2017-2018学年山东省青岛市李沧区七年级(下)期末数学试卷
(汇总3份试卷)2018年青岛市七年级下学期期末联考数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列调查方式中,适合采用全面调查的是()A.调查市场上一批节能灯的使用寿命B.了解你所在班级同学的身高C.环保部门调查某段水域的水质情况D.了解某个水塘中鱼的数量【答案】B【解析】由全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、要了解一批节能灯的使用寿命,由于具有破坏性,应当使用抽样调查,故A不合题意;B、调查你所在班级的同学的身高,人数少,范围小,应当采用全面调查的方式,故B正确;C、环保部门调查某段水域的水质情况,范围广,工作量大,不宜采用普查,而且只需要大概知道水质情况就可以了,应当采用抽样调查,,故C不合题意;D、了解某个水塘中鱼的数量,不便于检测而且不需要准确数量,采用抽样调查,故D不合题意;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(毫米2),数据0.0000007用科学记数法表示为()A.6710-⨯D.8⨯C.7⨯B.60.710-710-⨯7010-【答案】C【解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 1<1时,n为负数.【详解】0.000 000 1=1×10-1.故选C.【点睛】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.不等式1433x ->的解集为( ) A .49x >- B .49x <- C .4x <- D .4x >- 【答案】C【解析】系数化为1即可得.【详解】解:不等式1433x ->的解集为x <−4, 故选:C .【点睛】 本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.将点A (-1,2)向右平移4个单位长度,再向下平移3个单位长度后,点的坐标是( ) A .(3,1)B .(-3,-1)C .(3,-1)D .(-3,1)【答案】C【解析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【详解】解:将点A (-1,2)的横坐标加4,纵坐标减3后的点的坐标为(3,-1),故选:C .【点睛】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.5.如图,把 ABC 纸片沿DE 折叠,当点A 落在同一平面的A′处,且落在四边形BCED 的外部时,∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A = ∠1 - 2∠2B .∠A = ∠1 - ∠2C .3∠A = 2∠1 - ∠2D .2∠A = ∠1 - ∠2【答案】D 【解析】根据翻折的性质可得3,A DE AED A ED ''==∠∠∠∠,再利用三角形的内角和定理和三角形的外角性质分别表示出AED ∠和A ED '∠,然后整理即可得解.【详解】如图,由翻折的性质得3,A DE AED A ED ''==∠∠∠∠∴()1318012=⨯︒-∠∠在△ADE 中,1803,3+AED A CED A =︒--=∠∠∠∠∠∠∴23+2A ED CED A '=+=∠∠∠∠∠+∠∴18033+2A A ︒--=+∠∠∠∠∠整理得2322180A ++=︒∠∠∠ ∴()121801+221802A ⨯⨯︒-+=︒∠∠∠∴212A ∠=∠-∠故答案为:D .【点睛】本题考查了三角形的翻折问题,掌握翻折的性质、三角形的内角和定理和三角形的外角性质是解题的关键. 6.下列命题中,属于真命题的是 ( )A .两个锐角的和是锐角B .在同一平面内,如果a⊥b,b⊥c,则a⊥cC .同位角相等D .在同一平面内,如果a//b ,b//c ,则a//c【答案】D【解析】试题解析:A. 两个锐角的和是锐角,错误;B. 在同一平面内,如果a ⊥b ,b ⊥c ,则a ∥c ,错误;C. 同位角相等,错误;D. 在同一平面内,如果a//b ,b//c ,则a//c ,正确.故选D.7.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大40°,若设∠1=x°、∠2=y°,则可得到方程组为( )A .4090x y x y =+⎧⎨+=⎩B .4090x y x y =-⎧⎨+=⎩C .40180x y x y =-⎧⎨+=⎩D .40180x y x y =+⎧⎨+=⎩【答案】A 【解析】分析:分别根据∠1的度数比∠2的度数大40°和∠1与∠2互余各列一个方程,组成方程组求解即可.详解:由题意得,4090x y x y =+⎧⎨+=⎩. 故选A.点睛:本题考查了二元一次方程组的几何应用,找出题目中的等量关系是解答本题的关键.8.如图,已知□ABCD 的面积为100,P 为边CD 上的任一点,E ,F 分别为线段AP ,BP 的中点,则图中阴影部分的总面积为( )A .30B .25C .22.5D .20【答案】B 【解析】先由△ABP 与□ABCD 同底等高,得出12ABP ABCD S S =,再由中线的性质得到ADE CBF CBP 11,22ADP S S S S ∆==,从而得到图中阴影部分的总面积.【详解】∵平行四边形ABCD∴S △ABP =12S 平行四边形ABCD , ∴S △ADP +S △CBP +S △ABP =S 平行四边形ABCD , ∴S △ADP +S △CBP=12S 平行四边形ABCD ∵ E ,F 分别为线段AP ,BP 的中点,∴S △ADE =12S △ADP , S △CBF =12S △CBP ∴S △ADE +S △CBF =12(S △ADP +S △CBP )=14S 平行四边形ABCD=14×100=25 故答案为B【点睛】本题主要考查了平行四边形的性质,三角形的面积,等底等高的三角形的面积等于平行四边形的面积的一半,三角形的中线把三角形分成面积相等的两部分.根据题目信息找出各部分的面积的关系是解题的关键.9.分式方程的解为( ).A .B .C .无解D .【答案】D【解析】试题分析:解分式方程的一般步骤:先去分母化分式方程为整式方程,再解这个整式方程即可,注意解分式方程最后一步要写检验.两边同乘得解这个方程得经检验是原方程的解故选D.考点:解分式方程点评:解方程是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.10.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等【答案】C【解析】根据平移的性质解答本题.【详解】经过平移的图形与原图形的对应点的连线的关系是平行或在同一条直线上且相等.故选:C【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.二、填空题题11.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积为____.44cm;【答案】2【解析】设小长方形的长为x,宽为y,根据图示可得到关于xy的两个方程,可求得解,从而可得到大长方形的面积,再根据阴影部分的面积=大长方形的面积-6个小长方形的面积求解即可.【详解】设小长方形的长为x,宽为y,如图可知,x+3y=14,①x+y−2y=6,即x−y=6,②①−②得4y=8,y=2,代入②得x=8,因此,大矩形ABCD的宽AD=6+2y=6+2×2=10.矩形ABCD面积=14×10=140(cm2),阴影部分总面积=140−6×2×8=44(cm2).【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程12.如图所示,三角形纸片ABC,AB=10厘米,BC=7厘米,AC=6厘米.沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为_____厘米.【答案】1【解析】由折叠前后对应线段相等,可得DE=CD,BE=BC,再根据△AED的周长等于AD+DE+AE=AC+DE 即可得答案.【详解】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴DE=CD,BE=BC=7cm,∴AE=AB﹣BE=10﹣7=3cm,∵AD+DE=AD+CD=AC=6cm,∴△AED的周长=AD+DE+AE=AC+DE=6+3=1cm.故答案为:1.【点睛】本题考查折叠的性质,解题的关键是掌握折叠前后对应线段相等.13.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.14325.36=2.9383253.6325360000.【答案】293.1325360000325.361000000325.36×100, 再代入计算即可求解.【详解】解:325360000=325.361000000⨯=325.36×100=293.1.故答案为293.1.【点睛】考查了立方根,关键是将325360000变形为325.361000000⨯.15.如图,在ABC∆中,,6,3AD BC BC AD⊥==,将ABC∆沿射线BC的方向平移2个单位后,得到三角形'''A B C,连接'A C ,则三角形''A B C的面积为__________.【答案】6【解析】根据平移前后的几何性质,由三角形面积公式即可容易求得.【详解】根据题意,因为ABC A B C'''≅,容易知624B C B C CC'''-=-'==;又A B C'''的高于ABC的高相等,均为3,故1143622A B CS B C AD''=⨯'⨯=⨯⨯=.故答案为:6.【点睛】本题考查平移的性质,以及三角形面积的计算,属基础题.16.若关于x,y的二元一次方程组23122x y kx y+-⎧⎨+-⎩==的解满足x-y>4,则k的取值范围是__.【答案】k>1.【解析】把方程组的解求出,即用k表示出x、y,代入不等式x-y>4,转化为关于k的一元一次不等式,可求得k的取值范围.【详解】23122x y kx y=①=②+-⎧⎨+-⎩,由①+②可得:3(x+y)=3k-3,所以:x+y=k-1③①-③得:x=2k,②-③得:y=-k-1,代入x-y>4可得:2k+k+1>4,解得:k>1,故填:k>1.【点睛】本题考查了二元一次方程组的解法,一元一次不等式的解法,解题的关键是求出方程组的解代入不等式可化为关于k的一元一次不等式求解.17.已知点A(﹣2,﹣1),点B(a,b),直线AB∥y轴,且AB=3,则点B的坐标是___【答案】(﹣2,2)或(﹣2,﹣4)【解析】试题解析:∵A(-2,-1),AB∥y轴,∴点B的横坐标为-2,∵AB=3,∴点B的纵坐标为-1+3=2或-1-3=-4,∴B点的坐标为(-2,2)或(-2,-4).三、解答题18.ABC在网格中的位置如图所示,请根据下列要求解答:(1)过点C作AB的平行线l.(2)过点A作BC的垂线段,垂足为D.(3)将ABC先向下平移5格,再向右平移6格得到EFG(点A的对应点为点E,点B的对应点为点F,点C的对应点为点G).【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)平移AB,使它经过点C,则可得到直线l满足条件;(2)利用网格特点作AD⊥BC于D;(3)利用网格特点和平移的性质画图.【详解】(1)如图,直线l为所作;(2)如图,AD为所作;(3)如图,△EFG为所作.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.19.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?【答案】(1)分别为200元、150元;(2)A种型号电风扇37台时,采购金额不多于7500元【解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50−a)台,根据金额不多余7500元,列不等式求解.【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:341200561900x yx y+=⎧⎨+=⎩,解得:200{150xy==,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤3712.答:超市最多采购A 种型号电风扇37台.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.20.已知,点A ,点D 分别在y 轴正半轴和负半轴上,AB DE ∥.(1)如图1,若44m m =-+,BAD m OED ∠=∠,求CAD ∠的度数;(2)在BAO ∠和DEO ∠内作射线AM ,EN ,分别与过O 点的直线交于第一象限内的点M 和第三象限内的点N .①如图2,若AM ,EN 恰好分别平分BAO ∠和DEO ∠,求AMN ENM ∠-∠的值;②若1MAO BAM n ∠=∠,1NEO NED n∠=∠,当4060AMN ENM ︒<∠-∠<︒,则n 的取值范围是__________.【答案】(1)60CAD ∠=︒;(2)①45AMN ENM ∠-∠=︒;②425n << 【解析】(1)利用二次根式的性质求得m 的值,根据三角形内角和定理结合已知条件构建方程,再利用平行线的性质即可求解;(2)①过M 作MF ∥AB ,NG ∥AB ,根据角平分线的性质和平行线的性质,求得∠AMN-∠ENM = α – θ,再根据平行线的性质和三角形内角和定理即可求解;②设MAO α∠=,OEN θ∠=,则BAM n α∠=,NED n θ∠=,根据①的解法即可求得∠AMN-∠ENM=n 90 1n ︒+,再解不等式组即可求解. 【详解】(1)∵44m m =-44m m -=-, ∴4040m m -≥⎧⎨-≤⎩, 解得:4m =,∴∠BAD=4∠OED ,∵∠OED+∠ODE=90︒①,∠BAD+∠ODE=180︒,即4∠OED +∠ODE=180︒②,联立①②解得:∠OED=30︒,∠ODE=60︒,∵AB ∥DE ,∴∠CAD=∠ODE=60︒;(2)①∵AM 、EN 是∠BAO 、∠DEO 的平分线,∴设BAM MAO α∠=∠=,OEN NED θ∠=∠=,过M 作MF ∥AB ,NG ∥AB 分别交AD 于F ,G ,∵AB ∥DE ,∴AB ∥MF ∥NG ∥DE ,∴∠FMA=∠BAM=α,∠FMN=∠MNG ,∠GNE=∠NED=θ,∴∠AMN=∠FMA+∠FMN=α +∠FMN , ∠ENM=∠GNE +∠MNG =θ +∠FMN ,∴∠AMN-∠ENM= α +∠FMN- θ-∠FMN= α – θ;∵∠ODE+∠OED=∠ODE+2 θ =90︒,∵AB ∥DE ,∴∠BAD+∠ODE=180︒,即2α+∠ODE=180︒,∴2α –2?θ=90︒,∴∠AMN-∠ENM=α–θ=45︒; ②∵1MAO BAM n ∠=∠,1NEO NED n∠=∠, ∴设MAO α∠=,OEN θ∠=,则BAM n α∠=,NED n θ∠=,过M 作MF ∥AB ,NG ∥AB 分别交AD 于F ,G ,∵AB ∥DE ,∴AB ∥MF ∥NG ∥DE ,∴∠FMA=∠BAM=n α,∠FMN=∠MNG ,∠GNE=∠NED=n θ,∴∠AMN=∠FMA+∠FMN=n α +∠FMN ,∠ENM=∠GNE +∠MNG =n θ +∠FMN ,∴∠AMN-∠ENM=n α +∠FMN-n θ-∠FMN=n α –n θ=()–n αθ; ∵∠ODE+∠OED=∠ODE+()1n θ+ =90︒,∵AB ∥DE ,∴∠BAD+∠ODE=180︒,即()1n α++∠ODE=180︒,∴()1n α+–()1n θ+=90︒,即α–θ=901n ︒+, ∴∠AMN-∠ENM=()–n αθ=n 90 1n ︒+; ∵4060AMN ENM ︒<∠-∠<︒,∴n 9040601n ︒︒<<︒+, 解不等式n 90601n ︒<︒+,化简得:n 213n <+, 解得:2n <, 解不等式n 90401n ︒︒<+,化简得:n 419n >+, 解得:45n >, ∴n 的取值范围是425n <<. 【点睛】本题考查了角的计算,解不等式组,角平分线的定义以及n 等分角的性质,平行线的性质,三角形内角和定理,准确识图,理清图中各角度之间的关系,用方程的思想解答是解题的关键.21.如图,在平面直角坐标系中,点,的坐标分别为,,将线段先向上平移个单位长度,再向右平移个单位长度,得到线段,连接,,构成平行四边形. (1)请写出点的坐标为________,点的坐标为________,________;(2)点在轴上,且,求出点的坐标;(3)如图,点是线段上任意一个点(不与、重合),连接、,试探索、、之间的关系,并证明你的结论.【答案】(1)8;(2)或(3)【解析】(1)根据平移直接得到点C,D坐标,用面积公式计算;(2)设出Q的坐标,OQ=|m|,用=建立方程,解方程即可;(3)作出辅助线,平行线,根据两直线平行,内错角相等,求解即可.【详解】解:(1)∵线段先向上平移个单位长度,再向右平移个单位长度,得到线段,且,,∴,;∵,,∴;(2)∵点在轴上,设,∴,∴,∵,∴,∴或,∴或.(3)如图,∵线段是线段平移得到,∴, 作, ∴, ∴, ∵, ∴, ∴, ∴.【点睛】 此题主要考查了平移的性质,计算三角形面积的方法,平行线的判定和性质,解本题的关键用面积建立方程或计算,作出辅助线是解本题的难点.22.某体育用品商店老板到体育商场批发篮球、足球、排球共30个,得知该体育商场篮球、足球、排球平均每个36元,篮球比排球每个多10元,排球比足球每个少8元.(1) 求出这三种球每个各多少元;(2) 经决定,该老板批发了这三种球的任意两种共30个,共花费了1060元,问该老板可能买了哪两种球?各买了几个;(3) 该老板打算将每一种球各提价20元后,再进行打折销售,若排球、足球打八折,篮球打八五折,在(2)的情况下,为获得最大利润,他批发的一定是哪两种球?各买了几个?计算并说明理由.【答案】(1)篮球每只40元,足球38元,排球30元;(2)若买的是足球和排球则求得可以是买足球20,排球10只;若买的是篮球和排球则是篮球16只,排球14只;(3)买篮球16只,排球14只利润最大.【解析】(1)分别设篮球每只x 元,足球y ,排球z ,根据题意可得出三个二元一次不定方程,联立求解即可得出答案.(2)假设:①买的是篮球和足球,分别为a 只和b 只,根据题意可得出两个方程,求出解后可判断出是否符合题意,进而再用同样的方法判断其他的符合题意的情况;(3)分别对两种情况下的利润进行计算,然后比较利润的大小即可得出答案.【详解】(1)设篮球每只x 元,足球y ,排球z ,得36333108x y z x z y z ⎧++=⎪⎪-=⎨⎪-=⎪⎩; 解得x=40;y=38;z=30;故篮球每只40元,足球38元,排球30元;(2)假设:①买的是篮球和足球,分别为a 只和b 只,则3040381060a b a b +=⎧⎨+=⎩; 解得4070a b =-⎧⎨=⎩,则不可能是这种情况; 同理若买的是足球和排球则求得可以是买足球20,排球10只;若买的是篮球和排球则是篮球16只,排球14只;(3)对两种情况分别计算,若为足球和排球,即(38+20)×0.8×20+(30+20)0.8×10=1328(元); 若为篮球和排球,即(40+20)×0.85×16+(30+20)×0.8×14=1376(元),∴买篮球16只,排球14只利润最大.23.观察下列等式:221401-⨯=①; 223415-⨯=②; 225429-⨯=③……根据上述规律解决下列问题:(1)完成第四个等式: ;(2)猜想第n 个等式(用含n 的式子表示),并证明其正确性.【答案】(1)2274313-⨯= ;(2)第n 个等式()()()222141411n n n ---=-+,证明见解析.【解析】(1)根据题目中的几个等式可以写出第四个等式;(2)根据题目中等式的规律可得第n 个等式.再将整式的左边展开化简,使得化简后的结果等于等式右边即可证明结论正确.【详解】解:(1)由题目中的几个例子可得,第四个等式是:72-4×32=13,故答案为72-4×32=13;(2)第n 个等式是:(2n-1)2-4×(n-1)2=()411-+n ,证明:∵(2n-1)2-4×(n-1)2=4n 2-4n+1-4(n 2-2n+1)=4n 2-4n+1-4n 2+8n-4=4n-3=()411-+n ,∴(2n-1)2-4×(n-1)2=()411-+n 成立.【点睛】本题考查整式的混合运算、数字的变化,解题的关键是掌握整式的混合运算法则、发现题目中等式的变化规律,写出相应的等式.24.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?【答案】(1)200人;20人;(2)补图见解析;(3)240人.【解析】(1)调查人数为20÷10%=200,喜欢动画的比例为(1﹣46%﹣24%﹣10%)=20%,喜欢动画的人数为200×20%=40人;(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).25.已知如图,直线EF与AB、CD分别相交于点E、F.(1)如图1,若∠1=120°,∠2=60°,求证AB∥CD;(2)在(1)的情况下,若点P是平面内的一个动点,连结PE、PF,探索∠EPF、∠PEB、∠PFD三个角之间的关系;①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;请阅读下面的解答过程,并填空(理由或数学式)解:如图2,过点P作MN∥AB,则∠EPM=∠PEB_____.∵AB∥CD(已知),MN∥AB(作图)∴MN∥CD_____.∴∠MPF=∠PFD∴∠_____+∠_____=∠PEB+∠PFD(等式的性质)即∠EPF=∠PEB+∠PFD②当点P在图3的位置时,∠EPF、∠PEB、∠PFD三个角之间有何关系并证明.③当点P在图4的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系:_____.【答案】两直线平行,内错角相等如果两条直线都和第三条直线平行,那么这两条直线也互相平行∠EPM∠MPF∠EPF+∠PFD=∠PEB【解析】(1)根据对顶角相等可得∠BEF的度数,根据同旁内角互补,两直线平行,即可得出结论;(2)①过点P作MN∥AB,根据平行线的性质得∠EPM=∠PEB,且有MN∥CD,所以∠MPF=∠PFD,然后利用等式性质易得∠EPF=∠PEB+∠PFD.②③的解题方法与①一样,分别过点P作MN∥AB,然后利用平行线的性质得到三个角之间的关系.【详解】(1)∵∠1=120°,∴∠BEF=120°,又∵∠2=60°,∴∠2+∠BEF=180°,∴AB∥CD;(2)①如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等).∵AB∥CD(已知),MN∥AB(作图),∴MN∥CD(平行于同一条直线的两条直线互相平行).∴∠MPF=∠PFD,∴∠EPM+∠FPM=∠PEB+∠PFD(等式的性质),即∠EPF=∠PEB+∠PFD,故答案为两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;∠EPM,∠MPF;②∠EPF+∠PEB+∠PFD=360°;证明:如图3,过作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠BEP+∠EPM=180°,∠DFP+∠FPM=180°,∴∠BEP+∠EPM+∠FPM+∠PFD=360°,即∠EPF+∠PEB+∠PFD=360°;③∠EPF+∠PFD=∠PEB.理由:如图4,过作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠PEB=∠MPE,∠PFD=∠MPF,∵∠EPF+∠FPM=∠MPE,∴∠EPF+∠PFD=∠PEB.【点睛】本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( ) A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.2.若点P (a ,b )在第四象限,则点Q (﹣a ,b ﹣1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】因为点P (a ,b )在第四象限,可确定a 、b 的取值范围,从而可得-a ,b-1的符号,即可得出Q 所在的象限.【详解】解:∵点P (a ,b )在第四象限,∴a>0,b<0,∴-a<0,b-1<0,∴点Q (-a ,b-1)在第三象限.故选:C.【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.要使式子2x -有意义,则的取值范围是( )A .x 0>B .x 2≥-C .x 2≥D .x 2≤ 【答案】D【解析】根据二次根式被开方数必须是非负数的条件,要使2x -在有意义,必须2x 0x 2-≥⇒≤. 故选D.4.下列图中,∠1和∠2是对顶角的有( )个.A.1个B.2个C.3个D.4个【答案】A【解析】根据对顶角的定义,有公共顶点且两条边都互为反向延长线的两个角称为对顶角,进行判定即可解答.【详解】在第一幅图和第四幅图中,∠1与∠2有一条边不互为反向延长线,故不是对顶角;在第二幅图中,∠1与∠2没有公共顶点,故不是对顶角;在第三幅图中,∠1与∠2有公共顶点且两边互为反向延长线,故是对顶角.综上所述,是对顶角的图形只有1个.故答案为A.【点睛】此题考查对顶角的定义,解题关键在于掌握其定义.5.下列运算正确的等式是()A.(5-m)(5+m)=m2-25 B.(1-3m)(1+3m)=1-3m2C.(-4-3n)(-4+3n)= -9n2+16 D.(2ab-n)(2ab+n)=4ab2-n2【答案】C【解析】解:A.(5-m)(5+m)= 25-m2,所以此选项是错误的;B.(1-3m)(1+3m)=1-9m2,所以此选项是错误的;C.(-4-3n)(-4+3n)= -9n2+16,此选项是正确;D.(2ab-n)(2ab+n)=4a2b2-n2,所以此选项是错误的;故选C.6.下列不等式变形中,一定正确的是()A.若ac>bc,则a>b B.若a>b,则am2>bm2C.若ac2>bc2,则a>b D.若a>0,b>0,且11a b>,则a>b【答案】C【解析】A. 若ac>bc,则a>b,当c≤0时不确定,所以原变形错误; B. 若a>b,则am2>bm2,当m²=0时,am2=bm2,所以原变形错误;C. 若ac2>bc2,则a>b,ac2>bc2得c²>0,所以原变形正确; D.若a>0,b>0,且11a b>,则a<b,原变形错误,故选C.7.如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S n=()A .2nB .22n -C .12n +D .12n -【答案】B 【解析】根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般化规律,进而可得出S n 的表达式.【详解】解:根据直角三角形的面积公式,得S 1=12=2-1; 根据勾股定理,得:AB=2,则S 2=1=20;A 1B=2,则S 3=21,依此类推,发现:S n =2n-2,故选B.【点睛】本题考查了等腰直角三角形的判定与性质,关键是要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.8.如果A ∠的补角与A ∠的余角互补,那么2A ∠是( )A .锐角B .直角C .钝角D .以上三种都可能 【答案】B【解析】由题意可得A ∠的补角为180°-∠A ,A ∠的余角为90°-∠A ,再根据它们互补列出方程求出∠A ,即可解答.【详解】解:∵A ∠的补角为180°-∠A ,A ∠的余角为90°-∠A∴180°-∠A+(90°-∠A )=180∴2A ∠=90°故答案为B .【点睛】本题考查了余角、补角以及一元一次方程,正确表示出∠A 的余角和补角是解答本题的关键. 9.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( ) A . B . C . D .【答案】B【解析】不等式2x>-4,解得x>-2;不等式357x -≤,解得4x ≤;所以不等式组24{357x x --≤>的解集为24x -<≤, 4取得到,所以在数轴上表示出来在4这点为实心,-2取不到,所以在数轴上表示出来在-2这点为空心,表示出来为选项中B 中的图形,故选B【点睛】本题考查不等式组,解答本题需要考生掌握不等式组的解法,会求不等式的解集,掌握数轴的概念和性质 10.如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°【答案】C 【解析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A 、∠AOD 与∠BOC 是对顶角,所以∠AOD=∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C 、∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C .【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.二、填空题题11.已知4360{270x y z x y z --=+-=,那么x y z x y z -+++的值等于_________. 【答案】13【解析】把z 看做已知数表示出x 与y ,代入原式计算即可得到结果.【详解】方程组整理得:43627{x y z x y z -=+=①②,②×4−①得:11y=22z ,即y=2z ,把y=2z 代入②得:x=3z ,则原式=321 323 z z zz z z-+=++.【点睛】本題考査三元一次方程組的解法,解题的关键是用含x的代数式表示y、z,然后再求解就容易了. 12.如图是具有2 000多年历史的古城扬州市区内的几个旅游景点分布示意图.已知竹西公园的位置坐标为(300,300)(小正方形的边长代表100 m长).则荷花池的坐标为________;平山堂的坐标为___________;汪氏小苑的坐标为___________.【答案】荷花池(-200,-300)平山堂(-100,300)小苑(200,-200)【解析】以竹西公园向左3个单位,向下3个单位为坐标原点建立平面直角坐标系,根据平面直角坐标系坐标的特点写出即可.【详解】解:竹西公园的位置坐标为(300,300)(小正方形的边长代表100 m长).∴竹西公园向左3个单位,向下3个单位为坐标原点建立平面直角坐标系,∴平面直角坐标系的原点在瘦西湖,∴荷花池(-200,-300),平山堂(-100,300),小苑(200,-200).故答案为:荷花池(-200,-300),平山堂(-100,300),小苑(200,-200).【点睛】本题考查了坐标确定位置,根据竹西公园的位置确定出坐标原点的位置是解题的关键.13.在平面直角坐标系中,经过点Q(1,-5)且垂直于y轴的直线可以表示为直线_______________.【答案】5y=-【解析】根据经过点Q(1,-5)且垂直于y轴的直线上任意点的纵坐标都为-5,即可得到答案.【详解】由题意得:经过点Q(1,-5)且垂直于y轴的直线可以表示为:直线5y=-.故答案是:5y=-.【点睛】本题主要考查平面直角坐标系中,与坐标轴平行的直线的解析式,掌握与x轴平行的直线解析式为y=a(a 为常数),是解题的关键.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5 分这一组的频数是7,频率是0.2,那么该班级的人数是_____人.【答案】1【解析】试题分析:根据题意直接利用频数÷频率=总数进而得出答案.解:∵80.5~90.5分这一组的频数是7,频率是0.2,∴该班级的人数是:7÷0.2=1.故答案为1.考点:频数与频率.15.在平面直角坐标系xOy 中,对于平面内任意一点(x,y),规定以下两种变化:① f (x,y) = (-x,y) .如 f (1,2) = (-1,2) ;② g ( x,y)=(x, 2 - y).根据以上规定:(1)g (1,2)=(___________);(2) f (g (2,-1))=(___________)【答案】(1,0)(﹣2,3)【解析】(1)根据所给规定进行进行计算即可;(2)根据所给规定进行进行计算即可.【详解】解:(1)∵g(x,y)=(x,2﹣y)∴g(1,2)=(1,2﹣2)=(1,0)故答案为:(1,0)(2)∵g(2,﹣1)=(2,3)且f(x,y)=(﹣x,y)∴f(g(2,﹣1))=f(2,3)=(﹣2,3)故答案为:(﹣2,3)【点睛】此题主要考查了点的坐标,关键是正确理解题目意思.16.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为______.【答案】-15【解析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.。
2017—2018学年七年级下期末考试数学试卷有答案
2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。
5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。
山东省2017-2018学年七年级数学下学期期末模拟试卷及答案(共七套)
山东省2017-2018学年七年级数学下学期期末模拟试卷及答案(共七套)山东省2017-2018学年七年级数学下学期期末模拟试卷及答案(一)一.选择题:(本题共10小题,共30分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.±2是4的( )A .平方根B .相反数C .绝对值D .算术平方根2.点A (﹣3,2)关于x 轴的对称点A ′的坐标为( )A .(3,2)B .(3,﹣2)C .(﹣3,2)D .(﹣3,﹣2)3.已知不等式组,其解集在数轴上表示正确的是( ) A . B . C .D .4.如图,直线a ∥b ,直线c 分别与a ,b 相交,∠1=50°,则∠2的度数为( )A .150°B .130°C .100°D .50°5.如图是某班50名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )A .5﹣10元B .10﹣15元C .15﹣20元D .20﹣25元6.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(2,3)B .(2,﹣1)C .(4,1)D .(0,1)7.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .B .C .D .8.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )A .各项消费金额占消费总金额的百分比B .各项消费的金额C .各项消费金额的增减变化情况D .消费的总金额9.已知是二元一次方程组的解,则2m ﹣n 的算术平方根为( )A .±2B .C .2D .410.A和B两城市相距420千米,一辆小汽车和一辆客车同时从A、B两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.二.填空题(本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分)11.在平面直角坐标系中,点(1,2)位于第象限.12.不等式2x﹣1>x的解是.13.计算:=.14.以方程组的解为坐标的点(x,y)在第象限.15.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.16.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于.17.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有 人.18.如图所示,以O 为端点画六条射线OA ,OB ,OC ,OD ,OE ,OF 后,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…,那么所描的第2016个点在射线 上.三.解答题:本大题共7小题,总分58分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算(1)计算:|﹣2|+(﹣1)2016﹣(2)解方程组(3)解不等式组:,并把它的解集表示在数轴上.20.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.21.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?22.在平面直角坐标系中,点A (2m ﹣7,m ﹣5)在第四象限,且m 为整数,试求的值.23.根据要求,解答下列问题(1)解下列方程组(直接写出方程组的解即可)①的解为 ②的解为③的解为 (2)以上每个方程组的解中,x 值与y 值的大小关系为 . (3)请你构造一个具有以上外形特征的方程组,并直接写出它的解. 24.如图,在平行四边形OABC 中,已知AB=OC ,AB ∥OC .A 、C 两点的坐标分别为.(1)求B 点的坐标;(2)将平行四边形OABC 向左平移个单位长度,求所得四边形的四个顶点的坐标;(3)求平行四边形OABC 的面积.25.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题:(本题共10小题,共30分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.±2是4的( )A .平方根B .相反数C .绝对值D .算术平方根【考点】平方根.【分析】根据平方根的定义解答即可.【解答】解:±2是4的平方根.故选:A .【点评】本题考查了平方根的定义,是基础题,熟记概念是解题的关键.2.点A (﹣3,2)关于x 轴的对称点A ′的坐标为( )A .(3,2)B .(3,﹣2)C .(﹣3,2)D .(﹣3,﹣2)【考点】关于x 轴、y 轴对称的点的坐标.【分析】直接利用关于x 轴对称点的性质得出符合题意的答案.【解答】解:点A (﹣3,2)关于x 轴的对称点A ′的坐标为:(﹣3,﹣2). 故选:D .【点评】此题主要考查了关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.已知不等式组,其解集在数轴上表示正确的是( ) A . B . C .D .【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x >3,解不等式②得:x ≥﹣1,∴不等式组的解集为:x >3,在数轴上表示不等式组的解集为:故选:B .【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.4.如图,直线a ∥b ,直线c 分别与a ,b 相交,∠1=50°,则∠2的度数为( )A .150°B .130°C .100°D .50°【考点】平行线的性质.【分析】先根据两直线平行同位角相等,求出∠3的度数,然后根据邻补角的定义即可求出∠2的度数.【解答】解:如图所示,∵a ∥b ,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故选B.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.5.如图是某班50名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元【考点】频数(率)分布直方图.【分析】根据频数分布直方图,可以得到捐款人数最多的一组,本题得以解决.【解答】解:由频数分布直方图可得,捐款人数最多的一组是15﹣20元,故选C.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.6.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是()A.(2,3)B.(2,﹣1)C.(4,1)D.(0,1)【考点】坐标与图形变化-平移.【分析】根据向左平移,横坐标减,纵坐标不变解答.【解答】解:点A(2,1)向左平移2个单位长度,则2﹣2=0,∴点A′的坐标为(0,1).故选D.【点评】本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90°,从图中可看出∠1+∠2+90°=180°;②∠1比∠2的度数大50°,则∠1=∠2+50°.【解答】解:根据平角和直角定义,得方程x +y=90;根据∠1比∠2的度数大50°,得方程x=y +50.可列方程组为,故选:C .【点评】此题考查了学生对二元一次方程组的灵活运用,学生应该重视培养对应用题的理解能力,准确地列出二元一次方程组.8.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )A .各项消费金额占消费总金额的百分比B .各项消费的金额C .各项消费金额的增减变化情况D .消费的总金额【考点】扇形统计图.【分析】根据题意和扇形统计图可以得到各项消费金额占消费总金额的百分比,从而可以解答本题.【解答】解:由题意和扇形统计图可得,从图中可看出各项消费金额占消费总金额的百分比,故选A .【点评】本题考查扇形统计图,解题的关键是明确扇形统计图的特点,从中可以得到相关的信息.9.已知是二元一次方程组的解,则2m ﹣n 的算术平方根为( )A .±2B .C .2D .4 【考点】二元一次方程组的解;算术平方根.【分析】由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m 与n 的值,继而求得2m ﹣n 的算术平方根.【解答】解:∵是二元一次方程组的解, ∴,解得:,∴2m ﹣n=4,∴2m ﹣n 的算术平方根为2.故选C .【点评】此题考查了二元一次方程组的解、二元一次方程组的解法以及算术平方根的定义.此题难度不大,注意理解方程组的解的定义.10.A 和B 两城市相距420千米,一辆小汽车和一辆客车同时从A 、B 两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选D .【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.二.填空题(本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分)11.在平面直角坐标系中,点(1,2)位于第 一 象限.【考点】点的坐标.【分析】根据各象限的点的坐标特征解答.【解答】解:点(1,2)位于第一象限.故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.不等式2x ﹣1>x 的解是 x > .【考点】解一元一次不等式.【分析】先去分母,再移项、合并同类项、化系数为1即可.【解答】解:去分母得,4x ﹣2>x ,移项得,4x ﹣x >2,合并同类项得,3x >2,系数化为1得,x >.故答案为:x >.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的步骤是解答此题的关键.13.计算:= 2 . 【考点】实数的运算.【分析】根据实数的运算,即可解答.【解答】解:=|3﹣3|+2=0+2=2.故答案为:2. 【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.14.以方程组的解为坐标的点(x,y)在第三象限.【考点】二元一次方程组的解;点的坐标.【分析】先求出xy的值,再根据各项限内点的坐标特点即可得出结论.【解答】解:∵,①+②得,2y=﹣2,解得y=﹣1,把y=﹣1代入①得,﹣1=2x+1,解得x=﹣1,∴点(x,y)的坐标为(﹣1,﹣1),∴此点在第三象限.故答案为:三.【点评】本题考查的是二元一次方程组的解,熟知第三象限内点的坐标特点是解答此题的关键.15.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有69幅.【考点】二元一次方程组的应用.【分析】设展出的油画作品的数量是x幅,展出的国画作品是y幅,则根据“展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅”列出方程组并解答.【解答】解:设展出的油画作品的数量是x幅,展出的国画作品是y幅,依题意得,解得,故答案是:69.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.16.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于70°.【考点】平行线的性质.【分析】先根据∠3的度数求出∠1的度数,根据平行线的性质得出∠4=∠1,代入求出即可.【解答】解:∵∠3=40°,∴∠1+∠2=140°,∵∠1=∠2,∴∠1=70°,∵a∥b,∴∠4=∠1=70°,故答案为:70°.【点评】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.17.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有27人.【考点】频数(率)分布直方图.【分析】根据频数分布直方图估计出89.5~109.5,109.5~129.5两个分数段的学生人数,然后相加即可.【解答】解:如图所示,89.5~109.5段的学生人数有24人,109.5~129.5段的学生人数有3人,所以,成绩不低于90分的共有24+3=27人.故答案为:27.【点评】本题考查了读频数分布直方图的能力,根据图形估计出两个分数段的学生人数是解题的关键.18.如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF后,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…,那么所描的第2016个点在射线OF 上.【考点】规律型:图形的变化类;规律型:数字的变化类.【分析】根据规律得出每6个数为一周期.用2014除以6,根据余数来决定数2016在哪条射线上.【解答】解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2016÷6=336,∴所描的第2016个点在射线和6所在射线一样,∴所描的第2016个点在射线OF上.故答案为:OF.【点评】本题是对图形变化规律与数字变化规律的考查,根据图形特点,判断出“每6个数字为一个循环组,依次循环”是解题的关键.三.解答题:本大题共7小题,总分58分.解答要写出必要的文字说明、证明过程或演算步骤.19.计算(1)计算:|﹣2|+(﹣1)2016﹣(2)解方程组(3)解不等式组:,并把它的解集表示在数轴上.【考点】解一元一次不等式组;实数的运算;解二元一次方程组;在数轴上表示不等式的解集.【分析】(1)根据绝对值、有理数的乘方、立方根定义、二次根式的性质分别求出每一部分的值,再合并即可;(2)①×2+②得出11x=22,求出x,把x的值代入①,求出y即可;(3)先分别去吃每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=2+1﹣2+2﹣2=1;(2)解:原方程组①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,所以方程组的解为;(3)解:∵由①得,x≥﹣1,由②得,x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示为:.【点评】本题考查了绝对值、有理数的乘方、立方根定义、二次根式的性质,解二元一次方程组,解一元一次不等式组的应用,能熟记各个知识点是解此题的关键.20.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.21.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)利用总数50减去其他各组的频数即可求得a的值;(2)根据(1)的结果即可把频数分布直方图补充完整;(3)根据百分比的意义即可求解.【解答】解:(1)a=50﹣4﹣8﹣16﹣10=12;(2)(3)本次测试的优秀率是:×100%=44%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且m为整数,试求的值.【考点】点的坐标.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列不等式组求出m 的取值范围,再根据m是整数解答即可.【解答】解:∵点A(2m﹣7,m﹣5)在第四象限,∴解得:.∵m为整数,∴m=4.∴.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).23.根据要求,解答下列问题(1)解下列方程组(直接写出方程组的解即可)①的解为 ②的解为 ③的解为 (2)以上每个方程组的解中,x 值与y 值的大小关系为 x=y .(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【考点】二元一次方程组的解.【分析】(1)观察方程组发现第一个方程的x 系数与第二个方程y 系数相等,y 系数与第二个方程x 系数相等,分别求出解即可;(2)根据每个方程组的解,得到x 与y 的关系;(3)根据得出的规律写出方程组,并写出解即可.【解答】解:(1)①的解为;②的解为;③的解为; (2)以上每个方程组的解中,x 值与y 值的大小关系为x=y ;(3),解为,故答案为:(1)①;②;③;(2)x=y 【点评】此题考查了二元一次方程组的解,弄清题中的规律是解本题的关键.24.如图,在平行四边形OABC 中,已知AB=OC ,AB ∥OC .A 、C 两点的坐标分别为.(1)求B 点的坐标;(2)将平行四边形OABC 向左平移个单位长度,求所得四边形的四个顶点的坐标;(3)求平行四边形OABC 的面积.【考点】四边形综合题.【分析】(1)根据平行四边形的性质AB=OC=2,由此即可解决问题. (2)根据向左平移纵坐标不变,横坐标减去即可. (3)根据平行四边形的面积公式计算即可.【解答】解:(1)在平行四边形OABC 中,已知A 、C 两点的坐标分别为.∵AB=OC=2, +2=3, ∴B 点的坐标是(3,).(2)将平行四边形OABC 向左平移个单位长度,所得四边形的四个顶点的 坐标分别是:(0,),(2,),(,0),(﹣,0).(3)平行四边形OABC 的面积=2×=6.【点评】本题考查四边形综合题、坐标与点的位置关系、平行四边形的性质等知识,解题的关键是熟练掌握平行四边形的性质,记住平行四边形的面积等于底乘高,属于中考常考题型.25.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【考点】二元一次方程组的应用;一元一次方程的应用;一元一次不等式的应用.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.山东省2017-2018学年七年级数学下学期期末模拟试卷及答案(二)一、选择题(每小题3分,满分60分)1.下列语句中正确的是()A.同一平面内,不相交的两条直线叫做平行线B.过一点有且只有一条直线与已知直线平行C.两直线平行,同旁内角相等D.两条直线被第三条直线所截,同位角相等2.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125°B.120°C.140°D.130°3.判定两角相等,不对的是()A.对顶角相等B.两直线平行,同位角相等C.∵∠1=∠2,∠2=∠3,∴∠1=∠3D.两条直线被第三条直线所截,内错角相等4.如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是()A .∠3=∠4B .∠1=∠2C .∠B=∠DCED .∠D +∠DAB=180° 5.方程组的解是( )A .B .C .D .6.某学校组织286人分别到徂徕山和泰西抗日英雄纪念碑进行革命传统教育,到徂徕山的人数是到泰西的人数的2倍多1人,求到两地的人数各是多少?设到徂徕山的人数为x 人,到泰西的人数为y 人,下列所列的方程组正确的是( )A .B .C .D .7.计算a 2•a 3,正确的结果是( )A .2a 6B .2a 5C .a 6D .a 58.计算(a 2)3的结果是( )A .3a 2B .2a 3C .a 5D .a 69.如果□×3ab=3a 2b ,则□内应填的代数式是( )A .abB .3abC .aD .3a10.计算x ﹣2•4x 3的结果是( )A .4xB .x 4C .4x 5D .4x ﹣511.下列计算不正确的是( )A .2a ÷a=2B .a 8÷x 2=x 4C .()0×3=3D .(2a 3﹣a 2)÷a 2=2a ﹣112.已知a ﹣b=1,则代数式2a ﹣2b ﹣3的值是( )A .﹣1B .1C .﹣5D .513.下列分解因式正确的是( )A .﹣a +a 3=﹣a (1+a 2)B .2a ﹣4b +2=2(a ﹣2b )C .a 2﹣4=(a ﹣2)2D .a 2﹣2a +1=(a ﹣1)214.下列各式能用完全平方公式进行分解因式的是( )A .x 2+1B .x 2+2x ﹣1C .x 2+x +1D .x 2+4x +415.下列长度的三条线段能组成三角形的是( )A .5cm 2cm 3cmB .5cm 2cm 2cmC .5cm 2cm 4cmD .5cm 12cm 6cm16.已知⊙O 的半径为10cm ,点A 是线段OP 的中点,且OP=25cm ,则点A 和⊙O 的位置关系是( )A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .无法确定 17.多边形的边数每减少一条,则它的内角和( )A .增加180°B .增加360°C .不变D .减小180°18.在平面直角坐标系中,点M (﹣1,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限19.点M (﹣2,1)关于x 轴对称的点的坐标是( )A .(﹣2,﹣1)B .(2.1)C .(2,﹣1)D .(1.﹣2)20.甲、乙两人都从A 地出发,分别沿北偏东30°、60°的方向到达C 地,且BC ⊥AB ,则B 地在C 地的( )A .北偏东30°的方向上B .北偏西30°的方向上C .南偏东30°的方向上D .南偏西30°的方向上二、填空题(每小题3分,满分12分)21.当x=时,(x +3)(x ﹣3)﹣x (x ﹣2)的值为______.22.已知m +n=2,mn=﹣2,则(1﹣m )(1﹣n )=______.23.若点(3a ﹣6,2a +10)是y 轴上的点,则a 的值是______.24.如图,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于______度.三、解答题(本大题共5小题,满分48分)25.计算(1)(﹣ax 4y 3)•2y ﹣1(2)(x ﹣2)(x +2)﹣(x +1)(x ﹣3)+(﹣3)0(3)(2x ﹣1)(﹣1﹣2x )+(2x +1)2﹣2.26.因式分解(1)3a 2﹣12;(2)x 3y ﹣2x 2y 2+xy 3;(3)(x +1)(x +3)+1.27.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,求∠3的度数.28.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完(2)销售6个排球的利润与销售几个篮球的利润相等?29.如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.、参考答案与试题解析一、选择题(每小题3分,满分60分)1.下列语句中正确的是()A.同一平面内,不相交的两条直线叫做平行线B.过一点有且只有一条直线与已知直线平行C.两直线平行,同旁内角相等D.两条直线被第三条直线所截,同位角相等【考点】平行线的性质;平行线;平行公理及推论.【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【解答】解:A、同一平面内,不相交的两条直线叫做平行线,正确,是真命题;B、过直线外一点有且只有一条直线与已知直线平行,故错误,是假命题;C、在同一平面内两直线平行,同旁内角相等,故错误,为假命题,;D、两条平行直线被第三条直线所截,同位角相等,故错误,为假命题,故选A.2.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125°B.120°C.140°D.130°【考点】平行线的性质;直角三角形的性质.【分析】根据矩形性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A 求出即可.【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选D.3.判定两角相等,不对的是()A.对顶角相等B.两直线平行,同位角相等C.∵∠1=∠2,∠2=∠3,∴∠1=∠3D.两条直线被第三条直线所截,内错角相等【考点】平行线的性质.【分析】分别根据对顶角相等、平行线的性质及等量代换求解.【解答】解:A 、正确,是公理;B 、正确,符合平行线的性质;C 、正确,是等量代换;D 、错误,应为两条平行线被第三条直线所截,内错角相等.故选D .4.如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠3=∠4B .∠1=∠2C .∠B=∠DCED .∠D +∠DAB=180°【考点】平行线的判定.【分析】根据平行线的判定方法直接判定.【解答】解:A 、∠3与∠4是直线AD 、BC 被AC 所截形成的内错角,因为∠3=∠4,所以应是AD ∥BC ,故A 错误;B 、∵∠1=∠2,∴AB ∥CD (内错角相等,两直线平行),所以正确;C 、∵∠DCE=∠B ,∴AB ∥CD (同位角相等,两直线平行),所以正确; D 、∵∠D +∠DAB=180°,∴AB ∥CD (同旁内角互补,两直线平行),所以正确; 故选:A .5.方程组的解是( )A .B .C .D .【考点】解二元一次方程组.【分析】解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y ,得到一个关于x 的一元一次方程,解出x 的值,再把x 的值代入方程组中的任意一个式子,都可以求出y 的值【解答】解:, ①+②得:2x=2,x=1,把x=1代入①得:1+y=3,y=2,∴方程组的解为:故选:A .。
山东省2017-2018学年度七年级数学下学期期末考试模拟卷
山东省2017-2018学年七年级数学下学期期末考试模拟卷(考试时间:120分钟试卷满分:150分)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各数中最大的数是A.πB.3 CD.–32.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0 C.b–1>0 D.–1–b<0 3.若a2=25,b3=27,则a b的值为A.–125 B.±5 C.±125 D.±154.点P(m,1)在第二象限内,则点Q(–m,0)在A.x轴负半轴上B.x轴正半轴上C.y轴负半轴上D.y轴正半轴上5.不等式组31xx<⎧⎨≥⎩的解集在数轴上表示为A .B .C .D .6.用加减法解方程组323415x yx y-=⎧⎨+=⎩①②时,如果消去y,最简捷的方法是A.①×4–②×3 B.①×4+②×3 C.②×2–①D.②×2+①7.如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°8.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到△DEF,则四边形ABFD 的周长是A.8 B.10 C.12 D.169.在方程(k2–4)x2+(2–3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为A.–2 B.2或–2 C.2 D.以上答案都不对10.为了解全班同学对新闻、体育、动漫和娱乐四类电视节目的喜爱情况,张亮同学调查后绘制了一个扇形统计图(如图),则喜欢体育类节目所对应扇形的圆心角的度数为A.144°B.135°C.150°D.140°11.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于A.50°B.55°C.60°D.65°12.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若(a–3)2,则a+b=__________.14.在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是__________.15.不等式2x–3≤1的正整数解为__________.16.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有__________幅.17.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为__________.18.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为1,那么△ABC的面积为__________.三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)解方程组:2(1)3(1)12123x yx y--+=⎧⎪⎨+=⎪⎩.20.(本小题满分6分)解不等式组3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将它的解集在数轴上表示出来.21.(本小题满分6分)已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F 在OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠DFE=70°,求∠BOC的度数.22.(本小题满分8分)已知数轴上点A,B,C所表示的数分别是–3、+7、x.(1)求线段AB的长;(2)若AC=4,点M是AB的中点,求线段CM的长.23.(本小题满分8分)如图,方格纸每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,点A(1,0),B(5,0),C(3,3),D(1,4).(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D;(2)四边形ABCD的面积是__________;(直接写出结果)(3)把四边形ABCD向左平移6个单位长度,再向下平移1个单位长度得到四边形A′B′C′D′.在图中画出四边形A′B′C′D′,并写出A′B′C′D′的坐标.(注:(1)(3)问的图画在同一坐标系中)24.(本小题满分10分)为了更好地治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.25.(本小题满分10分)某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了__________名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占__________%,选择小组合作学习的占__________%.(4)根据调查结果,估算该校1800名学生中大约有__________人选择小组合作学习模式.26.(本小题满分12分)如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+3|+(a–2b+7)2=0,现同时将点A,B分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点A,B的对应点C,D,连接AC,BD.(1)请直接写出A,B两点的坐标;(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠BOP的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在直接写出点M的坐标;若不存在,试说明理由.27.(本小题满分12分)四边形AOBC中,BC∥OA,OB⊥OA,点E为线段OA延长线上一点,D为线段OB上一动点.(1)如图1,当AD⊥AC时,∠ODA的平分线DP与∠CAE的平分线AF的反向延长线交于点P.①求证:∠ADO=∠CAE;②求∠APD的度数.(2)如图2,当D点在线段OB上运动时,作DM⊥AD交CB于点M,∠BMD的平分线MN与∠DAO的平分线AN交于点N.当点D在运动的过程中,∠N的大小会发生变化吗?如果不变,请写出∠N的值.。
山东省2017-2018学年七年级数学第二学期期末模拟试卷及答案(二)
山东省2017-2018学年七年级数学第二学期期末模拟试卷及答案(二)一、选择题(本题共12小题,共36分)1.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等2.下列说法错误的是()A.两条直线平行,内错角相等B.两条直线相交所成的角是对顶角C.两条直线平行,一组同旁内角的平分线互相垂直D.邻补角的平分线互相垂直3.用代入法解方程组时,代入正确的是()A.x﹣2﹣x=4 B.x﹣2﹣2x=4 C.x﹣2+2x=4 D.x﹣2+x=44.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5D.(a2)3=a65.若m•23=26,则m=()A.2 B.6 C.4 D.86.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)27.(﹣m+2n)2的运算结果是()A.m2+4mn+4n2B.﹣m2﹣4mn+4n2 C.m2﹣4mn+4n2D.m2﹣2mn+4n2 8.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm9.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()A.2 B.3 C.4 D.510.如图,在⊙O中,点A、O、D,点B、O、C以及点E、D、C分别在一条直线上,图中弦的条数为()A.2 B.3 C.4 D.511.下列说法不正确的是()A.若x+y=0,则点P(x,y)一定在第二、四象限角平分线上B.在x轴上的点纵坐标为0C.点P(﹣1,3)到y轴的距离是1D.点A(﹣a2﹣1,|b|)一定在第二象限12.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz二、填空题(本题共6小题,共18分)13.若一个三角形的三个内角之比为4:3:2,则这个三角形的最大内角为度.14.如图,在△ABC中,∠ABC=90°,∠A=55°,BD∥AC,则∠CBD等于°.15.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为.16.计算:﹣5652×0.13+4652×0.13=.17.能够用一种正多边形铺满地面的正多边形是.18.已知点A(1,2),AC∥x轴,AC=5,则点C的坐标是.三、解答题(本题共6小题,共66分)19.(1)计算:(3﹣π)0﹣23+(﹣3)2﹣()﹣1(2)因式分解:①x4﹣16y4②﹣2a3+12a2﹣16a(3)化简求值:(3x+2y)(2x+3y)﹣(x﹣3y)(3x+4y),其中x=2,y=﹣1.20.2016年欧洲杯足球赛正如火如荼的进行着,比赛精彩纷呈,喜欢足球的同学们非常关注欧洲杯的一些信息,欧洲杯的比赛分为小组赛和淘汰赛两个阶段,共分6个小组,24支球队,小组赛采取单循环赛制,每个小组的前两名和四个成绩最好的小组第三名共16支队伍进入淘汰赛阶段,淘汰赛阶段采取单淘汰赛制,那么本届欧洲杯一共有多少场比赛呢?备注:①单循环赛制是指小组内参赛队在竞赛中均能相遇一次,最后按各队在竞赛中的得分多少,胜负场次来排列名次;②单淘汰赛制,是指进入淘汰赛阶段的球队,每两队进行一轮比赛,输者出局(不存在平局的结果),直至只剩两队计入决赛,③相关课本知识,每两队比赛一场,可视为平面上两点之间连接一条线段.21.如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).22.如图,已知AB∥CD,GC⊥CF,∠ABC=65°,CD是∠GCF的角平分线,∠EFC=40°.①AB与EF平行吗?判断并说明理由.②求∠BCG的度数.23.某货运公司现有货物31吨,计划同时租用A型车a辆,B型车b辆,一次运完全部货物,且每辆车均为满载.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.根据以上信息,解下列问题:(1)1辆A型车和1辆B型车都载满货物一次分别运货多少吨?(2)请帮货运公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.24.在A型纸片(边长为a的正方形),B型纸片(边长为b的正方形),C型纸片(长为a,宽为b的长方形)各若干张.(1)取A型纸片1张,B型纸片4张,C型纸片4张,拼成一个大正方形,画出示意图,你能得到反映整式乘法运算过程的等式吗?(2)分别取A型、B型、C型纸片若干张,拼成一个正方形,使所拼正方形的面积为4a2+4ab+b2,画出示意图,你能得到反映因式分解过程的等式吗?(3)用这3种纸片,每种各10张,从其中取出若干张卡片,每种至少取1张,把取出的纸片拼成一个正方形,请问一共能拼出多少种不同大小的正方形?简述理由.参考答案与试题解析一、选择题(本题共12小题,共36分)1.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等【考点】垂线;对顶角、邻补角.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故选:A.2.下列说法错误的是()A.两条直线平行,内错角相等B.两条直线相交所成的角是对顶角C.两条直线平行,一组同旁内角的平分线互相垂直D.邻补角的平分线互相垂直【考点】平行线的性质;对顶角、邻补角.【分析】根据平行线的性质可得A正确;根据相交直线所构成的角的关系可得B 错误;根据同旁内角和邻补角都互补可得C、D说法正确.【解答】解:A、两条直线平行,内错角相等,说法正确,故此选项不合题意;B、两条直线相交所成的角是对顶角,说法错误,还有邻补角,故此选项符合题意;C、两条直线平行,一组同旁内角的平分线互相垂直,说法正确,故此选项不合题意;D、邻补角的平分线互相垂直,说法正确,故此选项不合题意;故选:B.3.用代入法解方程组时,代入正确的是()A.x﹣2﹣x=4 B.x﹣2﹣2x=4 C.x﹣2+2x=4 D.x﹣2+x=4【考点】解二元一次方程组.【分析】将①代入②整理即可得出答案.【解答】解:,把①代入②得,x﹣2(1﹣x)=4,去括号得,x﹣2+2x=4.故选C.4.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5D.(a2)3=a6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法,可判断A,根据完全平方公式,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、和的平方等于平方和加积的二倍,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.5.若m•23=26,则m=()A.2 B.6 C.4 D.8【考点】同底数幂的乘法.【分析】结合同底数幂的乘法的概念与运算法则求解即可.【解答】解:∵m•23=26,∴m=26÷23=23=8.故选D.6.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)2【考点】因式分解的意义.【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A、是多项式乘法,不是因式分解,错误;B、左边是单项式,不是因式分解,错误;C、右边不是积的形式,错误;D、是因式分解,正确.故选D.7.(﹣m+2n)2的运算结果是()A.m2+4mn+4n2B.﹣m2﹣4mn+4n2 C.m2﹣4mn+4n2D.m2﹣2mn+4n2【考点】完全平方公式.【分析】直接利用和的完全平方公式进行计算即可.【解答】解:(﹣m+2n)2=m2﹣4mn+4n2;故选C.8.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能组成三角形;D、3+2<6,不能够组成三角形.故选B.9.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()A.2 B.3 C.4 D.5【考点】圆的认识.【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【解答】解:①根据半圆也是弧,故此选项错误,符合题意;②由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,故此选项正确,不符合题意;③过圆心的线段是直径,根据圆的直径的含义可知:通过圆心的线段,因为两端不一定在圆上,所以不一定是这个圆的直径,故此选项错误,符合题意;④长度相等的弧是等弧,因为等弧就是能够重合的两个弧,而长度相等的弧不一定是等弧,所以等弧一定是同圆或等圆中的弧,故此选项错误,符合题意;故选:C.10.如图,在⊙O中,点A、O、D,点B、O、C以及点E、D、C分别在一条直线上,图中弦的条数为()A.2 B.3 C.4 D.5【考点】圆的认识.【分析】根据弦的定义进行分析,从而得到答案.【解答】解:图中的弦有AB,BC,CE共三条,故选B.11.下列说法不正确的是()A.若x+y=0,则点P(x,y)一定在第二、四象限角平分线上B.在x轴上的点纵坐标为0C.点P(﹣1,3)到y轴的距离是1D.点A(﹣a2﹣1,|b|)一定在第二象限【考点】点的坐标.【分析】根据各象限角平分线上点的坐标特征,坐标轴上点的坐标特征以及点到y轴的距离等于横坐标的长度对各选项分析判断即可得解.【解答】解:A、若x+y=0,则x、y互为相反数,点P(x,y)一定在第二、四象限角平分线上,正确,故本选项错误;B、在x轴上的点纵坐标为0,正确,故本选项错误;C、点P(﹣1,3)到y轴的距离是1,正确,故本选项错误;D、当b=0时,点点A(﹣a2﹣1,|b|)在x轴负半轴,当b≠0时,点A(﹣a2﹣1,|b|)在第二象限,故本选项正确.故选D.12.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz【考点】完全平方公式的几何背景.【分析】根据大长方形的面积=3个正方形的面积+6个小长方形的面积,即可解答.【解答】解:根据题意得:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz,故选:C.二、填空题(本题共6小题,共18分)13.若一个三角形的三个内角之比为4:3:2,则这个三角形的最大内角为80度.【考点】三角形内角和定理.【分析】根据三角形的内角和是180°,再根据三角形的三个内角之比为4:3:2即可求出.【解答】解:180°×=80°.故填80.14.如图,在△ABC中,∠ABC=90°,∠A=55°,BD∥AC,则∠CBD等于35°.【考点】平行线的性质.【分析】由BD∥AC,结合平行线的性质可得出∠C=∠CBD,再由三角形内角和为180°,可算出∠C的度数,由此即可得出结论.【解答】解:∵BD∥AC,∴∠C=∠CBD.在△ABC中,∠ABC=90°,∠A=55°,∴∠C=35°,∴∠CBD=35°.故答案为:35.15.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.16.计算:﹣5652×0.13+4652×0.13=﹣130.【考点】因式分解-提公因式法.【分析】根据提公因式法可以解答本题.【解答】解:﹣5652×0.13+4652×0.13=(﹣5652+4652)×0.13=﹣1000×0.13=﹣130,故答案为:﹣130.17.能够用一种正多边形铺满地面的正多边形是正三角形,正方形,正六边形.【考点】平面镶嵌(密铺).【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【解答】解:正三角形的每个内角是60°,能整除360°,能密铺;正方形的每个内角是90°,4个能密铺;正六边形的每个内角是120°,能整除360°,能密铺.故答案为:正三角形,正方形,正六边形.18.已知点A(1,2),AC∥x轴,AC=5,则点C的坐标是(6,2)或(﹣4,2).【考点】点的坐标.【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C 在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.【解答】解:∵点A(1,2),AC∥x轴,∴点C的纵坐标为2,∵AC=5,∴点C在点A的左边时横坐标为1﹣5=﹣4,此时,点C的坐标为(﹣4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(﹣4,2).故答案为:(6,2)或(﹣4,2).三、解答题(本题共6小题,共66分)19.(1)计算:(3﹣π)0﹣23+(﹣3)2﹣()﹣1(2)因式分解:①x4﹣16y4②﹣2a3+12a2﹣16a(3)化简求值:(3x+2y)(2x+3y)﹣(x﹣3y)(3x+4y),其中x=2,y=﹣1.【考点】整式的混合运算—化简求值;提公因式法与公式法的综合运用;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)①原式利用平方差公式分解即可;②原式提取公因式,再利用十字相乘法分解即可;(3)原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=1﹣8+9﹣2=0;(2)①原式=(x+2y)(x﹣2y)(x+4y2);②原式=﹣2a(a﹣4)(a﹣2);(3)原式=6x2+13xy+6y2﹣3x2﹣4xy+9xy+12y2=3x2+18xy+18y2,当x=2,y=﹣1时,原式=18.20.2016年欧洲杯足球赛正如火如荼的进行着,比赛精彩纷呈,喜欢足球的同学们非常关注欧洲杯的一些信息,欧洲杯的比赛分为小组赛和淘汰赛两个阶段,共分6个小组,24支球队,小组赛采取单循环赛制,每个小组的前两名和四个成绩最好的小组第三名共16支队伍进入淘汰赛阶段,淘汰赛阶段采取单淘汰赛制,那么本届欧洲杯一共有多少场比赛呢?备注:①单循环赛制是指小组内参赛队在竞赛中均能相遇一次,最后按各队在竞赛中的得分多少,胜负场次来排列名次;②单淘汰赛制,是指进入淘汰赛阶段的球队,每两队进行一轮比赛,输者出局(不存在平局的结果),直至只剩两队计入决赛,③相关课本知识,每两队比赛一场,可视为平面上两点之间连接一条线段.【考点】应用类问题;一元二次方程的应用.【分析】先计算每组的球队数是4支,一共有6组,所以小组赛为:6×=36场;再计算单淘汰赛场数:一共有16个队,先进行决赛是8场,再进行决赛是4场,半决赛是2场,决赛是1场,最后相加可得结果.【解答】解:由题意知:每小组球队:24÷6=4(支),每小组内比赛场次:=6场,所有小组赛场次:6×6=36场,淘汰赛:16×=8场(决赛),8×=4场(决赛),4×=2场(半决赛),2×=1场(决赛),淘汰赛场次8+4+2+1=15场,36+15=51场,答:本届欧洲杯一共有51场比赛.21.如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).【考点】坐标与图形性质.【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据三角形面积公式计算可得.【解答】解:(1)如图所示:(2)△AEC取EC为底,则EC为6,EC边上高AC=4=×6×4=12.所以S△AEC22.如图,已知AB∥CD,GC⊥CF,∠ABC=65°,CD是∠GCF的角平分线,∠EFC=40°.①AB与EF平行吗?判断并说明理由.②求∠BCG的度数.【考点】平行线的判定与性质;垂线.【分析】①延长BC交EF于点M,根据平行线的性质和三角形的内角和即可得到结论;②利用平行线的性质得出∠ABC=∠BCD=60°,∠DCF=∠EFC=45°,进而结合垂线的性质求出答案.【解答】解:①AB与EF不平行,理由:延长BC交EF于点M,∵AB∥CD,∴∠BCD=∠B=65°,∵GC⊥CF,∴∠GCF=90°,∵CD是∠GCF的角平分线,∴∠GCD=45°,∴∠BDG=20°,∴∠MCF=70°,∵∠F=40°,∴∠CMF=70°,∴∠ABC≠∠CMF∴AB与EF不平行;②∵AB∥CD,∴∠BCD=∠ABC=65°,∴∠BCG=∠BCD﹣∠GCD=65°﹣45°=20°.23.某货运公司现有货物31吨,计划同时租用A型车a辆,B型车b辆,一次运完全部货物,且每辆车均为满载.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.根据以上信息,解下列问题:(1)1辆A型车和1辆B型车都载满货物一次分别运货多少吨?(2)请帮货运公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】(1)解:设A型车1辆运x吨,B型车1辆运y吨,由题意得解之得所以1辆A型车满载为3吨,1辆B型车满载为4吨.(2)3a+4b=31吨a=因a,b只能取整数,共三种方案(3)9×100+1×120=10205×100+4×120=9801×100+120×7=940所以最省钱方案为A型车1辆,B型车7辆,租车费用940元.24.在A型纸片(边长为a的正方形),B型纸片(边长为b的正方形),C型纸片(长为a,宽为b的长方形)各若干张.(1)取A型纸片1张,B型纸片4张,C型纸片4张,拼成一个大正方形,画出示意图,你能得到反映整式乘法运算过程的等式吗?(2)分别取A型、B型、C型纸片若干张,拼成一个正方形,使所拼正方形的面积为4a2+4ab+b2,画出示意图,你能得到反映因式分解过程的等式吗?(3)用这3种纸片,每种各10张,从其中取出若干张卡片,每种至少取1张,把取出的纸片拼成一个正方形,请问一共能拼出多少种不同大小的正方形?简述理由.【考点】完全平方公式的几何背景;因式分解的意义.【分析】(1)如图所示,根据边长和面积写出等式即可;(2)如图所示,根据面积的等式画出图形,并根据边长分解因式;(3)有五种不同大小的正方形,如图所示.【解答】解:(1)如图得:(a+2b)(a+2b)=a2+4ab+4b2;(2)如图,得:4a2+4ab+b2=(2a+b)2;(3)(a+b)2=a2+2ab+b2(a+2b)2=a2+4ab+4b2(2a+b)2=4a2+4ab+b2(3a+b)2=9a2+6ab+b2(a+3b)2=a2+6ab+9b2(3a+2b)2=9a2+12ab+4b2(不合题意)所以可以拼出5种不同大小的正方形.。
(14份试卷合集)青岛市2017-2018学年数学七下期末试卷汇总word可编辑
七年级下学期期末数学试题含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、单项选择题(共10个小题,每小题3分,满分30分)1.在实数﹣2,0,,3中,无理数是()A.﹣2 B.0 C.D.32.点P(﹣5,5)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,直线a,b被直线c所截,且a∥b,若∠1=55°,则∠2的度数为()A.145°B.125°C.55° D.45°4.立方根等于2的数是()A.±8 B.8 C.﹣8 D.5.为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是()A.2000名学生B.2000 C.200名学生D.2006.下列命题是真命题的是()A.对顶角相等B.内错角相等C.相等的角是对顶角 D.相等的角是内错角7.已知a>b,则下列结论中正确的是()A.a+2<b+2 B.a﹣2<b﹣2 C.﹣2a<﹣2b D.8.某学校需要了解全校学生眼睛近视的情况,下面抽取样本的方式比较合适的是()A.从全校每个班级中随机抽取10名学生作调查B.从九年级随机抽取一个班级的学生作调查C.从全校的女同学中随机抽取50名学生作调查D.在学校篮球场上随机抽取10名学生作调查9.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离为()A.7 B.6 C.4 D.310.已知,y满足方程程组,则﹣y的值为()A.0 B.1 C.2 D.8二、填空题(共6个小题,每小题4分,满分24分)11.如图,直线AB,CD相交于点O,OE⊥AB于点O,若∠EOC=60°,则∠BOD度数是.12.如果2=a,那么叫做a的平方根.由此可知,4的平方根是.13.若是方程y=2+b的解,则b的值为.14.不等式2(+1)<6的解集为.15.在平面直角坐标系中,正方形ABCD的三个顶点坐标分别为A(﹣2,2),B(﹣2,﹣2),C(2,﹣2),则第四个顶点D的坐标为.16.在学校“传统文化”考核中,一个班50名学生中有40人达到优秀,在扇形统计图中,代表优秀人数的扇形的圆心角的度数等于度.三、解答题(一)(共3个小题,每小题6分,满分18分17.(6分)如图,将数轴上标有字母的各点与下列实数对应起来,请在答题卡上填写对应的实数:﹣,π,0,,2,﹣.18.(6分)解方程组:.19.(6分)根据下列语句列不等式并求出解集:与4的和不小于6与的差.四、解答题(二)(共3个小题,每小题7分,满分21分20.(7分)如图,平面直角坐标系中有一个四边形ABCD.(1)分别写出点A,B,C,D的坐标;(2)求四边形ABCD的面积;(3)将四边形ABCD先向下平移3个单位长度,再向右平移4个单位长度后得到的四边形A1B1C1D1,画出四边形A1B1C1D121.(7分)解不等式组:.22.(7分)如图,AB∥CD,AE平分∠BAC,CF平分∠ACD.求证:AE∥CF.五、解答题(三)(共3个小、题,每小题9分,满分27分)23.(9分)体育委员统计了全班学生“1分钟跳绳”的次数,绘制成如下两幅统计图:根据这两幅统计图的信息完成下列问题(1)这个班共有学生多少人?并补全频数分布直方图;(2)如果将“1分钟跳绳”的次数大于或等于180个定为优秀,请你求出这个班“1分钟跳绳”的次数达到优秀的百分率.24.(9分)某校组织七年级全体师生乘旅游客车前往广州开展研学旅行活动.旅游客车有大小两种,2辆大客车与3辆小客车全部坐满可乘载195人,4辆大客车与2辆小客车全部坐满可乘载250人,全体师生刚好坐满12辆大客车与10辆小客车,问该校七年级师生共有多少人?25.(9分)如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.参考答案一、单项选择题(共10个小题,每小题3分,满分30分)1-5:CBCBD 6-10:ACADB二、填空题(共6个小题,每小题4分,满分24分)11.30°.12.±2 .13. 1 .14.<2 .15.(2,2).16.288 度.三、解答题(一)(共3个小题,每小题6分,满分18分17.解:A点表示﹣,B点表示﹣,O点表示0,C点表示,D点表示2,E点表示π.18.(解:,①×2+②,得:7=14,解得:=2,将=2代入②,得:6+2y=12,解得:y=3,所以方程组的解为.19.解:根据题意可得:+4≥6﹣,解得:≥1.四、解答题(二)(共3个小题,每小题7分,满分21分20.解:(1)A(﹣2,4),B(﹣4,0),C(﹣2,﹣1),D(0,1);(2)S四边形ABCD=S△ACB+S△ACD=×5×4=10,(3)四边形A1B1C1D1如图所示.21.解:解不等式2+1≥﹣1,得:≥﹣2,解不等式<3﹣,得:<2,∴不等式组的解集为﹣2≤<2.22.证明:∵AE平分∠BAC,∴∠EAC=∠BAC,∵CF平分∠ACD,∴∠ACF=∠ACD,∵AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACF,∴AE∥CF.五、解答题(三)(共3个小、题,每小题9分,满分27分)23.解:(1)该班共有学生12÷24%=50人,则C组的人数为50×60%=30人,补全图形如下:(2)这个班“1分钟跳绳”的次数达到优秀的百分率为×100%=66%.24.解:设1辆大客车乘载人,1辆小客车乘载y人,根据题意列出方程组得:,解得12×45+10×35=890(人).答:该校七年级师生共有890人.25.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.七年级下学期期末数学试题含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
【新课标-精品卷】2017-2018学年最新山东省初中七年级下期末数学试卷(有答案)
2017-2018学年山东省七年级(下)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.“任意买一张电影票,座位号是奇数”,此事件是( )A.不可能事件B.不确定事件C.必然事件 D.确定事件2.下列各式中,不能用平方差公式计算的是( )A.(4x﹣3y)(﹣3y﹣4x) B.(2x2﹣y2)(2x2+y2)C.(a+b﹣c)(﹣c﹣b+a) D.(﹣x+y)(x﹣y)3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°4.有下列长度的三条线段,能组成三角形的一组是( )A.5cm、3cm、4cm B.1cm、1cm、2cm C.1cm、2cm、3cm D.6cm、10cm、3cm5.已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是( )A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E6.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到( )A.B.C.D.7.如图,在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品价格的概率( )A.B.C.D.8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有( )A.①② B.③④ C.①②③D.①②③④二、填空题(本题满分24分,共有8道小题,每小题3分)9.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到__________球的可能性最小.10.根据图示的程序计算函数值,若输入的x的值为,则输出的结果为__________.11.如图,在△ABC中,∠B=63°,∠C=47°,AD和AE分别是它的高和角平分线,则∠DAE=__________°.12.如图,转动的转盘停止转动后,指针指向黑色区域的概率是__________.13.在一个不够透明的盒子里,放有x个除颜色外其他完全相同的小球,期中有8个黄颜色的小球.每次摸球前将盒子里的小球摇匀,任意摸出一个小球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在20%,那么可以推算出x=__________.14.如图,∠B=∠E=90°,AB=a,DE=b,AC=CD,∠D=60°,∠A=30°,则BE=__________.15.点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CGE=__________.16.自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷阱”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数R=__________.三、作图题(本题满分6分,共2个小题,(1)小题4分,(2)小题2分)17.(1)已知:如图1,线段a,b和∠α.求作:△ABC,使AB=a,AC=b,∠BAC=∠α.(用圆规、直尺作图,不写作法,但要保留作图痕迹.)(2)如图2,由4×4个相同的小正方形拼成的正方形网格,先将期中两个小正方形涂黑(如图2).请你用两种不同的方法分别在图中再将两个空白的小正方形涂黑,使4×4正方形网格成为轴对称图形.四、解答题(本题满分66分)18.计算(1)(﹣1)2014+﹣(3.14﹣π)0;(2)(8a4b3c)÷3a2b3•;(3)先化简再求值:﹣(3a3b﹣2ab3)÷(﹣ab)﹣(﹣a﹣2b)(﹣a+2b)﹣(﹣2a)2,其中a=﹣2,b=1.19.如图,已知∠EFD=∠BCA,BC=EF,AF=DC,则AB=DE.请通过完成以下填空的形式说明理由.证明:∵AF=DC(已知)∴AF+__________=DC+__________(等式的性质)即__________=__________在△ABC和△DEF中BC=EF(已知)∠__________=∠__________(已知)__________=__________(已证)∴__________≌__________ (SAS)∴__________=__________ (全等三角形的对应边相等)20.本商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区域的机会相等).(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?(3)丙顾客消费120元,获得五折待遇的概率是多少?21.如图,有一条两岸平行的河流,一数学实践活动小组在无法涉水过河情况下,成功测得河的宽度,他们的做法如下:①正对河流对岸的一颗树A,在河的一岸选定一点B;②沿河岸直走15步恰好到达一树C处,继续前行15步到达D处;③自D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处时,停止行走;④测得DE的长就是河宽.请你运用所学知识说明他们做法是正确的.22.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.23.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.(1)BE=AD吗?请说明理由;(2)若∠ACB=40°,求∠DBE的度数.24.阅读理解基本性质:三角形中线等分三角形的面积.如图,AD是△ABC边BC上的中线,则S△ABD =S△ACD=S△ABC理由:∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=BD×AH;S△ACD=CD×AH∴S△ABD =S△ACD=S△ABC∴三角形中线等分三角形的面积基本应用:(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.则S△ACD 与S△ABC的数量关系为:__________;(2)如图2,延长△ABC的边BC到点D,使CD=BC,延长△ABC的边CA到点E,使AE=AC,连接DE.则S△ACD与S△ABC的数量关系为:__________(请说明理由);(3)在图2的基础上延长AB到点F,使FB=AB,连接FD,FE,得到△DEF(如图3).则S△EFD 与S△ABC的数量关系为:__________;拓展应用:如图4,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,且△ABC的面积为18cm2,则△BEF的面积为__________cm2.25.如图(1)B地在A地的正东方向,某一时刻,乙车从B地开往A地,1小时后,甲车从A地开往B地,当甲车到达B地的同时乙车也到达A地.如图(2),横轴x(小时)表示行驶时间(从乙车出发的时刻开始计时),纵轴y(千米)表示两车与A地的距离.请根据图象信息解答下列问题:(1)求A,B两地的距离;(2)求甲、乙两车的速度;(3)求乙车出发多长时间与甲车相遇.七年级(下)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.“任意买一张电影票,座位号是奇数”,此事件是( )A.不可能事件B.不确定事件C.必然事件 D.确定事件【考点】随机事件.【分析】根据随机事件的定义进行解答即可.【解答】解:∵任意买一张电影票,座位号不是奇数就是偶数,∴任意买一张电影票,座位号是奇数,此事件是不确定事件.故选B.【点评】本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解答此题的关键.2.下列各式中,不能用平方差公式计算的是( )A.(4x﹣3y)(﹣3y﹣4x) B.(2x2﹣y2)(2x2+y2)C.(a+b﹣c)(﹣c﹣b+a) D.(﹣x+y)(x﹣y)【考点】平方差公式.【分析】根据平方差公式的定义进行分析解答即可,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.【解答】解:A、原式=(﹣3y+4x)(﹣3y﹣4x),可以运用平方差公式,故本选项错误;B、符合两个数的和与这两个数差的积的形式,可以运用平方差公式,故本选项错误;C、可以把﹣c+a看做一个整体,故原式=(﹣c+a+b)(﹣c+a﹣b),可以运用平方差公式,故本选项错误;D、不能整理为两个数的和与这两个数差的积的形式,所以不可以运用平方差公式,故本选项正确.故选D.【点评】本题主要考查平方差公式的定义,关键在于逐项分析,找到不符合平方差公式定义的选项.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.4.有下列长度的三条线段,能组成三角形的一组是( )A.5cm、3cm、4cm B.1cm、1cm、2cm C.1cm、2cm、3cm D.6cm、10cm、3cm【考点】三角形三边关系.【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、3+4>5,能构成三角形,故此选项正确;B、1+1=2,不能构成三角形,故此选项错误;C、1+2=3,不能构成三角形,故此选项错误;D、6+3<10,不能构成三角形,故此选项错误.故选A.【点评】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是( )A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E【考点】全等三角形的判定.【分析】求出∠BAC=∠DAE,再根据全等三角形的判定定理逐个判断即可.【解答】解:∵∠1=∠2,∵∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,A、符合SAS定理,即能推出△ABC≌△ADE,故本选项错误;B、符合ASA定理,即能推出△ABC≌△ADE,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABC≌△ADE,故本选项正确;D、符合AAS定理,即能推出△ABC≌△ADE,故本选项错误;故选C.【点评】本题考查了全等三角形的判定定理的应用,能熟练地掌握全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.6.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到( )A.B.C.D.【考点】生活中的轴对称现象.【分析】认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C是符合要求的.【解答】解:观察选项可得:只有C是轴对称图形.故选:C.【点评】本题考查轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴,仔细观察图形是正确解答本题的关键.7.如图,在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品价格的概率( )A.B.C.D.【考点】概率公式.【分析】首先由题意可得:共有6种等可能的结果,他猜中该商品价格的只有1种情况,再利用概率公式求解即可求得答案.【解答】解:∵共有6种等可能的结果,他猜中该商品价格的只有1种情况,∴他猜中该商品价格的概率为:.故选B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有( )A.①② B.③④ C.①②③D.①②③④【考点】多项式乘多项式.【专题】计算题.【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.二、填空题(本题满分24分,共有8道小题,每小题3分)9.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到白球的可能性最小.【考点】可能性的大小.【分析】分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性最小.【解答】解:因为袋中装有6个红球,5个黄球,3个白球,共有14个球,①为红球的概率是=;②为黄球的概率是;③为白球的概率是;所以摸出白球的可能性最小.故答案为:白.【点评】本题主要考查可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.10.根据图示的程序计算函数值,若输入的x的值为,则输出的结果为.【考点】函数值.【专题】计算题.【分析】首先对输入的x的值作出判断,1<≤2,然后将该x的值代入相应的函数解析式即可求出答案.【解答】解:因为x=,所以1<x≤2,所以y=﹣+2=.【点评】本题主要考查了分段函数的知识,解决问题时需先将自变量的值做一个判断,再求出相应的函数值,11.如图,在△ABC中,∠B=63°,∠C=47°,AD和AE分别是它的高和角平分线,则∠DA E=8°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE﹣∠BAD计算即可得解.【解答】解:∵∠B=63°,∠C=47°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣63°﹣47°=70°,∵AE是三角形的平分线,∴∠BAE=∠BAC=×70°=35°,∵AD是三角形的高,∴∠BAD=90°﹣∠B=90°﹣63°=27°,∴∠DAE=∠BAE﹣∠BAD=35°﹣27°=8°.故答案为:8.【点评】本题考查了三角形的内角和定理,三角形的角平分线的定义,高线的定义,是基础题,熟记定理与概念并准确识图,理清图中各角度之间的关系是解题的关键.12.如图,转动的转盘停止转动后,指针指向黑色区域的概率是.【考点】几何概率.【专题】计算题.【分析】设圆的半径为R,根据圆的面积公式和扇形的面积公式得到圆的面积=πR2,黑色区域的面积==πR2,然后用黑色区域的面积比圆的面积即可得到针指向黑色区域的概率.【解答】解:设圆的半径为R,∴圆的面积=πR2,黑色区域的面积==πR2,∴转动的转盘停止转动后,指针指向黑色区域的概率==.故答案为.【点评】本题考查了几何概率的求法:先求出整个图形的面积n,再计算某事件所占有的面积m,则这个事件的概率=.也考查了扇形的面积公式.13.在一个不够透明的盒子里,放有x个除颜色外其他完全相同的小球,期中有8个黄颜色的小球.每次摸球前将盒子里的小球摇匀,任意摸出一个小球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在20%,那么可以推算出x=40.【考点】利用频率估计概率.【分析】利用频率估计概率得到摸到黄球的概率为20%,然后根据概率公式计算x的值即可.【解答】解:根据题意得=20%,解得x=40,所以这个不透明的盒子里大约有40个除颜色外其他完全相同的小球.故答案为40.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14.如图,∠B=∠E=90°,AB=a ,DE=b ,AC=CD ,∠D=60°,∠A=30°,则BE=a+b .【考点】全等三角形的判定与性质.【分析】由直角三角形的性质求出∠DCE=∠A,由AAS 证明△ABC≌△CED,得出对应边相等BC=DE=b ,CE=AB=a ,即可得出结果.【解答】解:∵∠E=90°,∠D=60°,∴∠DCE=90°﹣60°=30°=∠A,在△ABC 和△CED 中,,∴△ABC≌△CED(AAS ),∴BC =DE=b ,CE=AB=a ,∴BE=BC+CE=a+b.故答案为:a+b .【点评】本题考查了全等三角形的判定与性质、直角三角形的性质;证明三角形全等得出对应边相等是解决问题的关键.15.点D 、E 分别在等边△ABC 的边AB 、BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于点F 、G .若∠ADF=80°,则∠CGE=80°.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【专题】操作型;数形结合.【分析】由对顶角相等可得∠CGE=∠FGB 1,由两角对应相等可得△ADF∽△B 1GF ,那么所求角等于∠ADF 的度数.【解答】解:由翻折可得∠B 1=∠B=60°,∴∠A=∠B=60°,1∵∠AFD=∠GFB,1∴△ADF∽△BGF,1GF,∴∠ADF=∠B1,∵∠CGE=∠FGB1∴∠CGE=∠ADF=80°.故答案为:80°【点评】本题考查了翻折变换问题;得到所求角与所给角的度数的关系是解决本题的关键.16.自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷阱”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数R=13.【考点】规律型:数字的变化类.【专题】规律型.【分析】根据题意列出式子可知计算方法是:如自然数12,则3(1+2)+1=10,3(1+0)+1=4,3(4+0)+1=13,3(1+3)+1=13…所以这个固定不变的数R=13.【解答】解:随便写出一个自然数,按照题中的做法可知,这个固定不变的数R=13.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.三、作图题(本题满分6分,共2个小题,(1)小题4分,(2)小题2分)17.(1)已知:如图1,线段a,b和∠α.求作:△ABC,使AB=a,AC=b,∠BAC=∠α.(用圆规、直尺作图,不写作法,但要保留作图痕迹.)(2)如图2,由4×4个相同的小正方形拼成的正方形网格,先将期中两个小正方形涂黑(如图2).请你用两种不同的方法分别在图中再将两个空白的小正方形涂黑,使4×4正方形网格成为轴对称图形.【考点】利用轴对称设计图案;作图—复杂作图.【分析】(1)以∠α的顶点为原点A,以A为圆心,以线段a的长为半径画圆,交∠α的一边为B,以点A 为圆心,线段b的长为半径画圆,交∠α的另一边为C,连接BC,则△ABC即为所求;(2)根据轴对称的性质画出图形即可.【解答】解:(1)如图1所示;;(2)如图2所示..【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.四、解答题(本题满分66分)18.计算(1)(﹣1)2014+﹣(3.14﹣π)0;(2)(8a4b3c)÷3a2b3•;(3)先化简再求值:﹣(3a3b﹣2ab3)÷(﹣ab)﹣(﹣a﹣2b)(﹣a+2b)﹣(﹣2a)2,其中a=﹣2,b=1.【考点】整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)根据有理数的乘方法则、零指数幂、负整数指数幂的运算法则计算即可;(2)根据单项式的混合运算法则以及积的乘方法则计算;(3)根据多项式除单项式、乘法公式以及合并同类项的法则进行化简,代入计算即可.【解答】解:(1)(﹣1)2014+﹣(3.14﹣π)0=1+4﹣1=4;(2)(8a4b3c)÷3a2b3•=a2c•a6b2=a8b2c;(3)﹣(3a3b﹣2ab3)÷(﹣ab)﹣(﹣a﹣2b)(﹣a+2b)﹣(﹣2a)2=3a2﹣2b2﹣a2+4b2﹣4a2=2b2﹣2a2,其当a=﹣2,b=1时,原式=2×4﹣2×1=6.【点评】本题考查的是整式的混合运算,掌握零指数幂、负整数指数幂的运算法则是解题的关键,注意化简求值时,要把整式化为最简.19.如图,已知∠EFD=∠BCA,BC=EF,AF=DC,则AB=DE.请通过完成以下填空的形式说明理由.证明:∵AF=DC(已知)∴AF+FC=DC+FC(等式的性质)即AC=DF在△ABC和△DEF中BC=EF(已知)∠BCA=∠EFD(已知)AC=DF(已证)∴△ABC≌△DEF(SAS)∴AB=DE (全等三角形的对应边相等)【考点】全等三角形的判定与性质.【专题】推理填空题.【分析】先求出AC=DF,由SAS证明△ABC≌△≌DEF,得出对应边相等即可.【解答】解:∵AF=DC(已知),∴AF+FC=DC+FC(等式的性质)即 AC=DF,在△ABC和△DEF中,,∴△ABC≌△≌DEF(SAS),∴AB=DE(全等三角形的对应边相等);故答案为:FC,FC;AC,DF;BCA,EFD;AC,DF;△ABC,△DEF;AB,DE.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,由三角形全等得出对应边相等是解决问题的关键.20.本商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区域的机会相等).(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?(3)丙顾客消费120元,获得五折待遇的概率是多少?【考点】概率公式.【分析】(1)由顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,即可得甲顾客消费80元,不能获得转动转盘的机会;(2)由共有8种等可能的结果,获得打折待遇的有5种情况,直接利用概率公式求解即可求得答案;(3)由共有8种等可能的结果,获得五折待遇的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:(1)∵顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,∴甲顾客消费80元,不能获得转动转盘的机会;(2)∵共有8种等可能的结果,获得打折待遇的有5种情况,∴乙顾客消费150元,获得打折待遇的概率是:;(3)∵共有8种等可能的结果,获得五折待遇的有2种情况,∴获得五折待遇的概率是:=.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,有一条两岸平行的河流,一数学实践活动小组在无法涉水过河情况下,成功测得河的宽度,他们的做法如下:①正对河流对岸的一颗树A,在河的一岸选定一点B;②沿河岸直走15步恰好到达一树C处,继续前行15步到达D处;③自D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处时,停止行走;④测得DE的长就是河宽.请你运用所学知识说明他们做法是正确的.【考点】全等三角形的判定与性质.【专题】应用题.【分析】根据AB⊥BD,ED⊥BD可知∠ABC=∠EDC,再由BC=DC,∠ACB=∠ECD可得出△ABC≌△EDC,由全等三角形的性质即可得出结论.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABC=∠EDC=90°.在△ABC与△EDC中,,∴△ABC≌△EDC(ASA),∴DE=AB,即测得DE的长就是河宽.【点评】本题考查的是全等三角形的判定与性质,熟知全等三角形的对应边相等是解答此题的关键.22.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.【考点】函数关系式;函数的表示方法.【分析】(1)利用梯形面积公式得出y与x之间的关系;(2)结合关系式列表计算得出相关数据;(3)利用(1)中关系式,进而得出x每增加1时,y的变化.【解答】解:(1)∵梯形ABCD上底的长是4,下底的长是x,高是6,∴梯形ABCD的面积y与下底长x之间的关系式为:y=(4+x)×6=12﹣3x;(2)理由:y1=12﹣3x,y2=12﹣3(x+1)=12﹣3x﹣3=9﹣3x,y 2﹣y1=9﹣3x﹣(12﹣3x)=﹣3,及x每增加1时,y减小3.【点评】此题主要考查了函数关系式以及函数的变化,正确得出函数关系式是解题关键.23.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.(1)BE=AD吗?请说明理由;(2)若∠ACB=40°,求∠DBE的度数.【考点】全等三角形的判定与性质.【分析】(1)求出∠BCE=∠ACD,根据SAS证出△BCE≌△ACD,得出对应边相等即可;(2)由等腰三角形的性质和三角形内角和定理求出∠A=∠ABC=70°,由△BCE≌△ACD,得出对应角相等∠EBC=∠A=70°,再由三角形的外角性质得出∠DBE=∠ACB=40°即可.【解答】(1)解:BE=AD;理由如下:∵∠ECD=∠BCA,∴∠ECD+∠BCD=∠BCA+∠BCD,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD.(2)解:∵CB=CA,∠ACB=40°,∴∠A=∠ABC=70°,由(1)得:△BCE≌△ACD,∴∠EBC=∠A=70°,∵∠DBC=∠DBE+∠EBC=∠ACB+∠ACB,∴∠DBE=∠ACB=40°.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外角性质;证明三角形全等是解决问题的关键.24.阅读理解基本性质:三角形中线等分三角形的面积.如图,AD是△ABC边BC上的中线,则S△ABD =S△ACD=S△ABC理由:∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=BD×AH;S△ACD=CD×AH∴S△ABD =S△ACD=S△ABC∴三角形中线等分三角形的面积基本应用:(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.则S△ACD 与S△ABC的数量关系为:S△ABC=S△ACD;(2)如图2,延长△ABC的边BC到点D,使CD=BC,延长△ABC的边CA到点E,使AE=AC,连接DE.则S△ACD与S△ABC 的数量关系为:S△CDE=2S△ABC(请说明理由);(3)在图2的基础上延长AB到点F,使FB=AB,连接FD,FE,得到△DEF(如图3).则S△EFD 与S△ABC的数量关系为:S△EFD =7S△ABC;拓展应用:如图4,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,且△ABC的面积为18cm2,则△BEF的面积为4.5cm2.【考点】面积及等积变换.【分析】(1)由△ABC 与△ACD 中BC=CD ,由三角形中线等分三角形的面积即可结果;(2)连接AD ,由CD=BC ,由三角形中线等分三角形的面积,同理可得△AED 与△ADC 面积相等,而△CDE 面积等于两三角形面积之和,即可得出结果;(3)连接AD ,EB ,FC ,根据第二问的思路,同理可得阴影部分的面积等于6倍的△ABC 面积,即可得出结果;拓展应用:点E 是线段AD 的中点,由三角形中线等分三角形的面积,求得S △BCE =S △ABC ,由点F 是线段CE 的中点,根据三角形中线等分三角形的面积,求得S △BEF =S △BCF =S △BCE ,即可求出△BEF 的面积.【解答】解:(1)∵BC=CD,三角形中线等分三角形的面积,∴S △ABC =S △ACD ;故答案为:S △A BC =S △ACD ;(2)连接AD ,如图1所示:∵BC=CD,三角形中线等分三角形的面积,∴S △ABC =S △ADC ,同理S △ADE =S △ADC ,∴S △CDE =2S △ABC ;故答案为:S △CDE =2S △ABC ;(3)连接AD ,EB ,FC ,如图2所示:由(2)得:S △CDE =2S △ABC ,同理可得:S △AEF =2S △ABC ,S △BFD =2S △ABC ,∴S △EFD=S △CDE +S △AEF +S △BFD +S △ABC =2S △ABC +2S △ABC +2S △ABC +S △ABC =7S △ABC ;故答案为:S △EFD =7S △ABC ;拓展应用:∵点E 是线段AD 的中点,由三角形中线等分三角形的面积,∴S △ABE =S △BDE ,S △ACE =S △CDE ,∴S △BCE =S △ABC ,∵点F 分别是线段CE 的中点,由三角形中线等分三角形的面积,∴S △BEF =S △BCF =S △BCE ,∴S △BEF =S △ABC =×18=4.5(cm 2);故答案为:4.5.。
2017-2018学年山东省青岛市李沧区七年级(下)期末数学试卷(解析版)
2017-2018学年山东省青岛市李沧区七年级(下)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分1.下列图案中,属于轴对称图形的是()A.B.C.D.2.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4B.5C.6D.93.下列运算正确的是()A.a2•a3=a6B.2a2+a2=3a4C.a6÷a3=a2D.(ab2)3=a3b64.如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2B.∠1+∠3=180°C.∠1=∠5D.∠3=∠55.小球在如图所示的地板上自由地滚动,随机地停留在某块方砖上,最终停在白色区域上的概率是()A.B.C.D.6.如下图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车在途中停留了0.5小时;②汽车行驶3小时后离出发地最远;③汽车共行驶了120千米;④汽车返回时的速度是80千米/小时.其中正确的说法共有()A.1个B.2个C.3个D.4个7.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°8.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116B.144C.145D.150二、填空题(本题满分24分,共有8道小题,每小题3分9.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为.10.如图,直线a∥b,直线1与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为.11.我市出租车收费按里程计算,3千米以内(含3千米)收费10元,超过3千米,每增加1千米加收2元,则当x≥3时,车费y(元)与x(千米)之间的关系式为.12.如图所示,A、B、C、D在同一直线上,AB=CD,DE∥AF,若要使△ACF≌△DBE,则还需要补充一个条件:.13.如图,△ABC的周长为15cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D、交AC边于点E,连接AD,若AE=2cm,则△ABD的周长是cm.14.小明和小芳用编有数字1~10的10张纸片(除数字外大小颜色都相同)做游戏,小明从中任意抽取一张(不放回),小芳从剩余的纸片中任意抽取一张,谁抽到的数字大,谁就获胜(数字从小到大顺序为1,2,3,4,5,6,7,8,9,10)然后两人把抽到的纸片都放回,重新开始游戏,如果小明已经抽到的纸片上的数字为3,然后小芳抽纸片,则小芳获胜的概率是.15.如图,已知△ABC中,BD、CE分别是∠ABC、∠ACB的平分线,BD、CE交于点O,∠A=70°,则∠BOE=.16.小明设计了如下的一组数:2,1,3,x,7,y,23,z,……,满足“从第三个数起,前两个数依次为a,b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中z的值为.三、作图题(本题满分4分)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.一个缺角的三角形残片如图所示,请你利用尺规画一个与它一样的(全等的)三角形.四、解答题(本题满分68分,共有7道小题)18.(16分)计算(1)()﹣2﹣(﹣2)0+(﹣0.2)2018×(﹣5)2018(2)用整式乘法公式计算:1012﹣1(3)(x2y+2x2y﹣y3)÷y﹣(y+2x)(2x﹣y)(4)先化简,再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中,a=1,b=﹣2.19.(6分)全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(质地均匀)平均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去这个游戏规定对双方公平吗?为什么?若不公平,请修改游戏规定,使这个游戏对双方公平.20.(8分)如图,已知A、E、F、C在一条直线上,BE∥DF,BE=DF,AF=CE.(1)图中有几对全等三角形?(2)判断AD与BC的位置关系,请说明理由.21.(8分)某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,①求排水时y与x之间的关系式.②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.22.(8分)点D是等边△ABC(即三条边都相等,三个角都相等的三角形)边BA上任意一点(点D与点B不重合),连接DC.(1)如图1,以DC为边在BC上方作等边△DCF,连接AF,猜想线段AF与BD的数量关系?请说明理由.(2)如图2,若以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?请说明理由.23.(10分)阅读理解:提出问题:如图1,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:当AP =AD 时(如图2):∵AP =AD ,△ABP 和△ABD 的高相等,∴S △ABP =S △ABD∵PD =AD ﹣AP =AD ,△CDP 和△CDA 的高相等∴S △CDP =S △CDA∴S △PBC =S 四边形ABCD ﹣S △ABP ﹣S △CDP =S 四边形ABCD ﹣S △ABD ﹣S △CDA=S 四边形ABCD ﹣(S 四边形ABCD ﹣S △DBC )﹣(S 四边形ABCD ﹣S △ABC )=S △DBC +S △ABC (1)当AP =AD 时,探求S △PBC 与S △ABC 和S △DBC 之间的关系式并证明;(2)当AP =AD 时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: ; (3)一般地,当AP =AD (n 表示正整数)时,探求S △PBC 与S △ABC 和S △DBC 之间的关系为: ;(4)当AP =AD (0≤≤1)时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: .24.(12分)如图,在长方形ABCD 中,AB =6厘米,AD =8厘米.延长BC 到点E ,使CE =3厘米,连接DE .动点P 从B 点出发,以2厘米/秒的速度向终点C 匀速运动,连接DP .设运动时间为t 秒,解答下列问题:(1)当t 为何值时,△PCD 为等腰直角三角形?(2)设△PCD 的面积为S (平方厘米),试确定S 与t 的关系式;(3)当t 为何值时,△PCD 的面积为长方形ABCD 面积的?(4)若动点P 从点B 出发,以2厘米/秒的速度沿BC ﹣CD ﹣DA 向终点A 运动,是否存在某一时刻t ,使△ABP 和△DCE 全等?若存在,请求出t 的值;若不存在,请说明理由.2017-2018学年山东省青岛市李沧区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分1.【解答】解:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.2.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.3.【解答】解:a2•a3=a5,A错误;2a2+a2=3a2,B错误;a6÷a3=a3,C错误;(ab2)3=a3b6,D正确,故选:D.4.【解答】解:A、根据∠1=∠2不能推出l1∥l2,故本选项错误;B、根据∠1+∠3=180°能推出l1∥l2,故本选项正确;C、根据∠1=∠5不能推出l1∥l2,故本选项错误;D、根据∠3=∠5不能推出l1∥l2,故本选项错误;故选:B.5.【解答】解:∵由图可知,黑色方砖3块,共有9块方砖,白色方砖有6块,∴白色方砖在整个地板中所占的比值==,∴它停在白色区域的概率是.故选:D.6.【解答】解:读图可得:BC间的位移不变,其时间为2﹣1.5=0.5,故汽车在途中停留了0.5小时,①正确;t=3时,位移达到最大值,则汽车行驶3小时后离出发地最远,②正确;汽车的最大位移为120千米,来回的路程为240千米,③错误;汽车返回时的速度是=80千米/小时,④正确;故选:C.7.【解答】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故选:C.8.【解答】解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.二、填空题(本题满分24分,共有8道小题,每小题3分9.【解答】解:0.0007=7×10﹣4,故答案为:7×10﹣4.10.【解答】解:∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°﹣50°=40°,故答案为:40°11.【解答】解:根据题意得出:车费y(元)与x(千米)之间的函数关系式为:y=10+(x﹣3)×2,=10+2x﹣6,=2x+4,故答案为:y=2x+4.12.【解答】解:∵AB=CD,DE∥AF∴AC=DB,∠A=∠D∵∠E=∠F∴△ACF≌△DBE(AAS)∴此处添加∠E=∠F.13.【解答】解:根据折叠的性质可知:AE=EC=2cm,AD=CD,∵△ABD的周长=AB+BD+AD=AB+BD+CD,又∵AB+BD+CD+AC=15,∴AB+BD+CD=15﹣AC=15﹣2×2=11(cm).故答案为:11.14.【解答】解:由题意可得:小明已经抽到的纸片上的数字为3,则只有数字1,2小于3,而4,5,6,7,8,9,10都大于3,故小芳获胜的概率为:,故答案为:.15.【解答】解:∵∠A=70°,∴∠ABC+∠ACB=110°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=55°,∴∠BOE=∠OBC+∠OCB=55°,故答案为:55°.16.【解答】解:∵该组数列满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a ﹣b”,∴x=2×1﹣3=﹣1,y=2×(﹣1)﹣7=﹣9,z=2×(﹣9)﹣23=﹣41.故答案为:﹣41.三、作图题(本题满分4分)17.【解答】解:如图所示,△CDE即为所求.四、解答题(本题满分68分,共有7道小题)18.【解答】解:(1)原式=4﹣1+[(﹣0.2)×(﹣5)]2018=4﹣1+1=4;(2)原式=(101+1)×(101﹣1)=102×100=10200;(3)原式=x2+2x2﹣y2﹣(4x2﹣y2)=3x2﹣y2﹣4x2+y2=﹣x2;(4)原式=a2﹣4ab+4b2+a2﹣b2﹣2(a2﹣ab﹣3ab+3b2)=a2﹣4ab+4b2+a2﹣b2﹣2a2+2ab+6ab﹣6b2=4ab﹣3b2.当a=1,b=﹣2时,原式=4×1×(﹣2)﹣3×(﹣2)2=﹣8﹣12=﹣20.19.【解答】解:不公平,小丽获胜的概率为=、小芳获胜的概率为,∵≠,∴此游戏不公平;修改规则为:若指针转到偶数,则小丽胜;若指正转到奇数,则小芳胜.20.【解答】解:(1)图中全等三角形有△ABE≌△CDF,△BAC≌△DCA,△BCE≌△ADF.(2)结论:AD∥BC.理由:∵BE∥DF,∴∠BEC=∠AFD,∴∠AEB=∠DFC,∵AF=CE,∴AE=CF,∵BE=DF,∴△ABE≌△CDF,∴AB=CD,∠BAE=∠DCF,∴AB∥CD,∴四边形ABCD是平行四边形,∴AD∥BC.21.【解答】解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;(2)①∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,∴y=40﹣19(x﹣15)=﹣19x+325,②∵排水时间为2分钟,∴y=﹣19×(15+2)+325=2升.∴排水结束时洗衣机中剩下的水量2升.22.【解答】解:(1)BD=AF,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CD=CF,∠ACB=∠DCF=60°,∴∠BCD=∠ACF,在△BCD和△ACF中,,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(2)AB =AF +BF ′,理由:∵△ABC 和△DCF 都是等边三角形,∴BC =AC ,CF ′=CD ,∠F ′CD =∠BCA =60°,∴∠F ′CB =∠DCA ,在△F ′CB 和△DCA 中,,∴△F ′CB ≌△DCA (SAS ),∴BF ′=DA ,由(1)知,BD =AF ,∵AB =BD +AD ,∴AB =AF +BF ′.23.【解答】解:(1)∵AP =AD ,△ABP 和△ABD 的高相等, ∴S △ABP =S △ABD .又∵PD =AD ﹣AP =AD ,△CDP 和△CDA 的高相等,∴S △CDP =S △CDA .∴S △PBC =S 四边形ABCD ﹣S △ABP ﹣S △CDP=S 四边形ABCD ﹣S △ABD ﹣S △CDA=S 四边形ABCD ﹣(S 四边形ABCD ﹣S △DBC )﹣(S 四边形ABCD ﹣S △ABC )=S △DBC +S △ABC .∴S △PBC =S △DBC +S △ABC(2)由(1)得,S △PBC =S △DBC +S △ABC ;(3)S △PBC =S △DBC +S △ABC ;∵AP =AD ,△ABP 和△ABD 的高相等,∴S △ABP =S △ABD .又∵PD =AD ﹣AP =AD ,△CDP 和△CDA 的高相等,∴S △CDP =S △CDA ∴S △PBC =S 四边形ABCD ﹣S △ABP ﹣S △CDP=S 四边形ABCD ﹣S △ABD ﹣S △CDA=S 四边形ABCD ﹣(S 四边形ABCD ﹣S △DBC )﹣(S 四边形ABCD ﹣S △ABC ) =S △DBC +S △ABC .∴S △PBC =S △DBC +S △ABC (4)由(3)得,S △PBC =S △DBC +S △ABC .24.【解答】解:(1)在长方形ABCD 中,AB =6厘米,AD =8厘米, ∴BC =AD =8cm ,CD =AB =6cm ,∠DCB =∠DCE =90°, 由运动知,BP =2t ,∴PC =BC ﹣BP =8﹣2t ,∴△CDP 是等腰直角三角形,∴CP =CD =6,∴8﹣2t =6,∴t=1秒,(2)由(1)知,PC=8﹣2t,=CP×CD=(8﹣2t)×6=﹣6t+24(0≤t≤4);∴S=S△PCD(3)∵AB=6,AD=8,∴S=6×8=48cm2,长方形ABCD由(2)知,S=﹣6t+24(0≤t≤4),∵△PCD的面积为长方形ABCD面积的,∴﹣6t+24=×48,∴t=2秒,(4)在△ABP中,AB=6cm,在△CDE中,CD=6cm,∴AB=CD,∵△ABP和△DCE全等,∴△ABP≌△DCE或△ABP≌△CDE,当△ABP≌△DCE时,BP=CE=3,∴2t=3,∴t=,当△ABP≌△CDE时,AP=CE=3,∴8+6+8﹣2t=3,∴t=,即:t=秒或秒时,△ABP和△DCE全等.。
青岛版2018学年度七年级数学第二学期期末测试题(含答案详解)
∵FM∥AB,
∴
故选C.
15.平面直角坐标系中,A(0,3),B(4,0),C(﹣1,﹣1),点P线段AB上一动点,将线段AB绕原点O旋转一周,点P的对应点为P′,则P′C的最大值为_____,最小值为_____.
16.多项式a(a-b-c)+b(c-a+b)+c(b+c-a)提出公因式a-b-c后,另外一个因式为__________.
(2)假设在水池下面安装了排水管丙管,单开丙管6小时可以把一满池水放完,如果三管同时开放,多少小时才能把一空池注满水?
22.小明在学习过程中,对教材中的一个有趣问题做如下探究:
(习题回顾)已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;
(变式思考)如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,则∠CFE与∠CEF还相等吗?说明理由;
(探究廷伸)如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M.试判断∠M与∠CFE的数量关系,并说明理由.
A.70°,7B.110°,7C.110°,9D.70°,9
4.用平方差公式计算 的结果正确的是().
A. B. C. D.
5.小乐做了一个木架子用于放试管,他在12.75cm长的木条上钻了5个孔,每个孔直径为0.75cm,如下图所示:
每一端空间与任意相邻两孔之间的距离相同,那么相邻两孔之间的距离x是( )
(3)如图2,点A、B表示的数分别是 、 ,数轴上有点C,使得AC=2BC,那么点C表示的数是;
山东省2017-2018学年七年级数学第二学期期末模拟试卷及答案(共五套)
山东省2017-2018学年七年级数学第二学期期末模拟试卷及答案(共五套)山东省2017-2018学年七年级数学第二学期期末模拟试卷及答案(一)一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.点所在的位置是()A.x轴正半轴B.x轴负半轴C.y轴正半轴D.y轴负半轴2.如图,将三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.30°B.40°C.50°D.60°3.下列各数是无理数的是()A.3.1415926 B.C.D.4.不等式组的解集在数轴上表示为()A.B.C.D.5.下列事件:①调查长江现有鱼的数量;②学校为七年级学生订制校服要了解每位新生的上衣和裤子的尺寸;③要检测一批灯泡的使用寿命;④校正某本书上的印刷错误.最适合做全面调查的有()A.1个 B.2个 C.3个 D.4个6.如图,已知公路AB和公路CD互相平行,现要在两条公路之间修建一条贯通AB和CD的公路DE 和EF,若测得∠DEF=95°,∠D=45°,那么∠ABF的度数为()A.135°B.130°C.125° D.120°7.已知a,b满足方程组,则a﹣b的值为()A.﹣1 B.m﹣1 C.0 D.18.若a<b<0,则下列各式错误的是()A.a﹣2<b﹣2 B.C.D.2a﹣1<2b﹣19.下列语句写成数学式子正确的是()A.9是81的算术平方根:B.±6是36的平方根:C.5是(﹣5)2的算术平方根:D.﹣2是4的负的平方根:10.对于“”,有下列说法:①它是一个无理数;②它是数轴上离原点个单位长度的点所表示的数;③若,则整数a为2;④它表示面积为5的正方形的边长.其中正确说法的个数()A.1个 B.2个 C.3个 D.4个11.某公司在抗震救灾期间承担40 000顶救灾帐篷的生产任务,分为A、B、C、D四种型号,它们的数量百分比和每天单独生产各种型号帐篷的数量如图所示:根据以上信息,下列判断错误的是()A.其中的D型帐篷占帐篷总数的10%B.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍12.如图,把图①中的⊙A经过平移得到⊙O(如图②),如果图①中⊙A上一点P的坐标为(m,n),那么平移后在图②中的对应点P′的坐标为()A.(m+2,n+1)B.(m﹣2,n﹣1)C.(m﹣2,n+1)D.(m+2,n﹣1)二、填空题(本大题共7小题,每小题3分,共21分)把答案填在题中横线上.13.用不等式表示:“x 的2倍与3的和不大于5”为 .14.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是 .15.一个容量为180的样本最大值为286,最小值为200,取组距为10,则可以分成 组. 16.已知是二元一次方程组的解,则m +3n 的立方根为 .17.若不等式组的解集是﹣1<x <1,那么(a +b )2017= .18.某雷达探测目标得到的结果如图所示,若记图中目标A 的位置为(3,30°),目标B 的位置为(2,180°),目标C 的位置为(4,240°),则图中目标D 的位置可记为 .19.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是 .三、解答题(本大题共7小题,共63分)20.(1)计算:; (2)解二元一次方程组:. 21.解不等式组:,并将其解集表示在数轴上.22.随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.玩游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如图表(部分信息未给出):C50.1D p0.4E50.1根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图;(3)若该中学约有2400名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.23.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.24.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知二元一次方程2x﹣y=2.(1)请任意写出此方程的三组解;(2)若为此方程的一组解,我们规定(x0,y0)为某一点的坐标,请根据你在(1)中写出的三组解,对应写出三个点的坐标,并将这三个点描在平面直角坐标系中;(3)观察这三个点的位置,你发现了什么?26.问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.(1)丽丽同学看过图形后立即口答出:∠APC=85°,请你补全她的推理依据.如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥CD.()∴∠A+∠APE=180°.∠C+∠CPE=180°.()∵∠PAB=140°,∠PCD=135°,∴∠APE=40°,∠CPE=45°∴∠APC=∠APE+∠CPE=85°.()问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.点所在的位置是()A.x轴正半轴B.x轴负半轴C.y轴正半轴D.y轴负半轴【考点】D1:点的坐标.【分析】根据坐标轴上点的坐标特征解答即可.【解答】解:点(0,﹣)所在的位置是y轴负半轴.故选D.2.如图,将三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.30°B.40°C.50°D.60°【考点】JA:平行线的性质.【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【解答】解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B3.下列各数是无理数的是()A.3.1415926 B.C.D.【考点】26:无理数.【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解:A、3.1415926是有限小数,是有理数,故A错误;B、=2是有理数,故B错误;C、是无理数,故C正确;D、=是有理数,故D错误.故选:C.4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:由x﹣1≥0,得x≥1,由4﹣2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.5.下列事件:①调查长江现有鱼的数量;②学校为七年级学生订制校服要了解每位新生的上衣和裤子的尺寸;③要检测一批灯泡的使用寿命;④校正某本书上的印刷错误.最适合做全面调查的有()A.1个 B.2个 C.3个 D.4个【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:①调查长江现有鱼的数量适合做抽样调查;②学校为七年级学生订制校服要了解每位新生的上衣和裤子的尺寸适合做全面调查;③要检测一批灯泡的使用寿命适合做抽样调查;④校正某本书上的印刷错误适合做全面调查,故选:B.6.如图,已知公路AB和公路CD互相平行,现要在两条公路之间修建一条贯通AB和CD的公路DE 和EF,若测得∠DEF=95°,∠D=45°,那么∠ABF的度数为()A.135°B.130°C.125° D.120°【考点】JA:平行线的性质.【分析】延长FE交CD于M,根据三角形内角与外角的性质可得∠1的度数,再根据平行线的性质可得∠ABE的度数,再利用邻补角互补可得答案.【解答】解:延长FE交CD于M,∵∠DEF=95°,∠D=45°,∴∠1=95°﹣45°=50°,∵AB∥CD,∴∠1=∠ABE=50°,∴∠ABF=180°﹣50°=130°,故选:B.7.已知a,b满足方程组,则a﹣b的值为()A.﹣1 B.m﹣1 C.0 D.1【考点】97:二元一次方程组的解.【分析】方程组两方程相减表示出a﹣b即可.【解答】解:,②﹣①得:a﹣b=1,故选D8.若a<b<0,则下列各式错误的是()A.a﹣2<b﹣2 B.C.D.2a﹣1<2b﹣1【考点】C2:不等式的性质.【分析】利用不等式的性质分别分析得出即可.【解答】解:∵a<b<0,∴A、a﹣2<b﹣2,正确,不合题意;B、﹣>﹣,错误,符合题意;C、>,正确,不合题意;D、﹣2a﹣1<2b﹣1,正确,不合题意.故选:B.9.下列语句写成数学式子正确的是()A.9是81的算术平方根:B.±6是36的平方根:C.5是(﹣5)2的算术平方根:D.﹣2是4的负的平方根:【考点】22:算术平方根;21:平方根.【分析】利用算术平方根及平方根定义判断即可.【解答】解:A、9是81的算术平方根,即=9,故选项错误;B、±6是36的平方根,即±=±6,故选项错误;C、5是(﹣5)2的算术平方根,即=5,故选项正确;D、﹣2是4的负平方根,即﹣=﹣2,故选项错误.故选:C.10.对于“”,有下列说法:①它是一个无理数;②它是数轴上离原点个单位长度的点所表示的数;③若,则整数a为2;④它表示面积为5的正方形的边长.其中正确说法的个数()A.1个 B.2个 C.3个 D.4个【考点】2B:估算无理数的大小;29:实数与数轴.【分析】根据无理数的意义和数轴的性质进行判断即可.【解答】解:是一个无理数,A正确;±是数轴上离原点个单位长度的点表示的数,B错误;∵2<<2+1,∴若a<<a+1,则整数a为2,C正确;表示面积为5的正方形的边长,D正确,说法正确的个数共3个,故选C.11.某公司在抗震救灾期间承担40 000顶救灾帐篷的生产任务,分为A、B、C、D四种型号,它们的数量百分比和每天单独生产各种型号帐篷的数量如图所示:根据以上信息,下列判断错误的是()A.其中的D型帐篷占帐篷总数的10%B.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍【考点】VC:条形统计图;VB:扇形统计图.【分析】由百分比之和为1可得D的百分比,分别求出单独生产A、B、C、D四种帐篷所需天数即可判断其余各选项.【解答】解:A、D型帐篷占帐篷总数的百分比为1﹣(45%+30%+15%)=10%,此选项正确;B、单独生产B帐篷所需天数为=8天,单独生产C帐篷所需天数为=2天,∴单独生产B型帐篷的天数是单独生产C型帐篷天数的4倍,此选项错误;C、单独生产A帐篷所需天数为=4天,单独生产D帐篷所需天数为=4天,∴单独生产A型帐篷与单独生产D型帐篷的天数相等,此选项正确;D、单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍,此选项正确;故选:B.12.如图,把图①中的⊙A经过平移得到⊙O(如图②),如果图①中⊙A上一点P的坐标为(m,n),那么平移后在图②中的对应点P′的坐标为()A.(m+2,n+1)B.(m﹣2,n﹣1)C.(m﹣2,n+1)D.(m+2,n﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P的对应点P′的坐标.【解答】解:∵⊙A的圆心坐标为(﹣2,1),平移后到达O(0,0),∴图形向右平移了2个单位,有向下平移1个单位,∵P的坐标为(m,n),∴对应点P′的坐标为(m+2,n﹣1),故选:D.二、填空题(本大题共7小题,每小题3分,共21分)把答案填在题中横线上.13.用不等式表示:“x的2倍与3的和不大于5”为2x+3≤5.【考点】C8:由实际问题抽象出一元一次不等式.【分析】首先表示“x的2倍”为2x,再表示“与3的和”为2x+3,最后表示“不大于5”可得2x+3≤5.【解答】解:由题意得:2x+3≤5,故答案为2x+3≤5.14.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.【考点】N3:作图—复杂作图;J9:平行线的判定.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.15.一个容量为180的样本最大值为286,最小值为200,取组距为10,则可以分成9组.【考点】V7:频数(率)分布表.【分析】极差除以组距,大于或等于该值的最小整数即为组数.【解答】解:=8.6,分为9组.故答案为9.16.已知是二元一次方程组的解,则m+3n的立方根为3.【考点】97:二元一次方程组的解;24:立方根.【分析】把x与y的值代入方程组求出m与n的值,即可确定出所求.【解答】解:把代入方程组得:,相加得:m+3n=27,则27的立方根为3,故答案为:317.若不等式组的解集是﹣1<x<1,那么(a+b)2017=﹣1.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出a、b的值,代入计算即可.【解答】解:由b﹣2x>0,得:x<,由x﹣a>2,得:x>2+a,∵解集是﹣1<x<1,∴=1、2+a=﹣1,解得:a=﹣3,b=2,则(a+b)2017=(﹣3+2)2017=﹣1,故答案为:﹣118.某雷达探测目标得到的结果如图所示,若记图中目标A的位置为(3,30°),目标B的位置为(2,180°),目标C的位置为(4,240°),则图中目标D的位置可记为(5,120°).【考点】D3:坐标确定位置.【分析】根据坐标的意义,第一个数表示距离,第二个数表示度数,根据图形写出即可.【解答】解:由图可知,图中目标D的位置可记为(5,120°).故答案为:(5,120°).19.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.三、解答题(本大题共7小题,共63分)20.(1)计算:;(2)解二元一次方程组:.【考点】98:解二元一次方程组;2C:实数的运算.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=﹣2+3﹣=;(2),②×3﹣①得:17y=﹣51,解得:y=﹣3,把y=﹣3代入①得:x=﹣3,则方程组的解为.21.解不等式组:,并将其解集表示在数轴上.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>2,由②得,x≥3,故不等式组的解集为:x≥3,在数轴上表示为:22.随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.玩游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图;(3)若该中学约有2400名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.【考点】VC:条形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据C的人数除以C所占的百分比,可得答案;(2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)从C可看出5÷0.1=50人,答:这次被调查的学生有50人;(2)m==0.2,n=0.2×50=10,p=0.4×50=20,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.23.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.【考点】D1:点的坐标.【分析】(1)根据y轴上点的横坐标为0列方程求出m的值,再求解即可;(2)根据x轴上点的纵坐标为0列方程求出m的值,再求解即可;(3)根据纵坐标与横坐标的关系列方程求出m的值,再求解即可;(4)根据平行于x轴的直线上的点的纵坐标相同列方程求出m的值,再求解即可.【解答】解:(1)∵点P(3m﹣6,m+1)在y轴上,∴3m﹣6=0,解得m=2,∴m+1=2+1=3,∴点P的坐标为(0,3);(2)点P(3m﹣6,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴3m﹣6=3×(﹣1)﹣6=﹣9,∴点P的坐标为(﹣9,0);(3)∵点P(3m﹣6,m+1)的纵坐标比横坐标大5,∴m+1﹣(3m﹣6)=5,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2);(4)∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上,∴m+1=2,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2).24.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设甲种君子兰每株成本为x元,乙种君子兰每株成本为y元.此问中的等量关系:①购进甲种2株,乙种3株,则共需要成本1700元;②购进甲种3株,乙种1株,则共需要成本1500元;依此列出方程求解即可;(2)结合(1)中求得的结果,根据题目中的不等关系:成本不超过30000元;列不等式进行分析.【解答】解:(1)设甲种君子兰每株成本为x元,乙种君子兰每株成本为y元,依题意有,解得.故甲种君子兰每株成本为400元,乙种君子兰每株成本为300元.(2)设购进甲种君子兰a株,则购进乙种君子兰(3a+10)株,依题意有400a+300(3a+10)≤30000,解得a≤.∵a为整数,∴a最大为20.故最多购进甲种君子兰20株.25.已知二元一次方程2x﹣y=2.(1)请任意写出此方程的三组解;(2)若为此方程的一组解,我们规定(x0,y0)为某一点的坐标,请根据你在(1)中写出的三组解,对应写出三个点的坐标,并将这三个点描在平面直角坐标系中;(3)观察这三个点的位置,你发现了什么?【考点】FE:一次函数与二元一次方程(组).【分析】本题中实际求的是直线y=2x﹣2.求出方程的三组解实际上是求直线y=2x﹣2上的三个点的坐标.求出的这三个点自然都在直线y=2x﹣2上.【解答】解:(1),,.(2)(0,﹣2);(1,0);(2,2).(3)这三个点在一条直线上.26.问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.(1)丽丽同学看过图形后立即口答出:∠APC=85°,请你补全她的推理依据.如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥CD.(平行于同一条直线的两条直线平行)∴∠A+∠APE=180°.∠C+∠CPE=180°.(两直线平行,同旁内角互补)∵∠PAB=140°,∠PCD=135°,∴∠APE=40°,∠CPE=45°∴∠APC=∠APE+∠CPE=85°.(等量代换)问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.【考点】JB:平行线的判定与性质.【分析】(1)根据平行线的判定与性质填写即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形(分两种情况①点P在BA的延长线上,②点P在AB的延长线上),根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【解答】解:(1)过点P作PE∥AB,如图2所示:∵AB∥CD,∴PE∥CD.(平行于同一条直线的两条直线平行)∴∠A+∠APE=180°.∠C+∠CPE=180°.(两直线平行同旁内角互补)∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(等量代换)故答案为:平行于同一条直线的两条直线平行;两直线平行,同旁内角互补;等量代换;(2)∠CPD=∠α+∠β,理由如下:如图3所示,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,如图4所示:过P作PE∥AD交CD于E,同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β﹣∠α;当P在AB延长线时,如图5所示:同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α﹣∠β.山东省2017-2018学年七年级数学第二学期期末模拟试卷及答案(二)一、选择题(本题共12小题,共36分)1.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等2.下列说法错误的是()A.两条直线平行,内错角相等B.两条直线相交所成的角是对顶角C.两条直线平行,一组同旁内角的平分线互相垂直D.邻补角的平分线互相垂直3.用代入法解方程组时,代入正确的是()A.x﹣2﹣x=4 B.x﹣2﹣2x=4 C.x﹣2+2x=4 D.x﹣2+x=44.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5D.(a2)3=a65.若m•23=26,则m=()A.2 B.6 C.4 D.86.下列各式从左边到右边的变形是因式分解的为()A.(a+1)(a﹣1)=a2﹣1 B.﹣18x4y3=﹣6x2y2•3x2yC.x2+2x+1=x(x+2x)+1 D.a2﹣6a+9=(a﹣3)27.(﹣m+2n)2的运算结果是()A.m2+4mn+4n2B.﹣m2﹣4mn+4n2 C.m2﹣4mn+4n2D.m2﹣2mn+4n28.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm9.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()A.2 B.3 C.4 D.510.如图,在⊙O中,点A、O、D,点B、O、C以及点E、D、C分别在一条直线上,图中弦的条数为()A.2 B.3 C.4 D.511.下列说法不正确的是()A.若x+y=0,则点P(x,y)一定在第二、四象限角平分线上B.在x轴上的点纵坐标为0C.点P(﹣1,3)到y轴的距离是1D.点A(﹣a2﹣1,|b|)一定在第二象限12.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz二、填空题(本题共6小题,共18分)13.若一个三角形的三个内角之比为4:3:2,则这个三角形的最大内角为度.14.如图,在△ABC中,∠ABC=90°,∠A=55°,BD∥AC,则∠CBD等于°.15.PM2.5是指大气中直径小于或等于2.5μm的颗粒物,含有大量有毒、有害物质,也可称可入肺颗粒物,将0.0000025用科学记数法表示为.16.计算:﹣5652×0.13+4652×0.13=.17.能够用一种正多边形铺满地面的正多边形是.18.已知点A(1,2),AC∥x轴,AC=5,则点C的坐标是.三、解答题(本题共6小题,共66分)19.(1)计算:(3﹣π)0﹣23+(﹣3)2﹣()﹣1(2)因式分解:①x4﹣16y4②﹣2a3+12a2﹣16a(3)化简求值:(3x+2y)(2x+3y)﹣(x﹣3y)(3x+4y),其中x=2,y=﹣1.20.2016年欧洲杯足球赛正如火如荼的进行着,比赛精彩纷呈,喜欢足球的同学们非常关注欧洲杯的一些信息,欧洲杯的比赛分为小组赛和淘汰赛两个阶段,共分6个小组,24支球队,小组赛采取单循环赛制,每个小组的前两名和四个成绩最好的小组第三名共16支队伍进入淘汰赛阶段,淘汰赛阶段采取单淘汰赛制,那么本届欧洲杯一共有多少场比赛呢?备注:①单循环赛制是指小组内参赛队在竞赛中均能相遇一次,最后按各队在竞赛中的得分多少,胜负场次来排列名次;②单淘汰赛制,是指进入淘汰赛阶段的球队,每两队进行一轮比赛,输者出局(不存在平局的结果),直至只剩两队计入决赛,③相关课本知识,每两队比赛一场,可视为平面上两点之间连接一条线段.21.如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).22.如图,已知AB∥CD,GC⊥CF,∠ABC=65°,CD是∠GCF的角平分线,∠EFC=40°.①AB与EF平行吗?判断并说明理由.②求∠BCG的度数.23.某货运公司现有货物31吨,计划同时租用A型车a辆,B型车b辆,一次运完全部货物,且每辆车均为满载.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.根据以上信息,解下列问题:(1)1辆A型车和1辆B型车都载满货物一次分别运货多少吨?(2)请帮货运公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.24.在A型纸片(边长为a的正方形),B型纸片(边长为b的正方形),C型纸片(长为a,宽为b 的长方形)各若干张.(1)取A型纸片1张,B型纸片4张,C型纸片4张,拼成一个大正方形,画出示意图,你能得到反映整式乘法运算过程的等式吗?(2)分别取A型、B型、C型纸片若干张,拼成一个正方形,使所拼正方形的面积为4a2+4ab+b2,画出示意图,你能得到反映因式分解过程的等式吗?(3)用这3种纸片,每种各10张,从其中取出若干张卡片,每种至少取1张,把取出的纸片拼成一个正方形,请问一共能拼出多少种不同大小的正方形?简述理由.参考答案与试题解析一、选择题(本题共12小题,共36分)1.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角 D.相等【考点】垂线;对顶角、邻补角.【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【解答】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故选:A.2.下列说法错误的是()A.两条直线平行,内错角相等B.两条直线相交所成的角是对顶角C.两条直线平行,一组同旁内角的平分线互相垂直D.邻补角的平分线互相垂直【考点】平行线的性质;对顶角、邻补角.【分析】根据平行线的性质可得A正确;根据相交直线所构成的角的关系可得B错误;根据同旁内角和邻补角都互补可得C、D说法正确.【解答】解:A、两条直线平行,内错角相等,说法正确,故此选项不合题意;B、两条直线相交所成的角是对顶角,说法错误,还有邻补角,故此选项符合题意;C、两条直线平行,一组同旁内角的平分线互相垂直,说法正确,故此选项不合题意;D、邻补角的平分线互相垂直,说法正确,故此选项不合题意;故选:B.3.用代入法解方程组时,代入正确的是()A.x﹣2﹣x=4 B.x﹣2﹣2x=4 C.x﹣2+2x=4 D.x﹣2+x=4【考点】解二元一次方程组.【分析】将①代入②整理即可得出答案.【解答】解:,把①代入②得,x﹣2(1﹣x)=4,。
2017--2018学年度第二学期青岛版七年级期末考试数学备考试卷
绝密★启用前2017--2018学年度第二学期 青岛版七年级期末考试数学备考试卷考试时间:100分钟;满分120分一、单选题(计30分)1.(本题3分)将一副常规的三角尺按如图方式放置,则图中∠AOB 的度数为( )A. 75︒B. 105︒C. 95︒D. 120︒ 2.(本题3分)如图,直线AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于( )A. 70°B. 60°C. 40°D. 30°3.(本题3分)下列方程中,二元一次方程是( ) A. x+xy=8 B. y=x 21﹣1 C. x+x1=2 D. x 2+y ﹣3=0 4.(本题3分)某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定购一只茶壶赠一只茶杯,某人共付款171元,得茶壶、茶杯共30只(含赠品在内),则此人购得茶壶的只数为( )A. 8B. 9C. 10D. 115.(本题3分)计算999-93的结果更接近( ) A. 999 B. 998 C. 996 D. 9336.(本题3分)若a=⎪⎭⎫⎝⎛-322,b=⎪⎭⎫ ⎝⎛-82π,c=0.8-1,则a 、b 、c 三数的大小关系是( )A. a>b>cB. a>c>bC. c>a>bD. c>b>a7.(本题3分)如图,⊙O 是∆ABC 的外接圆,则点O 是∆ABC 的( )A. 三条高线的交点B. 三条边的垂直平分线的交点C. 三条中线的交点D. 三角形三内角角平分线的交点 8.(本题3分)若一个多边形的每一个外角都是40°,则这个多边形的内角的度数是( ) A. 1080° B. 1440° C. 1260° D. 1080° 9.(本题3分)(2016内蒙古包头市)如图,点O 在△ABC 内,且到三边的距离相等.若∠BOC =120°,则tan A 的值为( )A. B. C. D.10.(本题3分)在下列点中,与点A (2,5)的连线平行于x 轴的是( ) A. (2,5) B. (5,2) C. (-2,5) D. (-5,2) 二、填空题(计32分)11.(本题4分)如图,已知∠AOC =90°,直线BD 过点O ,∠COD =115°,则∠AOB =________.12.(本题4分)如图,把一块等腰直角三角形的三角板的直角顶点放在直尺的一边上,如果∠1=115°,那么∠2是______度.13.(本题4分)已知:,则 ______ .14.(本题4分)计算(﹣)﹣2=_____.15.(本题4分)分解因式2x 2y -4xy +2y 的结果是_____.16.(本题4分)已知,,则= .17.(本题4分)如图是一个正五边形,则∠1的度数是_____.18.(本题4分)如图,在正方形ABCD 中,点D 的坐标为(0,1),点A 的坐标是(﹣2,2),则点B 的坐标为________.三、解答题(计58分)19.(本题7分)如图,AB ∥CD ,∠1:∠2:∠3=1:2:3,说明BA 平分∠EBF 的道理.(1);(2).21.(本题7分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?22.(本题7分)观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;…(1)请按照以上规律写出第10个等式。
【精选3份合集】2017-2018年青岛市七年级下学期期末考前模拟数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.把方程2x+3y-1=0改写成含x 的式子表示y 的形式为( )A .3(12)y x =-B .1(21)3y x =-C .3(21)y x =-D .1(12)3y x =-【答案】D【解析】根据题意直接进行移项等式变换即可得出1(12)3y x =-.【详解】解:2x+3y-1=0,移项得3y=1-2x1(12)3y x =-故答案为D.【点睛】此题主要考查二元一次方程的变形,熟练掌握特征即可得解.2.如图,在ABC ∆中,90BAC ∠=︒,且AD BC ⊥于点D ,35B ∠=︒,那么下列说法中错误的是()A .直线AB 与直线BC 的夹角为35︒ B .直线AC 与直线AD 的夹角为55︒C .点C 到直线AD 的距离是线段CD 的长 D .点B 到直线AC 的距离是线段AB 的长【答案】B【解析】根据点到直线的距离概念与两直线的夹角概念,即可得到答案.【详解】∵35B ∠=︒,∴直线AB 与BC 的夹角为35︒,∴A 不符合题意;∵90BAC ∠=︒,且AD BC ⊥,∴35CAD B ∠=∠=︒,即:直线AC 与AD 夹角为35︒,∴B 符合题意;∵点C 到直线AD 的距离是线段CD 的长,∴C 不符合题意;∵点B 到直线AC 的距离是线段AB 的长,∴D 不符合题意;故选B .【点睛】本题主要点到直线的距离概念与两直线的夹角概念,掌握点到直线的距离概念是解题的关键.3.学习整式的乘法时,小明从图1 边长为a 的大正方形中剪掉一个边长为b 的小正方形,将图1 中阴影部分拼成图2 的长方形,比较两个图中阴影部分的面积能够验证的一个等式为()A.a(a+b)=a2+ab B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2D.a(a-b)=a2 -ab【答案】B【解析】根据阴影部分面积关系可得结论.【详解】图1 中阴影部分面积=a2-b2;图2阴影部分面积=(a+b)(a-b)所以(a+b)(a-b)=a2-b2故选B.【点睛】考核知识点:整式运算与图形面积.4.下列计算中,正确的是()A.(3a)2=6a2B.(a3)4=a12C.a2•a5=x10D.a6÷a3=a2【答案】B【解析】根据幂的乘方以及同底数幂的乘法和除法进行计算即可【详解】A. (3a)2=9a2,故本选项错误B.(a3)4=a12,故本选项正确;C.a2,x10 不是同类型故本选项错误D.a6÷a3=a3,故本选项错误;故选B【点睛】此题考查完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题关键536()A.6 B.-6 C.18 D.-18【答案】A【解析】根据算术平方根的定义计算即可求解.【详解】∵12=31,1.故选A.【点睛】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.6.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是() A.1 B.2 C.3 D.4【答案】D【解析】根据两条相交直线把平面分成四部分,在每一个部分内都存在一个满足要求的距离坐标解答.【详解】如图,直线l1,l2把平面分成四个部分,在每一部分内都有一个“距离坐标”为(2,3)的点,所以,共有4个.故选D.【点睛】本题考查了点到直线的距离,点的坐标的类比利用,读懂题目信息并且理解两条相交直线把平面分成四部分是解题的关键.7.下列命题是假命题的是( )A.直线a、b、c 在同一平面内,若a⊥b,b⊥c,则a∥c.B.直线外一点与已知直线上各点连接的所有线段中,垂线段最短.C.点P(—5,3)与点Q(—5,—3)关于x 轴对称.D.以3 和5 为边的等腰三角形的周长为11.【答案】D【解析】根据题意对选项进行判断即可【详解】以3和5为边的等腰三角形的周长为3+5+5=13或11故选D【点睛】本题考查等腰三角形周长,熟练掌握等腰三角形的周长公式是解题关键.8.下列选项中,显示部分在总体中所占百分比的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图【答案】A【解析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.故在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图;故选A.9.已知三角形三边长分别为5、a、9,则数a可能是()A.4 B.6 C.14 D.15【答案】B【解析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,先求出a的取值范围,再根据取值范围选择.【详解】∵5+9=1,9﹣5=4,∴4<x<1.故选B.【点睛】本题主要考查三角形的三边性质,需要熟练掌握.10.一个长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()A.4a-3b B.8a-6bC.4a-3b+1 D.8a-6b+2【答案】D【解析】首先利用面积除以一边长即可求得另一边长,则周长即可求解.另一边长是:(24a﹣6ab+1a)÷1a=1a﹣3b+1,则周长是:1[(1a﹣3b+1)+1a]=8a﹣6b+1.故选D.考点:整式的运算.二、填空题题11.已知关于x的不等式组12634xx a-<⎧⎨+≤⎩只有两个整数解,则a的取值范围____________.【答案】4<a≤7【解析】12634xx a-<⎧⎨+≤⎩①②;由①得x>-122,由②得x≤43a -,∴-122<x≤43a-,∵不等式组有且只有两个整数解,∴4103a --≤<, ∴4a 7<≤12.计算:(﹣2)0+(﹣12)﹣3=_____. 【答案】﹣2.【解析】先根据零指数幂和负整数指数幂逐项化简,再按减法法则计算即可. 【详解】原式=2+ 3112⎛⎫- ⎪⎝⎭ =2﹣8=﹣2.故答案为:﹣2.【点睛】本题考查了幂的运算,熟练掌握零指数幂和负整数指数幂的意义是解答本题的关键. 非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于2.13.我市出租车收费按里程计算,3千米以内(含3千米)收费10元,超过3千米,每增加1千米加收2元,则当x ≥3时,车费y(元)与x(千米)之间的关系式为_____.【答案】y =2x+4【解析】根据题意列出给关系式即可.【详解】由题意可知当x ≥3时,车费y(元)与x(千米)之间的关系式为y=10+2(x-3)=2x+4【点睛】此题主要考查函数关系式的表示,解题的关键是根据题意找到等量关系.14.已知等腰三角形两边长为4cm ,6cm ,则此等腰三角形的周长为______;【答案】14cm 或16cm【解析】两边的长为4m 和6cm ,具体哪边是底,哪边是腰没有明确,应分两种情况讨论.【详解】当腰长是4m ,底长是6cm 时,能构成三角形,则周长是:4+4+6=14cm ;当腰长是6m ,底长是4cm 时,能构成三角形,则周长是4+6+6=16cm ;则等腰三角形的周长是14cm 或16cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 15.如图,已知AB ∥CD ,∠ABE ,∠CDE 的平分线BF ,DF 相交于点F ,∠E=110°,则∠BFD 的度数为________.【答案】125°【解析】根据两直线平行,同旁内角互补,可得∠ABD+∠CDB=180°,进一步可得∠ABE+∠E+∠CDE=360°,由此可求出∠ABE+∠CDE;由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠FBE+∠FDE的度数;接下来根据四边形BEDF的内角和为360度,即可求出∠BFD的度数.【详解】连接BD,∵AB∥CD,∴∠ABD+∠CDB=180°,∴∠ABE+∠E+∠CDE=180°+180°=360°,∴∠ABE+∠CDE=360°-110°=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠FBE=12∠ABE,∠FDE=12∠CDE,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=125°,∴∠BFD=360°-110°-125°=125°.【点睛】本题考查角平分线,熟练掌握角平分线的性质添加辅助线是解题关键.16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是_____.【答案】1【解析】解:①如图1中,EF∥AB时,∠ACE=∠A=1°,∴旋转角n=1时,EF∥AB.②如图2中,EF ∥AB 时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为1.17.计算: 342a a ⋅=_____.【答案】72a【解析】利用同底数幂的乘法运算法则,底数不变指数相加,计算即可.【详解】解:342a a ⋅=34722a a += .故答案为:72a .【点睛】本题考查同底数幂的乘法,解题的关键是掌握同底数幂的乘法运算法则.三、解答题18.有两个AOB ∠与EDC ∠,EDC ∠保持不动,且EDC ∠的一边CD//AO ,另一边DE 与直线OB 相交于点F .()1若AOB 40∠=,EDC 55∠=,解答下列问题:①如图,当点E 、O 、D 在同一条直线上,即点O 与点F 重合,则BOE ∠=______;②当点E 、O 、D 不在同一条直线上,画出图形并求BFE ∠的度数;()2在()1②的前提下,若AOB α∠=,EDC β∠=,且αβ<,请直接写出BFE ∠的度数(用含α、β的式子表示).【答案】()115①;②画图见解析,BFE 15∠=或BFE 105∠=;()2BFE βα∠=-或βα+.【解析】()1①根据平行线的性质,即可得到60AOE D ∠=∠=,再根据45AOB ∠=,即可得出BOE ∠的度数;②当点E 、O 、D 不在同一条直线上时,过F 作//GF AO ,根据平行线的性质,即可得到60GFE D ∠=∠=,45GFB AOB ∠=∠=,再根据BFE GFE BFG ∠=∠-∠进行计算即可; ()2由()1②可得,BFE EDC AOB ∠=∠-∠,再根据BOA α∠=,EDC β∠=,即可得到BFE βα∠=-或βα+.【详解】()1//CD AO ①,60AOE D ∠∠∴==,又45AOB ∠=,604515BOE AOE AOB ∠∠∠∴=-=-=,故答案为:15;②如图,当点E 、O 、D 不在同一条直线上时,过F 作//GF AO ,//CD AO ,//GF CD ∴,60GFE D ∠∠∴==,45GFB AOB ∠∠==,604515BFE GFE BFG ∠∠∠∴=-=-=;如图,当点E 、O 、D 不在同一条直线上时,过F 作//GF AO ,//CD AO ,//GF CD ∴,60GFE D ∠∠∴==,45GFB AOB ∠∠==,6045105BFE GFE BFG ∠∠∠∴=+=+=;()2由()1②可得,若αBOA ∠=,βEDC ∠=,则βαBFE ∠=-或βα+.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,同位角相等.19. (1)计算:[(x+2y)2﹣(x+y)(x ﹣y)﹣5y 2]÷(2x);(2)完成下面推理过程:如图,已知∠1=∠2,∠B =∠C ,可得AB ∥CD .理由是:∵∠1=∠2(已知),∠1=∠CGD(_____), ∴∠2=∠CGD(等量代换).∴CE ∥BF(______).∴∠BFD =∠C(_______).∵∠B =∠C(已知),∴∠______=∠B(等量代换),∴AB ∥CD(_______).【答案】 (1)2y ;(2)对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;BFD ;内错角相等,两直线平行【解析】(1)首先分别利用完全平方公式和平方差公式化简多项式,然后合并同类项再把除法转化为乘法,即可解答(2)先由对顶的定义得到∠1=∠CGD,则∠2=∠CGD,根据平行线的判定得到CE∥BF,则∠C=∠BFD,易得∠B=∠BFD,然后根据平行线的判定即可得到AB∥CD【详解】解:(1)原式=(x2+4xy+4y2﹣x2+y2﹣5y2)÷(2x)=4xy÷2x=2y;(2)∵∠1=∠2(已知),∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换).∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;BFD;内错角相等,两直线平行【点睛】此题考查平行线的判断与性质,整式的混合运算,掌握运算法则是解题关键20.已知:如图,E是AC上一点,AB=CE,AB∥CD,∠ACB =∠D.求证:BC =ED.【答案】证明见解析.【解析】根据两直线平行,内错角相等可得∠A=∠ECD,然后利用“角角边”证明△ABC和△ECD全等,再根据全等三角形对应边相等即可得证.【详解】∵AB∥CD,∴∠A=∠ECD.在△ABC和△ECD中,∵∠A=∠ECD,∠ACB=∠D,AB=CE,∴△ABC≌△ECD(AAS).∴BC=DE.考点:1.平行线的性质;2.全等三角形的判定和性质.21.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC 的长.【答案】(1)∠ECD =36°;(2)BC=1.【解析】试题分析:(1)ED 是AC 的垂直平分线,可得AE =EC ;∠A =∠C ;已知∠A =36,即可求得;(2)△ABC 中,AB =AC ,∠A =36°,可得∠B =72°,又∠BEC =∠A +∠ECA =72°,所以BC =EC =1. 试题解析:解:(1)∵DE 垂直平分AC ,∠A =36°∴CE =AE ,∴∠ECD =∠A =36°;(2)∵AB =AC ,∠A =36°,∴∠B =∠ACB =72°,∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =1.(2)∵AB =AC ,∠A =36°,∴∠B =(180°-36°)÷2=72°.∵∠BEC =∠A +∠ECA =72°,∴CE=CB ,∴BC =EC =1.22.在解方程组42136ax y x by +=⎧⎨-=⎩时,由于粗心,甲同学看错了方程组中的a ,而得到解为43x y =⎧⎨=⎩,乙同学看错了方程组中的b ,而得到解为14x y =⎧⎨=⎩. (1)求正确的a ,b 的值;(2)求原方程组的解.【答案】(1)5a =,2b =;(2)332x y =⎧⎪⎨=⎪⎩【解析】(1)把43x y ⎧⎨⎩== 代入方程组的第二个方程,把x y ⎧⎨⎩=1=4代入方程组的第一个方程,即可得到一个关于a ,b 的方程组,即可求解;(2)把a ,b 的值代入原方程组,然后解方程组即可.【详解】(1)解:将43x y =⎧⎨=⎩代入36x by -=得,2b = 将14x y =⎧⎨=⎩代入421ax y +=得,5a = 故5a =,2b =(2)由(1)知,原方程组为:5421326x y x y +=⎧⎨-=⎩①②②×2得:6412x y -= ③①+③得,1133x =∴3x =将3x =代入②得,32y =所以原方程组的解为332x y =⎧⎪⎨=⎪⎩【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键23.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整:边数三 四 五 六 七 …… n 对角线条数2 5 …… (3)若一个多边形的内角和为 1440°,求这个多边形的边数和对角线的条数.【答案】(1)详见解析;(2)9,14,(3)2n n -;(3)1. 【解析】(1)根据要求画图;(2)观察得出多边形对角线条数公式(3)2n n -;(3)先根据多边形的内角和公式(n-2)×180°求出该多边形的边数,再根据多边形对角线条数公式(3)2n n -进行计算即可得解. 【详解】解:(1)如图(2)画图并总结可得:边数 三 四 五 六 七 …… n对角线 条数2 5 9 14 …… (3)2n n - (3)设多边形的边数为n ,由题意,得:(n-2)×180°=1440°,解得:n=10,所以,此多边形的对角线的条数为(3)2n n -=1072⨯=1. 【点睛】考核知识点:多边形的内角和和对角线.观察总结出规律是关键.24.如图,已知ABC ,根据下列要求作图并回答问题:(1)作边AB 上的高CH ;(2)过点H 作直线BC 的垂线,垂足为D ;(3)点B 到直线CH 的距离是线段________的长度.(不要求写画法,只需写出结论即可)【答案】(1)见解析;(2)见解析;(3)BH【解析】(1)过点C 向AB 作垂线垂足为H ,画出图形即可;(2)过点H 向CB 作垂线垂足为D ,画出图形即可;(3)根据点到直线的距离即可得出点B 到直线CH 的距离是线段BH 的长度.【详解】解:(1)如图所示:(2)如图所示:(3)点B 到直线CH 的距离是线段BH 的长度.故答案为:BH .【点睛】此题考查了作图——基本作图,一边上的高应是过这边的对角的顶点向这边引垂线,顶点和垂足间的线段就是这边上的高.25.解不等式:52(8)10x x ≥-+,并将解集表示在数轴上.【答案】2x ≥-;在数轴上表示为:【解析】根据去括号,移项,合并同类项,即可解出不等式的解集并用数轴表示即可.【详解】解:52(8)10x x ≥-+∴5x 2x 1610≥-+3x 6≥-x 2≥-在数轴上表示为:【点睛】本题考查了解一元一次不等式,解题的关键是熟练运用运算法则进行计算.。
青岛市七年级下学期数学期末考试试卷
青岛市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在3.14、、、、π、0.2020020002这六个数中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2017七下·江东月考) 若是关于x.y的方程2x﹣y+2a=0的一个解,则常数a为()A . 1B . 2C . 3D . 43. (2分)如图的图形中只能用其中一部分平移可以得到的是()A .B .C .D .4. (2分)(2013·百色) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分)如图,下列条件中,能判断AB∥CD的是()A . ∠1=∠2B . ∠3=∠4C . ∠BAC=∠BCDD . ∠ABC+∠BAD=180°6. (2分)(2013·嘉兴) 下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差 =0.1, =0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A . ①B . ②C . ③D . ④7. (2分) (2017七下·临沭期末) 点所在的位置是()A . x轴正半轴B . x轴负半轴C . y轴正半轴D . y轴负半轴8. (2分)已知关于的不等式的解集如图所示,则的值是()A .B .C .D .9. (2分)南开(融侨)中学组织一批学生前往重庆慕江古剑山变电站参加社会实践活动,活动中男生戴白色安全帽,女生戴红色安全帽,大家发现一个有趣的现象,每位男生看到的白色安全帽比红色多6顶,而每位女生看到的白色安全帽是红色的2倍.设男生有x人,女生有y人,那么下列等量关系成立的是()A .B .C .D .10. (2分) (2019七下·长春期中) 用若干量载重量为6吨的火车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有辆货车,则应满足的不等式组是()A .B .C .D .二、填空题 (共6题;共8分)11. (2分) 2﹣的相反数是________ ,|﹣2|=________ .12. (1分)已知点A(﹣2,4),则点A关于y轴对称的点的坐标为________.13. (2分)若方程x4m﹣1+5y﹣3n﹣5=4是二元一次方程,则m=________,n=________.14. (1分) (2019七下·岳阳期中) 如果有理数x,y满足方程组那么x2-y2=________.15. (1分)不等式2x-1<3的非负整数解是________.16. (1分) (2020八上·天桥期末) 在平面直角坐标系中,若干个边长为个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“ …”的路线运动,设第秒运动到点为正整数),则点的坐标是________.三、解答题 (共8题;共72分)17. (10分)计算:(1)计算:(2)解方程组:① ②18. (5分) (2018七下·宁远期中) 解方程组19. (5分) (2017·广州模拟) 解不等式组,并将解集在数轴上表示.20. (5分)(1)如图甲,AB∥CD,试问∠2与∠1+∠3的关系是什么,为什么?(2)如图乙,AB∥CD,试问∠2+∠4与∠1+∠3+∠5一样大吗?为什么?(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?你能将它们推广到一般情况吗?请写出你的结论.21. (12分)如图,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图象,并且C的对应点C′的坐标为(4,1)(1)A′、B′两点的坐标分别为A′________、B′________;(2)作出△ABC平移之后的图形△A′B′C′;(3)求△A′B′C′的面积.22. (12分)(2019·营口) 为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.23. (13分) (2016九上·重庆期中) 经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在下列横线上:销售单价x(元)________;销售量y(件)________;销售玩具获得利润w(元)________;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?24. (10分)抛物线y=x2+bx+c过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式.(2)求△ABC的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共72分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、第11 页共11 页。
李沧区七年级数学试卷答案
一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √-1B. πC. 0.1010010001...D. -3答案:D2. 若a < b,则下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a + 1 > b + 1D. a - 1 < b - 1答案:A3. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 1答案:C4. 若a、b是实数,且a + b = 0,则a、b互为()A. 相等B. 相邻C. 相反数答案:C5. 已知三角形的三边长分别为3,4,5,则该三角形是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 梯形答案:B6. 若x² - 4x + 3 = 0,则x的值为()A. 1B. 3C. 1或3D. -1或-3答案:C7. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2xC. y = 1/xD. y = x²答案:C8. 若等腰三角形的底边长为6,腰长为8,则该三角形的周长为()A. 22B. 24D. 28答案:B9. 在直角坐标系中,点P(-2,3)关于y轴的对称点坐标是()A. (2,3)B. (-2,-3)C. (2,-3)D. (-2,-3)答案:A10. 下列各数中,无理数是()A. √9B. 0.333...C. πD. -√4答案:C二、填空题(每题2分,共20分)11. 若x + 2 = 5,则x = _______。
12. 若|a| = 4,则a = _______。
13. 若a² = 16,则a = _______。
14. 若a = -2,b = 3,则a² - b² = _______。
15. 若x² - 4x + 3 = 0,则x = _______。
16. 若y = 2x - 1,当x = 3时,y = _______。
山东青岛市第二学期七级下数学期末模拟试卷及答案
山东青岛市2018— 2018 学年度第二学期七年级下数学期末模拟试卷及答案本试卷 120 分考试用时120 分钟一 . 选择:(此题共有12 小题,每题 3 分,共 36 分)以下各题均附有四个备选答案,此中有且只有一个是正确的,请将正确答案的代号填在上边答题卡中对应的题号内1、在某次国际乒乓球单打竞赛中,甲、乙两名中国选手进入最后决赛,那么以下事件为必定事件的是()A .冠军属于中国选手B .冠军属于外国选手C.冠军属于中国选手甲D.冠军属于中国选手乙2、以下因式分解正确的选项是()A .p2 4 ( p 4)( p 4)B .a22a 1 a( a 2) 1C.x23x x( x 3) D .x22x 1 (x 1)23、利用图形中面积的等量关系能够获得某些数学公式.比如,依据图甲,我们能够获得两数和的平方公式:(a b)2a22ab b2.你依据图乙能获得的数学公式是( ) A.(a b)( a b)a2b2 B .( a b)2a22ab b2C.a(a b)a2ab D .a(a b)a2aba b abaab b4、如图,以下条件中不可以判断AB∥CD的是( A)∠ 3=∠ 4(B)∠ 1=∠ 5( C)∠ 1+∠ 4=180°(D)∠ 3=∠ 55、已知三角形的两边长分别为4cm和 9cm,则以下长度的四条线段中能作为第三边的是( A ) 13cm(B ) 6cm ( C ) 5cm( D ) 4cm6、要反应武汉市一周内每日的最高气温的变化状况,宜采纳( A )条形统计图 ( B )扇形统计图( C )折线统计图( D )频数散布直方图7、假如 a > b ,那么以下结论必定正确的选项是( A )a ―3< b —3(B ) 3―a < 3— b( C )ac 2> bc 2( D ) a 2> b 28、如图,直角△ ADB 中,∠ D =90°, C 为 AD 上一点,且∠ ACB 的度数为( 5x - 10)°,则 x 的值可能是( A )10( B ) 20( C )30(D ) 409、一副三角扳按如图方式摆放,且∠ 1 的度数比∠ 2 的度数大 50°,若设∠ 1=x °∠ 2=y °,则可获得方程组为10、玩具车间每日能生产甲种玩具部件24 个或乙种玩具部件 12 个,若甲种玩具部件一个与乙种玩具部件 2 个能构成一个完好的玩具, 如何安排生产才能在60 天内组装出最多的玩具?设生产甲种玩具部件x 天 乙种玩具部件 y 天,则有( A )x y60 ( B ) x y 6024 x 12 y 12x 24y( C ) x y 60 ( D ) x y 602 24x 12y 24x 2 12y11、最近几年来市政府每年出资新建一批廉租房,使城镇住宅困难的居民住宅状况获得改良 . 下面是某小区 2006~ 2008 年每年人口总数和人均住宅面积的统计的折线图 ( 人均住宅面积 =该小区住宅总面积 / 该小区人口总数,单位:㎡/ 人 ).依据以上信息,则以下说法:①该小区 年住宅总面积最大;②该小区2007 年住宅总面积达到 1.728 ×10 6 m 2;③该小区2008 年人均住宅面积的增加率为4%.此中正确的有( A)①②③(B)①② (C)①( D)③12、如图, AB∥CD,∠ BAC与∠ DCA的均分线订交于点 G,GE⊥ AC于点 E,F 为 AC上的一点,且 FA=FG= FC,GH⊥ CD于 H.以下说法:①AG⊥CG;②∠ BAG=∠ CGE;③ S△AFG= S△CFG;④若∠ EGH︰∠ ECH= 2︰ 7,则∠ EGF= 50° .此中正确的有(A)①②③④ (B) ②③④(C)①③④ (D) ①②④二、你能填得又快又准吗?( 此题共有 4 题,每题 3 分,共 12 分)13、将方程2x3y 5 变形为用x的代数式表示y 的形式是.14、用不等式表示“ a 与 5 的差不是正数”:.15、如图,将△ ABC 沿 CB边向右平移获得△ DFE, DE交 AB于点 G.已知∠ A︰∠ C︰∠ ABC= 1︰ 2︰ 3,AB= 9cm,B F= 5cm, AG= 5cm,则图中暗影部分的面积为cm 2.16、察看以下有规律的点的坐标:...A (1,1)A (2,-4 )A (3,4)A (4,-2 )A (5,7)A (6,4)1234563A7( 7,10) A8( 8,-1 ),依此规律, A11的坐标为, A12的坐标为 .三、解以下各题 ( 此题共 9 题,共 72 分 )x y317、(此题 6 分)解方程组3x 8y1418、(此题12x6 分)解不等式> x-1并把解集在数轴上表示出来319、(此题 6 分)如图,四边形中,点E在BC上,∠ A+∠ ADE=180°,∠ B=78°,∠ C= 60°,求∠ EDC的度数 .20、(此题7 分)为响应国家要求中小学生每日锻炼 1 小时的呼吁,某校展开了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的状况进行了统计,并绘制了下边的图 1和图 2.(1)该班共有多少名学生?若整年级共有 1200 名学生,预计整年级参加乒乓球活动的学生有多少名?(2)请在图 1 中将“乒乓球”部分的图形增补完好,并求出扇形统计图中,表示“足球”的扇形圆心角的度数 .21、(此题7 分)如图,在平面直角坐标系中:( 1)写出点 A 的坐标;(2)将线段OA向上平移两次,每次平移1 个单位,再将线段向左平移2 个单位,获得线段O′A′,写出点O、A 的对应点 O′、 A′的坐标;( 3)在图中画出与线段OA相等的两条不一样的线段.22、(此题8 分)如图, AD均分∠ BAC,∠ EAD=∠ EDA.(1)∠ EAC与∠ B 相等吗?为何?(2)若∠ B= 50° , ∠ CAD︰∠ E= 1︰ 3,求∠ E 的度数 .23、(此题10 分)某校师生踊跃为汶川地震灾区捐钱捐物,在得悉灾区急需帐篷后,马上到当地的一家帐篷厂采买,帐篷有两种规格,可供 3 人居住的小帐篷,价钱每顶160 元;可供 10 人居住的大帐篷,价钱每顶400 元. 学校花去捐钱96000 元采买这两种帐篷,正好可供 2300 人居住 . 学校准备租用甲、乙两种型号的卡车共20 辆将所购帐篷紧迫运往灾区,已知甲型卡车每辆可同时装运 4 顶小帐篷和11 顶大帐篷,乙型卡车每辆可同时装运12 顶小帐篷和7 顶大帐篷 .(1)求该校采买了多少顶 3 人小帐篷,多少顶 10 人住的大帐篷;(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?24、(此题 10 分)已知:在△ ABC和△ XYZ 中,∠ A= 40°,∠ Y+∠ Z= 95°,将△ XYZ 如图摆放,使得∠ X 的两条边分别经过点 B 和点 C.(1)当将△ XYZ如图 1 摆放时,则∠ ABX+∠ ACX=度;(2)当将△ XYZ如图 2 摆放时,恳求出∠ ABX+∠ ACX的度数,并说明原因;(3)可否将△ XYZ 摆放到某个地点时,使得 BX、 CX 同时均分∠ ABC和∠ ACB?请直接写出你的结论: .25、(此题 12 分)如图, A、B 两点同时从原点 O 出发,点 A 以每秒 x 个单位长度沿 x 轴的负方向运动,点 B 以每秒 y 个单位长度沿 y 轴的正方向运动 . ( 1)若∣ x+ 2y- 5∣+∣ 2x - y∣= 0,试分别求出 1 秒钟后,A、 B 两点的坐标 .( 2)设∠ BAO的邻补角和∠ ABO的邻补角的均分线订交于点P,问:点 A、 B 在运动的过程中,∠P 的大小能否会发生变化?若不发生变化,恳求出其值;若发生变化,请说明原因.( 3)如图,延伸 BA 至 E,在∠ ABO的内部作射线 BF 交 x 轴于点C,若∠ EAC、∠ FCA、∠ ABC的均分线订交于点 G,过点 G作 BE 的垂线,垂足为 H,试问∠ AGH和∠ BGC的大小关系如何?请写出你的结论并说明原因.山东青岛市2018—2018学年度第二学期七年级下数学期末模拟试卷及答案答案:一. 选择题号1 2 3 4 5 6 7 8 9 10 11 12答案A DB D BC B CD C B A二、你能填得又快又准吗? ( 此题共有 4 题,每题 3 分,共 12 分)13 y=2x -5.14 a 5≤6532.1611 16 1221 1 .3三、解以下各题 ( 此题共 9 题,共 72 分 )17x 3 y 13 3 y8 y 142y 14y1x25x26y118 解: 1+2x 3x 3 1 2x3x 3 12x43x 44619A ADE 180°ABDE2 CEDB 78° 4 C60°EDC 180° CED C180° 78° 60°42° 620 1 20÷405015020101555× 1200 120350502510630 72° 650“”72° .721 1 A(2 1)2 2 O′(-2 2)A′(0 3)537221.1 AD BACBAD CAD2 EAD EDAEAC EAD CADEDA BADB42CAD x° E 3x° 5 1EAC B 50°EAD EDA x 50°EAD E EAD EDA 180°3x 2 x 501806x 167E 48° 8231x y13解这个方程组得4 分答:该校采买了100 顶 3 人小帐篷, 200 顶 10 人住的大帐篷. 5 分( 2)设甲型卡车安排了 a 辆,则乙型卡车安排了(20-a )辆依据题意得7 分解这个不等式组得15≤ a≤8 分∵车辆数为正整数∴ a=15 或 16 或 17∴20-a =5 或 4 或 39 分答:学校可安排甲型卡车15 辆,乙型卡车 5 辆或安排甲型卡车16 辆,乙型卡车 4 辆或安排甲型卡车 17 辆,乙型卡车 3辆,可一次性将这批帐篷运往灾区.有 3种方案 .10 分24、解:( 1) 235°; 3 分( 2)∠ ABX+∠ ACX= 45° . 原因以下: 4 分∵∠ Y+∠ Z= 95°∴∠ X= 180°-(∠ Y+∠ Z)= 85° 5 分∴∠ ABX+∠ ACX= 180°-∠ A-∠ XBC-∠ XCB=180°- 40°-( 180°- 85°)7 分=45° 8 分( 3)不可以 .10 分25、解:( 1)解方程组:x 2 y 5 0 2x y0x1得: 3 分y2∴ A(- 1, 0), B( 0, 2) 4 分( 2)不发生变化 . 5 分∠P= 180°-∠ PAB-∠ PBA= 180°-1(∠ EAB+∠ FBA) 6 分2=180°-1(∠ ABO+ 90°+∠ BAO+ 90°)7 分2=180°-1( 180°+ 180°- 90°)2=180°- 135°=45° 8 分山东青岛市第二学期七级下数学期末模拟试卷及答案3 GM BF M 9AGH 90° 1 EAC2 90° 1 180° BAC21 BAC10 2BGC BGM BGC90° 1 ABC90° 1 ACF2 21ACFABC2 1 BAC11 2AGH BGC 12注:不一样于此标答的解法请对比此标答给分11/11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省青岛市李沧区七年级(下)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分 1.下列图案中,属于轴对称图形的是( )A .B .C .D .2.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4B .5C .6D .93.下列运算正确的是( ) A .a 2•a 3=a 6 B .2a 2+a 2=3a 4 C .a 6÷a 3=a 2D .(ab 2)3=a 3b 64.如图,下列条件中能判定直线l 1∥l 2的是( )A .∠1=∠2B .∠1+∠3=180°C .∠1=∠5D .∠3=∠55.小球在如图所示的地板上自由地滚动,随机地停留在某块方砖上,最终停在白色区域上的概率是( )A .B .C .D .6.如下图中的图象(折线ABCDE )描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法: ①汽车在途中停留了0.5小时;②汽车行驶3小时后离出发地最远;③汽车共行驶了120千米;④汽车返回时的速度是80千米/小时.其中正确的说法共有()A.1个B.2个C.3个D.4个7.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°8.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116B.144C.145D.150二、填空题(本题满分24分,共有8道小题,每小题3分9.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为.10.如图,直线a∥b,直线1与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为.11.我市出租车收费按里程计算,3千米以内(含3千米)收费10元,超过3千米,每增加1千米加收2元,则当x≥3时,车费y(元)与x(千米)之间的关系式为.12.如图所示,A、B、C、D在同一直线上,AB=CD,DE∥AF,若要使△ACF≌△DBE,则还需要补充一个条件:.13.如图,△ABC的周长为15cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D、交AC 边于点E,连接AD,若AE=2cm,则△ABD的周长是cm.14.小明和小芳用编有数字1~10的10张纸片(除数字外大小颜色都相同)做游戏,小明从中任意抽取一张(不放回),小芳从剩余的纸片中任意抽取一张,谁抽到的数字大,谁就获胜(数字从小到大顺序为1,2,3,4,5,6,7,8,9,10)然后两人把抽到的纸片都放回,重新开始游戏,如果小明已经抽到的纸片上的数字为3,然后小芳抽纸片,则小芳获胜的概率是.15.如图,已知△ABC中,BD、CE分别是∠ABC、∠ACB的平分线,BD、CE交于点O,∠A=70°,则∠BOE =.16.小明设计了如下的一组数:2,1,3,x,7,y,23,z,……,满足“从第三个数起,前两个数依次为a,b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中z的值为.三、作图题(本题满分4分)17.用圆规、直尺作图,不写作法,但要保留作图痕迹.一个缺角的三角形残片如图所示,请你利用尺规画一个与它一样的(全等的)三角形.四、解答题(本题满分68分,共有7道小题)18.(16分)计算(1)()﹣2﹣(﹣2)0+(﹣0.2)2018×(﹣5)2018(2)用整式乘法公式计算:1012﹣1(3)(x2y+2x2y﹣y3)÷y﹣(y+2x)(2x﹣y)(4)先化简,再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中,a=1,b=﹣2.19.(6分)全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(质地均匀)平均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去这个游戏规定对双方公平吗?为什么?若不公平,请修改游戏规定,使这个游戏对双方公平.20.(8分)如图,已知A、E、F、C在一条直线上,BE∥DF,BE=DF,AF=CE.(1)图中有几对全等三角形?(2)判断AD与BC的位置关系,请说明理由.21.(8分)某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,①求排水时y与x之间的关系式.②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.22.(8分)点D 是等边△ABC (即三条边都相等,三个角都相等的三角形)边BA 上任意一点(点D 与点B 不重合),连接DC .(1)如图1,以DC 为边在BC 上方作等边△DCF ,连接AF ,猜想线段AF 与BD 的数量关系?请说明理由. (2)如图2,若以DC 为边在BC 上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?请说明理由.23.(10分)阅读理解:提出问题:如图1,在四边形ABCD 中,P 是AD 边上任意一点,△PBC 与△ABC 和△DBC 的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:当AP =AD 时(如图2):∵AP =AD ,△ABP 和△ABD 的高相等,∴S △ABP =S △ABD∵PD =AD ﹣AP =AD ,△CDP 和△CDA 的高相等∴S △CDP =S △CDA∴S △PBC =S 四边形ABCD ﹣S △ABP ﹣S △CDP =S 四边形ABCD ﹣S △ABD ﹣S △CDA=S 四边形ABCD ﹣(S 四边形ABCD ﹣S △DBC )﹣(S 四边形ABCD ﹣S △ABC )=S △DBC +S △ABC(1)当AP =AD 时,探求S △PBC 与S △ABC 和S △DBC 之间的关系式并证明;(2)当AP =AD 时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: ;(3)一般地,当AP =AD (n 表示正整数)时,探求S △PBC 与S △ABC 和S △DBC 之间的关系为: ;(4)当AP=AD(0≤≤1)时,S△PBC 与S△ABC和S△DBC之间的关系式为:.24.(12分)如图,在长方形ABCD中,AB=6厘米,AD=8厘米.延长BC到点E,使CE=3厘米,连接DE.动点P从B点出发,以2厘米/秒的速度向终点C匀速运动,连接DP.设运动时间为t秒,解答下列问题:(1)当t为何值时,△PCD为等腰直角三角形?(2)设△PCD的面积为S(平方厘米),试确定S与t的关系式;(3)当t为何值时,△PCD的面积为长方形ABCD面积的?(4)若动点P从点B出发,以2厘米/秒的速度沿BC﹣CD﹣DA向终点A运动,是否存在某一时刻t,使△ABP 和△DCE全等?若存在,请求出t的值;若不存在,请说明理由.2017-2018学年山东省青岛市李沧区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分1.【解答】解:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.2.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.3.【解答】解:a2•a3=a5,A错误;2a2+a2=3a2,B错误;a6÷a3=a3,C错误;(ab2)3=a3b6,D正确,故选:D.4.【解答】解:A、根据∠1=∠2不能推出l1∥l2,故本选项错误;B、根据∠1+∠3=180°能推出l1∥l2,故本选项正确;C、根据∠1=∠5不能推出l1∥l2,故本选项错误;D、根据∠3=∠5不能推出l1∥l2,故本选项错误;故选:B.5.【解答】解:∵由图可知,黑色方砖3块,共有9块方砖,白色方砖有6块,∴白色方砖在整个地板中所占的比值==,∴它停在白色区域的概率是.故选:D.6.【解答】解:读图可得:BC间的位移不变,其时间为2﹣1.5=0.5,故汽车在途中停留了0.5小时,①正确;t=3时,位移达到最大值,则汽车行驶3小时后离出发地最远,②正确;汽车的最大位移为120千米,来回的路程为240千米,③错误;汽车返回时的速度是=80千米/小时,④正确;故选:C.7.【解答】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故选:C.8.【解答】解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.二、填空题(本题满分24分,共有8道小题,每小题3分9.【解答】解:0.0007=7×10﹣4,故答案为:7×10﹣4.10.【解答】解:∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°﹣50°=40°,故答案为:40°11.【解答】解:根据题意得出:车费y(元)与x(千米)之间的函数关系式为:y=10+(x﹣3)×2,=10+2x﹣6,=2x+4,故答案为:y=2x+4.12.【解答】解:∵AB=CD,DE∥AF∴AC=DB,∠A=∠D∵∠E=∠F∴△ACF≌△DBE(AAS)∴此处添加∠E=∠F.13.【解答】解:根据折叠的性质可知:AE=EC=2cm,AD=CD,∵△ABD的周长=AB+BD+AD=AB+BD+CD,又∵AB+BD+CD+AC=15,∴AB+BD+CD=15﹣AC=15﹣2×2=11(cm).故答案为:11.14.【解答】解:由题意可得:小明已经抽到的纸片上的数字为3,则只有数字1,2小于3,而4,5,6,7,8,9,10都大于3,故小芳获胜的概率为:,故答案为:.15.【解答】解:∵∠A=70°,∴∠ABC+∠ACB=110°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=55°,∴∠BOE=∠OBC+∠OCB=55°,故答案为:55°.16.【解答】解:∵该组数列满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,∴x=2×1﹣3=﹣1,y=2×(﹣1)﹣7=﹣9,z=2×(﹣9)﹣23=﹣41.故答案为:﹣41.三、作图题(本题满分4分)17.【解答】解:如图所示,△CDE即为所求.四、解答题(本题满分68分,共有7道小题)18.【解答】解:(1)原式=4﹣1+[(﹣0.2)×(﹣5)]2018=4﹣1+1=4;(2)原式=(101+1)×(101﹣1)=102×100=10200;(3)原式=x2+2x2﹣y2﹣(4x2﹣y2)=3x2﹣y2﹣4x2+y2=﹣x2;(4)原式=a2﹣4ab+4b2+a2﹣b2﹣2(a2﹣ab﹣3ab+3b2)=a2﹣4ab+4b2+a2﹣b2﹣2a2+2ab+6ab﹣6b2=4ab﹣3b2.当a=1,b=﹣2时,原式=4×1×(﹣2)﹣3×(﹣2)2=﹣8﹣12=﹣20.19.【解答】解:不公平,小丽获胜的概率为=、小芳获胜的概率为,∵≠,∴此游戏不公平;修改规则为:若指针转到偶数,则小丽胜;若指正转到奇数,则小芳胜.20.【解答】解:(1)图中全等三角形有△ABE≌△CDF,△BAC≌△DCA,△BCE≌△ADF.(2)结论:AD∥BC.理由:∵BE∥DF,∴∠BEC=∠AFD,∴∠AEB=∠DFC,∵AF=CE,∴AE=CF,∵BE=DF,∴△ABE≌△CDF,∴AB=CD,∠BAE=∠DCF,∴AB∥CD,∴四边形ABCD是平行四边形,∴AD∥BC.21.【解答】解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;(2)①∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,∴y=40﹣19(x﹣15)=﹣19x+325,②∵排水时间为2分钟,∴y=﹣19×(15+2)+325=2升.∴排水结束时洗衣机中剩下的水量2升.22.【解答】解:(1)BD=AF,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CD=CF,∠ACB=∠DCF=60°,∴∠BCD=∠ACF,在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AB=AF+BF′,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CF′=CD,∠F′CD=∠BCA=60°,∴∠F′CB=∠DCA,在△F′CB和△DCA中,,∴△F ′CB ≌△DCA (SAS ),∴BF ′=DA ,由(1)知,BD =AF ,∵AB =BD +AD ,∴AB =AF +BF ′.23.【解答】解:(1)∵AP =AD ,△ABP 和△ABD 的高相等,∴S △ABP =S △ABD .又∵PD =AD ﹣AP =AD ,△CDP 和△CDA 的高相等,∴S △CDP =S △CDA .∴S △PBC =S 四边形ABCD ﹣S △ABP ﹣S △CDP=S 四边形ABCD ﹣S △ABD ﹣S △CDA=S 四边形ABCD ﹣(S 四边形ABCD ﹣S △DBC )﹣(S 四边形ABCD ﹣S △ABC )=S △DBC +S △ABC .∴S △PBC =S △DBC +S △ABC(2)由(1)得,S △PBC =S △DBC +S △ABC ;(3)S △PBC =S △DBC +S △ABC ;∵AP =AD ,△ABP 和△ABD 的高相等,∴S △ABP =S △ABD .又∵PD =AD ﹣AP =AD ,△CDP 和△CDA 的高相等,∴S △CDP =S △CDA ∴S △PBC =S 四边形ABCD ﹣S △ABP ﹣S △CDP=S 四边形ABCD ﹣S △ABD ﹣S △CDA=S 四边形ABCD ﹣(S 四边形ABCD ﹣S △DBC )﹣(S 四边形ABCD ﹣S △ABC )=S △DBC +S △ABC .∴S △PBC =S △DBC +S △ABC(4)由(3)得,S △PBC =S △DBC +S △ABC .24.【解答】解:(1)在长方形ABCD 中,AB =6厘米,AD =8厘米,∴BC =AD =8cm ,CD =AB =6cm ,∠DCB =∠DCE =90°, 由运动知,BP =2t ,∴PC =BC ﹣BP =8﹣2t ,∴△CDP 是等腰直角三角形,∴CP =CD =6,∴8﹣2t =6,∴t =1秒,(2)由(1)知,PC =8﹣2t ,∴S =S △PCD =CP ×CD =(8﹣2t )×6=﹣6t +24(0≤t ≤4);(3)∵AB =6,AD =8,∴S 长方形ABCD =6×8=48cm 2,由(2)知,S =﹣6t +24(0≤t ≤4),∵△PCD 的面积为长方形ABCD 面积的,∴﹣6t +24=×48,∴t =2秒,(4)在△ABP中,AB=6cm,在△CDE中,CD=6cm,∴AB=CD,∵△ABP和△DCE全等,∴△ABP≌△DCE或△ABP≌△CDE,当△ABP≌△DCE时,BP=CE=3,∴2t=3,∴t=,当△ABP≌△CDE时,AP=CE=3,∴8+6+8﹣2t=3,∴t=,即:t=秒或秒时,△ABP和△DCE全等.。