河南省数学高一下学期理数期末考试试卷(II)卷

合集下载

2017-2018学年高二数学下学期期末考试试题理(2)

2017-2018学年高二数学下学期期末考试试题理(2)

数学试卷(理数)时间:120分钟总分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知为实数,,则的值为A.1B.C.D.2.“”是“直线和直线平行”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.下列说法正确的是A.一个命题的逆命题为真,则它的逆否命题一定为真B.“”与“”不等价C.“若,则全为”的逆否命题是“若全不为0,则”D.一个命题的否命题为假,则它的逆命题一定为假4.若,,,,则与的大小关系为A. B. C. D.5.已知命题及其证明:(1)当时,左边,右边,所以等式成立;(2)假设时等式成立,即成立,则当时,,所以时等式也成立.由(1)(2)知,对任意的正整数等式都成立.经判断以上评述A.命题,推理都正确B.命题正确,推理不正确C.命题不正确,推理正确D.命题,推理都不正确6.椭圆的一个焦点是,那么等于A.B.C.D.7.设函数(其中为自然对数的底数),则的值为A. B. C. D.8.直线(为参数)被曲线截得的弦长是A. B. C. D.9.已知函数在上为减函数,则的取值范围是A. B. C. D.10.一机器狗每秒前进或后退一步,程序设计师让机器狗以前进步,然后再后退步的规律移动,如果将此机器狗放在数轴的原点,面向数轴的正方向,以步的距离为个单位长,令表示第秒时机器狗所在位置的坐标.且,那么下列结论中错误的是A. B.C. D.11.已知A、B、C、D四点分别是圆与坐标轴的四个交点,其相对位置如图所示.现将沿轴折起至的位置,使二面角为直二面角,则与所成角的余弦值为A.B.C.D.12.点在双曲线上,、是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线中等于A.3B.4C.5D.6二、填空题(每小5分,满分20分)13.若,则__________.14.在三角形ABC中,若三个顶点坐标分别为,则AB边上的中线CD的长是__________.15.已知F1、F2分别是椭圆的左右焦点,A为椭圆上一点,M为AF1中点,N为AF2中点,O为坐标原点,则的最大值为__________.16.已知函数,过点作函数图象的切线,则切线的方程为。

广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

深圳中学2023-2024学年度第一学期期中考试试题年级:高一科目:数学考试用时:120分钟 卷面总分:150分注意事项:答案写在答题卡指定的位置上,写在试题卷上无效.选择题作答必须用2B 铅笔. 参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以e(e 2.71828)= 为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{3P x x =∈≥N 或0}x ≤,{}2,4Q =,则()P Q =N ()A.{}1 B.{}2 C.{}1,2 D.{}1,2,4【答案】D 【解析】【分析】根据补集的定义和运算可得{}1,2P =N ,结合并集的定义和运算即可求解. 【详解】由题意知,{}1,2P =N ,{}2,4Q =,所以(){}1,2,4P Q =N ,故选:D .2.命题“()()31,,1,x x ∞∞∃∈+∈+”的否定是( )A.()1,x ∀∈+∞,都有()31,x ∞∉+B.()1,x ∀∉+∞,都有()31,x ∞∉+C.()1,x ∀∈+∞,都有()31,x ∞∈+D.()1,x ∀∉+∞,都有()31,x ∞∈+【答案】A 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题命题“()()31,,1,x x ∞∞∃∈+∈+ ”的否定是“()1,x ∀∈+∞,都有()31,x ∞∉+.故选:A. 3.函数()f x =的定义域是( ) A. (,1)(1,0)−∞−∪− B. [1,)−+∞ C. [1,0)− D. [1,0)(0,)−+∞【答案】D 【解析】【分析】根据根式与分式的定义域求解即可. 【详解】()f x =的定义域满足1020x x +≥ ≠ ,解得[1,0)(0,)x ∈−+∞ . 故选:D4. ()f x x 1x 2=−+−的值域是 A. ()0,∞+ B. [1,)+∞C. ()2,∞+D. [2,)+∞【答案】B 【解析】【分析】对x 的范围分类,把(f x 的表达式去绝对值分段来表示,转化成各段函数值域的并集求解.【详解】()32,1121,1223,2x x f x x x x x x −≤=−+−=<< −≥,作出函数()f x 的图像如图所以()12f x x x =−+−的值域为[)1,+∞, 故选B.【点睛】本题主要考查了绝对值知识,对x 的范围进行分类,可将含绝对值的函数转化成初等函数类型来解决5. 已知幂函数的图象经过点()8,4P ,则该幂函数在第一象限的大致图象是( )A. B. C. D.【答案】B 【解析】【分析】根据求出幂函数的解析式,再根据幂函数的性质即可得出答案. 【详解】设()af x x =,则328422a a =⇔=,所以32a =,所以23a =,所以()23f x x ==,因为2013<<, 因为函数()f x 在()0,∞+上递增,且增加的速度越来越缓慢, 故该幂函数在第一象限的大致图象是B 选项. 故选:B .6. 函数31()81ln 803x f x x -⎛⎫ ⎪=-- ⎪⎝⎭的零点位于区间( )A. (1,2)B. (2,3)C. (3,4)D. (4,5)【答案】B 【解析】【分析】根据函数的单调性及函数零点的存在性定理选择正确选项即可.【详解】因为函数81ln y x =与31803x y − =−−在()0,∞+上均为增函数,所以()f x 在()0,∞+上为增函数.因为()281ln 2830f =−<,()381ln 3810f =−>, 所以函数()f x 的零点位于区间()2,3内. 故选:B7. 已知不等式220ax bx ++>的解集为{}21x x −<<,则不等式220x bx a −+<的解集为( )A. 11,2 −B. 1,12−C. 1,12D. ()2,1−【答案】A 【解析】【分析】根据不等式解集,求得参数,a b ,再求不含参数的一元二次不等式即可.【详解】根据题意方程220ax bx ++=的两根为2,1−,则221,2b a a−+=−−=,解得1,1a b =−=−, 故220x bx a −+<,即2210x x +−<,()()2110x x −+<,解得11,2x ∈−. 即不等式220x bx a −+<的解集为11,2 −. 故选:A .8. 已知()f x 和()g x 分别是定义在R 上的奇函数和偶函数,且()()e x g x f x −=,则(1)(1)f g =( ) A. 22e 1e 1+− B. 22e 1e 1−+C. 221e 1e −+D. 221e 1e +−【答案】C 【解析】【分析】根据奇函数与偶函数的性质即可代入1x =和=1x −求解.【详解】因为()f x 为奇函数,()g x 为偶函数,所以由()()111e g f −−−−=有()()111e g f −+=, 又()()11e g f −=,所以()121e e g −=+,()121e ef −=−, 所以()()12121e e 1e 1e e 1e f g −−−−==++.故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列各组函数中,两个函数是同一函数的有( )A. ()1f x x =+与21()1x g x x −=−B. ()1f t t =−与()1g x x =−C. ()ln e x f x =与()g x =D. ln ()e x f x =与()g x =【答案】BC 【解析】【分析】根据题意,由同一函数的定义,对选项逐一判断,即可得到结果.【详解】对于A ,()f x 定义域为R ,()g x 定义域为{}|1x x ≠,定义域不相同,不是同一函数,A 错误; 对于B ,函数()f x 与()g x 的定义域相同,对应关系也相同,所以是同一函数,故正确;对于C ,函数()()f x x x =∈R ,函数()()g x x x =∈R ,两函数的定义域与对应关系都一致,所以是同一函数,故正确;对于D ,()()0f x x x =>,()g x x =,所以对应关系不相同,定义域也不同,不是同一函数,D 错误. 故选:BC10. 下列说法正确的是( ) A. 函数1y x x=+的最小值为2 B. 若a ,b ∈R ,则“220a b +≠”是“0a b +≠”充要条件 C. 若a ,b ,m 为正实数,a b >,则a m ab m b+<+ D. “11a b>”是“a b <”的充分不必要条件 【答案】BC 【解析】【详解】根据基本不等式满足的前提条件即可判定A ,根据绝对值和平方的性质可判定B ,根据不等式的性质可判断CD.【分析】对于A ,当x 取负值时显然不成立,故A 错误, 对于B ,若,a b ∈R ,由220a b +≠,可知a ,b 不同时为0, 由0a b +≠,可知a ,b 不同时为0,所以“220a b +≠”是“0a b +≠”的充要条件,故B 正确;对于C ,()()()()()0b a m a b m m b a a m a b m b b b m b b m +−+−+−==<+++,所以a m ab m b+<+,故C 正确, 对于D ,①若11a b>,则当0a >,0b >时,则0a b <<, 当0a <,0b <时,则0a b <<, 当a ,b 异号时,0a b >>.的②若a b <,则当a ,b 同号时,则11a b >, 当a ,b 异号时,0a b <<,则11a b<, 所以“11a b>”是“a b <”的既非充分也非必要条件,D 选项错误.故选:BC11. 下列命题正确的是( )A. 函数212log (23)y x x =−−在区间(1,)+∞上单调递减 B. 函数e 1e 1x xy −=+在R 上单调递增C. 函数lg y x =在区间(,0)−∞上单调递减D. 函数13xy =与3log y x =−的图像关于直线y x =对称【答案】BCD 【解析】【分析】A 项,由复合函数的定义域可知错误;B 项分离常数转化为()21e 1x f x =−+,逐层分析单调性可得;C 项由偶函数对称性可知;D 项,两函数互为反函数可知图象关于直线y x =对称.【详解】对于A ,由2230x x −−>,解得1x <−,或3x >, 故函数定义域为(,1)(3,)−∞−∪+∞,由复合函数的单调性可知该函数的减区间为()3,+∞,故A 错; 对于B ,()21e 1x f x =−+, 由于e 1x y =+在x ∈R 单调递增,且e 10x +>, 所以1e 1x y =+在R 上单调递减,2e 1xy =−+在R 上单调递增, 因此()f x 在R 上单调递增,B 正确;对于C ,当0x >时,lg y x =(即lg y x =)在区间()0,∞+上单调递增, 又因为lg y x =为偶函数,其图象关于y 轴对称, 所以在区间(),0∞−上单调递减,C 正确;对于D ,由于函数13xy =与13log y x =(即3log y x =−)互为反函数.所以两函数图象关于y x =对称,D 正确. 故选:BCD.12. 德国数学家狄里克雷在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚地说明了函数的内涵:只要有一个法则,使得取值范围中的每一个x ,有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图像、表格等形式表示,例如狄里克雷函数()D x ,即:当自变量取有理数时,函数值为1;当自变量取无理数时,函数值为0.下列关于狄里克雷函数()D x 的性质表述正确的是( ) A. ()D x 的解析式为()R 1,,0,.x Q D x x Q ∈ = ∈B. ()D x 的值域为[]0,1C. ()D x 的图像关于直线1x =对称D. (())1D D x = 【答案】ACD 【解析】【分析】根据题意,由狄里克雷函数的定义,对选项逐一判断,即可得到结果. 【详解】对于A ,用分段函数的形式表示狄里克雷函数,故A 正确. 对于B ,由解析式得()D x 的值域为{}0,1,故B 错误;过于C ,若x 为有理数,则2x −为有理数,则()()21D x D x =−=;若x 为无理数,则2x −为无理数.则()()20D x D x =−=;所以()D x 的图像关于直线1x =对称,即C 正确;对于D ,当x 为有理数,可得()1D x =,则()()1D D x =,当x 为无理数,可得()0D x =,则()()1D D x =,所以()()1D D x =,所以D 正确. 故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13.110.752356416(4)−−−++++=________.【答案】414##1104【解析】【分析】根据题意,结合指数幂的运算法则和运算性质,准确化简、运算,即可求解. 【详解】根据指数幂的运算法则和运算性质,可得:11111430.752364353355426416(4)[()](2)(2)22233−−−−+=+−+++⋅ 221141821033444=−+++==. 故答案:414. 14. 已知a ,b 是方程22(ln )3ln 10x x −+=的两个实数根,则log log a b b a +=________. 【答案】52##2.5 【解析】【分析】方法一:利用韦达定理结合换底公式求解;方法二:解方程可得e a =,b =,代入运算求解即可.【详解】方法一:因为a ,b 是方程()22ln 3ln 10x x −+=的两个实数根, 由韦达定理得1ln ln 2a b ⋅=,3ln ln 2a b +=, 则()()()()2222ln ln ln ln 2ln ln ln ln ln ln 5log log 2ln ln ln ln ln ln ln ln 2a b a b a b a ba b b a b a a ba ba ba b++−⋅++=+===−=⋅⋅⋅,即5log log 2a b b a +=;方法二:因为22310t t −+=的根为1t =或12t =, 不妨设ln 1a =,1ln 2b =,则e a =,b =,所以e 15log log log 222e a b b a +==+=.故答案为:52.15. 已知0,0x y >>且2x y xy +=,则2x y +的最小值是__________. 【答案】8 【解析】【分析】运用“1”的代换及基本不等式即可求得结果.为【详解】因为2x y xy +=,所以211x y+=,所以()214222248x y x y x y x y y x +=++=+++≥+=,当且仅当4x y y x =,即4,2x y ==时取等号.所以2x y +的最小值为8. 故答案为:8.16. 记(12)(12)T x y =−−,其中221x y +=,则T 的取值范围是________.【答案】3,32 −+ . 【解析】【分析】根据基本不等式,结合换元法,将问题转化为213222T t =−− ,t ≤≤上的范围,由二次函数的性质即可求解.【详解】()124T x y xy =−++,设x y t +=,则212t xy −=, 所以221124212t T t t t −=−+⋅=−.因为22x y xy + ≤,所以22124t t −≤.所以t ≤≤又213222T t =−− ,所以当12t =时,T 有最小值32−,当t =T 有最大值3+.故答案为:3,32 −+ 四、解答题:本题共6小题,共20分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}(,)|1Ax y y x ==−,{}2(,)|B x y y mx ax m ==++.(1)若1a =−,0m =,求A B ∩;(2)若1a =,且A B ∩≠∅,求实数m 的取值范围.【答案】(1)11,22A B=−(2)[]2,1−. 【解析】【分析】(1)联立两方程,求出交点坐标,得到交集;(2)联立后得到210mx m +++=,分0m =与0m ≠两种情况,,结合根的判别式得到不等式,求出答案. 【小问1详解】 若1a =,0m =,则(){},|Bx y y x ==. 由1y x y x =−=− ,得1212x y= =− . 所以11,22A B =−. 【小问2详解】由()211x y y mx x m −==+++消去y,得210mx m +++=①. 因为A B ∩≠∅,所以方程①有解.当0m =时,方程①可化为1=−,解得x =,所以1y , 所以0m =符合要求.当0m ≠时,要使方程①有解,必须(()2Δ410m m =−+≥,即220m m +−≤,解得21m −≤≤, 所以21m −≤≤,且0m ≠. 综上所述,m 的取值范围是[]2,1−. 18. 设不等式2514x x −≤−的解集为A ,关于x 的不等式2(2)20x a x a −++≤的解集为B . (1)求集合A ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1)[)1,4(2)[)1,4.【解析】【分析】(1)根据题意,结合分式不等式的解法,即可求解;(2)根据题意,转化为B A ,再结合一元二次不等式的解法,分类讨论,求得集合B ,进而求得a 取值范围.【小问1详解】 解:由不等式2514x x −≤−,可得2511044x x x x −−−=≤−−, 即()()140x x −−≤,且4x ≠,所以14x ≤<,所以[)1,4A =.【小问2详解】解:因为“x A ∈”是“x B ∈”的必要不充分条件,所以集合B 是A 的真子集,由不等式()2220x a x a −++≤,可得()()20x x a −−≤, 当2a <时,不等式的解集为2a x ≤≤,即[],2B a =,因为B A ,则12a ≤<;当2a =时,不等式为2(2)0x −≤,解得2x =,即{}2B =;B A 成立;当2a >时,不等式的解集为2x a ≤≤,即[]2,B a =,因为B A ,则24a <<,综上所述14≤<a ,即a 的取值范围是[)1,4.19. 已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()2f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示.(1)请将函数()f x 的图象补充完整,并求出()()f x x ∈R 的解析式;(2)求()f x 在区间[],0a 上的最大值.【答案】(1)作图见解析,()222,02,0x x x f x x x x +≤= −+>(2)答案见解析【解析】【分析】(1)根据函数奇函数的对称性,即可根据对称作出函数图象,进而可利用奇函数的定义求解解析式,(2)根据二次函数的性质,结合函数图象即可求解.【小问1详解】作出函数()f x 的图象,如图所示,当0x >时,0x −<,则()()22()22f x x x x x −=−+−=−, 因为()f x 为奇函数,所以()()22f x f x x x =−−=−+, 所以()222,02,0x x x f x x x x +≤= −+>. 【小问2详解】易如()()200f f −==,当2a <−时,()f x 在x a =处有最大值()22f a a a =+; 当20a −≤<时,()f x 在0x =处有最大值()00f =.20. 为了减少能源损耗,某建筑物在屋顶和外墙建造了隔热层,该建筑物每年节省的能源费用h (万元)与的隔热层厚度(cm)x 满足关系式:()()3232020h x x x k=−≤≤+.当隔热层厚度为1cm 时,每年节省费用为16万元,但是隔热层自身需要消耗能源,每年隔热层自身消耗的能源费用g (万元)与隔热层厚度(cm)x 满足关系:()2g x x =.(1)求k 的值;(2)在建造厚度为(cm)x 的隔热层后,每年建筑物真正节省的能源费用为()()()=−f x h x g x ,求每年该建筑物真正节省的能源费用的最大值.【答案】(1)1k =(2)18万元.【解析】【分析】(1)根据()116h =求解出k 值即可;(2)根据条件先表示出()f x ,然后利用基本不等式求解出最大值,注意取等条件.【小问1详解】由题知()116h =,所以3232161k −=+, 解得1k =;【小问2详解】由(1)知,()()32320201h x x x =−≤≤+, 所以()()323220201f x x x x =−−≤≤+, 所以()()()323232212342111f x x x x x −−++=−++= ++, 因为()3221161x x ++≥=+,当且仅当()32211x x =++,即3x =时取等号, 所以()341618f x ≤−=, 所以每年该建筑物真正节省的能源费用的最大值为18万元.21. 已知23()21x x a f x −−=+, (1)若定义在R 上的函数()ln ()g x f x =是奇函数,求a 的值;(2)若函数()()h x f x a =+在(1,)−+∞上有两个零点,求a 的取值范围.的【答案】(1)13− (2)41,3【解析】【分析】(1)根据题意,结合()()0g x g x −+=,得出方程,进而求得实数a 的值; (2)令()0h x =,得到()23210x x a a −−++=,得到()222210x x a a −⋅+=,令2x t =,转化方程可化为2210at at −+=1,2 +∞上有两个不相等的根, 方法一:设()221p t at at =−+,结合二次函数的性质,列出不等式组,即可求解;方法二:把方程化为()211a t a −−=,求得1t =±,结合11,2 +∞,即可求解. 【小问1详解】 解:因为()g x 是奇函数,所以()()2323ln ln 02121x x x x a a g x g x −−−−−+=+=++, 可得232312121x x x x a a −−−−⋅=++,即()()2312291x x a a −++=−恒成立, 因为220x x −+≠,所以310a +=且2910a −=,所以13a =−. 【小问2详解】 解:由232()()1x x h a x f a a x −=+−=++,令()0h x =,可得23021x x a a −−+=+, 所以()23210x x a a −−++=, 两边同乘以2x 并整理,得()222210x x a a −⋅+=. 令2x t =,因为1x >−,所以12t >, 于是方程可化为2210at at −+=,(*) 问题转化为关于t 的方程(*)在1,2 +∞上有两个不相等的根,显然0a ≠, 方法一:设()221p t at at =−+,抛物线的对称轴为1t =,()01p =.若a<0,由()00p >知,()p t 必有一个零点为负数,不合题意; 若0a >,要使()p t 在1,2 +∞ 上有两个零点,由于对数轴112t =>, 故只需2102Δ440p a a > =−> ,即31044(1)0a a a −> −> ,解得413a <<. 综上可得,实数a 的取值范围是41,3. 方法二:方程(*)可化为()211a t a −=−,若0a =,则01=−,矛盾,故0a ≠,故()211a t a −−=, 所以10a a−>,即a<0或1a >,①此时,1t −=,即1t =±,其中11,2 +∞ ,则112−>12<,即114a a −<,可得340a a −<,解得403a << ② 由①②得a 的取值范围是41,3. 22. 定义在R 上函数()f x 满足如下条件:①()()()4f x y f x f y +=+−;②(2)6f =;③当0x >时,()4f x >.(1)求(0)f ,判断函数()f x 的单调性,并证明你的结论; (2)当[)0,x ∈+∞时,不等式()()()ln 3e 122ln 310x f a f x a −++−−≤ 恒成立,求实数a 的取值范围.【答案】(1)()04f =,函数()f x 在R 上为增函数,证明见解析 (2)[]1,3【解析】的【分析】(1)令2,0x y ==,求得()04f =,再根据函数单调性的定义和判定方法,证得函数()f x 在R 上为增函数;(2)根据题意,转化为不等式()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立,由对数函数的性质,求得03a <≤,再由不等式()23e 3e 10x x a a +−−≥成立,转化为max 1e x a ≥ 对于任意[)0,x ∈+∞成立,求得1a ≥,即可求得实数a 的取值范围.【小问1详解】解:令2x =,0y =,可得()04f =.函数()f x 在R 上为增函数,证明如下:设12x x <,因为()()()4f x y f x f y +−=−,令1x y x +=,2x x =,则21y x x =−,可得()()()21214f x f x f x x −=−−, 因为210x x −>,所以()214f x x −>,所以()2140f x x −−>, 所以()()210f x f x −>,即()()21f x f x >, 所以函数()f x 在R【小问2详解】解:由条件有()()()4f x f y f x y +=++,则不等式可化为()()ln 3e 122ln 3410x f a x a −++−−+≤ ,即()()ln 3e 122ln 36x f a x a −++−−≤ , 又由()26f =,所以()()()ln 3e 122ln 32xf a x a f −++−−≤ , 因为函数()f x 在R 上为增函数,可得()ln 3e 122ln 32x a x a −++−−≤即()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立, 根据对数函数的性质,可得()3e 10x a −+>,30a >对于任意[)0,x ∈+∞成立,则13e 0x a a <+ >,因为0x ≥,则e 1x ≥,所以101e x <≤, 可得1334ex <+≤,所以03a <≤ ①, 又由(*)式可化为()()2ln 3e 12ln 3ln 3e x x a x a a −+≤+= , 即对于任意[)0,x ∈+∞,()23e 13e x xa a −+≤成立,即()23e 3e 10x x a a +−−≥成立, 即对于任意[)0,x ∈+∞,()()3e 1e 10x x a +−≥成立, 因为3e 10x +>,所以e 10x a −≥对于任意[)0,x ∈+∞成立, 即max1e x a ≥ 对于任意[)0,x ∈+∞成立,所以1a ≥ ②. 由①②,可得13a ≤≤,所以实数a 的取值范围为[]1,3.。

江西省赣州市2023-2024学年高二下学期7月期末考试-数学含解析

江西省赣州市2023-2024学年高二下学期7月期末考试-数学含解析

赣州市2023~2024学年度第二学期期末考试高二数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}21,30A x xB x x x =<=-<,则A B = ()A.{}01x x << B.{}0x x < C.{1x x <或3}x > D.{}3x x <2.已知命题:0,e 1x p x x ∀>≥+,则p ⌝为()A.0,e 1x x x ∀≤<+B.0,e 1x x x ∀><+C.0,e 1x x x ∃≤<+ D.0,e 1x x x ∃><+3.正项等比数列{}n a 中,24627a a a =,则3137log log a a +=()A.1B.2C.3D.44.已知函数()f x 的定义域为R 且导函数为()f x ',函数()y xf x ='的图象如图,则下列说法正确的是()A.函数()f x 的增区间是()()2,0,2,∞-+B.函数()f x 的减区间是()(),2,2,∞∞--+C.2x =-是函数的极大值点D.2x =是函数的极大值点5.“1m £”是“函数()()22log 1f x x mx =--在()1,+∞单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在人工智能神经网络理论中,根据不同的需要,设置不同激活神经单元的函数,其中函数tan h 是比较常用的一种,其解析式为()e e tan e ex xx xh x ---=+.关于函数()tan h x ,下列结论错误的是()A.()tanh 1x ≤-有解B.()tanh x 是奇函数C.()tan h x 不是周期函数D.()tan h x 是单调递增函数7.已如A 是函数()2ln f x x x =-图像上的动点,B 是直线20x y ++=上的动点,则,A B 两点间距离AB的最小值为()A.B.4C.D.8.设等差数列{}n a 的前n 项和为n S ,公差为10110,1a d a <<-,则下列结论正确的是()A.45180a a a ++< B.使得0nS <成立的最小自然数n 是20C.910910S S > D.21222122S S a a >二、多选题:本题共3小题,每小题6分,共18分.在每小题给出选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错项得0分.9.已知,a b ∈R ,且a b >,,,a b c 都不为0,则下列不等式一定成立的是()A.11a b< B.a c b c+>+C.22a b c c> D.1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭10.已知正数,a b 满足45a b ab ++=,则下列结论正确的是()A.ab 的最大值为1B.4a b +的最小值为4C.2216a b +的最小值为9D.111a b++的最小值为10911.记方程1x xe =的实数解为Ω(Ω是无理数),Ω被称为在指数函数中的“黄金比例”.下列有关Ω的结论正确的是()A.lnΩΩ0+=B.11Ω,32⎛⎫∈ ⎪⎝⎭C.2Ω2Ω10+->D.函数()1ln e xxf x x+=-的最小值为()Ωf 三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()y f x =是R 上的奇函数,()()1,031,0x f x x g x x ⎧+≤=⎨->⎩,则()()0g g =__________.13.数列{}n a 的前n 项和为n S ,若()1πsin 12n n a n n =++,则2024S =__________.14.已知定义在R 上的函数()f x 满足()()12f x f x -=+,当[)0,3x ∈时,()231exx x f x -+=,则()y f x =在[]1012,1012-上的零点个数为__________个.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()()32f x ax bxx =+∈R 的图象过点()1,2P -,且在点P 处的切线恰好与直线340x y ++=平行.(1)求函数()f x 的解析式;(2)求()f x 在[]4,1-上的最大值和最小值.16.已知等差数列{}n a 的公差41370,5,,,d a a a a >=成等比数列,数列{}n b 的前n 项和公式为()*22n n S b n =-∈N .(1)求数列{}n a 和{}n b 的通项公式:(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .17.已知函数()f x 为二次函数,有()()10,45f f -==,__________,从下列条件中选取一个,补全到题目中,①1322f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,②函数()1f x +为偶函数,③()23f =-(1)求函数()f x 的解析式;(2)若()()()222log 3log 1g x x x =+-+,若对任意的[]11,2x ∈,总存在(]21,2x ∈-,使得()()211g x f x mx ≤+成立,求实数m 的取值范围.18.已知函数()()2ln ,f x x x ax f x ⋅'=-为()f x 的导函数,记()()g x f x '=,其中a 为常数.(1)讨论()g x 的单调性;(2)若函数()f x 有两个极值点()1212,x x x x <,①求a 的取值范围;②求证:121x x a+>.19.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,3进行构造,第一次得到数列1,4,3:第二次得到数列1,5,4,7,3:依次构造,第()*n n ∈N 次得到的数列的所有项之和记为n a ,如11438a ++==.(1)求3a ;(2)求{}n a 的通项公式;(3)证明:1231111524n a a a a ++++< .赣州市2023~2024学年度第二学期期末考试高二数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}21,30A x xB x x x =<=-<,则A B = ()A.{}01x x << B.{}0x x < C.{1x x <或3}x > D.{}3x x <【答案】A 【解析】【分析】先解一元二次不等式,求解集合B ,再求交集即可.【详解】因为{}(){}{}2303003B x x x x x x x x =-<=-<=<<,又{}1,A x x =<所以AB = {}01x x <<.故选:A.2.已知命题:0,e 1x p x x ∀>≥+,则p ⌝为()A.0,e 1x x x ∀≤<+B.0,e 1x x x ∀><+C.0,e 1x x x ∃≤<+D.0,e 1x x x ∃><+【答案】D 【解析】【分析】全称量词命题的否定,首先把全称量词改成存在量词,然后把后面结论改否定即可.【详解】因为命题:0,e 1x p x x ∀>≥+是全称量词命题,则命题p ⌝为存在量词命题,由全称量词命题的否定得,命题p ⌝:0,e 1x x x ∃><+.故选:D.3.正项等比数列{}n a 中,24627a a a =,则3137log log a a +=()A.1B.2C.3D.4【答案】B 【解析】【分析】根据等比数列的性质求出4a 即可得解.【详解】由等比数列性质可知3246427a a a a ==,解得43a =,所以23137317343log log log log 2log 32a a a a a +====,故选:B4.已知函数()f x 的定义域为R 且导函数为()f x ',函数()y xf x ='的图象如图,则下列说法正确的是()A.函数()f x 的增区间是()()2,0,2,∞-+B.函数()f x 的减区间是()(),2,2,∞∞--+C.2x =-是函数的极大值点D.2x =是函数的极大值点【答案】C 【解析】【分析】根据函数图象确定导函数的符号,确定函数的单调区间和极值.【详解】根据()y xf x '=的图象可知:当<2x -时,()0f x ¢>;20x -<<时,()0f x '<,当02x <<时,()0f x '<,当2x >时,()0f x ¢>.所以()f x 在()(),2,2,-∞-+∞上单调递增,在()2,2-上单调递减.因此函数()f x 在2x =时取得极小值,在2x =-取得极大值.故ABD 错误,C 正确.故选:C5.“1m £”是“函数()()22log 1f x x mx =--在()1,+∞单调递增”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】利用对数函数与复合函数的单调性计算即可.【详解】由二次函数、对数函数的单调性及复合函数的单调性可知:要满足函数()()22log 1f x x mx =--在()1,+∞单调递增,需要21021110m m m ⎧≤⎪⇒≤⎨⎪-⨯-≥⎩,因为01<,所以“1m £”是“函数()()22log 1f x x mx =--在()1,+∞单调递增”的必要不充分条件.故选:B .6.在人工智能神经网络理论中,根据不同的需要,设置不同激活神经单元的函数,其中函数tan h 是比较常用的一种,其解析式为()e e tan e ex xx xh x ---=+.关于函数()tan h x ,下列结论错误的是()A.()tanh 1x ≤-有解B.()tanh x 是奇函数C.()tan h x 不是周期函数D.()tan h x 是单调递增函数【答案】A 【解析】【分析】考虑函数的值域可判断A ,根据函数的奇偶性定义判断B ,由复合函数的单调性分析可判断D ,由D 结合周期定义判断C.【详解】由2e e 2e 2tan ()11e e e e e 1x x x x x x x x h x -----==-=-+++,因2e 11x +>,则2221e 0x<<+,可得2111e 21x -<-<+,即tan ()(1,1)h x ∈-,故A 错误;因为tan ()h x 的定义域为R ,且e e e e tan ()tan ()e e e ex x x xx xx x h x h x -------==-=-++,所以tan ()h x 是奇函数,故B 正确;2e e 2tan ()1e e e 1x x x x x h x ---==-++,因2e x 是增函数,2e 1x+是增函数且恒为正数,则21e 1x+是减函数,故tan ()h x 是增函数,故D 正确;由D 可知函数在R 上单调递增,所以当0T ≠时,()tan tan ()h x h x T +≠,所以函数不是周期函数,故C 正确.故选:A7.已如A 是函数()2ln f x x x =-图像上的动点,B 是直线20x y ++=上的动点,则,A B 两点间距离AB的最小值为()A. B.4C.D.【答案】C 【解析】【分析】先求函数()f x 斜率为1-的切线,然后切线与直线20x y ++=的距离即为所求.【详解】因为()2ln f x x x =-,(0x >),所以()21f x x'=-,由()1f x '=-,得1x =,又()11f =,所以()f x 过()1,1点的切线为:()11y x -=--即20x y +-=.直线20x y +-=与20x y ++=的距离为:d ==.故选:C8.设等差数列{}n a 的前n 项和为n S ,公差为10110,1a d a <<-,则下列结论正确的是()A.45180a a a ++< B.使得0nS <成立的最小自然数n 是20C.910910S S > D.21222122S S a a >【答案】C 【解析】【分析】根据题意可知数列单调递减且101110110,0,0a a a a ><+>,由通项公式化简可判断A ,由等差数列的性质及求和公式结合条件可判断B ,根据n S n ⎧⎫⎨⎩⎭为递减数列即可判断C ,由,n n a S 的关系及20,22S S 的符号可判断D.【详解】由公差为10110,1a d a <<-可知,等差数列{}n a 为递减数列且101110110,0,0a a a a ><+>,对A ,45181932430a a a a a d =+++=>,故A 错误;对B ,因为10110a a +>,所以12010110a a a a +=+>,所以1202020()20a a S +>=,故B 错误;对C ,因为11(1)222nn n na dS d n a n n d -==+-+,且02d <,所以由一次函数单调性知n S n ⎧⎫⎨⎬⎩⎭为单调递减数列,所以910910S S >,故C 正确;对D ,由B 知200S >,且2111210S a =<,所以2221220S S a =+<,因为2121212120S S a S S =-,1222222222S S a S S -=,若21222122S S a a >,则212221202221S S S S S S >--,且()()212022210S S S S -->,即()()212221222120S S S S S S ->-,即2212220S S S <,而200S >,220S <,显然矛盾,故21222122S S a a >不成立,故D 错误.故选:C二、多选题:本题共3小题,每小题6分,共18分.在每小题给出选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错项得0分.9.已知,a b ∈R ,且a b >,,,a b c 都不为0,则下列不等式一定成立的是()A.11a b< B.a c b c+>+C.22a b c c> D.1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】BC 【解析】【分析】由不等式的性质和函数单调性,判断选项中的不等式是否成立.【详解】当0a b >>时,有11a b>,A 选项错误;a b >,则()()0a c b c a b +-+=->,得a c b c +>+,B 选项正确;a b >,2220a b a bc c c --=>,得22a bc c>,C 选项正确;函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,a b >,则1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,D 选项错误.故选:BC10.已知正数,a b 满足45a b ab ++=,则下列结论正确的是()A.ab 的最大值为1B.4a b +的最小值为4C.2216a b +的最小值为9D.111a b++的最小值为109【答案】ABD 【解析】【分析】根据均值不等式分别建立不等式解不等式可判断AB ,先变形2216a b +为关于ab 的二次函数求最值判断C ,利用条件变形可得()1(4)9a b ++=,转化111a b++为关于b 的式子由均值不等式判断D.【详解】由正数,a b 满足45a b ab ++=,可得45a b ab +=-≥,解得01<≤,即1ab ≤,当且仅当4a b =,即1,22a b ==时等号成立,故A 正确;由正数,a b 满足45a b ab ++=,可得2114454442a b a b ab +⎛⎫+-=-⨯≥-⨯ ⎪⎝⎭,解得44a b +≥或420a b +≤-(舍去),当且仅当4a b =,即1,22a b ==时等号成立,故B 正确;()()2222216(4)858956a b a b ab ab ab ab +=+-=--=--,由A 知1ab ≤,由二次函数的单调性知()22956(19)568ab --≥--=,即1ab =时,2216a b +的最小值为8,故C 错误;由45a b ab ++=可得449a b ab +++=,即()1(4)9a b ++=,所以1441999b b a +==++,所以144109999111b b a b +=+≥=++,当且仅当19b b =,即3b =,27a =时等号成立,故D 正确.故选:ABD11.记方程1x xe =的实数解为Ω(Ω是无理数),Ω被称为在指数函数中的“黄金比例”.下列有关Ω的结论正确的是()A.lnΩΩ0+=B.11Ω,32⎛⎫∈ ⎪⎝⎭C.2Ω2Ω10+->D.函数()1ln e xxf x x+=-的最小值为()Ωf 【答案】ACD 【解析】【分析】构建()e 1xg x x =-,利用导数判断其单调性,结合零点存在性定理分析判断B 选项,对于A :对e 1ΩΩ=,()Ω0.5,1∈,取对数整理即可;对于C :根据二次函数单调性判断;对于D :结合不等式ln 10x x --≥分析可知()1f x ≥,当且仅当1x xe =时,等号成立.【详解】构建()e 1xg x x =-,则Ω为()g x 的零点,因为()()1e xg x x +'=,若1x <-,则()0g x '<,可知()g x 在(),1∞--内单调递减,且()0g x <,所以()g x 在(),1∞--内无零点;若1x >-,则()0g x '>,可知()g x 在()1,∞-+内单调递增,()e0.5102g =-<且()1e 10g =->,所以()g x 在()1,∞-+内存在唯一零点()Ω0.5,1∈;对于选项A :因为e 1ΩΩ=,()Ω0.5,1∈,即1e Ω=Ω,两边取对数可得:1lnlne Ω==ΩΩ,lnΩΩ0+=,故A 正确;对于选项B :由上可知()Ω0.5,1∈,故B 不正确;对于选项C :2Ω2Ω1y =+-对称轴为Ω1=-,而()Ω0.5,1∈,故2Ω2Ω1y =+-单调递增,当Ω0.5=,2Ω2Ω1y =+-最小值为0.25,所以2Ω2Ω10+->,故C 正确;对于选项D :构建()ln 1,0h x x x x =-->,则()11h x x'=-,令()0h x '>,解得1x >;令()0h x '<,解得01x <<;可知()h x 在()0,1内单调递减,在()1,∞+内单调递增,则()()10h x h ≥=,可得ln 10x x --≥,当且仅当1x =时,等号成立,0t >可得ln 10t t --≥,令e x t x =,()()e ln e 10,e ln ln e 10,e ln 10,e ln 1x x x x x x x x x x x x x x x x --≥-+-≥---≥--≥则()e -ln 11x x x xf x x x-=≥=,当且仅当1x xe =,即1e xx=时,等号成立,所以()f x 的最小值为(Ω)f ,故D 正确;故选:ACD.【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()y f x =是R 上的奇函数,()()1,031,0x f x x g x x ⎧+≤=⎨->⎩,则()()0g g =__________.【答案】2【解析】【分析】根据奇函数的定义得出(0)0f =,再由()g x 解析式得解.【详解】因为函数()y f x =是R 上的奇函数,所以(0)0f =,所以()()()()001(1)312g g g f g =+==-=,故答案为:213.数列{}n a 的前n 项和为n S ,若()1πsin 12n n a n n =++,则2024S =__________.【答案】20242025【解析】【分析】先按通项进行分组求和,再由分式数列用裂项法求和,而数列πsin 2n ⎧⎫⎨⎬⎩⎭是周期为4的数列,所以按每4个数一组求和即可.【详解】由()1π11πsin sin 1212n n n a n n n n =+=-+++得:20241111111111101001223344520242025S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++-++--+-+⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()111111111112024101001122334452024202520252025⎛⎫=-+-+-+-+⋅⋅⋅+++-++⋅⋅⋅+=-= ⎪⎝⎭,故答案为:20242025.14.已知定义在R 上的函数()f x 满足()()12f x f x -=+,当[)0,3x ∈时,()231exx x f x -+=,则()y f x =在[]1012,1012-上的零点个数为__________个.【答案】1350【解析】【分析】由题意可得函数为周期函数,再由一个周期内[)0,3内有两个零点,且一个零点小于1,一个大于2,即可得出在[]1012,1012-上的零点个数.【详解】由()()12f x f x -=+可得()(3)f x f x =+,所以周期3T =,当[)0,3x ∈时,()231exx x f x -+=,令()0f x =,解得()()210,1,2,33322x x =∈=∈,即一个周期内有2个零点,因为(1012)(33731)f f =⨯+,所以()y f x =在[]1012,1012-上的零点个数为()2233711350⨯⨯+=.故答案为:1350四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()()32f x ax bxx =+∈R 的图象过点()1,2P -,且在点P 处的切线恰好与直线340x y ++=平行.(1)求函数()f x 的解析式;(2)求()f x 在[]4,1-上的最大值和最小值.【答案】(1)()323f x x x=+(2)最大值为4;最小值为:16-【解析】【分析】(1)根据函数的图象过点P ,得到关于,a b 的一个关系式,再根据函数在=1x -处的导数为3-,又得到关于,a b 的一个关系式,可求,a b 的值.(2)利用导数分析函数的单调性,可求函数的最大、最小值.【小问1详解】因为函数()32f x ax bx =+的图象过点()1,2P -,所以2a b -+=.又因为()232f x ax bx '=+,且()f x 在点P 处的切线恰好与直线340x y ++=平行,所以()1323f a b -=-=-',由2323a b a b -+=⎧⎨-=-⎩得:13a b =⎧⎨=⎩,所以()323f x x x =+.【小问2详解】由(1)知:()()23632f x x x x x '=+=+,由()0f x '<⇒20x -<<,由()0f x ¢>⇒<2x -或0x >.所以()f x 在()4,2--上单调递增,在()2,0-上单调递减,在()0,1上单调递增,又()416f -=-,()24f -=,()00f =,()14f =,所以()f x 在[]4,1-上的最大值为4,最小值为16-.16.已知等差数列{}n a 的公差41370,5,,,d a a a a >=成等比数列,数列{}n b 的前n 项和公式为()*22n n S b n =-∈N .(1)求数列{}n a 和{}n b 的通项公式:(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .【答案】(1)1n a n =+,2n n b =(2)12n n T n +=⋅【解析】【分析】(1)根据等差数列的通项公式求等差数列的通项公式,根据数列的前n 项和,求数列{}n b 的通项公式.(2)利用错位相减求和法求数列的前n 项和.【小问1详解】由题意:14353a a d d =-=-,345a a d d =-=-,74353a a d d =+=+,因为137,,a a a 成等比数列,所以2317a a a =⋅⇒()()()255353d d d -=-+⇒0d =或1d =,又0d >,所以1d =,所以1532a d =-=.所以1n a n =+.对数列{}n b :当1n =时,1122b b =-⇒120b =≠,当2n ≥时,22=-n n S b ,1122--=-n n S b ,两式相减得:122n n n b b b -=-⇒12n n b b -=,所以{}n b 是以2为首项,2为公比得等比数列,所以2nn b =.【小问2详解】由(1)知:()12nn c n =+⋅,所以:()12322324212nn T n =⨯+⨯+⨯+++⋅ ,()23412223242212n n n T n n +=⨯+⨯+⨯++⋅++⋅ ,两式相减得:()()231422212nn n T n +-=++++-+⋅ ()()21121241212n n n -+-=+-+⋅-12n n +=-⋅,所以12n n T n +=⋅.17.已知函数()f x 为二次函数,有()()10,45f f -==,__________,从下列条件中选取一个,补全到题目中,①1322f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,②函数()1f x +为偶函数,③()23f =-(1)求函数()f x 的解析式;(2)若()()()222log 3log 1g x x x =+-+,若对任意的[]11,2x ∈,总存在(]21,2x ∈-,使得()()211g x f x mx ≤+成立,求实数m 的取值范围.【答案】(1)()223f x x x =--(2)[)5,+∞【解析】【分析】(1)用待定系数法求函数解析式.(2)分别求函数的值域,根据两个函数值域之间的关系求参数.【小问1详解】设()()20f x ax bx c a =++≠,由题意:01645a b c a b c -+=⎧⎨++=⎩,两式相减的:31a b +=若选①,则:抛物线的对称轴为:1x =,即12ba-=⇒20a b +=.所以123a b c =⎧⎪=-⎨⎪=-⎩,所以()223f x x x =--;若选②,则:抛物线的对称轴为:1x =,同上;若选③,则:423a b c -+=-,由01645423a b c a b c a b c -+=⎧⎪++=⎨⎪-+=-⎩,得:123a b c =⎧⎪=-⎨⎪=-⎩,所以()223f x x x =--.综上:()223f x x x =--【小问2详解】对()g x :()()()22l 1n 221ln 3x g x x x '=-++()()()()222213l 1n 3x x x x x +-+=++()()223ln 2231x x x x =+++-()()()()2ln 23131x x x x +-=++当(]1,2x ∈-时,由()0g x '>⇒12x <≤;由()0g x '<⇒11x -<<;所以()g x 在()1,1-上单调递减,在()1,2上单调递增,所以(]1,2x ∈-时,()()221log 4log 21g x g ≥=-=.当[]1,2x ∈时,()()2231f x mx x m x +=+--≥恒成立,所以2442x m x x x--≥=-在[]1,2上恒成立.观察可知,函数4y x x =-在[]1,2上单调递减,所以max4413x x ⎛⎫-=-= ⎪⎝⎭,由23m -≥⇒5m ≥.所以实数m 的取值范围是:[)5,+∞18.已知函数()()2ln ,f x x x ax f x ⋅'=-为()f x 的导函数,记()()g x f x '=,其中a 为常数.(1)讨论()g x 的单调性;(2)若函数()f x 有两个极值点()1212,x x x x <,①求a 的取值范围;②求证:121x x a+>.【答案】(1)见解析(2)①10,2⎛⎫⎪⎝⎭;②证明见解析【解析】【分析】(1)求出()g x ',分类讨论,利用()0g x '>,()0g x '<解不等式即可得解;(2)①先分析0a ≤不合题意,再求出0a >时函数()f x 在有两个极值点()1212,x x x x <的必要条件,再此条件下分析即可得解;②对结论进行转化,只需证()1212122ln x x x x x x -<+,换元后利用导数确定函数单调性,得出函数最值,即可得证.【小问1详解】定义域为(0,)+∞.()ln 12f x x ax '=+- ,()ln 12g x x ax =+-∴,()1122axg x a x x-=-=' ,当0a ≤时,′(p >0恒成立,()g x 在(0,)+∞上单调递增,当0a >时,令()0g x '>,则120ax ->,解得12x a<,令()0g x '<,则120ax -<,解得12x a>,()g x ∴在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ∞⎛⎫+ ⎪⎝⎭单调递减.综上,当0a ≤时,()g x 在(0,)+∞上单调递增;当0a >时,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ∞⎛⎫+ ⎪⎝⎭单调递减.【小问2详解】由(1)知,0a ≤时,()0f x '= 最多一个根,不符合题意,故0a >,函数()f x 有两个极值点()1212,x x x x <,()0g x ∴=在()0,∞+有两个不同零点的必要条件是=ln12>0,解得102a <<,当102a <<,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ∞⎛⎫+ ⎪⎝⎭单调递减,=ln 12>0,=−2e<0,→+∞,→−∞,∴由零点存在性定理得:()f x 在11,e 2a ⎛⎫ ⎪⎝⎭,1,2a ∞⎛⎫+ ⎪⎝⎭各有1个零点,a ∴的取值范围是10,2⎛⎫ ⎪⎝⎭.② 函数()f x 有两个极值点()1212,x x x x <,11ln 120x ax ∴+-=①22ln 120x ax +-=②①-②得:()1212ln ln 2x x a x x -=-,要证121x x a+>,即证1+2>12()1212122ln ln x x x x x x --<+,即证()1212122lnx x x x x x -<+,令()1201x t t x =<<,则()21ln 1t t t -<+,令()()21ln 1t R t t t -=-+,则′=1=K12r1>0,()y R t ∴=在(0,1)上单调递增,()()10R t R ∴<=,∴()21ln 01t t t --<+在(0,1)上成立,121x x a∴+>,得证.【点睛】关键点点睛:要证明不等式121x x a+>,关键点之一在于消去a 后对结论进行恰当变形,转化为证明()1212122lnx x x x x x -<+成立,其次关键点在于令()1201x t t x =<<换元,转化为证明()21ln 1t t t -<+成立.19.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,3进行构造,第一次得到数列1,4,3:第二次得到数列1,5,4,7,3:依次构造,第()*n n ∈N 次得到的数列的所有项之和记为n a ,如11438a ++==.(1)求3a ;(2)求{}n a 的通项公式;(3)证明:1231111524n a a a a ++++< .【答案】(1)356a =(2)223nn a =+⨯(3)证明见解析【解析】【分析】(1)求出第三次得到数列再求和即可;(2)设出第n 次构造后得到的数列求出n a ,则得到第1n +次构造后得到的数列求出1n a +,可得1n a +与n a 关系,再利用构造法求通项即可;(3)利用放缩法求等比数列和可得答案.【小问1详解】因为第二次得到数列1,5,4,7,3,所以第三次得到数列1,6,5,9,4,11,7,10,3所以31659411710356++++++++==a ;【小问2详解】设第n 次构造后得的数列为121,,,,,3 k x x x ,则1213n k a x x x =+++++ ,则第1n +次构造后得到的数列为1112211,1,,,,,,,3,3-++++ k k k k x x x x x x x x x ,则11112211133+-=+++++++++++++ n k k k k a x x x x x x x x x ()12183131243k k n x x x x a -=+++++++-=-+ ,()1232n n a a +-=-,可得1322n n a a +-=-,126a -=,所以{}2n a -是以3为公比,6为首项的等比数列,所以1263n n a --=⨯,即223nn a =+⨯;【小问3详解】由(2)得111111163223123-==⨯<⨯⨯++n nn n a ,所以当1n =时,1115824=<a ,当2n ≥时,所以2312311111111182333n n a a a a ⎛⎫++++=++++ ⎪⎝⎭21111111511533182241232413n n --⎛⎫- ⎪⎝⎭=+=-⋅<-,综上所述,1231111524n a a a a ++++< .【点睛】关键点点睛:(2)问中解题关键点是已知相邻两项关系构造等比数列,进而得到数列的通项公式;(3)问中根据的通项公式,应用放缩变成等比数列的前项和,应用公式计算即可.。

河南省南阳市2024_2025学年高一英语下学期期末考试试题含解析

河南省南阳市2024_2025学年高一英语下学期期末考试试题含解析
A. Expensive. B. Unworthy. C. Time-wasting.
8. What concems the woman?
A. She doesn't have enough money.
B. She wants a package to arrive on time.
C. She can't spare time to go to a birthday party.
C. Your choice determines what your future is.
D. Only foods with nutrients can make you energetic.
2. The benefit of drinking water is.
A. to keep you far away from any illness
听第6段材料,回答第6,7题。
6. Why does the woman want to go abroad?
A. To go to university. B.To take a trip. C.To get work experience.
7. What does the man think ofgoing abroad?
A. They are independent events.
B. They take place at fairs or during festivals.
C. They haven't got any support from the govemment.
15. What does the man say about the Dragon's Back Race?

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。

河南省鹤壁市2024-2025学年七年级上学期月考数学试题(含答案)

河南省鹤壁市2024-2025学年七年级上学期月考数学试题(含答案)

2024-2025学年上学期阶段性评价卷一七年级数学(华师版)注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个选项、其中只有一个是正确的。

1.表示( )A .2024的倒数B.的相反数 C .的绝对值D .的倒数2.数轴上表示数a 的点的位置如图所示,则a 可以是()A .B .C .0D .33.下列有关0的说法中,不正确的是( )A .0是整数B .0既不是正数,也不是负数C .0乘任何有理数仍得0D .0除以任何有理数仍得04.下表是12月份河南省其中4个市某一天的平均气温,则这天平均气温最低的是()地区郑州市安阳市焦作市洛阳市平均气温/2A .郑州市B .安阳市C .焦作市D .洛阳市5.将算式改写成省略加号和括号的形式是( )A .B .C .D .6.下面各组大小关系中,正确的是( )A .B .C .D .7.下列各式中,与的运算结果相同的是( )A . B . C . D . 8.定义一种新运算*,已知,则的结果为( )A .B .C .0D .9.如图,圆的周长为3个单位长度,该圆上的3个点将圆的周长平均分成3份,在3个点处分别标上1,2,3,先让圆周上表示数字1的点与数轴上表示0的点重台,再将圆沿着数轴向右滚动,则数轴上表示2024的点2024-120242024-12024-4-2-C ︒1-2-2(1)(3)(4)--+--+2134-+-2134+--2134++-2134+-+302>-332288⎛⎫--=-- ⎪⎝⎭113333⎛⎫⎛⎫÷-<⨯- ⎪ ⎪⎝⎭⎝⎭(4)3|43|--<-+48577÷÷48577⎛⎫÷÷⎪⎝⎭48577⎛⎫÷⨯⎪⎝⎭84577⎛⎫÷÷⎪⎝⎭78547⨯⨯1*21211,2*(3)2(3)28=⨯-=-=⨯--=-1*(1)2-1-12-12与圆周上重合的点上标的数字为( )A .1B .2C .3D .无法确定10.在一条可以折叠的数轴上,点A ,B 表示的数分别是,5,如图,以点C 为折点,将此数轴向右对折,使A ,B 之间的距离为1,则点C 表示的数是()A .0B .C .或D .或二、填空题(每小题3分,共15分)11.请写出一个使的a 值:__________.12.2024年巴黎奥运会结束后,部分运动员组成代表团访问香港和澳门,弘扬体育强国精神,激励港澳同胞的爱国热情.大帽山是香港最高的山峰,海拔为,记作,螺洲门是香港海拔最低点,海拔为海平面以下,记作__________.13.数轴上与点A 距离3个单位长度的点表示的数是1,则点A 表示的数是__________.14.小华在计算时(代表一个有理数),误将“”看成“”,按照正确的运算顺序计算,结果为,则的正确结果是__________.15.一只蜗牛从树根沿竖直方向往上爬,每天白天向上爬行,晚上又下滑,这只蜗牛要爬到距离树根的树洞处,需要__________天.(填整数)三、解答题(本大题共8个小题,共75分)16.(10分)计算:(1) (2)17.(8分)把下列各数填入相应的大括号里.正整数集:{ …}负数集:{ …}分数集:{ …}非负有理数集:{ …}18.(9分)阅读下面题目的运算过程,并解答问题.计算:10-2-1-2-2-3-a a >958m 958m +66m 2(30)5-÷⨯☆☆÷+26-2(30)5-÷⨯☆24cm 10cm 1m 233136135454⎛⎫⎛⎫⎛⎫⎛⎫-++-+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭157(24)368⎛⎫-⨯+- ⎪⎝⎭354,,0,10,1.090909,|3|,1,(1)27------ 4(8)25625(6)10253⎛⎫-⨯-⨯+-⨯-+⨯ ⎪⎝⎭解:原式①②③④.⑤(1)第①步运用的运算律是____________________;第②步运用的运算律是____________________;(2)上述计算过程,从第__________步出现错误,本题运算的正确结果是__________;(3)运用上述解法,计算:.19.(9分)(1)如图,在数轴上画出表示下列各数的点:(2)如图,已知A ,B ,C ,D 是数轴上的点.①若点A 和点C 表示的数互为相反数,则点B 表示的数为__________;②如果将点D 向右移动2个单位长度,再向左移动5个单位长度,终点表示的数是,求原来点D 表示的数.20.(9分)规定表示不超过有理数a 的最大整数,例如:.(1)填空:__________,__________;(2)比大小:__________;(填“>”“<”或“=”)(3)计算:.21.(10分)学习了绝对值的概念后,我们知道:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,例如:.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式(不算出结果):4(8)256251025(6)3⎛⎫=-⨯-⨯+⨯+-⨯- ⎪⎝⎭4(8610)25(6)3⎛⎫=--+⨯+-⨯- ⎪⎝⎭442563=⨯-⨯1008=-92=11(170)3(2)0.2524.5525%42⎛⎫⎛⎫-⨯--⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭1,(2),2.5,0,|4|2--+--1-[]a [1.2]1,[ 1.8]2=-=-[3.7]=94⎡⎤-=⎢⎥⎣⎦[0.8][ 4.2]+-[0.8 4.2]-73[3.14π][π 3.14]22⎡⎤---+-⨯⎢⎥⎣⎦|23|23,|23|32,|32|32,|23|23+=+-=--=---=+①__________;②__________;③__________;(2)用合理的方法计算:.22.(10分)奥运pin (徽章)是奥运会期间由主办方、参赛代表队等推出的一种纪念品,奥运pin 的交换,不仅是一种收藏行为,更是一种跨越语言障碍的文化交流,也传递了奥林匹克精神中的团结与相互理解.巴黎奥运会期间,中国的熊猫pin 因其可爱的形象和精美的工艺深受大家的喜爱.某工厂从制作的熊猫pin 中抽取30枚样品,检测每枚的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)30枚样品中,质量最大的一枚比质量最小的一枚多__________g ;(2)与标准质量相比,30枚样品总计超过或不足的质量为多少克?(3)①若允许有的误差,30枚样品中不合格的有__________枚;②海枚熊猫pin 的制作成本是12元,工厂以20元的价格批发给某代理商800枚(不合格产品占),不合格产品需要返厂重新加工(重新加工费用忽略不计),且工厂需将不合格产品的进价费用返还代理商并承担每枚0.5元的返还运费,工厂在这次销售中的利润是多少?(利润=总价-成本)与标准质量的差值/g0123枚数135964223.(10分)观察下列等式,并解答问题.第1个等式:;第2个等式:;第3个等式:;第4个等式:;……(1)按以上规律填空:①第5个等式:____________________;②第50个等式:____________________;(2)计算:.213-=| 5.44|-+=|3π|--=237037011999399322-+---2g ±8%3-2-1-211133=-⨯2113535=-⨯2115757=-⨯2117979=-⨯2222213355779399401+++++⨯⨯⨯⨯⨯2024-2025学年上学期阶段性评价卷一七年级数学(华师版)参考答案一、选择题(每小题3分,共30分)1.D 2.A 3.D 4.C 5.B 6.C 7.B 8.A 9.C 10.D二、填空题(每小题3分,共15分)11.(答案不唯一)12.13.或414. 15.7三、解答题(本大题共8个小题,共75分)16.解:(1)原式2分3分5分(2)原式2分.5分17.解:正整数集:10,; 2分负数集:; 4分分数集:;6分非负有理数集:.8分18.解:(1)加法交换律 乘法分配律 2分(2)③ 4分(3)原式 5分7分9分19.解:(1)画图如下所示:1-66m -2-65-233136135454=-+-+233131635544⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭510=-+5=157(24)(24)(24)368=-⨯+-⨯--⨯82021=--+7=-(1)--54,|3|,17----35,1.090909,127- 3,0,10,1.090909,(1)2-- 92-11(170)0.2524.5525%3(2)42⎛⎫⎛⎫=-⨯-+⨯--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭11117024.5 5.532444=⨯+⨯+⨯+⨯1(17024.5 5.5)324=⨯+++⨯1200324=⨯+⨯56=5分(2)① 7分②.所以原来点D 表示的数是2. 9分20.解:(1)3 2分(2)<4分(3)因为,所以. 6分原式9分21.解:(1)①2分② 4分③ 6分(2)原式 8分10分22.解:(1)62分(2). 4分因为,所以30枚样品总计超过的质量为. 5分(3)①36分②由题意得,不合格产品有(枚),(元).答:工厂在这次销售中的利润是5088元.10分23.解:(1)① 2分② 4分(2)原式6分05-.(1)522-+-=3-0 3.14π1,1π 3.140>->->->[3.14π]1,[π 3.14]0-=--=310(4)2=--+-⨯7=-213-5.44-3π+370213701993929932=-+--29=-(3)1(2)3(1)5091624326(g)-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=60>6g 8008%64⨯=.800(18%)2080012640.55088⨯-⨯-⨯-⨯=211911911=-⨯2119910199101=-⨯11111111113355779399401⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++- ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭9分. 10分11111111113355779399401=-+-+-+-++-11401=-400401=。

河南省开封市杞县等4地2022-2023学年高三下学期期末考试文科数学试题

河南省开封市杞县等4地2022-2023学年高三下学期期末考试文科数学试题

河南省开封市杞县等4地2022-2023学年高三下学期期末
考试文科数学试题
学校:___________姓名:___________班级:___________考号:___________
三、解答题
17.无论是国际形势还是国内消费状况,2023 年都是充满挑战的一年,为应对复杂的经济形势,各地均出台了促进经济发展的各项政策,积极应对当前的经济形势,取得
了较好的效果.某市零售行业为促进消费,开展了新一轮的让利促销的活动,活动之初,利用各种媒体进行大量的广告宣传.为了解大众传媒对本次促销活动的影响,在
本市内随机抽取了6个大型零售卖场,得到其宣传费用x(单位:万元)和销售额y(单位:万元)的数据如下:
【点睛】关键点睛:本题第二问到韦达定理式,再计算出
1y y +利用基本不等式即可得到最值.
21.(1)2
0e
a <<。

2022~2023学年高一年级数学上册期末备考模拟试卷(4)【含答案】

2022~2023学年高一年级数学上册期末备考模拟试卷(4)【含答案】

期末模拟试卷(4)一、单选题(本大题共8小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.设全集=U R ,集合=−−A x x x {|20}2,=>B x lgx {|0},则=A B ( ) A .−x x {|12} B .<x x {|12} C .<<x x {|12} D .−x x {|1}2.=A x x {|02},=B y y {|12},下列图形中能表示以A 为定义域,B 为值域的函数的是A .B .C .D .3.单位圆上一点P 从(0,1)出发,逆时针方向运动π3弧长到达Q 点,则Q 的坐标为A .−2(1B .−2()1C .−2(,1D .2()14.不等式>+x 216|21|的解集为 A .+∞2[,)3 B .−∞−+∞22(,)(,)53C .−∞−+∞22(,](,)53D .−∞−2(,)55.《九章算术》是我国算术名著,其中有这样的一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”意思是说:“现有扇形田,弧长30步,直径16步,问面积是多少?”在此问题中,扇形的圆心角的弧度数是 A .415 B .154 C .815 D .1206.设=a =b 0.90.8,=c log 0.80.9,则 A .>>c a b B .>>a c b C .>>a b c D .>>c b a7.已知函数=−−f x x x ()log (45)212,则函数f x ()的减区间是A .−∞(,2)B .+∞(2,)C .+∞(5,)D .−∞−(,1)8.已知实数>>x y 0,且+−+=x y 216111,则−x y 的最小值是 A .21 B .25 C .29 D .33二、多选题(本大题共4小题,共20分。

在每小题有多项符合题目要求) 9.下列命题中,是存在量词命题且是真命题的是 A .∃∈x R ,x ||0B .存在∈x R ,使得++=x x 102C .至少有一个无理数x ,使得x 3是有理数D .有的有理数没有倒数10.下列说法正确的是A .若⋅>ααsin cos 0,则α为第一象限角B .将表的分针拨快5分钟,则分针转过的角度是−︒30C .终边经过点≠a a a ,0)()(的角的集合是Z =+∈ααππk k 4,}{ D .在一个半径为3cm 的圆上画一个圆心角为30°的扇形,则该扇形面积为πcm 23211.已知函数−=x f x ||2()1,则下列结论中正确的是A .f x ()是偶函数B .f x ()在−∞−(,2)上单调递增C .f x ()的值域为RD .当∈−x (2,2)时,f x ()有最大值12.如图所示,边长为2的正方形ABCD 中,O 为AD 的中点,点P 沿着→→→A B C D 的方向运动,设∠AOP 为x ,阴影部分的面积为f x (),则下列说法中正确的是A .f x ()在π2(,π)上为减函数B .=πf 42()1C .+−=πf x f x ()()4D .f x ()图象的对称轴是=πx 2三、填空题(本大题共4小题,共20分) 13.求值:2617sin cos()34ππ+−= .14.已知幂函数2()(57)m f x m m x =−+是R 上的增函数,则m 的值为 .15.若“13x <<”的必要不充分条件是“22a x a −<<+”,则实数a 的取值范围是 .16.已知函数{25,2()(2),2x x f x xlg x x −−=+>−,若方程()1f x =的实根在区间(k ,1)()k k Z +∈上, 则k 的所有可能值是 .四、解答题(本大题共6小题,共70分。

人教版数学高一下册期末测试精选(含答案)2

人教版数学高一下册期末测试精选(含答案)2

B.若 , ,则
C.若 // , m ,则 m / /
D.若 m , ,n / / ,则 m n
【来源】广西梧州市 2019-2020 学年高一上学期期末数学试题 【答案】C
16.已知圆 x a2 y2 1 与圆 x2 y b2 1外切,则( ).
A. a2 b2 4
32.已知点 A(2, a) ,圆 C : (x 1)2 y2 5
(1)若过点 A 只能作一条圆 C 的切线,求实数 a 的值及切线方程; (2)设直线 l 过点 A 但不过原点,且在两坐标轴上的截距相等,若直线 l 被圆 C 截得
的弦长为 2 3 ,求实数 a 的值.
【来源】江西省宜春市上高县上高二中 2019-2020 学年高二上学期第三次月考数学(理) 试题
【答案】B
7.如图,四边形 ABCD 和 ADEF 均为正方形,它们所在的平面互相垂直,动点 M 在 线段 AE 上,设直线 CM 与 BF 所成的角为 ,则 的取值范围为( )
A.
0,
3
B.
0,
π 3
C.
0,
2
D.
0,
2
【来源】四川省乐山市 2019-2020 学年高二上学期期末数学(文)试题
6
a
1 3
,则
cos
2 3
2a
()
A. 7 9
B. 1 3
1
C.
3
7
D.
9
【来源】河北省石家庄市第二中学 2018-2019 学年高二第二学期期末考试数学(理)试

【答案】A
13.已知圆 C 被两直线 x y 1 0 , x y 3 0 分成面积相等的四部分,且截 x 轴

高一数学学期第一次月考试卷(附答案)

高一数学学期第一次月考试卷(附答案)

高一数学学期第一次月考试卷(附答案)选择题1. 下列哪一个选项不是数学中常用的数集?A. 自然数集B. 实数集C. 正整数集D. 有理数集答案:C2. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B = ?A. {2, 3}B. {1, 2, 3}C. {2, 3, 4}D. {4}答案:A3. 简化:$3 \times a \times 5$答案:$15a$填空题1. 若 $\frac{5}{6} x - \frac{1}{4} = \frac{3}{5} x - \frac{1}{2}$,则x = ?答案:$\frac{9}{20}$2. 若函数 $f(x) = ax^2 + bx - c$ 的图像开口朝上,且在x = 2处有最小值-3,则a = ?, b = ?, c = ?答案:a = 1, b = -8, c = -13解答题1. 解方程 $\frac{3}{5} (2x - 1) = \frac{1}{3} (4 - x)$解答:首先两边同时乘以15消去分数,得到:$9(2x - 1) = 5(4 - x)$ 进行分配和合并:$18x - 9 = 20 - 5x$移项:$23x = 29$最后得到解答:$x = \frac{29}{23}$2. 若正方形ABCD的边长为3cm,点E为AB边的中点,连线DE与BC交于点F,求线段DF的长度。

解答:由于ABCD是正方形,所以AD平行于BC。

由于E是AB边上的中点,所以AE = EB = 1.5cm。

由三角形相似性质可知,$\frac{AE}{AD} = \frac{DF}{DC}$。

将已知值代入,得到:$\frac{1.5}{3} = \frac{DF}{3}$化简得到:$DF = 1.5$cm以上为高一数学学期第一次月考试卷及答案。

山东省泰安市泰山国际学校2023-2024学年高一下学期第二学段模块(期末)考试数学试题

山东省泰安市泰山国际学校2023-2024学年高一下学期第二学段模块(期末)考试数学试题

山东省泰安市泰山国际学校2023-2024学年高一下学期第二学段模块(期末)考试数学试题一、单选题1.如果()1i 1z -=,则z z +=( ) A .2-B .1-C .1D .22.已知向量()4,a m =r ,()2,2b m =-r ,若a r 与b r共线,则m =( ) A .4-B .4C .2-D .2-或43.某同学坚持夜跑锻炼身体,他用手机记录了连续10周每周的跑步总里程(单位:千米),其数据分别为17,21,15,8,9,13,11,10,20,6,则这组数据的75%分位数是( ) A .12B .16C .17D .18.54.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是( ) A .平行或异面B .平行C .异面D .相交5.古希腊数学家特埃特图斯(Theaetetus )利用如图所示的直角三角形来构造无理数.已知2,,AB BC CD AB BC AC CD ===⊥⊥,若DB AB AC λμ=+u u u r u u u r u u u r,则λμ+=( )A .BCD 6.如图,在三棱台111ABC A B C -中,1AA ⊥平面,ABC 1111190,1,2ABC AA A B B C AB ︒∠=====,则AC 与平面11BCC B 所成角的余弦值为( )A .12BC .2D 7.校运会组委会将甲、乙、丙、丁4名志愿者随机派往铅球、跳远、跳高三个比赛区域,每个区域至少派1名志愿者,每名志愿者只能去一个区域.A 表示事件“志愿者甲派往铅球区域”;B 表示事件“志愿者乙派往铅球区域”;C 表示事件“志愿者乙派往跳远区域”,则( )A .事件A 与B 相互独立 B .事件A 与C 为互斥事件 C .()13P C A =D .()16P B A =8.为庆祝五四青年节,某校举行了师生游园活动,其中有一游戏项目是夹弹珠.如图,四个半径都是1cm 的玻璃弹珠放在一个半球面形状的容器中,每个弹珠的顶端恰好与容器的上沿处于同一水平面,则这个容器的容积是( )A 3B 3C .32(5πcm +D 3二、多选题9.已知复数11i z =+,21i z =-,则下列说法正确的有( ) A .12z z = B .12=z zC .12i z z =-D .在复平面内1z ,2z 对应的点关于虚轴对称10.如图,四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥平面ABCD ,SA AB =,O 、P 分别是,AC SC 的中点,M 是棱SD 上的动点,则( )A .OM AP ⊥B .存在点M ,使//OM 平面SBCC .存在点M ,使直线OM 与AB 所成的角为30︒D .点M 到平面ABCD 与平面SAB 的距离和为定值11.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车的logo 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是ABC V 内的一点,BOC V ,AOC V ,AOB V 的面积分别为,,A B C S S S ,则有0A B C S OA S OB S OC ⋅+⋅+⋅=u u u r u u u r u u u r r.设O 是锐角ABCV 内的一点,BAC ∠,ABC ∠,ACB ∠分别是ABC V 的三个内角,以下命题正确的有( )A .若0OA OB OC ++=u u u r u u u r u u u r r,则O 为ABC V 的重心B .若230OA OB OC ++=u u u r u u u u r u u u r r,则::1:2:3A B C S S S =C .若||||2OA OB ==uu r uu u r ,5π6AOB ∠=,2340OA OB OC ++=u u u r u u u r u u u r r ,则92ABC S =VD .若O 为ABC V 的垂心,则tan tan tan 0BAC OA ABC OB ACB OC ∠⋅+∠⋅+∠⋅=u u u r u u u r u u u r r三、填空题12.国家高度重视青少年视力健康问题,指出要“共同呵护好孩子的眼睛,让他们拥有一个光明的未来”.某校为了调查学生的视力健康状况,决定从每班随机抽取5名学生进行调查.若某班有50名学生,将每一名学生从01到50编号,从下面所给的随机数表的第2行第4列的数开始,每次从左向右选取两个数字,则选取的第四个号码为 随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 8324 4597 7386 5244 3578 624113.在ABC V 中,已知角,,A B C 的对边分别为,,a b c ,且,3,60a x b B ===o ,若ABC V 有两解,则x 的取值范围是.14.2009年9月,经联合国教科文组织批准,中国传统节日端午节正式列入世界非物质文化遗产,同时,端午节成为中国首个入选世界非物质文化遗产的节日.为弘扬中国传统文化,某校在端午节期间组织有关端午节文化知识竞赛活动,某班甲、乙两人组成“粽队”参加竞赛活动,每轮活动由甲、乙各回答一个问题,已知每轮活动中甲、乙答对问题的概率分别为34和23,且每轮活动中甲、乙答对与否互不影响,各轮结果也互不影响.则甲在两轮活动中答对1个问题的概率为,“粽队”在两轮活动中答对三个问题的概率为.四、解答题15.已知向量()1,3a =r ,()2,1b =-r.(1)求向量a r 与b r夹角的余弦值;(2)若向量a b +r r 与a kb -r r互相垂直,求k 的值.16.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c .sin cos 0B b A +=. (1)求角A 的大小;(2)若a =b ABC V 的面积.17.为调查学生近视情况,东部新区从不同地域环境的甲、乙两所学校各抽取100名学生参与调查,调查结果分为“近视”与“非近视”两类,结果统计如下表:(1)甲,乙两所学校学生近视的频率分别是多少?(2)能否有99%的把握认为近视人数与不同地域环境的学校有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.18.刻画空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为π3,故其各个顶点的曲率均为π2π3π3-⨯=.如图,在直三棱柱111ABC A B C -中,点A 的曲率为2π3,N ,M分别为AB ,1CC 的中点,且AB AC =.(1)证明:CN ⊥平面11ABB A . (2)证明:平面1AMB ⊥平面11ABB A .(3)若12AA AB =,求二面角11A MB C --的正切值.19.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12经过点1F 且倾斜角为π02θθ⎛⎫<< ⎪⎝⎭的直线l 与椭圆交于A ,B 两点(其中点A 在x 轴上方),且2ABF △的周长为8.将平面xOy 沿x 轴向上折叠,使二面角12A F F B --为直二面角,如图所示,折叠后A ,B 在新图形中对应点记为A ',B '.(1)当π3θ=时, ①求证:2A O B F ''⊥;②求平面12'A F F 和平面2''A B F 所成角的余弦值;(2)是否存在π02θθ⎛⎫<< ⎪⎝⎭,使得折叠后2A B F ''V 的周长为152?若存在,求tan θ的值;若不存在,请说明理由.。

河南省郑州市2022-2023学年高二下学期期末数学试题及答案

河南省郑州市2022-2023学年高二下学期期末数学试题及答案

郑州市2022-2023学年下期期末考试高二数学试题卷注意事项:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.第I 卷(选择题,共60分)一、单选题:本大题共12个小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知数列{}n a ,满足12n n a a --=,10a =,则10a =()A .18B .36C .72D .1442.2023年5月10日,第七届全球跨境电子商务大会在郑州举行,小郑同学购买了几件商品,这些商品的价格如果按美元计,则平均数为30,方差为60,如果按人民币计(汇率按1美元=7元人民币),则平均数和方差分别为()A .30,60B .30,420C .210,420D .210,29403.如图,洛书古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取4个数,则选取的4个数之和为奇数的方法数为()A .60B .61C .65D .664.下列四个命题中,正确命题的个数为()①甲乙两组数据分别为:甲:28,31,39,42,45,55,57,58,66;;乙:,29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.89r =-,表明两个变量的相关性较弱.③若由一个22⨯列联表中的数据计算得2K 的观测值7.103k ≈,那么有99%的把握认为两个变量有关.④用最小二乘法求出一组数据(),i i x y ,()1,,i n = 的回归直线方程ˆy =ˆbxa + 后要进行残差分析,相应于数据(),i i x y ,()1,,i n = 的残差是指ˆi i e y =ˆi bx a ⎛⎫-+ ⎪⎝⎭.()20P K k 0.100.050.0250.0100.0050.001k 2.706 3.841 5.024 6.6357.87910.828A .1B .2C .3D .45.已知(1)nx -的二项展开式中二项式系数和为64,若2012(1)(1)(1)(1)nnn x a a x a x a x -=+++++++ ,则1a 等于()A .192B .448C .-192D .-4486.已知函数()2ln f x ax x =-的图象在点()()1,1f 处的切线与直线3y x =平行,则该切线的方程为()A .350x y -+=B .310x y --=C .310x y -+=D .310x y -+=7.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图所示的是由“杨辉三角”拓展而成的三角形数阵,图中虚线上的数1,3,6,10…构成数列{}n a ,记n a 为该数列的第n 项,则64a =()A .2016B .2080C .4032D .41608.下列说法中不正确...的是()A .若随机变量()2~1,X N σ,(4)0.79P X <=,则(2)0.21P X <-=B .若随机变量1~10,3X B ⎛⎫ ⎪⎝⎭,则期望10()3E X =C .已知随机变量X 的分布列为()(1,2,3)(1)a P X i i i i ===+,则2(2)3P X ==D .从3名男生,2名女生中选取2人,则其中至少有一名女生的概率为7109.若需要刻画预报变量Y 和解释变量x 的相关关系,且从已知数据中知道预报变量Y 随着解释变量x 的增大而减小,并且随着解释变量x 的增大,预报变量Y 大致趋于一个确定的值,为拟合Y 和x 之间的关系,应使用以下回归方程中的(0,b e >为自然对数的底数)()A .Y bx a =+B .ln Y b x a =-+C.Y a=D .x Y be a-=+10.对于三次函数()()320f x ax bx cx d a =+++≠,现给出定义:设()f x '是函数()f x 的导数,()f x ''是()f x '的导数,若方程()f x ''有实数解0x ,则称点()()00,x f x 为函数()()320f x ax bx cx d a =+++≠的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()32533x g x x =-+,则123179999g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()A .173B .172C .17D .3411.已知数列{}n a 满足()*612,7N 2,7,n n a n n a n a n -⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪⎩,若对于任意*N n ∈都有1n n a a +>,则实数a 的取值范围是()A .1,12⎛⎫⎪⎝⎭B .12,23⎛⎫⎪⎝⎭C .2,13⎛⎫⎪⎝⎭D .21,3⎛⎫⎪⎝⎭12.若2ln ln b b a a a +=+,则下列式子可能成立的是()A .1a b >>B .1a b>>C .1b a>>D .1b a>>第II 卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知等比数列{}n a 满足:18a =,9132a =,230a a <则公比q =______.14.在甲,乙,丙三个地区爆发了流感,这三个地区分别有7%,6%,5%的人患了流感.若这三个地区的人口数的比为5:3:2,现从这三个地区中任意选取一个人,这个人患流感的概率是______.15.为积极践行劳动教育理念,扎实开展劳动教育活动,某学校开设三门劳动实践选修课,现有五位同学参加劳动实践选修课的学习,每位同学仅报一门,每门至少有一位同学参㕲,则不同的报名方法有______.16.2023年第57届世界乒乓球锦标赛在南非德班拉开帷幕,参赛选手甲、乙进入了半决赛,半决赛采用五局三胜制,当选手甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前比赛结果影响.假设甲在任一局赢球的概率为()01p p ,比剉局数的期望值记为()f p ,则()f p 的最大值是______.三、解答题:共70分.解答题应写出文字说明、证明过程或验算步骤.17.(10分)一只口袋中装有形状、大小都相同的10个小球,其中有红球1个,白球4个,黑球5个.(I )若每次从袋子中随机摸出1个球,摸出的球不再放回.在第1次摸到白球的条件下,第2饮摸到白球的概率;(II )若从袋子中一次性随机摸出3个球,记黑球的个数为X ,求随机变量X 的概率分布.18.(12分)设数列{}n a 的前n 项和为n S ,已知12a =,142n n S a +=+.(I )设12n n n b a a +=-,证明:数列{}n b 是等比数列;(II )求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .19.(12分)黄河是中华民族的母亲河、生命河,也是一条桀骜难驯的忧患之河.小浪底水利枢纽工程位于河南省济源市、洛阳市孟津区边界,是黄河治理开发的关键控制性工程.它控制着黄河92%的流域面积、91%的径流量和近100%的泥沙,以防洪、防淩、减淤为主,兼顾供水、灌溉、发电,不仅是中华民族治黄史上的丰碑,也是世界水利工程史上最具标志性的杰作之一,其大坝为预测渗压值和控制库水位,工程师在水库选取一支编号为并计算得102157457.98ii x==∑,102153190.77ii y ==∑,10155283.20i i i x y ==∑,272.9325319.076624=,275.8015745.791601=15.51≈.(I )求该水库HN1号渗压计管内水位与水库水位的样本相关系数(精确到0.01);(II )某天雨后工程师测量了水库水位,并得到水库的水位为76m .利用以上数据给出此时HN1号渗压计管内水位的估计值.附:相关系数()()niix x y y r --=∑()()()ˆ121nni iii ix x y y b x x ==--=-∑∑,ˆˆy b a x =+.20.(12分)已知函数()()22xx f x aea e x =+--.(I )讨论()f x 的单调性;(II )若()f x 有两个零点,求a 的取值范围.21.(12分)根据长期生产经验,某种零件的一条生产线在设备正常状态下,生产的产品正品率为0.985.为了监控该生产线生产过程,检验员每天从该生产线上随机抽取10个零件,并测量其质量,规定:抽检的10件产品中,若至少出现2件次品,则认为设备出现了异常情况,需对设备进行检测及修理.(I )假设设备正常状态,记X 表示一天内抽取的10件产品中的次品件数,求()2P X ,并说明上述监控生产过程规定的合理性;(II )该设备由甲、乙两个部件构成,若两个部件同时出现故䧐,则设备停止运转;若只有一个部件出现故障,则设备出现异常.已知设备出现异常是由甲部件故障造成的概率为p ,由乙部件故障造成的概率为1p -.若设备出现异常,需先检测其中一个部件,如果确认该部件出现故障,则进行修理,否则,继续对另一部件进行检测及修理.已知甲部件的检测费用2000元,修理费用6000元,乙部件的检测费用3000元,修理费用4000元.当设备出现异常时,仅考虑检测和修理总费用,应先检测甲部件还是乙部件,请说明理由。

衡水中学2021-2022学年高一下学期期末考试理数试题(考试版)

衡水中学2021-2022学年高一下学期期末考试理数试题(考试版)

第1页 共4页 ◎ 第2页 共4页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2021-2022学年度河北省衡水中学高一下学期期末理科试题考试范围:必修2、必修5;考试时间:120分钟;【名师解读】本卷难度中等,梯度设置合理.试题常规,无偏难、怪题目出现,符合高考大纲命题要求,充分体现通性通法在试卷中的运用,其中直线与圆的考查有第1,2,3,6,13,15,17,18,立体几何注重考查基础,如第5,8,12等,同时解答题为常规证明题,突出考查基础证明能力及计算能力,数列考查题目难度中等,本卷适合高一必修2,必修5复习使用. 一、选择题1.若过不重合的()222,3A m m +-, ()23,2B m m m --两点的直线l 的倾斜角为45︒,则m 的取值为( )A . 1-B . 2-C . 1-或2-D . 1或2-2.在空间直角坐标系中,点()1,2,3A -与点()1,2,3B ---关于( )对称 A . 原点 B . x 轴 C . y 轴 D . z 轴 3.方程()2240x x y +-=与()222240x x y ++-=表示的曲线是( )A . 都表示一条直线和一个圆B . 都表示两个点C . 前者是两个点,后者是一直线和一个圆D .前者是一条直线和一个圆,后者是两个点4.在公差大于0的等差数列{}n a 中, 71321a a -=,且1a , 31a -, 65a +成等比数列,则数列(){}11n n a --的前21项和为( )A . 21B . 21-C . 441D . 441-5.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体毛坯的三视图,第一次切削,将该毛坯得到一个表面积最大的长方体;第二次切削沿长方体的对角面刨开,得到两个三棱柱;第三次切削将两个三棱柱分别沿棱和表面的对角线刨开得到两个鳖臑和两个阳马,则阳马与鳖臑的体积之比为( )A . 1:2B . 1:1C . 2:1D . 3:1 6.过直线1y x =+上的点P 作圆C : ()()22162x y -+-=的两条切线1l , 2l ,若直线1l ,2l 关于直线1y x =+对称,则PC =( )A . 1B . 22C . 12+D . 27.已知函数()f x x α=的图象过点()4,2,令()()11n a f n f n =++(*n N ∈),记数列{}n a 的前n 项和为n S ,则2017S =( )A .20181-B . 20181+C . 20171+D . 20171-8.如图,直角梯形ABCD 中, AD DC ⊥, //AD BC ,222BC CD AD ===,若将直角梯形绕BC 边旋转一周,则所得几何体的表面积为( ) A . 32ππ+ B . 322ππ+ C . 622ππ+ D . 62ππ+ 9.若曲线1C : 2220x y x +-=与曲线2C : 20mx xy mx -+=有三个不同的公共点,则实数m 的取值范围是( )A . 33,33⎛⎫- ⎪ ⎪⎝⎭B .33,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ C . ()(),00,-∞⋃+∞ D . 33,00,33⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭10.三棱锥P ABC -的三条侧棱互相垂直,且1PA PB PC ===,则其外接球上的点到平面ABC 的距离的最大值为( )A . 33B . 233C . 36D . 3211.已知正项数列{}n a 的前n 项和为n S ,且1161n n n n a S nS S +++=-+, 1a m =,现有如下说法:①25a =;②当n 为奇数时, 33n a n m =+-;③224232n a a a n n ++⋯+=+.则上述说法正确的个数为( )A . 0个B . 1个C . 2个D . 3个12.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,12AA =, 1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:①直线AC 与直线1C E 是异面直线;②1A E 一定不垂直于1AC ;③三棱锥1E AAO -的体积为定值;④1AE EC +的最小值为22. 其中正确的个数是( )A . 1B . 2C . 3D . 4第3页 共4页 ◎ 第4页 共4页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………二、填空题 13.已知直线2x +y −2=0与直线4x +my +6=0平行,则它们之间的距离为______. 14.如图所示,在正方体1AC 中, 2AB =, 1111AC B D E ⋂=,直线AC 与直线DE 所成的角为α,直线DE 与平面11BCC B 所成的角为β,则()cos αβ-=__________.15.已知直线l : 330mx y m ++-=与圆2212x y +=交于A , B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若23AB =,则CD =__________. 16.已知数列{}n a 满足11a =, 12nn n a a a +=+(*n N ∈),若()1121n n b n a λ+⎛⎫=-⋅+⎪⎝⎭(*n N ∈),132b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是____. 三、解答题17.如图,矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方程为360x y --=,点()1,1T -在AD 边所在的直线上.(Ⅰ)求AD 边所在直线的方程; (Ⅰ)求矩形ABCD 外接圆的方程.18.若圆1C :22x y m +=与圆2C : 2268160x y x y +--+=外切. (Ⅰ)求实数m 的值;(Ⅰ)若圆1C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B , P 为第三象限内一点,且点P 在圆1C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. 19.如图,在四棱锥P ABCD -中, //BA 平面PCD ,平面PAD ⊥平面ABCDCD AD ⊥, APD ∆为等腰直角三角形, 222PA PD CD ===. (Ⅰ)证明:平面PAB ⊥平面PCD ; (Ⅰ)若三棱锥B PAD -的体积为13,求平面PAD 与平面PBC 所成的锐二面角的余弦值.20.已知数列{}n a 的前n 项和n S ,且2n n S na +=(*n N ∈).(Ⅰ)若数列{}n a t +是等比数列,求t 的值; (Ⅰ)求数列{}n a 的通项公式; (Ⅰ)记1111n n n n b a a a ++=+,求数列{}n b 的前n 项和n T . 21.如图,由三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中, 1CC ⊥平面ABC , 90BAC ∠=︒,112AB BC BB ===, 15C D CD ==,平面1CC D ⊥平面11ACC A .(Ⅰ)求证: 1AC DC ⊥;(Ⅰ)若M 为棱1DC 的中点,求证://AM 平面1DBB ;(Ⅰ)在线段BC 上是否存在点P ,使直线DP 与平面1BB D 所成的角为3π?若存在,求BPBC的值,若不存在,说明理由. 22.已知等比数列{}n a 的公比1q >,且1320a a +=, 28a =.(Ⅰ)求数列{}n a 的通项公式; (Ⅰ)设n nnb a =, n S 是数列{}n b 的前n 项和,对任意正整数n ,不等式()112nn n n S a ++>-⋅恒成立,求实数a 的取值范围.。

北京市北京汇文中学教育集团2024-2025学年高一上学期期中考试数学试题(含答案)

北京市北京汇文中学教育集团2024-2025学年高一上学期期中考试数学试题(含答案)

北京汇文中学教育集团2024-2025学年度第一学期期中考试高一年级数学学科本试卷共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.一、选择题(每题4分,共48分)1.已知集合,则下列说法正确的是()A.B.C.D.2.记命题,则为()A.B.C.D.3.集合的真子集有()个A.1B.2C.3D.44.已知实数在数轴上对应的点如图所示,则下列式子中正确的是()A.B.C.D.5.下列函数中,在区间上单调递减的是()A.B.C.D.6.“”是“”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要7.已知偶函数在区间上单调递减,则下列关系式中成立的是()A.B.C.D.8.若函数的值域为,则函数的图象大致是()A.B.{}12A x Z x=∈-≤<0A⊆0A∉3A∈1A-∈:0,3p x x∃>≥p⌝0,3x x∀><0,3x x∀≤<0,3x x∃≤≥0,3x x∃>< {}0,1,a b c,b ac a-<+2c ab<c cb a>b c a c<(0,)+∞1y xx=-y=2xy-=22y x x=-12x-<<12x>()f x(,1]-∞-5()(3)(2)2f f f-<<5(3)((2)2f f f<-<5(2)(3)()2f f f<<-5(2)()(3)2f f f<-<(0,1)xy a a a=>≠且(0,1]logaxC .D . 9.已知函数,则不等式的解集是( )A .B .C .D .10.设,则( )A .B .C .D .11.已知函数的定义域为,则实数的取值范围为( )A .B .C .D .12.设集合是集合的子集,对于,定义给出下列三个结论:①存在的两个不同子集,使得任意都满足且;②任取的两个不同子集,对任意都有;③任取的两个不同子集,对任意都有.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③二、填空题(每题5分,共30分)13.函数的定义域为________.14.已知函数,则________.15.若在上是增函数,能够说明“在上也是增函数”是假命题的一个的解析式________.16.函数的值域为________.()21x f x x =--()0f x >(1,1)-(,1)(1,)-∞-+∞ (0,1)(,0)(1,+-∞∞ )1.2 1.23log 6,2,0.5a b c ===b a c <<c b a <<c a b <<a c b <<()f x =R a [0,1][0,1)(0,1](0,1)A N *i N *∈1,()0,i i A A i A ϕ∈⎧=⎨∉⎩N *,A B i N *∈()0i A B ϕ= ()1i A B ϕ= N *,A B i N *∈()()()i i i A B A B ϕϕϕ=⋅ N *,A B i N *∈()()()i i i A B A B ϕϕϕ=+ 1()1f x x =-3()27log x f x x =+13f ⎛⎫= ⎪⎝⎭()g x R ()y xg x =R ()g x ()g x =221,1()2,1x x f x x x x ⎧-≤⎪=⎨->⎪⎩17.已知下列四个函数:.从中选出两个函数分别记为和,若的图象如图所示,则________.18.已知函数.若存在非零实数,使得成立,则实数的取值范围为________.三、解答题(每题12分,共72分)19.已知集合.(Ⅰ)若,求集合(Ⅱ)若,求的取值范围.20.分别求下列关于的不等式的解集:(Ⅰ);(Ⅱ).21.为打赢打好脱贫攻坚战,实现建档立卡贫困人员稳定增收,某地区把特色养殖确定为脱贫特色主导产业,助力乡村振兴.现计划建造一个室内面积为1500平方米的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚前、后、左、右内墙各保留1.5米宽的通道,两养殖池之间保留2米宽的通道.设温室的一边长度为米,如图所示.(I )将两个养殖池的总面积表示为的函数,并写出定义域;(Ⅱ)当温室的边长取何值时,总面积最大?最大值是多少?22.已知函数.1,,ln ,x y x y y x y e x====()f x ()g x ()F x =()()f x g x +()F x =2,(),x a x a f x x x a +≤⎧=⎨>⎩0x 00()()f x f x -=-a {}{}3,15A x a x a B x x x =≤≤+=<->或2a =-()()R R B A ;I ððA B A = a x 2610x x --<2(2)20x a x a +--≤x y x x y ()2,f x x x a a R =--∈(I )当时,直接写出函数的单调递增区间;(Ⅱ)当时,求函数在区间[1,2]上的最小值.23.已知是定义在[3,3]上的奇函数,当]时,. (I )求在(0,3]上的解析式;(Ⅱ)当时,不等式恒成立,求实数的取值范围.24.若集合A 具有以下性质:①;②若,则,且时,.则称集合是“好集”.(I )分别判断集合,有理数集是否是“好集”,并说明理由;(Ⅱ)设集合是“好集”,求证:若,则;(Ⅲ)对任意的一个“好集”,分别判断下面命题的真假,并说明理由.命题:若,则必有;命题:若,且,则必有.参考答案一、选择题DACDC ,BDBDC ,BA二、填空题13.或写为14.2 15.(答案不唯一) 16. 17. 18.三、解答题19.(I )(1,5](Ⅱ)20.(I )(Ⅱ)时,解集为[2,]; 时,解集为; 时,解集为[,2].21.解:(I )依题意得温室的另一边长为米.因此养殖池的总面积,2a =()f x 2a >()f x ()y f x =-[3,0]x ∈-1()()94x x a f x a R =+∈()y f x =1[1,2x ∈--11()34x x m f x -≤-m 0,1A A ∈∈,x y A ∈x y A -∈0x ≠1A x ∈A {}1,0,1B =-Q A ,x y A ∈x y A +∈A p ,x y A ∈xy A ∈q ,x y A ∈0x ≠y A x∈{}1x x ≠(,1)(1,)-∞+∞ x (1,+-∞)1x e x +1[2,4-(,4)(5,)-∞-+∞ 11(,)32-2a <-a -2a =-{}22a >-a -1500x 1500(3)(5)y x x=--因为,所以.所以定义域为.(Ⅱ),当且仅当,即时上式等号成立,当温室的边长为30米时,总面积取最大值为1215平方米.22.解:(1)当时,,,由二次函数的性质知,单调递增区间为(,1],[2,).或写为(,1),(2,)(Ⅱ)∵,[1,2]时,所以,当,即时,;当,即时,; ∴.23.(I )因为是定义在[3,3]上的奇函数,[3,0]时,,所以,解得,所以(3,0]时,当时,,所以,又,即在上的解析式为,(Ⅱ)因为时,,所以可化为,整理得,150030,50x x->->3300x <<{}3300x x <<15004500(3)(5)1515(5)151515153001215y x x x x =--=-+≤-=-=45005x x=30x =x y 2a =(2)2,2()22(2)2,2x x x f x x x x x x --≥⎧=--=⎨--<⎩22(1)3,2()(1)1,2x x f x x x ⎧--≥⎪=⎨---<⎪⎩-∞+∞-∞+∞2a >x ∈2()()22f x x a x x ax =--=-+-228(24a a x -=-+3122a <≤23a <≤min ()(2)26f x f a ==-322a >3a >min ()(1)3f x f a ==-min 26,23()3,3a a f x a a -<≤⎧=⎨->⎩()y f x =-x ∈-1()()94x xa f x a R =+∈001(0)094a f =+=1a =-x ∈-11()94x x f x =-(0,3]x ∈[3,0)x -∈-11()9494x x x x f x ---=-=-()()49x x f x f x =--=-()y f x =(0,3]()49x xf x =-1[1,2x ∈--11()94x x f x =-11()34x x m f x -≤-11119434x x x x m --≤-13(334xx m ⎛⎫≥+⋅ ⎪⎝⎭令,根据指数函数单调性可得,所以也是减函数.所以,所以,故实数的取值范围是[7,).24.解:(I )集合不是“好集”.理由是:假设集合是“好集”.因为,所以.这与矛盾.有理数集是“好集”.因为,对任意的,有,且时,.所以有理数集是“好集”.(Ⅱ)因为集合是“好集”,所以.若,则,即.所以,即.(Ⅲ)命题均为真命题.理由如下:对任意一个“好集”,任取,若中有0或1时,显然.下设均不为0,1.由定义可知:.所以,即.所以.由(Ⅱ)可得:,即.同理可得.若或,则显然.若且,则.所以.所以.由(Ⅱ)可得:.所以.综上可知,,即命题为真命题.若,且,则.13()334x x g x ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭()g x 11max 13()(1)3734g x g --⎛⎫⎛⎫=-=+⋅= ⎪ ⎪⎝⎭⎝⎭7m ≥m +∞B B 1,1B B -∈∈112B --=-∈2B -∉Q 0,1Q Q ∈∈,x y Q ∈x y Q -∈0x ≠1Q x∈Q A 0A ∈,x y A ∈0y A -∈y A -∈()x y A --∈x y A +∈,p q A ,x y A ∈,x y xy A ∈,x y 111,,1x A x x -∈-111A x x -∈-1(1)A x x ∈-(1)x x A -∈(1)x x x A -+∈2x A ∈2y A ∈0x y +=1x y +=2()x y A +∈0x y +≠1x y +≠2()x y A +∈2222()xy x y x y A =+--∈12A xy ∈11122A xy xy xy =+∈xy A ∈xy A ∈p ,x y A ∈0x ≠1A x ∈所以,即命题为真命题.1y y A x x =⋅∈q。

2024-2025学年八年级上学期数学开学摸底卷及答案(人教版)

2024-2025学年八年级上学期数学开学摸底卷及答案(人教版)

八年级上学期开学摸底卷02 重难点检测卷 【考试范围:人教版七下全部内容+八年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。

答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题2分,共20分)1.(22-23七年级下·江苏南通·期末)在实数3. 1415,227中,是无理数的是 ( )A .3. 1415BC .227D2.(22-23七年级下·四川达州·期末)下列图形是轴对称图形的是( ).A .B .C .D .3.(2024·浙江宁波·模拟预测)如图,数轴上点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a −<C .22a b >D .22a b +<+4.(2024八年级上·全国·专题练习)已知点()1,2P a a −+在y 轴上,那么点(),1Q a a −−在( ) A .y 轴正半轴B .x 轴负半轴C .y 轴正半轴D .y 轴负半轴5.(22-23八年级上·山西运城·期末)如图,ABE ACD ≌,下列等式不一定正确的是( )A .AB AC = B .BAD CAE ∠=∠ C .BE CD = D .AD DE =6.(2023·广东佛山·模拟预测)如图,若AB CD ∥,CD EF ∥,130∠=°,2130∠=°,那么BCE ∠的度数为( )A .160°B .100°C .90°D .80°7.(23-24七年级下·山东威海·期末)若关于x 的不等式组215113253()x x x m x m −+ ≥−<+ 解集为2x m <,则m 的取值范围( ) A .12m ≤−B .12m <−C .522m ≤−D .522m <−8.(23-24七年级下·重庆渝北·阶段练习)第一道鸡兔同笼问题收录于《孙子算经》:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?意思是现在笼子里既有鸡又有兔,有35个头,94只脚,设有鸡、兔各为x ,y 只,那么下列选项中,方程组列正确的是( ) A .35 4494x y x y +=+= B .235 2494x y x y +=+=C .35 4294x y x y +=+=D .352494x y x y +=+=9.(2024·四川巴中·中考真题)如图,直线m n ∥,一块含有30°的直角三角板按如图所示放置.若140∠=°,则2∠的大小为( )A .70°B .60°C .50°D .40°10.(2024·云南·模拟预测)某初级中学为落实“立德树人”根本任务,构建“五育并举”课程体系,开展了“烹饪、园艺、木工、电工”四大类劳动课程.为了解本校1500名学生对每类课程的选择情况,随机抽取了本校300名学生进行调查(每位学生只选一类课程),并绘制了如图所示的扇形统计图,下列说法正确的是( )A .此调查属于全面调查B .本次调查的样本容量是1500C .选择“烹饪”这一类课程的学生人数占被调查人数的48%D .该校1500名学生中约有240人选择“木工”这一类课程二、填空题(8小题,每小题2分,共16分)11.(2024·湖南长沙·模拟预测)请任意写出一个大小在3与4之间的无理数: . 12.(2024·黑龙江大庆·中考真题)不等式组22539x x x x−>−<+ 的整数解有 个.13.(23-24七年级下·广东惠州·期末)若2351020a b a b x y −+−+=是二元一次方程,那么a 、b 的值分别是 . 14.(23-24八年级上·山西临汾·期末)据山西省统计局消息,2023年第三季度全省居民人均可支配收入为22578元,在数字“22578”中,数字2的频率为 .15.(2024·河北秦皇岛·一模)如图,直线a b ∥,a 与c 交于点P .若150∠=°,则2∠=.将直线a 能点P 逆时针旋转 °(旋转角度小于180°)后可使直线a b ⊥.16.(2024·江苏·模拟预测)如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为()()0,2,1,0−,将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为()2,0B ′,则点A 的对应点A ′的坐标为 .17.(2024·山东临沂·模拟预测)如图所示,已知55MON ∠=°,正五边形ABCDE 的顶点A 、B 在射线OM 上,顶点E 在射线ON 上,则NED ∠的度数为 .18.(22-23八年级下·四川达州·期末)如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,9ABC S =,2DE =,5AB =,则AC 的长是 .三、解答题(8小题,共64分)19.(23-24七年级下·云南昭通·期末)解方程. (1)()221128x −=(2)3(1)270y ++=20.(22-23七年级下·四川内江·期中)解方程: (1)223x −+112x +=; (2)3262317x y x y −= +=.21.(23-24七年级下·湖北荆门·期末)星期天,小明和七名同学共8人去郊游,途中他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯? (2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?22.(23-24七年级下·湖北黄石·期末)某中学七年级数学社团随机抽取部分学生,对“学习习惯”进行问卷调查,了解他们对自己做错的题目进行整理、分析、改正的情况.将调查结果的数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角的度数为______;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生共有多少名?1,3 23.(22-23七年级下·广东广州·期中)如图,在平面直角坐标系中,ABC的顶点C的坐标为()(1)把ABC 向上平移3个单位,再向右平移2个单位得A B C ′′′ ,画出A B C ′′′ . (2)写出点A ′、点B ′、点C ′的坐标.(3)若ABC 内有一点(),M m n ,按照(2)的平移规律直接写出平移后点M 的对应点M ′的坐标.24.(23-24七年级下·广东汕头·期末)如图,点B ,C 在线段AD 的异侧,点E ,F 分别是线段AB CD ,上的点,已知12∠=∠,3C ∠=∠.(1)求证:AB CD ∥;(2)若24180∠+∠=°,且3021BFC ∠−°∠,求B ∠的度数.25.(23-24八年级上·湖南郴州·期末)如图,已知ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AAAA 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时点Q 在线段CCAA 上由C 点向A 点运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t .(1)当点P 运动t 秒时CP 的长度为_____(用含t 的代数式表示);(2)若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?26.(23-24八年级上·广东深圳·期末)如图1,130120AB CD PAB PCD ∠=°∠=°∥,,,求APC ∠的度数.小明的思路是:过P 作PE AB ∥,通过平行线性质来求APC ∠. (1)按小明的思路,求APC ∠的度数;(2)如图2,AB CD ∥,点P 在射线OM 上运动,记PAB PCD αβ∠=∠=,,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系(并画出相应的图形).八年级上学期开学摸底卷02 重难点检测卷 【考试范围:人教版七下全部内容+八年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。

2023-2024学年七年级数学下学期期末模拟卷02(人教版)(全解全析)A4版

2023-2024学年七年级数学下学期期末模拟卷02(人教版)(全解全析)A4版

2023-2024学年七年级数学下学期期末模拟卷02全解全析能力提升培优测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第五章~第十章(人教版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单选题1.计算√64−√643的结果是( )A .0B .16C .12D .4【答案】D【分析】先计算算术平方根,立方根,再进行减法运算.【详解】解:√64−√643=8−4=4,故选:D .【点睛】本题考查求算术平方根,立方根,正确计算是解题的关键.2.下列调查中,调查方式选择合理的是( )A .为了了解某一品牌家具的甲醛含量,选择全面调查B .为了了解神舟飞船的设备零件的质量情况,选择抽样调查C.为了了解某公园全年的游客流量,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【答案】C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:为了了解某一品牌家具的甲醛含量,具有破坏性,选择抽样调查,A错误;为了了解神舟飞船的设备零件的质量情况,每个零件都很重要,都要检查,选择全面调查,B错误;为了了解某公园全年的游客流量,范围广,选择抽样调查,C正确;为了了解一批袋装食品是否含有防腐剂,具有破坏性,选择抽样调查,D错误,故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列命题属于真命题的是()A.坐标轴上的点不属于任何象限B.若ab=0,则点P(a,b)表示原点C.点A、B的横坐标相同,则直线AB∥x轴D.(1,−a2)在第四象限【答案】A【分析】根据各象限内点的坐标特征以及坐标轴上的点的坐标特征对各选项分析判断即可得解.【详解】解:A、坐标轴上的点不属于任何象限,属于真命题,本选项符合题意;B、若ab=0,则点P(a,b)可能是原点,也可能在坐标轴上,原命题属于假命题,本选项不符合题意;C、点A、B的横坐标相同,则直线AB∥y轴,原命题属于假命题,本选项不符合题意;D、当a≠0时,点(1,−a2)在第四象限,原命题属于假命题,本选项不符合题意;故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.下列各选项中能用“垂线段最短”来解释的现象是()A.B.C.D.【答案】A【分析】根据直线的性质,线段的性质对各选项分析判断即可得解.【详解】解:A、测量跳远成绩是利用了“垂线段最短”,故本选项合题意.B、木板弹出一条墨迹是利用了“两点确定一条直线”,故本选项不合题意;C、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项不合题意;D、把弯曲的河道改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项不符合题意;故选:A.【点睛】本题考查了线段的性质,直线的性质,解题时注意:两点的所有连线中可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.5.若a≠0,下列不等式一定成立的是()A.2023−a>2022+a B.−2023a>−2022aC.2023a >2022aD.−a−2023<−a−2022【答案】D【分析】根据不等式的性质逐一判定即可;要判定一个说法错误,只需要找一个反例即可.【详解】A、令a=1,则2023−a=2022,2022+a=2023,2022<2023,∴此时2023−a<2022+a,即A选项错误,不符合题意;B、令a=1,则−2023a=−2023,−2022a=−2022,−2023<−2022∴此时−2023a<−2022a,即B选项错误,不符合题意;C、令a=−1,则2023a =−2023,2022a=−2022,−2023<−2022∴此时2023a <2022a,即C选项错误,不符合题意;D、因为−2023<−2022,所以−a−2023<−a−2022,∴D选项正确,符合题意;故选:D.【点睛】本题考查不等式的性质,利用反例推断一个命题错误和掌握不等式的性质是解题的关键.6.若3a−22和2a−3是实数m的平方根,则√1m的值为()A.17B.15C.135D.119【答案】A【分析】根据一个正数的平方根有两个,且互为相反数,求出a,从而即可得解.【详解】解:∵3a−22和2a−3是实数m的平方根,∴3a−22+2a−3=0,解得a=5,∴2a−3=7,∴m=49,m=49,∴√1m =√149=17,故选A.【点睛】本题考查了平方根,熟练掌握一个一个正数的平方根有两个,且互为相反数是解题的关键.7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,∠E=45°,则∠DBC的度数为()A.10°B.15°C.20°D.25°【答案】B【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=∠ABD−ABC=45°−30°=15°.故选:B.【点睛】本题考查平行线的性质,根据平行线的性质得出∠ABD的度数是解题的关键.8.平面直角坐标系中,已知A(−3,1),B(1,−2),作AC∥x轴交y轴于点C,点D在直线AC上,则线段BD长度的最小值是()A.2 B.3 C.4 D.5【答案】B【分析】先画出符合题意的图形,再根据“点到直线的距离垂线段最短”可得到答案.【详解】解:如图,AC∥x轴交y轴于点C,点D在直线AC上,∴BD⊥AC时,BD最小,∵A(−3,1),B(1,−2),∴D(1,1),此时:BD=1−(−2)=3.故选:B.【点睛】本题考查的是坐标与图形,点到直线的距离,垂线段最短,掌握以上知识是解题的关键.9.若方程组{2a−3b=133a+5b=30.9的解是{a=8.3b=1.2,则方程组{2(x+2)−3(y−1)=133(x+2)+5(y−1)=30.9的解是()A.{x=8.3y=1.2B.{x=10.3y=2.2C.{x=6.3y=2.2D.{x=10.3y=0.2【答案】C【分析】由二元一次方程组的解的定义得出{x+2=8.3y−1=1.2,求解即可.【详解】由题意知,{x+2=8.3y−1=1.2,解得,{x=6.3y=2.2,故选:C.【点睛】本题考查二元一次方程组的解,解题的关键是掌握换元法,体现了整体思想.10.某校的劳动实践基地有一块长为10m、宽为8m的长方形空地,学校准备在这块空地上沿平行于长方形各边的方向割出3个大小和形状完全相同的小长方形菜地(图中阴影部分)分别种上辣椒、茄子、土豆,如图所示,则每个小长方形菜地的面积是()A.7m2B.8m2C.9m2D.10m2【答案】B【分析】设一个小长方形菜地的长为x m,宽为y m,根据题意列出二元一次方程组,解方程组即可求解.【详解】解:设一个小长方形菜地的长为x m,宽为y m,根据题意得:{2x+y=102y+x=8,解得{x=4y=2,∴一个小长方形菜地的面积为xy=2×4=8(m2).故选:B.【点睛】本题考查了二元一次方程组的应用,根据图形列出二元一次方程组是解题的关键.11.如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点,其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→⋅⋅⋅根据这个规律,第2023个点的坐标为()A.(45,1)B.(45,2)C.(45,3)D.(45,4)【答案】B【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2023最接近的平方数为2025,然后写出第2023个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看作按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看作按照运动方向离开x轴,∵452=2025,∴第2025个点在x轴上坐标为(45,0),则第2023个点在(45,2)故选:B.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.12.已知关于x的不等式组{x−3x−52<22x−a≤−1,下列四个结论:①若它的解集是1<x≤3,则a=7;②当a=3,不等式组有解;③若它的整数解仅有3个,则a的取值范围是11≤a<13;④若它有解,则a>3.其中正确的结论个数()A.1个B.2个C.3个D.4个【答案】B【分析】本题主要首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式组,从而求出a的范围.【详解】解:{x−3x−52<2①2x−a≤−1②,解不等式①,得x>1.解不等式②,得x≤a−12,∴不等式组的解集为1<x≤a−12.①若它的解集是1<x≤3,则a−12=3,解得a=7,故结论正确;②当a=3时,a−12=3−12=1,不等式组无解,故结论不正确;③若它的整数解仅有3个,则4≤a−12<5,解得9≤a<11.则a的取值范围是9≤a<11,故结论不正确;④若它有解,a−12>1,解得a>3,故结论正确.综上可知,正确的有①④,共2个.故选B.【点睛】本题考查解一元一次不等式组,一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.第II卷(非选择题)二、填空题13.已知432=1849,442=1936,452=2025,462=2116.若n为整数且n<√2023<n+1,则n的值是.【答案】44【分析】由已知条件的提示可得√1936<√2023<√2025,即44<√2023<45,从而可得答案.【详解】解:∵1936<2023<2025,∴√1936<√2023<√2025,即44<√2023<45,又∵n<√2023<n+1,n为整数,∴n=44.故答案为:44.【点睛】本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.14.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.【答案】10【分析】根据组距,最大值、最小值、组数以及样本容量的关系进行计算即可.【详解】解:(143-50)÷10=9.3≈10,故可以分成10组,故答案为:10.【点睛】本题考查频数分布直方图的制作方法,理解组距、组数,极差以及样本容量之间的关系是正确解答的关键.15.点A(6−2x, x−3)在x轴的上方,将点A向上平移4个单位长度,再向左平移1个单位长度后得到点B,点B到x轴的距离大于点B到y轴的距离,则x的取值范围是.【答案】3<x<6【分析】先根据平移表示出点B的坐标,再根据点B到x轴的距离大于点B到y轴的距离列不等式求解即可.【详解】解:∵点A(6−2x, x−3)在x轴的上方,将点A向上平移4个单位长度,再向左平移1个单位长度后得到点B,∴A(6−2x−1, x−3+4),即A(5−2x, x+1),且x−3>0即x>3,∴x+1>0,5−2x<0,∵点B到x轴的距离大于点B到y轴的距离,∴|x+1|>|5−2x|,即x+1>2x−5,解得:x<6,∴3<x<6.故答案为3<x<6.【点睛】本题主要考查了点的平移、点到坐标轴的距离、解不等式、取绝对值等知识点,灵活运用相关知识是解答本题的关键.16.把一根长18m的钢管截成2m长和3m长两种规格的钢管,不浪费材料,共有种不同的截法.【答案】2【分析】设可以截成x段3m长,y段2m长的钢管,根据截成钢管的总长度为18m,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出结论.【详解】解:设可以截成x段3m长,y段2m长的钢管,依题意得:3x+2y=18,∴y=18−3x2.又∵x,y均为非负整数,∴{x=2y=6或{x=4y=3,∴共有2种不同的截法.故答案为:2.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.如图,已知长方形纸片ABCD,点E,F在BC边上,点G,H在AD边上,分别沿EG,FH折叠,点B和点C 恰好都落在点P处.若∠EPF=50°,则α+β=.【答案】115°/115度【分析】根据平行线的性质可得∠BEG=∠DGE=α,∠CFH=∠AHF=β,再由折叠的性质可得∠PEB=2∠BEG=2α,∠PFC=2∠CFH=2β,然后根据三角形内角和定理,即可求解.【详解】解:根据题意得:AD∥BC,∴∠BEG=∠DGE=α,∠CFH=∠AHF=β,由折叠的性质得:∠BEG=∠PEG=α,∠CFH=∠PFH=β,∴∠PEB=2∠BEG=2α,∠PFC=2∠CFH=2β,∴∠PEF=180°−∠PEB=180°−2α,∠PFE=180°−∠PFC=180°−2β,∵∠PEF+∠PFE+∠EPF=180°,∠EPF=50°,∴180°−2α+180°−2β=180°−50°,即α+β=115°.故答案为:115°【点睛】本题主要考查了平行线的性质,折叠,三角形内角和,解决问题的关键是熟练掌握折叠性质,三角形内角和定理,平行线的性质.18.定义:在平面直角坐标系xOy 中,将点P (x,y )变换为P (kx +b,by +k )(k 、b 为常数),我们把这种变换称为“T 变换”.已知点B(2,1),C (m −52,n),D (m −12,m +12n)经过“T 变换”的对应点分别是E(4,3)、F 、G .若CF ∥x 轴,且点G 落在x 轴上,则三角形DFG 的面积为 .【答案】12/0.5【分析】先根据B(2,1)经过“T 变换”的对应点是E(4,3),求出k,b 的值,进而表示出F,G 的坐标,根据CF ∥x ,得到C,F 的纵坐标相同,点G 落在x 轴上,得到G 点的纵坐标为0,求出m,n 的值,再进行求解即可.【详解】解:∵点B(2,1)经过“T 变换”的对应点是E(4,3),∴{2k +b =4b +k =3 ,解得:{k =1b =2, ∴C (m −52,n),D (m −12,m +12n)经过“T 变换”的对应点为F (m −52+2,2n +1),G (m −12+2,2m +n +1),即:F (m −12,2n +1),G (m +32,2m +n +1),∵CF ∥x ,点G 落在x 轴上,∴{n =2n +12m +n +1=0 ,解得:{n =−1m =0, ∴D (−12,−12),F (−12,−1),G (32,0),∴DF ⊥OG,DF =12,∴三角形DFG 的面积为12×12×(32+12)=12;故答案为:12.【点睛】本题考查坐标与图形.解题的关键是理解并掌握“T 变换”,以及平行于坐标轴的直线上的点的特点和坐标轴上点的特点.三、解答题19.解下列方程(组):(1)2(x −1)2−18=0;(2){3(x +y )−4(x −y )=−9x+y 2+x−y 6=1 .【答案】(1)x =4或x =−2;(2){x =2y =−1【分析】(1)根据求平方根的方法解方程即可;(2)先整理原方程组,然后利用加减消元法求解即可.【详解】(1)解:∵2(x −1)2−18=0,∴2(x −1)2=18∴(x −1)2=9∴x −1=±3,∴x =4或x =−2;(2)解:{3(x +y )−4(x −y )=−9x+y 2+x−y 6=1 整理得{−x +7y =−9①2x +y =3② ①×2+②得:15y =−15,解得y =−1,把y =−1代入②得:2x −1=3,解得x =2,∴方程组的解为{x =2y =−1. 【点睛】本题主要考查了解二元一次方程组,根据求平方根的方法解方程,正确计算是解题的关键.20.解不等式组{5x−2≤3xx−3 3<x+12−1,并将不等式组的解集表示在数轴上.【答案】−3<x≤1,见解析【分析】分别求出每一个不等式的解集,并在数轴上表示,即可确定不等式组的解集.【详解】解:{5x−2≤3xx−3 3<x+12−1①②解不等式①,得:x≤1,解不等式②,得:x>−3,则不等式组的解集为−3<x≤1,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”或根据数轴表示解集是解答此题的关键21.如图所示的平面直角坐标系中,O为坐标原点,A(4,3),B(3,1),C(1,2),将△ABC平移后得到△DEF.已知B点平移的对应点E点(0,−3)(A点与D点对应,C点与F点对应).(1)画出平移后的△DEF,并写出点D的坐标为___________,点F的坐标为___________;(2)直接写出△ABC的面积___________;(3)连OC、OB,则y轴上是否存在P点,使S△POC=S△ABC,若存在,直接写出P点坐标___________;【答案】(1)作图见解析,D(1,−1),F(−2,−2),(2)52(3)(0,5)或(0,−5).【分析】(1)画出图象即可解决问题;(2)利用割补法求解面积即可;(3)设出坐标,列一元一次方程即可解决问题;【详解】(1)解∶∵A(4,3),B(3,1),C(1,2),B点平移的对应点E点(0,−3),∴△ABC向左平移3个单位,再向下平移4个单位得△DEF,△DEF如图所示,D(1,−1),F(−2,−2),故答案为∶D(1,−1),F(−2,−2),;(2)解:S△ABC=2×3−12×1×3−2×12×1×2=52,故答案为52;(3)解:y轴上是否存在P点,使S△POC=S△ABC,设P(0,m),∵S△POC=S△ABC,S△ABC=52,S△POC=12×|m|×1,∴1 2×|m|×1=52,解得m=5或m=−5∴P(0,5)或P(0,−5),故答案为(0,5)或(0,−5).【点睛】本题考查作图之平移变换,三角形的面积以及解一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22.如图,用两个面积为50cm2的小正方形纸片拼成一个大正方形.(1)求拼成的大正方形纸片的边长;(2)若沿此大正方形纸片的边的方向剪出一个长方形,能否使剪出的长方形纸片的长、宽之比为3:2且面积为54cm2若能,试求出剪出的长方形的长与宽;若不能,请说明理由.【答案】(1)10cm(2)能;剪出的长方形的长为9cm,宽为6cm【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出大正方形的边长;(2)先求出长方形的边长,再判断即可.【详解】(1)解:大正方形的边长为:√50+50=√100=10(cm);(2)解:设长方形纸片的长为3x cm,宽为2x cm,根据题意得:3x⋅2x=54,解得:x=3或x=−3(舍去),长方形的长为3×3=9(cm),宽为2×3=6(cm),∵9<10,∴沿此大正方形边的方向剪出一个长方形,能使剪出的长方形纸片的长宽之比为3:2,且面积为54cm2.【点睛】本题考查了算术平方根和平方根的应用,能根据题意列出算式是解此题的关键.23.已知AB∥CD,E是两直线内一点,F、G分别为AB、CD上的点.(1)如图,连EF,EG,直接写出∠FEG与∠AFE和∠CGE之间的数量关系___________;(2)如图,∠AFE与∠CGE的平分线交于H点,探究∠FEG与∠FHG之间的数量关系,写出这个数量关系,并说明理由;(3)若H为AB、CD间的一点,且满足∠HFE=1n ∠AFE,∠HGE=1n∠CGE,则直接写出∠FEG与∠FHG之间的数量关系___________;【答案】(1)∠FEG=∠AFE+∠CGE(2)∠FHG=12∠FEG,理由见解析;(3)∠FHG=n−1n∠FEG,理由见解析.【分析】(1)根据平行线的判定和性质即可写出结论;(2)根据平行线的判定和性质以及角平分线的定义,即可求解;(3)根据平行线的判定和性质以及角的和差的关系,即可求解.【详解】(1)解∶如图∶过点E作EH∥AB,∵AB∥CD,∴EH∥CD,∴∠AFE=∠FEH,∠CGE=∠GEH,∵∠FEG=∠FEH+∠GFE,∴∠FEG=∠AFE+∠CGE,故答案为∶∠FEG=∠AFE+∠CGE;(2)解:由(1)得∠FHG=∠AFH+∠CGH,∠FEG=∠AFE+∠CGE,∵∠AFE与∠CGE的平分线交于H点,∴∠AFH=12∠AFE,∠CGH=12∠CGE,∴∠FHG==∠AFH+∠CGH=12(∠AFE+∠CGE)=12∠FEG,∴∠FHG=12∠FEG;(3)解:由(1)得∠FHG=∠AFH+∠CGH,∠FEG=∠AFE+∠CGE,∵∠HFE=1n ∠AFE,∠HGE=1n∠CGE,∴∠HFA=n−1n ∠AFE,∠HGC=n−1n∠CGE,∴∠FHG==∠AFH+∠CGH=n−1n (∠AFE+∠CGE)=n−1n∠FEG,∴∠FHG=n−1n∠FEG.【点睛】本题考查了平行线的判定和性质以及角平分线的定义,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.24.实验中学八年级数学社团随机抽取部分学生,对“学习习惯”进行问卷调查设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A:很少,B:有时,C:常常,D:总是.将调查结果的数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a=________%,b=________%,“常常”对应扇形的圆心角的度数为________;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生共有多少名?【答案】(1)200、12、36、108°(2)见解析(3)“常常”和“总是”对错题进行整理、分析、改正的学生共有2112名.【分析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可;(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可;(3)用该校学生的人数分别乘“常常”和“总是”对错题进行整理、分析、改正的学生占的百分率即可.【详解】(1)解:∵44÷22%=200(名),∴该调查的样本容量为200,a%=24÷200×100%=12%,则a=12,b%=72÷200×100%=36%,则b=36,“常常”对应扇形的圆心角为:360°×30%=108°.故答案为:200、12、36、108°;(2)解:200×30%=60(名),;(3)解:∵3200×30%=960(名),∴“常常”对错题进行整理、分析、改正的学生有960名.∵3200×36%=1152(名),∴“总是”对错题进行整理、分析、改正的学生有1152名.960+1152=2112(名)答:“常常”和“总是”对错题进行整理、分析、改正的学生共有2112名.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.某经销商购进10件A产品和20件B产品需要155元,购进20件A产品和10件B产品需要130元.A产品每件售价5元,B产品的销量不超过200件,每件8元;销量超过200件时,超过的部分每件7元.(1)求每件A,B产品的进价;(2)该经销商每天购进A,B产品共300件,并在当天都销售完.①要求购进B产品的件数多于A产品件数的2倍,B产品的总利润不超过A产品总利润的4倍,设每天购进A产品x件(x为正整数),求x的取值范围;②端午节这天,经销商让利销售,将A产品售价每件降低m元,B产品售价每件定为7元,且A,B产品的总利润的最小值不少于318元,在①中x的取值条件下,直接写出m的最大值.【答案】(1)每件A产品的进价为3.5元,每件B产品的进价为6元(2)①5007≤x<100(x为正整数);②0.25【分析】(1)设每件A产品的进价为a元,每件B产品的进价为b元,根据“购进10件A产品和20件B产品需要155元,购进20件A产品和10件B产品需要130元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)①设每天购进A产品x件,则购进B产品(300-x)件,根据“购进B产品的件数多于A产品件数的2倍,B产品的总利润不超过A产品总利润的4倍”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围;②设A,B两种商品全部售完后获得的总利润为w元,利用总利润=每件的销售利润×销售数量(进货数量),即可得出w关于x的函数关系式,再利用一次函数的性质即可找出关于m的一元一次不等式组,解之取其中的最大值即可得出结论.【详解】(1)解:设每件A产品的进价为a元,每件B产品的进价为b元,由题意得:{10a+20b=15520a+10b=130,解得:{a=3.5b=6,答:每件A产品的进价为3.5元,每件B产品的进价为6元.(2)①设每天购进A产品x件,则购进B产品(300-x)件,由题意得:{300−x>2x(8−6)×200+(7−6)(300−x−200)≤4×(5−3.5)x,解得:5007≤x<100.∴x的取值范围为5007≤x<100(x为正整数).②设A,B两种商品全部售完后获得的总利润为w元,则w=(5-m-3.5)x+(7-6)(300-x)=(0.5-m)x+300,∵销售A,B两产品的总利润的最小值不少于318元,且5007≤x<100,x为正整数,∴{0.5−m>072(0.5−m)+300≥318,解得:m≤0.25.答:在①中x的取值条件下,m的最大值为0.25.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②根据各数量之间的关系,找出w关于x的函数关系式.26.在平面直角坐标系中,有点A(a,0),B(0,b),点P(m,2m)在第一象限,若a,b满足(a+b−7)2+|a−2b+2|=0.(1)求点A,B的坐标;(2)若点P在直线AB上方,且1<S△ABP≤5,求m的取值范围;(3)点C在直线AB上,且S△PAC=2S△PBC,求点C的坐标.【答案】(1)A(4,0),B(0,3)(2)1411<m≤2(3)C(43,2)或C(−4,6)【分析】(1)由已知可以得到关于a、b的二元一次方程组,解方程组可以得到A、B的坐标;(2)连接OP,即可用m表示出三角形AOP和三角形BOC的面积,根据S△ABP=S AOP+S△BOP−S△AOB可以用m表示出三角形ABP的面积,再由已知条件得到关于m的不等式即可;(3)分点C在线段AB上和点C在射线AB上两种情况讨论.【详解】(1)∵(a+b−7)2+|a−2b+2|=0,∴{a+b−7=0a−2b+2=0,解得,{a=4b=3,∴A(4,0),B(0,3),(2)如图1,连接OP,则S△AOB=12×3×4=6,S△AOP=12×4×2m=4m,S△BOC=12×3×m=32m,∴S△ABP=S AOP+S△BOP−S△AOB=4m+32m−6=112m−6,∵1<S△ABP≤5,∴1<112m−6≤5,解得:1411<m≤2;(3)连接OC,设C(x,y)如图2,当点C在线段AB上时,∵S△PAC=2S△PBC,∴AC=2BC,S△AOC=2S△BOC,∴S△BOC=13S△AOB=13×6=2,∴12×3x=2,解得,x=43;又S△AOC=23S△AOB=23×6=4,∴12×4y=4,解得,y=2;∴C(43,2)如图3,当点C在射线AB上时,同理可求得,C(−4,6)综上所述,C(43,2)或C(−4,6)由直线围成的图形面积的求解及不等式的求解是解题关键.。

河南省洛阳市洛阳强基联盟2023-2024学年高一下学期3月联考数学试题

河南省洛阳市洛阳强基联盟2023-2024学年高一下学期3月联考数学试题

河南省洛阳市洛阳强基联盟2023-2024学年高一下学期3月联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法中不正确的是( ) A .零向量与任一向量平行 B .方向相反的两个非零向量不一定共线 C .单位向量是模为1的向量D .方向相反的两个非零向量必不相等2.复数()()6i 17i +-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且5π,6b c ===则=a ( )A .2BC D .14.已知向量()()2,1,1,2a b =-=r r ,则a b +r r 在b r 上的投影向量的坐标为( ) A .()2,1 B .()1,1 C .()1,2D .()2,1-5.下列区间为函数π2sin 4y x ⎛⎫=+ ⎪⎝⎭的增区间的是( )A .ππ,22⎡⎤-⎢⎥⎣⎦B .3ππ,44⎡⎤-⎢⎥⎣⎦C .[]π,0-D .π3π,44⎡⎤-⎢⎥⎣⎦6.已知复数z 满足()1i i z -=,则下列结论正确的是( ) A .1122z i =+ B .z 的虚部与实部相等 C .1z =D .存在复数1z ,使10zz <7.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin b C c B a +=,6b =,则2sin 2sin a bA B+=+( )A .4B .6C .D .8.古希腊数学家特埃特图斯(Theaetetus )利用如图所示的直角三角形来构造无理数.已知2,,AB BC CD AB BC AC CD ===⊥⊥,若DB AB AC λμ=+u u u r u u u r u u u r,则λμ+=( )A .BC D二、多选题9.下列各组向量中,能作为基底的是( )A .()()12e 0,0,e 1,1==r rB .()()12e 1,2,e 2,1==-r rC .()1243e 3,4,e ,55⎛⎫=-=- ⎪⎝⎭r rD .()()12e 2,6,e 1,3==-r r10.设z 是非零复数,则下列说法正确的是( )A .若z ∈R ,则z ∈RB .若||zz z =,则||1z =C .若z z =,则||z z =D .若0z z +=,则i ||zz = 11.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知ABC V 的周长为3,60B =︒,则( )A .若2b a c =+,则ABC V 是等边三角形B .存在非等边ABC V 满足2b ac =C .ABC VD .可以完全覆盖ABC V三、填空题12.已知复数z 满足1i i z z +=-,则z =.13.如图,用无人机测量一座小山的海拔与该山最高处的古塔AB 的塔高,无人机的航线与塔AB 在同一铅直平面内,无人机飞行的海拔高度为500m ,在C 处测得塔底A (即小山的最高处)的俯角为45︒,塔顶B 的俯角为30︒,向山顶方向沿水平线CE 飞行50m 到达D 处时,测得塔底A 的俯角为75︒,则该座小山的海拔为m ;古塔AB 的塔高为m .14.若P 为ABC V 的外心,且PA PB PC +=u u u r u u u r u u u r,则ABC V 的内角C 等于.四、解答题15.已知α为第四象限角,且π1tan 47α⎛⎫+=- ⎪⎝⎭.(1)求tan ,sin αα的值;(2)求2πππsin 2sin cos 555αα⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭的值. 16.已知向量()()2,3,4,2a b ==-r r.(1)当k 为何值时,ka b +r r 与32a b -r r 垂直? (2)当k 为何值时,ka b +r r 与32a b -r r 平行?17.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知2,cos b c C === (1)求sin B 和a 的值; (2)求ABC V 的面积.18.如图,在OAB V 中,C 是AB 的中点,D 是线段OB 上靠近点O 的四等分点,设,OA a OB b ==u u u r u u u r rr .(1)若OA 长为2,OB 长为π8,3AOB ∠=,求OC 的长; (2)若E 是OC 上一点,且2OC OE =u u u r u u u r,试判断,,A D E 三点是否共线?并说明你的理由.19.在ABC V 中,角,,A B C 的对边分别为,,a b c ,且sin 1sin sin B aA C b c=-++.(1)求角C 的大小;(2)若ABC V 为锐角三角形,且4b =,求ABC V 周长的取值范围.。

广东省清远市2023-2024学年高一上学期数学期中试卷(含答案)

广东省清远市2023-2024学年高一上学期数学期中试卷(含答案)

,求
的解析式.
3
21.某公司生产纪念手册,经调研,每生产 万册,需要生产成本 万元,若生产量低于 20 万册,
縀 ;若生产量不低于 20 万册,
縀縀 縀縀.上市后每册纪念册售价 50 元,根据市场调查发现生
产的纪念册能全部售出.
(1)设总利润为 万元,求函数
的解析式(利润 销售额 成本);
(2)生产多少册纪念册时,总利润最大?并求出最大值.

所以当 ൏ 縀 时, t 縀,
的解
所以
,縀 .
, ൏縀
(2)解:由(1)可得,当 縀 时,

所以 的图象开口向上,对称轴为
.
所以当 縀
时,
, 在 , 上单调递减,
所以

当 ൏ 时, ൏
, 在 , 上单调递减,在 , 上单调递增,
所以

当 t 时, 在 , 上单调递增,
所以
.
综上所述,
,縀
,൏
.
,t
个 ,有一个确定的 和它对应就行了,不管这个法则是用公式还是用图象、表格等形式表示,例如狄利克雷
函数 ,即:当自变量取有理数时,函数值为 1;当自变量取无理数时,函数值为 0,以下关于狄利克雷函
数 的结论正确的有( )
A.
B. 的值域为 縀,
C. 的定义域为
D.
12.定义
(其中 表示不小于 的最小整数)为“向上取整函数”.例如 .
6
∴ 縀或
.
故答案为:AD.
【分析】由集合包含关系的定义即可判断 m 的取值.
10.【答案】C,D
【解析】【解答】解:∵


,当且仅当
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省数学高一下学期理数期末考试试卷(II)卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共11题;共22分)
1. (2分) (2017高一下·鸡西期末) 对于任意实数,下列结论:
①若,,则;②若,则;
③若,则;④若,则 .
正确的结论为()
A . ②④
B . ③
C . ②③
D . ①
2. (2分) (2017高二上·莆田月考) 若直线和圆:相离,则过点的直线与椭圆的交点个数为()
A . 至多一个
B . 2个
C . 1个
D . 0个
3. (2分)直线的倾斜角为()
A .
B .
C .
4. (2分)方程Ax+By+C=0表示倾斜角为锐角的直线,则必有()
A . AB>0
B . AB<0
C . BC>0
D . BC<0
5. (2分)(2017·福州模拟) 已知数列{an}满足a1=a2= ,an+1=2an+an﹣1(n∈N* ,n≥2),则
的整数部分是()
A . 0
B . 1
C . 2
D . 3
6. (2分) (2016高一下·新疆期中) 设等差数列{an}的前n项和为Sn ,若a1=﹣11,a4+a6=﹣6,则当Sn 取最小值时,n等于()
A . 6
B . 7
C . 8
D . 9
7. (2分) (2019高一下·佛山月考) 不等式的解集是,则等于()
A . 14
B . 14
D . 10
8. (2分)与圆x2+y2﹣x+2y=0关于直线x﹣y+1=0对称的圆的方程为()
A . (x﹣2)2+(y﹣)2=
B . (x+2)2+(y﹣)2=
C . (x+2)2+(y+)2=
D . (x﹣2)2+(y+)2=
9. (2分) (2019高二上·阜阳月考) 已知点是抛物线上的一动点,为抛物线的焦点,是圆:上一动点,则的最小值为()
A . 3
B . 4
C . 5
D . 6
10. (2分)若方程有两个不等实根,则k的取值范围()
A . (0,)
B . (,]
C . (,+∞)
D . (,]
11. (2分) (2018高二上·牡丹江期中) 已知椭圆,分别为其左、右焦点,椭圆上一点
到的距离是2,是的中点,则的长为()
A . 1
B . 2
C . 3
D . 4
二、填空题 (共5题;共5分)
12. (1分) (2016高二下·洞口期末) 设变量x、y满足线性约束条件,则目标函数z=log7(2x+3y)的最小值为________.
13. (1分)设两圆x2+y2﹣4x﹣3=0和x2+y2﹣4y﹣3=0的交点为A、B,则线段AB的长度是________
14. (1分) (2018高二上·石嘴山月考) 已知数列的前项的乘积为,若,则当最大时,正整数 ________.
15. (1分) (2019高一下·佛山月考) 已知,,若函数过点,则
的最小值是________.
16. (1分)(2016·山东模拟) 椭圆C:的右焦点为F,双曲线的一条渐近线与椭圆C交于A,B两点,且
AF⊥BF,则椭圆C的离心率为________.
三、解答题 (共6题;共40分)
17. (10分) (2018高一上·滁州期中) 某商品上市30天内每件的销售价格元与时间天函数关系是
该商品的日销售量件与时间天函数关系是 .
(1)求该商品上市第20天的日销售金额;
(2)求这个商品的日销售金额的最大值.
18. (5分) (2018高一上·阜城月考) 已知直线的斜率与直线的斜率相等,且直线在x 轴上的截距比在y轴上的截距大1,求直线的方程.
19. (5分) (2019高三上·双流期中) 在中,角A,B,C的对边分别是a,b,c,且
Ⅰ 求角A的大小;
Ⅱ 若,求面积的最大值.
20. (5分)我市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产A,B,C三种玩具共100个,且C玩具至少生产20个.每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如下表:
玩具名称A B C
工时(分钟)574
利润(元)563
(1)用每天生产A玩具个数x与B玩具个数y表示每天的利润ω(元)
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
21. (10分)(2018·栖霞模拟) 在平面直角坐标系中,以为极点,轴的非负半轴为极轴取相同的长度单位建立极坐标系,曲线的参数方程为(为参数,),直线的极坐标方程为 .
(1)写出曲线的普通方程和直线的直角坐标方程;
(2)若为曲线上任意一点,为直线任意一点,求的最小值.
22. (5分)(2017·沈阳模拟) 已知椭圆C:(a>b>0)的左焦点为F1(﹣,0),e= .
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,设R(x0 , y0)是椭圆C上一动点,由原点O向圆(x﹣x0)2+(y﹣y0)2=4引两条切线,分别交椭圆于点P,Q,若直线OP,OQ的斜率存在,并记为k1 , k2 ,求证:k1•k2为定值;
(Ⅲ)在(Ⅱ)的条件下,试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.
参考答案一、单选题 (共11题;共22分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
二、填空题 (共5题;共5分)
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共40分)
17-1、
17-2、
18-1、
19-1、
20-1、21-1、
21-2、
第11 页共12 页22-1、
第12 页共12 页。

相关文档
最新文档