.)]2sin()2[cos(sec θπθπθ+++-i 52.使得22z z =成立的复数z 是(D )A .不存在的B .唯一的C .纯虚数D.实数53.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C ) A .0 B .1 C .1-D.任意常数54.下列函数中,在整个复平面上解析的函数是( D )A .z z e +B .2sin 1z z + C .tan z z e + D.sin zz e + 55.设α是复数,则( C )A .αz 在复平面上处处解析B .αz 的模为αzC .αz 一般是多值函数D.αz 的辐角为z 的辐角的α倍56.∞=z 是函数2323z z z ++的( B )A .可去奇点B .一级极点C .二级极点D.本性奇点二、填空题1. 11)(2+=z z f ,则)(z f 的定义域为 C z i z ∈±≠, . 2.函数ze 的周期为.i k π2 3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim ei +-1 .4.=+z z 22cos sin 1.5. 设1-=ze ,则=z i k π)1(2+ . 6. =ii .)22(ππk e +-7.设i i i i z -+-=11,则)Re(z = 23-. 8. =--→z e z z cos 11lim2021 . 9.⎰=1sin zdz z sin1-cos1.10. 函数)2)(1()4)(3()(----=z z z z z f 在0=z 的邻域内展开成幂级数,则收敛域为 1<z .11.设)2)(32(i i z +--=,则=z arg 8arctan -π .12.设43)arg(,5π=-=i z z ,则=z i 21+- . 13.函数)Re()Im()(z z z z f -=仅在点=z i - 处可导 . 14.方程01=--ze的全部解为 i k π2 .15.设5cos 1)(z z z f -=,则=]0),([Re z f s 241- . 16.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为 122=+y x .17. 若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f ic z +2.18.设2233)(y ix y x z f ++=,则=+-')2323(i f i 827427- . 19.幂级数∑∞=+012)2(n n n z i 的收敛半径=R22. 20.设0=z 为函数33sin z z -的m 级零点,那么=m 9 .21.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 33 . 22. 设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为3,2,1,0),424sin 424(cos 28=+++k k i k ππππ.23.=-)}43Im{ln(i 34a r c t a n - .24.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 211<-<z . 25.设函数}1exp{)(22zz z f +=,则=]0),([Re z f s 0 . 26.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 θ16i e . 27. 若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f ic z +2. 28.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 2 2 .29.函数z arctan 在0=z 处的泰勒展开式为 12012)1(+∞=∑+-n n n z n .30.积分=⎰=113z zdz e z12iπ . 31.设121,13z i z i =-=+,求12z z ⎛⎫=⎪⎝⎭43121++-i . 32. 若0z 是)(z f 的极点,则=→)(lim 0z f z z ∞ .33. 函数cos z 的周期为_____π2___ .34.已知 41z i =-,则z 所有取值为3,2,1,0),424sin424(cos 28=+-++-k k i k ππππ.35.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s m - . 36. 设11)(2+=z z f , 则)(z f 的孤立奇点有__i ± . 37.若z 0是f (z )的m 阶零点且m >0, 则z 0是)('z f 的__1-m _零点.38. 若n n ni n n z )11(12++-+=,则=∞→n z n lim ie +-1 .39.设(cos sin )z r i θθ=+, 则nz =____)sin (cos θθn i n r n +_____.40. 设i e z-=,则=z π)12(+k i .三、计算题1.求复数11+-=z z w 的实部与虚部. 2.设)2)(1(1)(--=z z z f ,求)(z f 在{}10<<=z z D 内的罗朗展式.3.试求幂级数nn nz nn ∑+∞=!的收敛半径. 4.设1)(2+=z e z f z,求)),((Re i z f s .5.将复数i z 212--=化为三角表示式与指数表示式(辐角用主值表示).6.设())(2323lxy x i y nx my z f +++=为解析函数,试确定l,n,m,的值.7.把函数z z f sin )(=展开成1-z 的幂级数.8.计算积分⎰=+221z z dz z ze9.求222121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+i i .10.⎰=+-2||2))(9(z dz i z z z.11.求函数(1)(2)zz z --在1||2z <<内的罗朗展式.12.设2()ze f z z=,求Re ((),0).s f z .13.设0≥a ,在复数集C 中解方程a z z =+22. 14.已知22y x v u -=-,试确定解析函数iv u z f +=)(. 15.计算积分12sin (1)z z zdz z e =-⎰.16.求幂级数∑∞=12n nz n 的和函数,并计算∑∞=122n n n 之值.17.若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围. 18.解方程i z i z 4cos sin =+. 19.将函数)1()2ln(--z z z 在110<-<z 内展开成洛朗级数.20.计算积分⎰=++22422z z z dz. 21.将直线方程0=++C By Ax (B A ,不全为0),化为复数方程表示.22.已知函数144),(33+-=xy y x y x v ,验证),(y x v 为调和函数;并求一解析函数)(z f ,使得),()(Im y x v z f =,且i f =)0(.23. 试把函数)2)(1(1)(--=z z z f 在0=z 处展开为泰勒级数,并求其收敛半径.24.设函数)2)(2()(2++=z z zz f ,利用留数定理计算复积分z d z f z ⎰=4)(.25.求具有形式⎪⎭⎫⎝⎛=x y f u 的所有调和函数),(y x u . 26.函数)2()1()(22y xy i x y x z f ++++-=,试问)(z f 是否解析?若解析,求其导数.27.将612)(2---=z z z z f 在23<<z 上展开成z 的幂级数.28. 求幂级数∑∞=++111n n n z 的和函数以及其收敛半径.29.计算2lim 6nn i →∞-⎛⎫⎪⎝⎭. 30.求函数(1)(2)zz z --在12z <<内的罗朗展式.31.设3232()()f z my nx y i x lxy =+++在复平面上解析,求n m l ,,的值.32.设1)(2+=z e z f z,求)),((Re i z f s -.四、证明题1.函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2.如果)('z f 在区域D 处处为零,则)(z f 在D 内为一常数.3.设函数)(z f 在区域D 内解析,试证:)(z f 在D 内为常数的充分必要条件是)(z f 在D 内解析.4.设函数)(z f 在区域D 内解析,试证:)(z f 在D 内为常数的充要条件是)(z f 在D 内解析.5.设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=..6. 若函数()(,)(,)f z u x y iv x y =+在区域D 内解析,()f z 等于常数,则()f z 在D 恒等于常数. 7.若函数()(,)(,)f z u x y iv x y =+在区域D 内解析, (,)v x y 等于常数, 则()f z 在D 内恒等于常数. 8.若函数()(,)(,)f z u x y iv x y =+在区域D 内解析, (,)u x y 等于常数, 则()f z 在D 恒等于常数.。