「精品」高三数学二轮复习高考大题专攻练6概率与统计(B组)理新人教版
湖南高考数学二轮备考概率问题专项练习(含答案)
湖南高考数学二轮备考概率问题专项练习(含答案)概率是对随机事情发作的能够性的度量,下面是概率效果专项练习,希望对考生有所协助。
题型一、古典概型效果例1:某班级的某一小组有6位先生,其中4位男生,2位女生,现从中选取2位先生参与班级志愿者小组,求以下事情的概率:(1)选取的2位先生都是男生;(2)选取的2位先生一位是男生,另一位是女生。
破题切入点:先求出任取2位先生的基身手情的总数,然后区分求出所求的两个事情含有的基身手情数,再应用古典概型概率公式求解。
解:(1)设4位男生的编号区分为1,2,3,4,2位女生的编号区分为5,6。
从6位先生中任取2位先生的一切能够结果为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种。
从6位先生中任取2位先生,所取的2位全是男生的方法数,即从4位男生中任取2个的方法数,共有6种,即(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)。
所以选取的2位先生全是男生的概率为P1=。
(2)从6位先生中任取2位,其中一位是男生,而另一位是女生,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种。
所以选取的2位先生一位是男生,另一位是女生的概率为P2=。
题型二、几何概型效果例2:(2021四川改编)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时辰等能够发作,然后每串彩灯以4秒为距离闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时辰相差不超越2秒的概率是________。
破题切入点:由几何概型的特点,应用数形结合即可求解。
设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时辰为x、y,x、y相互独立,由题意可知,如下图。
高三数学二轮复习微专题精选6 概率统计
高三数学二轮复习微专题精选6 概率统计概率统计是高中数学中的一个重要内容,它涉及到随机事件的概率计算和统计分析。
在高三数学二轮复中,概率统计是一个需要重点复和掌握的知识点。
1. 概率计算概率计算是概率统计的基础,它涉及到事件发生的可能性大小的计算。
在复中,我们应该重点掌握以下几个内容:- 根据样本空间和事件的定义计算概率;- 利用频率定义概率;- 使用排列和组合计算概率;- 利用事件的补集计算概率。
2. 随机变量和概率分布随机变量是概率统计中的重要概念,它表示随机事件的结果。
概率分布则是随机变量取各种可能值的概率分布情况。
在复中,我们应该掌握以下几个重点:- 定义随机变量和概率分布;- 计算离散型随机变量的期望和方差;- 计算连续型随机变量的期望和方差。
3. 统计分析统计分析是概率统计的另一个重要内容,它涉及到数据的收集、整理和分析。
在复中,我们应该重点掌握以下几个内容:- 数据的收集和整理;- 数据的均值和标准差的计算;- 样本估计和参数估计的方法;- 使用统计推断进行判断和决策。
4. 解题技巧和思路在复的过程中,我们还需掌握一些解题技巧和思路:- 注意理解题目中的要求和条件;- 灵活运用概率计算的各种方法;- 注意统计分析中的常见统计指标的计算;- 理解样本和总体的关系,正确进行估计。
总之,对于高三数学二轮复微专题精选6的概率统计内容,我们应该系统性地复和掌握概率计算、随机变量和概率分布以及统计分析的相关知识。
同时,我们还应该注意解题思路和技巧的应用,提高解题效率。
通过充分理解和练,我们可以更好地应对考试中的概率统计题目,取得好成绩。
新高考新教材数学二轮复习六大核心主攻专题4概率与统计解答题专项4概率与统计的综合问题pptx课件
5
2
∑ 2 -5
=
-1 537
=-153.7,
10
=1
^
^
所以 = − =1 241.2-(-153.7)×3=1 702.3,
^
所以 y 关于 x 的经验回归方程为 =-153.7x+1 702.3.
将 2023 年对应的年份编号 x=6 代入经验回归方程得
^ =-153.7×6+1 702.3=780.1,
64
且SO2浓度不超过150的概率的估计值为 100=0.64.
(2)根据所给数据,完成下面的2×2列联表:
单位:μg/m3
PM2.5
SO2
[0,150]
(150,475]
[0,75]
(75,115]
所以 r=
5
∑ -5
=1
5
2 5 2
2
2
( ∑ -5 )( ∑ -5 )
=1
=1
≈
-1 537
≈-0.98.
1 564
说明 y 与 x 的线性相关程度相当高,
从而可以用线性回归模型拟合 y 与 x 的关系.
^
(2)由(1)可得 =
5
∑ -5
=1
×(24-20)+(14-10)×(23-20)=20+4+0+8+12=44,
5
5
2
2
∑ ( -) =16+4+0+4+16=40, ∑ ( -) =25+4+0+16+9=54,
i=1
所以 r=
44
40×54
新教材适用2024版高考数学二轮总复习第1篇专题6概率与统计第1讲概率核心考点1随机事件的关系古典概
第1讲 概率高频考点高考预测随机事件、古典概型 概率模型多考查独立事件、条件概率、n 重伯努利试验、互斥事件和对立事件、而全概率公式、二项分布与正态分布则是新高考的热点,多以选择填空的形式出现.条件概率与全概率n 重伯努利试验与二项分布正态分布1. (2023·全国甲卷文科)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( D )A.16 B .13 C .12D .23【解析】 某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n =C 24=6,这2名学生来自不同年级包含的基本事件个数m =C 12C 12=4,则这2名学生来自不同年级的概率为P =m n =46=23.故选D.2. (2023·全国乙卷文科)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题的概率为( A )A.56 B .23 C .12D .13【解析】 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n =6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m =A 26=30,则甲、乙两位参赛同学抽到不同主题概率为P =m n =3036=56.故选A. 3. (2023·全国甲卷理科)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( A )A .0.8B .0.4C .0.2D .0.1【解析】 根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A ,报乒乓球俱乐部为事件B ,则P (A )=5070=57,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的有50+60-70=40人,则P (AB )=4070=47,则P (B |A )=P ABP A =4757=0.8.故选A. 4. (2022·全国新高考Ⅰ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( D )A.16 B .13 C .12D .23【解析】 从2至8的7个整数中随机取2个不同的数,共有C 27=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P =21-721=23.故选D.5. (2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( C )A.15 B .13 C .25D .23【解析】 从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),6种情况,故概率为615=25.故选C.6. (多选)(2023·全国新高考Ⅱ卷)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)( ABD )A .采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B .采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C .采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D .当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率【解析】 采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为:(1-β)(1-α)(1-β)=(1-α)(1-β)2,故A 正确;采用三次传输方案,若发送1,依次收到1,0,1的概率为:(1-β)β(1-β)=β(1-β)2,故B 正确;采用三次传输方案,若发送1,则译码为1包含收到的信号为包含两个1或3个1,故所求概率为:C 23β(1-β)2+(1-β)3,故C 错误;三次传输方案发送0,译码为0的概率P 1=C 23α(1-α)2+(1-α)3,单次传输发送0译码为0的概率P 2=1-α,P 2-P 1=(1-α)-C 23α(1-α)2-(1-α)3=(1-α)[1-C 23α(1-α)-(1-α)2]=(1-α)(2α2-α)=(1-α)·α(2α-1),当0<α<0.5时,P 2-P 1<0,故P 2<P 1,故D 正确.故选ABD.7. (2022·全国甲卷)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 635.【解析】 从正方体的8个顶点中任取4个,有n =C 48=70个结果,这4个点在同一个平面的有m =6+6=12个,故所求概率P =m n =1270=635. 8. (2022·全国乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 310.【解析】 从5名同学中随机选3名的方法数为C 35=10,甲、乙都入选的方法数为C 13=3,所以甲、乙都入选的概率P =310.9. (2022·全国新高考Ⅱ卷)已知随机变量X 服从正态分布N (2,σ2),且P (2<X ≤2.5)=0.36,则P (X >2.5)= 0.14⎝ ⎛⎭⎪⎫或750 .【解析】 因为X ~N (2,σ2),所以P (X <2)=P (X >2)=0.5,因此P (X >2.5)=P (X >2)-P (2<X ≤2.5)=0.5-0.36=0.14.核心考点1 随机事件的关系、古典概型核心知识· 精归纳1.概率的性质性质1:对任意的事件A ,都有P (A )≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P (Ω)=1,P (∅)=0; 性质3:如果事件A 与事件B 互斥,那么P (A ∪B )=_P (A )+P (B )__;性质4:如果事件A 与事件B 互为对立事件,那么P (B )=1-P (A ),P (A )=_1-P (B )__; 性质5:如果A ⊆B ,那么P (A )≤P (B ),由该性质可得,对于任意事件A ,因为∅⊆A ⊆Ω,所以0≤P (A )≤1;性质6:设A ,B 是一个随机试验中的两个事件,有P (A ∪B )=_P (A )+P (B )-P (A ∩B )__. 2.古典概型一般地,设试验E 是古典概型,样本空间Ω包含n 个样本点,事件A 包含其中的k 个样本点,则定义事件A 的概率P (A )=k n =n An Ω.其中,n (A )和n (Ω)分别表示事件A 和样本空间Ω包含的样本点个数.多维题组· 明技法角度1:随机事件的关系1. (2023·柳州模拟)从数学必修一、二和政治必修一、二共四本书中任取两本书,那么互斥而不对立的两个事件是( D )A .至少有一本政治与都是数学B .至少有一本政治与都是政治C .至少有一本政治与至少有一本数学D .恰有1本政治与恰有2本政治【解析】 从数学必修一、二和政治必修一、二共四本书中任取两本书,至少有一本政治和都是数学是对立事件,故A 错误;至少有一本是政治与都是政治,能同时发生,不是互斥事件,故B 错误;至少有一本政治与至少有一本数学,能同时发生,不是互斥事件,故C 错误;恰有1本政治与恰有2本政治,不能同时发生,能同时不发生,是互斥而不对立的两个事件,故D 正确.故选D.2. (2023·徐汇区校级三模)某小组有1名男生和2名女生,从中任选2名学生参加围棋比赛,事件“至少有1名男生”与事件“至少有1名女生”( D )A .是对立事件B .都是不可能事件C .是互斥事件但不是对立事件D .不是互斥事件【解析】 事件“至少有1名男生”与事件“至少有1名女生”能同时发生,即两名学生正好一名男生,一名女生,故两事件既不是对立事件也不是互斥事件.故选D.角度2:古典概型的计算3. (2023·青岛模拟)将4个不加区分的红球和2个不加区分的黄球随机排一行,则2个黄球不相邻的概率为( C )A.45B .25C .23D .13【解析】 将4个不加区分的红球和2个不加区分的黄球随机排一行,共有C 46C 22=15种,其中2个黄球不相邻的有C 25=10种,所以所求事件的概率为1015=23.故选C.4. (2023·射洪市校级模拟)形如413或314的数称为“波浪数”,即十位数字比两边的数字都小.已知由1,2,3,4构成的无重复数字的三位数共24个,则从中任取一数恰为“波浪数”的概率为( B )A.16 B .13 C .512D .58【解析】 若三位数中间的数字为1,则有A 23=6个,若三位数中间的数字为2,则有A 22=2个,即“波浪数”共有6+2=8个;所以从中任取一数恰为“波浪数”的概率P =824=13.故选B. 方法技巧· 精提炼古典概型中样本点个数的探求方法1.列举法:适合的样本点个数较少且易一一列举的问题;2.树状图法:适用于较为复杂的问题中样本点个数的探究,尤其是有序问题; 3.排列、组合法:在求解一些较为复杂的问题时,可利用排列、组合知识求出样本点个数.加固训练· 促提高1. (2023·宜宾模拟)抛掷一枚质地均匀的骰子一次,事件1表示“骰子向上的点数为奇数”,事件2表示“骰子向上的点数为偶数”,事件3表示“骰子向上的点数大于3”,事件4表示“骰子向上的点数小于3”则( B )A .事件1与事件3互斥B .事件1与事件2互为对立事件C .事件2与事件3互斥D .事件3与事件4互为对立事件【解析】 由题意可得事件1表示{1,3,5},事件2表示{2,4,6},事件3表示{4,5,6},事件4表示{1,2},所以事件1与事件2为对立事件,事件1与事件3不互斥,事件2与事件3不互斥,事件3与事件4互斥不对立,故选项A ,C ,D 错误,选项B 正确.故选B.2. (2023·东营模拟)五声音阶是中国古乐的基本音阶,故有成语“五音不全”,中国古乐中的五声音阶依次为宫、商、角、徴、羽.如果从这五个音阶中任取两个音阶,排成一个两个音阶的音序,则这个音序中宫和羽至少有一个的概率为( B )A.12 B .710 C .920D .1120【解析】 设从这五个音阶中任取两个音阶,排成一个两个音阶的音序,这个音序中宫和羽至少有一个为事件A ,则A 表示这个音序中不含宫和羽这两个音阶,∴P (A )=1-P (A )=1-A 23A 25=1-3×25×4=710.。
2023年高考数学微专题练习专练66高考大题专练六概率与统计的综合运用含解析理
专练66 高考大题专练(六) 概率与统计的综合运用1.[2022·全国甲卷(理),19]甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.[2021·全国甲卷]甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),3.[2022·全国乙卷(理),19]某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑i =110x 2i =0.038,∑i =110y 2i =1.6158,∑i =110x i y i =0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数r =i =1n(x i -x -)(y i -y -)i =1n (x i -x -)2i =1n (y i -y -)2, 1.896≈1.377.4.[2022·江西鹰潭高三模拟]某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g )与尺寸x(mm )之间近似满足关系式y =c·x b(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间(e 9,e7)≈(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的期望;(2)根据测得数据作了初步处理,得相关统计量的值如表:①根据所给统计量,求y 关于x 的回归方程;②已知优等品的收益z(单位:千元)与x 、y 的关系为z =2y -0.32x ,则当优等品的尺寸x 为何值时,收益z 的预报值最大?附:对于样本(v i ,u i )(i =1,2,…,n),其回归直线u =b·v+a 的斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1(v i -v )(u i -u )∑ni =1(v i -v )2=∑ni =1v i u i -nvu ∑n i =1v 2i -nv 2, a ^=u -b ^v ,e ≈2.7182.5.[2022·河南省六市联考]在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产防疫物品,保障抗疫一线医疗物资供应,某口罩生产厂商在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:[100,110),[110,120),[120,130),[130,140),[140,150],得到如下频率分布直方图.(1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩,现从样本口罩中利用分层抽样的方法随机抽取8个口罩,再从中抽取3个,求抽取的口罩至少有一个一级口罩的概率;(2)在2021年“双十一”期间,某网络购物平台推出该型号口罩订单“秒杀”抢购活动,甲、乙、丙三人分别在该平台参加一次抢购活动,假定甲、乙、丙抢购成功的概率分别为0.1,0.2,0.3,记三人抢购成功的总次数为X,求X的分布列及数学期望E(X).专练66 高考大题专练(六)概率与统计的综合运用1.解析:(1)设三个项目比赛中甲学校获胜分别为事件A,B,C,易知事件A,B,C相互独立.甲学校获得冠军,对应事件A,B,C同时发生,或事件A,B,C中有两个发生,故甲学校获得冠军的概率为p=P(ABC+A-BC+A B-C+AB C-)=P (ABC )+P (A -BC )+P (A B -C )+P (AB C -)=0.5×0.4×0.8+(1-0.5)×0.4×0.8+0.5×(1-0.4)×0.8+0.5×0.4×(1-0.8) =0.16+0.16+0.24+0.04 =0.6.(2)由题意得,X 的所有可能取值为0,10,20,30.易知乙学校在三个项目中获胜的概率分别为0.5,0.6,0.2,则P (X =0)=(1-0.5)×(1-0.6)×(1-0.2)=0.16,P (X =10)=0.5×(1-0.6)×(1-0.2)+(1-0.5)×0.6×(1-0.2)+(1-0.5)×(1-0.6)×0.2=0.44,P (X =20)=0.5×0.6×(1-0.2)+0.5×(1-0.6)×0.2+(1-0.5)×0.6×0.2=0.34, P (X =30)=0.5×0.6×0.2=0.06,所以X 的分布列为则E (X )2.解析:(1)根据题表中数据知,甲机床生产的产品中一级品的频率是150200=0.75,乙机床生产的产品中一级品的频率是120200=0.6.(2)根据题表中的数据可得K 2=400×(150×80-120×50)2200×200×270×130=40039≈10.256.因为10.256>6.635,所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.3.解析:(1)该林区这种树木平均一棵的根部横截面积x -=0.610=0.06(m 2),平均一棵的材积量y -=3.910=0.39(m 3).(2)由题意,得i =110(x i -x -)2=i =110x 2i -10x -2=0.038-10×0.062=0.002,i =110(y i -y -)2=i =110y 2i -10y -2=1.6158-10×0.392=0.0948,i =110(x i -x -)(y i -y -)=i =110x i y i -10x -y -=0.2474-10×0.06×0.39=0.0134,所以相关系数r =0.01340.002×0.0948=0.01341.896×0.0001≈0.01340.01377≈0.97.(3)因为树木的材积量与其根部横截面积近似成正比,所以比例系数k =y -x -=0.390.06=6.5,所以该林区这种树木的总材积量的估计值为186×6.5=1209(m 3). 4.解析:(1)由表可知,抽取的6件合格产品中有3件优等品, 所以,ξ的所有可能取值为0,1,2,3,P(ξ=0)=C 33 C 36 =120,P(ξ=1)=C 13 C 23 C 36 =920,P(ξ=2)=C 23 C 13 C 36 =920,P(ξ=3)=C 33C 36=120, 所以,随机变量ξ的期望为E(ξ)=0×120+1×920+2×920+3×120=32.(2)①∵y=c·x b,∴ln y =ln c +b ln x ,∵∑6i =1 (ln x i )=24.6,∑6i =1(ln y i )=18.3, ∴ln x =16∑6i =1 (ln x i )=4.1,ln y =16∑6i =1(ln y i )=3.05,∴b ^=∑6i =1(ln x i ·ln y i )-6×ln x ×ln y∑6i =1(ln x i )2-6×(ln x )2=75.3-6×4.1×3.05101.4-6×4.12=0.5, a ^=ln y -b ^ln x =3.05-0.5×4.1=1, ∴ln y =1+0.5ln x ,所以,c =e, 故y 关于x 的回归方程为y ^=e x 0.5; ②由①知,y ^=e x 0.5,∴z ^=2y ^-0.32x =2e x 0.5-0.32x =-0.32(x -e 0.32)2+e 20.32,当x =e 0.32,即x =(e 0.32)2≈72时,z ^取得最大值,故当优等品的尺寸x 为72mm 时,收益z 的预报值最大.5.解析:(1)由频率分布直方图可得,二级品的频率为10×(0.005+0.04+0.03)=0.75, 一级品的频率为10×(0.02+0.005)=0.25,按分层抽样抽取8个口罩,则其中二级、一级口罩个数分别为6、2,故事件“至少有一个一级品”的概率P =C 26 C 12 +C 16 C 22 C 38=914. (2)由题知X 的可能取值为0,1,2,3, P(X =0)=0.9×0.8×0.7=0.504,P(X =1)=0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398, P(X =2)=0.1×0.2×0.7+0.1×0.8×0.3+0.9×0.2×0.3=0.092, P(X =3)=0.1×0.2×0.3=0.006, 所以X 的分布列为E(X)。
高三数学二轮复习----概率与统计答案
高考数学二轮复习考点解析四:概率与统计某某市同泽高级中学 谷凤军2008年4月7日一、方法概述1、概率与统计已成为高考的一个重点考查内容,其基本考点有随机事件的概率,抽样方法,总体分布的估计;理科则还有离散型随机变量的分布列,数学期望与方差,正态分布等。
试题以实际问题为背景,贴近生活,难度适中。
2、 解决概率问题,一定要根据有关概念,判断是否是等可能事件,或互斥事件,或相互独立事件,或是独立重复试验,以便选择正确的计算方法。
解题过程中,要明确条件中“至少有1个发生”、“至多有1个发生”、“恰有1个发生”、“都发生”、“都不发生”和“不都发生”等词语的意义,以及它们概率之间的关系和计算公式。
3、总体、样本及样本频率是统计中最基本的概念,通过样本可对总体进行估计。
4、在求某些较复杂的概率时,通常有两种办法:一是将所求事物的概率化成一些彼此互斥的事件的概率之和;二是先求此事件的对立事件的概率。
5、 要注重概率、统计知识与其它知识的互相渗透,是近几年来高考的命题方向,通常与函数、数列、不等式、方程等知识相结合,同时它的应用性极强,需要学会建立准确的数学模型。
6、 对于随机变量,则必须弄清楚它是服从哪一类型分布,能够写出分布列,求出数学期望和方差,它们是随机变量最常用也是最重要的数学特征,它们分别刻划了随机变量的平均值水平和取值分布离散的程度。
二、各地模拟题汇编1、(08年东北育才三模)现有五道数学试题,记为A 、B 、C 、D 、E 和它们对应的答案为e d c b a 、、、、,把A 、B 、C 、D 、E 和e d c b a 、、、、分别写成左右两列,现有一答题者,随机用5条线段把左、右全部连接起来,构成一个“一一对应”已知连对一个得1分,连错一个得0分。
(1)求答题者得分的分布列; (文科)求恰连对一个的概率。
(2)求所得分数的期望。
(文科)求五个都练错的概率。
设答对数为η,则η=0,1,2,3,5(1)记得分为ξ,则ξ=0,1,2,3,5 1分∴12011)5()5(55=====A p p ηξ121)3()3(5535=====A C p p ηξ612)2()2(5525=====A C p p ηξ839)1()1(5515=====A C p p ηξ3011836112112011)0()0(=----====ηξp p 8分 ∴所求得分数ξ的分布列为9∴(2)112015121361283130110=⨯+⨯+⨯+⨯+⨯=ξE 12分 2、(本小题满分13分)一个口袋里面装有2个白球4个黑球,这些球除颜色差别外没有其它的区别. 现在从袋中随机取出一个来记好颜色,然后放回并搅匀,之后再随机取球记色,再放回搅匀,…. 记数列1n :n n na a 第次取得白球-1第次取得黑球,数列n a 的前n 项和记为nS ①.求事件“4S =2”的概率; ②求4S 取值的分布列和数学期望4ES . 解:(1)事件42S =只能是“四次取球中出现三次白球一次黑球”,每次取得白球的概率为2163=;取得黑球的概率是4263=…………..2’ 于是3344128(2).3381p S C ⎛⎫⎛⎫==⋅⋅= ⎪ ⎪⎝⎭⎝⎭………………………………..2’ (2)4S 可能的取值有4,2,0,2,4--40441216(4)(3381p S p C ⎛⎫⎛⎫=-==⋅⋅= ⎪ ⎪⎝⎭⎝⎭四次全黑); 441232(2)(3381p S p C ⎛⎫⎛⎫=-==⋅⋅=⎪⎪⎝⎭⎝⎭131三黑一白); 4412248(0)(338127p S p C ⎛⎫⎛⎫===⋅⋅==⎪⎪⎝⎭⎝⎭222二黑二白); 44128(2)(3381p S p C ⎛⎫⎛⎫===⋅⋅= ⎪ ⎪⎝⎭⎝⎭313一黑三白); 44121(2)(3381p S p C ⎛⎫⎛⎫===⋅⋅= ⎪⎪⎝⎭⎝⎭404四次皆白),…………………5’于是4S 取值的分布列为………………………………………….2’4163224814(4)(2)02481818181813ES =-⨯+-⨯+⨯+⨯+⨯=-…………2’ 3、(本小题满分12分)有10X 形状、大小相同的卡片,其中2X 上写着数字0,另外5X 上写着数字1,余下3X 上写着数字2。
高考领航数学理二轮复习大题规范练(六)概率与统计综合题(含答案详析)
大题规范练(六)概率与统计综合题(限时:60分钟)1.(2013·高考重庆卷)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X).2.(2013·高考辽宁卷)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.3.(2014·安徽省“江南十校”联考)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人的休闲方式是运动,而女性只有13的人的休闲方式是运动.(1)完成下列2×2列联表:(2)本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参考数据:4.(2014·辽宁省五校联考)2013年8月31日在辽宁沈阳举行的第12届全运会中,组委会在沈阳某大学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm),身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下(不包括175 cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.(1)5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.5.(2014·郑州市质检)每年的三月十二日,是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):甲:137,121,131,120,129,119,132,123,125,133;乙:110,130,147,127,146,114,126,110,144,146.(1)根据抽测结果,画出甲、乙两种树苗高度的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;(2)设抽测的10株甲种树苗高度平均值为x,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;(3)若小王在甲种树苗中随机领取了5株进行种植,用样本的频率分布估计总体分布,求小王领取到的“良种树苗”的株数X的分布列.6.(2014·武汉市联考)某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.(1)由频率分布直方图估计该校高三年级男生平均身高状况;(2)求这50名男生身高在172 cm以上(含172 cm)的人数;(3)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.682 6,P(μ-2σ<ξ≤μ+2σ)=0.954 4,P(μ-3σ<ξ≤μ+3σ)=0.997 4.大题规范练(六)1.解:设A i(i=0,1,2,3)表示摸到i个红球,B j(j=0,1)表示摸到j个蓝球,则A i 与B j 独立.(1)恰好摸到1个红球的概率为 P (A 1)=C 13C 24C 37=1835.(4分)(2)X 的所有可能值为:0,10,50,200,且P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105,(6分)P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,(8分)P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.(10分) 综上可知,获奖金额X 的分布列为从而有E (X )=0×7+10×35+50×105+200×105=4(元).(12分)2.解:(1)设事件A =“张同学所取的3道题至少有1道乙类题”,则有A -=“张同学所取的3道题都是甲类题”.因为P (A -)=C 36C 310=16,所以P (A )=1-P (A -)=56.(4分)(2)X 所有的可能取值为0,1,2,3.P (X =0)=C 02·⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·15=4125;(6分)P (X =1)=C 12·⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·45=28125;P (X =2)=C 22·⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫250·15+C 12⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·45=57125;P (X =3)=C 22·⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫250·45=36125.(8分)所以X 的分布列为:所以E (X )=0×4125+1×28125+2×57125+3×36125=2.(12分) 3.解:(1)依题意,被调查的男性人数为2n 5,其中有n5人的休闲方式是运动;被调查的女性人数为3n 5,其中有n5人的休闲方式是运动,则2×2列联表如下:(4分)(2)由表中数据,得K 2=n ⎝ ⎛⎭⎪⎫n 5·2n 5-n 5·n 522n 5·3n 5·2n 5·3n 5=n36,要使在犯错误的概率不超过0.05的前提下,认为“性别与休闲方式有关”,则K 2≥3.841,所以n36≥3.841,解得n ≥138.276.又n ∈N *且n5∈N *,所以n ≥140,即本次被调查的人数至少是140.(9分)(3)由(2)可知:140×25=56,即本次被调查的人中,至少有56人的休闲方式是运动.(12分)4.解:(1)根据茎叶图可知,有“高个子”12人,“非高个子”18人, 用分层抽样的方法,每个人被抽中的概率是530=16,所以选中的“高个子”有12×16=2人,“非高个子”有18×16=3人.(3分)用事件A 表示“至少有一名‘高个子’被选中”,则它的对立事件A 表示“没有一名‘高个子’被选中”,则P (A )=1-C 23C 25=1-310=710.因此,至少有一人是“高个子”的概率是710.(6分)(2)依题意,ξ的取值为0,1,2,3. P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.(8分)因此,ξ的分布列如下:(10分)∴E ξ=0×1455+1×2855+2×1255+3×155=1.(12分)5.解:(1)茎叶图如图所示:(2分)统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度; ②甲种树苗比乙种树苗长得更整齐;③甲种树苗高度的中位数为127,乙种树苗高度的中位数为128.5;④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(4分)(每写出一个统计结论得1分) (2)依题意,x =127,S =35.(6分)S 表示10株甲种树苗高度的方差,是描述树苗高度的离散程度的量. S 值越小,表示树苗长得越整齐,S 值越大,表示树苗长得越参差不齐.(3)由题意可知,领取一株甲种树苗得到“良种树苗”的概率为12,则X ~B ⎝ ⎛⎭⎪⎫5,12,(10分)所以随机变量X 的分布列为6.解:(162×5100+166×7100+170×8100+174×2100+178×2100+182×1100)×4=168.72,高于全市的平均值168.(4分)(2)由频率分布直方图知,后3组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×50=10,即这50名男生身高在172 cm以上(含172 cm)的人数为10.(6分)(3)∵P(168-3×4<ξ≤168+3×4)=0.997 4,∴P(ξ≥180)=1-0.997 42=0.001 3,0.001 3×100 000=130.∴全市前130名的身高在180 cm以上,这50人中180 cm以上的有2人.(8分)随机变量ξ可取0,1,2,于是P(ξ=0)=C28C210=2845,P(ξ=1)=C18C12C210=1645,P(ξ=2)=C22C210=145,(10分)∴Eξ=0×2845+1×1645+2×145=25.(12分)。
高考数学概率统计专题复习(专题训练)完整版.doc
高考数学《概率统计》复习知识结构1.注意:互斥事件不一定是对立事件,但对立事件一定是互斥事件。
2.(1)试验的所有可能结果为有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相等。
(3)古典概型的概率公式:P(A)=事件A包含的可能结果数试验的所有可能结果数=mn.3.几何概型:如果每个事件发生的概率只与构成该事件区域的长度(或面积或体积)成比例,则称这样的概率模型为几何概型。
几何概型的概率公式:设某一事件(也是S中的某一区域),S包含A,它的量度大小(长度、面积或体积)为()Aμ,考虑到均匀分布性,事件A发生的概率() ()()A P ASμμ=.4.统计学中的几个基本概念:(1)样本平均数:样本中所有个体的平均数叫做样本平均数。
(2)平均数计算公式:一般地,如果有n 个数n x x x ,,,21⋅⋅⋅,则n21n x x x x +⋅⋅⋅++=. (3)加权平均数:如果n 个数中,出现次,出现次,…,出现次(这里n f f f k =+⋅⋅⋅++21),那么,根据平均数的定义,这n 个数的平均数可以表示为n2211n n f x f x f x x +⋅⋅⋅++=,这样求得的平均数叫做加权平均数,其中k f f f ,,,21⋅⋅⋅叫做权。
(4)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。
(5)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
(6)方差:在一组数据n x x x ,,,21⋅⋅⋅中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用“s 2”表示。
方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定。
(7)方差计算公式:])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=. 简化计算公式,有:])[(122222212x n x x x ns n -+⋅⋅⋅++= 也可写成22222212])[(1x x x x n s n -+⋅⋅⋅++=. 此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
2022版新教材高考数学一轮复习高考大题专项六概率与统计含解析新人教B版
高考大题专项(六) 概率与统计1.(2020北京,18)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:方案男生女生支持不支持支持不支持一200人400人300人100人二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案的概率估计值记为p0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)2.(2020全国3,理18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):空气质量等级锻炼人次[0,200] (200,400] (400,600]1(优) 216 252(良) 510 123(轻度污染)6 7 84(中度污染)7 2 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,依据α=0.05的独立性检验,能否认为一天中到该公园锻炼的人次与该市当天的空气质量有关联?空气质量情况人次≤400人次>400好不好附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),α 0.050 0.010 0.001xα3.841 6.635 10.828 .3.“学习强国”APP是由中宣部主管,以习近平新时代中国特色社会主义思想和党的十九大精神为主要内容的“PC端+手机客户端”两大终端二合一模式的学习平台,2019年1月1日上线后便成为党员干部群众学习的“新助手”.为了调研某地党员在“学习强国”APP的学习情况,研究人员随机抽取了200名该地党员进行调查,将他们某两天在“学习强国”APP上所得的分数统计如表所示:分[60,70) [70,80) [80,90) [90,100)数频60 100 20 20数频0.3 0.5 0.1 0.1率(1)由频率分布表可以认为,这200名党员这两天在“学习强国”APP上的得分Z近似服从正态分布N(μ,σ2),其中μ近似为这200名党员得分的平均数(同一组中的数据用该组区间的中点值作代表),σ2近似为这200名党员得分的方差,求P(57.4≤Z≤83.8);(2)以频率估计概率,若从该地区所有党员中随机抽取4人,记抽得这两天在“学习强国”APP上的得分不低于80分的人数为X,求X的分布列与数学期望.参考数据:√5≈2.2,√6≈2.4,√7≈2.6,若X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.683,P(μ-2σ≤X≤μ+2σ)≈0.954,P(μ-3σ≤X≤μ+3σ)≈0.997.4.微信运动是由腾讯开发的一个类似计步数据库的公众账号,很多手机用户加入微信运动后,为了让自己的步数能领先于朋友,运动的积极性明显增强.微信运动公众号为了解用户的一些情况,在微信运动用户中随机抽取了100名用户,统计了他们某一天的步数,数据整理如下:x/万步0≤x≤0.40.4<x≤0.80.8<x≤1.21.2<x≤1.61.6<x≤2.02.0<x≤2.42.4<x≤2.8y/人5 20 50 18 3 3 1(1)根据表中数据,在如图所示的坐标平面中作出其频率分布直方图,并在纵轴上标明各小长方形的高;(2)若视频率分布为概率分布,在微信运动用户中随机抽取3人,求至少2人步数多于1.2万步的概率;(3)若视频率分布为概率分布,在微信运动用户中随机抽取2人,其中每日走路不超过0.8万步的有X人,超过1.2万步的有Y人,设ξ=|X-Y|,求ξ的分布列及数学期望.5.某市举办了一次“诗词大赛”,分预赛和复赛两个环节,已知共有20 000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下的统计数据.得分[0,20) [20,40) [40,60) [60,80) [80,100](百分制)人10 20 30 25 15数(1)规定预赛成绩不低于80分为优良,若从样本中预赛成绩不低于60分的学生中随机地抽取2人,求恰有1人预赛成绩优良的概率.(2)由样本数据分析可知,该市全体参加预赛学生的预赛成绩Z服从正态分布N(μ,σ2),其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值代替),且σ2=361.利用该正态分布,估计该市参加预赛的全体学生中预赛成绩高于72分的人数.(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下:①参加复赛的学生的初始分都设置为100分;②参加复赛的学生可在答题前自己决定答题数量n,每一题都需要“花”掉一定分数来获取答题资格(即用分数来买答题资格),规定答第k题时“花”掉的分数为0.2k(k=1,2,…,n);③每答对一题得2分,答错得0分;④答完n道题后参加复赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.75,且每道题答对与否都相互独立,则当他的答题数量n为多少时,他的复赛成绩的期望值最大?参考数据:若Z~N(μ,σ2),则P(μ-σ≤Z≤μ+σ)≈0.683,P(μ-2σ≤Z≤μ+2σ)≈0.954,P(μ-3σ≤Z≤μ+3σ)≈0.997.6.棋盘上标有第0,1,2,…,100站,棋子开始位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子位于第n 站的概率为P n .(1)当游戏开始时,若抛掷均匀硬币3次后,求棋手所走步数之和X 的分布列与数学期望; (2)证明:P n+1-P n =-12(P n -P n-1)(1≤n ≤98);(3)求P 99,P 100的值.参考答案高考大题专项(六) 概率与统计1.解(1)该校男生支持方案一的概率为200200+400=13,该校女生支持方案一的概率为300300+100=34.(2)3人中恰有2人支持方案一分两种情况,①仅有两个男生支持方案一,②仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:(13)2(1-34)+C 21(13)(1-13)34=1336.(3)p 1<p 0.2.解(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级1 234概率的估计值0.43 0.27 0.21 0.09(2)一天中到该公园锻炼的平均人次的估计值为1100(100×20+300×35+500×45)=350.(3)根据所给数据,可得2×2列联表:空气质量情况 人次≤400 人次>400 好 33 37 不好228根据列联表得χ2=100×(33×8-22×37)255×45×70×30≈5.820>3.841.所以在犯错误的概率不超过0.05的前提下,认为一天中到该公园锻炼的人次与该市当天的空气质量有关.3.解(1)由题意得:μ=65×0.3+75×0.5+85×0.1+95×0.1=75,σ2=(65-75)2×0.3+(75-75)2×0.5+(85-75)2×0.1+(95-75)2×0.1=30+10+40=80,∵σ=√80=4√5≈8.8,∴P (57.4≤Z ≤83.8)=P (μ-2σ≤Z ≤μ+σ)≈0.683+0.9542=0.8185.(2)从该地区所有党员中随机抽取1人,抽得的人得分不低于80分的概率为40200=15.由题意得,X 的可能取值为0,1,2,3,4,且X~B 4,15,∴P (X=0)=C 40(45)4=256625; P (X=1)=C 41×15×(45)3=256625; P (X=2)=C 42×(15)2×(45)2=96625;P (X=3)=C 43×(15)3×45=16625; P (X=4)=C 44×(15)4=1625,所以X 的分布列为X 0 1 2 3 4 P 256625 256625 96625 16625 1625所以E (X )=4×15=45. 4.解(1)根据题意,补充下表,x/ 万步 0≤x ≤0.4 0.4<x ≤0.8 0.8<x ≤1.2 1.2<x ≤1.6 1.6<x ≤2.0 2.0<x ≤2.4 2.4<x ≤2.8 y/人 5205018331频率 0.05 0.20 0.50 0.18 0.03 0.03 0.01 频率组距0.1250.5 1.25 0.45 0.075 0.075 0.025根据表中数据,作出频率分布直方图如下:(2)由题意知,步数多于1.2万步的频率为0.25,所以认定步数多于1.2万步的概率为0.25,所以至少有2人多于1.2万步的概率为P=C 32×142×34+C 33×143=532,综上所述,至少2人步数多于1.2万步的概率为532.(3)由题知微信好友中任选一人,其每日走路步数不超过0.8万步的概率为14,超过1.2万步的概率为14,且当X=Y=0或X=Y=1时,ξ=0,P (ξ=0)=12×12+C 21×14×14=38,当X=1,Y=0或X=0,Y=1时,ξ=1,P (ξ=1)=C 21×14×12+C 21×14×12=12,当X=2,Y=0或X=0,Y=2时,ξ=2,P (ξ=2)=14×14+14×14=18,所以ξ的分布列为ξ 0 1 2 P 38 12 18E (ξ)=1×12+2×18=34.5.解(1)由题意得样本中成绩不低于60分的学生共有40人,其中成绩优良的人数为15人,记“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”为事件A ,则P (A )=C 251C 151C 402=2552.(2)由题意知样本中的100名学生预赛成绩的平均值为。
2021-2022年高三数学二轮复习高考大题专攻练6概率与统计(B组)理新人教版
2021年高三数学二轮复习高考大题专攻练6概率与统计(B组)理新人教版1.某网站点击量等级规定如下:(1)若从中任选两天,求点击数落在同一等级的概率.(2)从4月份点击量低于100万次的天数中随机抽取3天,记这3天点击等级为差的天数为随机变量X,求随机变量X的分布列与数学期望.【解析】(1)设点击数落在同一等级的事件为A,概率P(A)==,即点击数落在同一等级的概率为.(2)X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.随机变量X的分布列为数学期望E(X)=0×+1×+2×+3×=.2.xx年高中学业水平考试之后,为了调查同学们的考试成绩,随机抽查了某高中的高二一班的10名同学的语文、数学、英语成绩,已知其考试等级分为A,B,C,现在对他们的成绩进行量化:A级记为2分,B级记为1分,C级记为0分,用(x,y,z)表示每位同学的语文、数学、英语的得分情况,再用综合指标ω=x+y+z的值评定该同学的得分等级:若ω≥4,则得分等级为一级;若2≤ω≤3,则得分等级为二级;若0≤ω≤1,则得分等级为三级,得到如下结果:(1)在这10名同学中任取两人,求这两位同学英语得分相同的概率.(2)从得分等级是一级的同学中任取一人,其综合指标为a,从得分等级不是一级的同学中任取一人,其综合指标为b,记随机变量X=a-b,求X的分布列及其数学期望.【解析】(1)设事件A为“从10名同学中随机抽取两人,他们的英语得分相同”.英语得分为1的有A2,A4,A5,A7,A9,A10;英语得分为2的有A1,A3,A6,A8,从10名同学中随机抽取两人的所有可能结果数为=45,英语得分相同的所有可能结果数为+=15+6=21.所以英语得分相同的概率P(A)==.(2)计算10名同学的综合指标,可得下表:其中综合指标是一级的(ω≥4)有A1,A2,A3,A5,A6,A8,A9,共7名,综合指标不是一级的(ω<4)有A4,A7,A10共3名.随机变量X的所有可能取值为:1,2,3,4,5.P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,P(X=5)==,所以X的分布列为:所以E(X)=1×+2×+3×+4×+5×=.。
高考数学二轮复习 大题专攻练6 概率与统计B组 理 新人教A版
高考大题专攻练 6.概率与统计(B 组) 大题集训练,练就慧眼和规范,占领高考制胜点!1.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示的频率分布直方图.(1)求图中x 的值.(2)已知满意度评分值在[90,100]内的男生数与女生数的比为2∶1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X ,求X 的分布列和数学期望.【解题导引】(1)利用频率分布直方图的性质即可得出.(2)利用超几何分布的概率与数学期望计算公式即可得出.【解析】(1)由(0.005+0.021+0.035+0.030+x)×10=1,解得x=0.009.(2)满意度评分值在[90,100]内有100×0.009×10=9人,其中男生6人,女生3人.则X 的值可以为0,1,2,3.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.则X 分布列如下:所以X的期望E(X)=0×+1×+2×+3×==.2.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4)的有8人.(1)求直方图中a的值及甲班学生每天平均学习时间在区间[10,12]的人数.(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.【解题导引】(1)利用频率分布直方图的性质即可得出.(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3,利用超几何分布的计算公式及其数学期望计算公式即可得出.【解析】(1)由直方图知,(0.150+0.125+0.100+0.0875+a)×2=1,解得a=0.0375,因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为=40.所以甲、乙两班人数均为40人,所以甲班学习时间在区间[10,12]的人数为40×0.0375×2=3(人).(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.所以随机变量ξ的分布列为:E(ξ)=0×+1×+2×+3×=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考大题专攻练 6.概率与统计(B组)
大题集训练,练就慧眼和规范,占领高考制胜点!
1.某网站点击量等级规定如下:
统计该网站4月份每天的点击数如下表:
(1)若从中任选两天,求点击数落在同一等级的概率.
(2)从4月份点击量低于100万次的天数中随机抽取3天,记这3天点击等级为差的天数为随机变量X,求随机变量X的分布列与数学期望.
【解析】(1)设点击数落在同一等级的事件为A,概率P(A)=错误!未找到引用源。
=错误!未找到引用源。
,即点击数落在同一等级的概率为错误!未找到引用源。
.
(2)X的可能取值为0,1,2,3,
P(X=0)=错误!未找到引用源。
=错误!未找到引用源。
,P(X=1)=错误!未找到引用源。
=错误!未找到引用源。
,
P(X=2)=错误!未找到引用源。
=错误!未找到引用源。
,P(X=3)=错误!未找到引用源。
=错误!未找到引用源。
.
随机变量X的分布列为
数学期望E(X)=0×错误!未找到引用源。
+1×错误!未找到引用源。
+2×错误!未找到引用源。
+3×错误!未找到引用源。
=错误!未找到引用源。
.
2.2015年高中学业水平考试之后,为了调查同学们的考试成绩,随机抽查了某高中的高二一班的10名同学的语文、数学、英语成绩,已知其考试等级分为A,B,C,现在对他们的成绩进行量化:A级记为2分,B级记为1分,C级记为0分,用(x,y,z)表示每位同学的语文、数学、英语的得分情况,再用综合指标ω=x+y+z的值评定该同学的得分等级:若ω≥4,则得分等级为一级;若2≤ω≤3,则得分等级为二级;若0≤ω≤1,则得分等级为三级,得到如下结果:
(1)在这10名同学中任取两人,求这两位同学英语得分相同的概率.
(2)从得分等级是一级的同学中任取一人,其综合指标为a,从得分等级不是一级的同学中任取一人,其综合指标为b,记随机变量X=a-b,求X的分布列及其数学期望.
【解析】(1)设事件A为“从10名同学中随机抽取两人,他们的英语得分相同”.
英语得分为1的有A2,A4,A5,A7,A9,A10;
英语得分为2的有A1,A3,A6,A8,
从10名同学中随机抽取两人的所有可能结果数为错误!未找到引用源。
=45,英语得分相同的所有可能结果数为错误!未找到引用源。
+错误!未找到引用源。
=15+6=21.
所以英语得分相同的概率P(A)=错误!未找到引用源。
=错误!未找到引用源。
.
(2)计算10名同学的综合指标,可得下表:
其中综合指标是一级的(ω≥4)有A1,A2,A3,A5,A6,A8,A9,共7名,
综合指标不是一级的(ω<4)有A4,A7,A10共3名.
随机变量X的所有可能取值为:1,2,3,4,5.
P(X=1)=错误!未找到引用源。
=错误!未找到引用源。
,
P(X=2)=错误!未找到引用源。
=错误!未找到引用源。
,
P(X=3)=错误!未找到引用源。
=错误!未找到引用源。
,
P(X=4)=错误!未找到引用源。
=错误!未找到引用源。
,P(X=5)=错误!未找到引用源。
=错误!未找到引用源。
,
所以X的分布列为:
所以E(X)=1×错误!未找到引用源。
+2×错误!未找到引用源。
+3×错误!未找到引用源。
+4×错误!未找到引用源。
+5×错误!未找到引用源。
=错误!未找到引用源。
.。