铝合金 特性

合集下载

铝合金之特性与分类

铝合金之特性与分类
合金種類 主 要 合 金
1xxx系 2xxx系
3xxx系 4xxx系 5xxx系 6xxx系 7xxx系 8xxx系
-31-
純鋁 (純度大於99.0%) 鋁銅合金 Al-Cu
鋁錳合金 Al-Mn (Al-Mn-Mg) 鋁矽合金 Al-Si 鋁鎂合金 Al-Mg 鋁鎂矽合金 Al-Mg-Si 鋁鋅鎂合金 Al-Zn-Mg (Al-Zn-Mg-Cu) 雜項類 (Al-Li、Al-Fe-Si ··· ··· ··)
人工時效時間 →
-41-

中鋼/中鋁研發處

析出硬化型合金之性質與用途
2xxx系(Al-Cu) 性質:強度僅次於7xxx系。 用途:主要用於飛機、運輸工具之結構材料以及一般 工業用模具等。 6xxx系(Al-Mg-Si) 性質:在鋁合金中屬於中強度等級, 耐蝕性、 銲接性 及擠型性佳。 用途:建築材料、裝飾材料、汽車板及擠型材等。
↑ ↑ 鋁改 銅良 合型 金
2 1 2 4
↑ ↑ 鋁舊 銅制 合 金

2 0 1 4
中鋼/中鋁研發處

Al-Cu-Mg合金
合金
Si
Max 0.50
Wt%
Cr
Max 0.10
Fe
Max 0.50
Cu
3.8~ 4.9
Mn
0.3~ 0.9
Mg
1.2~ 1.8
Zn
Max 0.25
Ti

Al
剩餘
2024
2124
-35-
Max 0.08
Max 0.10
Max 0.10
Max 0.10
2.2~ 2.8

Max 0.05
Max 0.05

铝合金特性及用途

铝合金特性及用途

铝合金的特性与用途类别牌号特性与用途防锈铝LF21是应用最广的一种防锈铝,它的强度不高,不能热处理强化,在退火状态下有高的塑性,而蚀性好,焊接性好,切削加工性不良。

用于制造要求高可塑性和良好焊接性、在液体或气体介质中工作的低载荷零件如油箱、油管、液体容器等;线材可制作铆钉LF13耐蚀性高、焊接性能好。

导热性、导电性比纯铝低得多。

可用冷变形加工进行强化而不能热处理强化。

适用于作焊接结构件LF5 LF10为铝镁系防锈铝(LF10的含镁量稍高于LF5)强度与LF3相当,热处理不能强化,退火状态塑性高,半冷作硬化塑性中等,焊接性能尚好,LF5用于制作在液体中工作的焊接零件、管道和容器以及其它零件。

LF10主要用来制造铆钉LF6有较高强度和耐蚀性,退火和挤压状态下塑性尚好,用氩弧焊的焊缝气密性和塑性尚可。

切削加工性良好。

用于焊接容器、受力零件、飞机蒙皮及骨架零件LF5-1为不可热处理强化铝合金,有一定的强度,耐蚀性、切削性良好。

阳极化处理后表面美观,可加工成光学机械部件、船舶部件及导线夹等LF2 LF3强度比LF21较高,塑性与耐蚀性高,热处理不能强化,焊接性好(LF3的焊接性优于LF2),在冷作硬化状态下的切削性较好,可拋光。

用于制造在液体中工作的中等强度的焊接件、冷冲压零件和容器等硬铝LY1为铆接铝合金结构用的主要铆钉材料,在淬火和自然时效后的强度较低,但有很高的塑性和良好的工艺性能,焊接性与LY11相同,切削性能尚可,耐蚀性不高,广泛用作中等强度和工作温度<100℃的结构用铆钉材料LY2为耐热硬铝,有较高的强度,热变形时塑性高,可热处理强化,在淬火及人工时效状态下使用,切削加工性良好,耐蚀性比LD7、LD8耐热锻铝较好,在挤压半成品中,有形成粗晶环的倾向,用于制造在较高温度下工作的承力结构件LT4 LY8 LY9均为铆钉用合金,LY4有较好的耐热性,可在125-250℃内使用,LY9的强度较高,但其共同缺点是铆钉必须在淬火后2-6小时内使用。

铝合金材质特点

铝合金材质特点

铝合金材质特点
铝合金材质特点
铝合金是以铝为主要成分,其他金属成分共同熔混而成的金属材料,其主要特性有:
一、轻量
铝合金的密度最低可以达到2.6-2.8g/cm3,比铁材质轻大约1/3,所以铝合金是一种轻量的材料,适合制作诸如自行车、乒乓球拍和风筝等娱乐用品。

二、硬度高
铝合金的硬度高,抗冲击能力强,因此多适用于机械零件、航空结构等,能够有效提高使用寿命。

三、耐腐蚀
铝合金具有很高的抗腐蚀性,耐酸碱性,常见的污染物在铝合金表面也不能产生明显的腐蚀痕迹,如油污、烟气等。

因此,铝合金常用做彩钢板、烟囱和排污管等,经常接触气体和液体的部位。

四、使用寿命长
铝合金的表面经过磨光处理,不易产生氧化膜,而且铝合金的抗氧化性能良好,使得其使用寿命比铁和钢长,成本也使其更有优势。

五、加工性能好
与钢相比,铝合金的加工性能要更加优越,其机械加工性能良好,对工艺变动有很高的适应性,而且能够做到精度高,表面粗糙度好。

- 1 -。

各系列铝合金的品种状态和典型用途

各系列铝合金的品种状态和典型用途

各系列铝合金的品种状态和典型用途铝合金是一种广泛应用的金属材料,由于其具有轻质、高强度、优良的导热性能和抗腐蚀性能,被广泛应用于各个领域。

铝合金的品种很多,下面将介绍一些常见的铝合金及其状态和典型的用途。

1.1000系列铝合金:1000系列铝合金主要由铝组成,其中最常见的品种是1100和1050。

这些合金具有良好的导热性能、高的电导率和优良的可冲制性。

常见的状态有O、H12、H14、H16等。

典型的应用包括各种压力容器、热交换器、电容器壳体等。

2.2000系列铝合金:2000系列铝合金的主要成分是铜。

其中,最常见的品种是2024和2024、这些合金具有高强度和优良的切削性能,并具备一定的耐腐蚀性。

常见的状态有O、T3和T4等。

典型的应用包括航空航天、飞机结构件、自行车框架等。

3.3000系列铝合金:3000系列铝合金的主要成分是锰,其中最常见的品种是3003和3004、这些合金具有良好的耐腐蚀性和可焊性,并具备较高的强度。

常见的状态有O、H12、H14、H16等。

典型的应用包括制造罐装食品、化学品和各种容器。

4.5000系列铝合金:5000系列铝合金的主要成分是镁,其中最常见的品种是5052和5083、这些合金具有良好的耐腐蚀性和可塑性,并具备一定的强度。

常见的状态有O、H32和H34等。

典型的应用包括制造油罐、船体和船板等。

5.6000系列铝合金:6000系列铝合金的主要成分是硅和镁,其中最常见的品种是6061和6063、这些合金具有较高的强度、优良的焊接性能和抗腐蚀性。

常见的状态有O、T4和T6等。

典型的应用包括船用铝合金、建筑结构、汽车零部件等。

6.7000系列铝合金:7000系列铝合金的主要成分是锌,其中最常见的品种是7075、这些合金具有优秀的强度和耐腐蚀性,并具备较好的切削性能。

常见的状态有O、T6和T651等。

典型的应用包括航空航天、汽车零部件、自行车框架等。

7.8000系列铝合金:8000系列铝合金的主要成分是铝和其他元素,包括铁、硅、锑等。

简明铝合金手册

简明铝合金手册

简明铝合金手册
铝合金是一种广泛使用的材料,具有很多种类和应用领域。

以下是一份简明的铝合金手册,包含常见的铝合金材料、特性和应用:
1. 1000系列铝合金:纯铝,具有良好的可加工性和耐腐蚀性。

常用于制作薄板、管材和电力导线。

2. 2000系列铝合金:具有良好的强度和耐腐蚀性,在航空和
航天领域常用。

常见的2000系列铝合金是2024和2017。

3. 3000系列铝合金:具有良好的耐腐蚀性,常用于制作食品
和化工容器。

常见的3000系列铝合金是3003和3004。

4. 4000系列铝合金:常用于焊接应用,具有良好的焊接性。

常见的4000系列铝合金是4043和4343。

5. 5000系列铝合金:具有良好的耐腐蚀性,常用于制作船舶
和海洋设备。

常见的5000系列铝合金是5052和5083。

6. 6000系列铝合金:具有良好的可加工性和强度,广泛用于
建筑和汽车制造。

常见的6000系列铝合金是6061和6063。

7. 7000系列铝合金:具有极高的强度和硬度,常用于航空和
汽车赛车。

常见的7000系列铝合金是7075和7050。

以上是一份简明的铝合金手册,列举了常见的铝合金材料、特
性和应用领域。

请注意,这只是一个概述,铝合金的种类和应用非常多样化,需要根据具体需求进行选择。

最常用的铝合金材料性能对比

最常用的铝合金材料性能对比

最常用的铝合金材料性能对比铝合金是由铝与其他金属元素组成的合金材料。

它具有低密度、高强度、良好的加工性能和耐蚀性等优点,因此被广泛应用于航空航天、交通运输、建筑工程、电子产业等领域。

在众多铝合金中,以下是一些常用的铝合金材料性能对比:1.1系列铝合金(纯铝):纯铝的铝合金,代表为铝1050、铝1100等。

特点:-优异的导电性和热导性,适用于导电器件制造;-高塑性,易于加工成各种形状;-低强度,常用于装饰、化工、食品等行业;-良好的耐腐蚀性,适用于各种环境。

2.2系列铝合金(铜合金):铝合金中添加了一定比例的铜,代表为铝2024、铝2024等。

特点:-高强度、良好的切削性能,适用于制造飞机零部件、车辆零部件等;-良好的耐疲劳性能,适用于制造高负荷工作的零部件。

3.3系列铝合金(锰合金):铝合金中添加了一定比例的锰,代表为铝3003、铝3004等。

特点:-良好的耐腐蚀性能,适用于制造罐体、管道等;-优良的深冲性能,适用于制造汽车外壳等;-中等强度,常用于装饰、化工等行业。

4.5系列铝合金(镁合金):铝合金中添加了一定比例的镁,代表为铝5052、铝5083等。

特点:-中等强度、良好的可焊性,适用于制造船舶、汽车等;-良好的耐腐蚀性能,适用于制造化工设备;-高塑性,适用于冷冲压成型。

5.6系列铝合金(镁硅合金):铝合金中添加了一定比例的镁和硅,代表为铝6061、铝6063等。

特点:-中等强度、良好的切削性能和可焊性,适用于制造航空航天、汽车等;-良好的耐热性能,适用于制造发动机零部件;-良好的耐腐蚀性能,适用于制造化工设备。

总结:不同的铝合金材料具有不同的性能特点,应根据具体的使用环境和要求选择合适的铝合金。

以上介绍的铝合金材料仅为常用的几种,还有其他系列的铝合金,如7系列(锌合金)、8系列(锡合金)等,其特性和应用领域也有所不同。

铝合金的性能对比对于正确选择合适的材料至关重要,以确保产品的质量和性能。

铝合金材质特点

铝合金材质特点

铝合金材质特点
铝合金材质特点
铝合金材质是由铝及其他矿物质经过合成形成的材质,具有低重量、高强度、良好的韧性,较好的抗腐蚀性,塑性强,操作性能好,不易发生疲劳断裂,以及良好的热和电绝缘性等优点。

它的重量比钢低2/3,但强度差不多,因此深受工程制造界的青睐。

1、铝合金材质具有良好的耐腐蚀性。

它的表面钝化处理可以有效地增强它的耐腐蚀性,使其不易受到空气和水腐蚀,同时也不易受到物理侵蚀和腐蚀。

2、铝合金材质具有优良的性能,具有较高的抗拉强度、抗压强度、断裂伸长率、蠕变强度、耐冲击性等。

3、铝合金材质的操作性能极佳,可以采用热处理、焊接、加工、表面涂层等加工工艺,使其达到理想的效果,尤其是采用新型复合材质,其加工塑性性能优异,可以实现精确的零件加工。

4、铝合金材质具有较低的比热容,可减少机械处理的损失,提高加工效率,其抗热膨胀性好,可以有效抑制材料因热延伸而产生的改变。

5、铝合金材质具有良好的电绝缘性,可以有效防止电路板上的电磁波,使电路更加稳定。

总之,铝合金材质具有许多优秀的特性,是大量工程制造领域不可或缺的材料,正越来越广泛地应用在飞机、船舶、汽车、医疗器械等行业。

铝_铝合金及强化与热处理

铝_铝合金及强化与热处理

铝合金的强化及热处理第一章铝及铝合金一、铝的物理性质分子量26.98,密度2.7g/cm3,熔点660.24℃(99.996%),导电导热性仅次于铜,是铁的3-4倍。

膨胀系数24.58-25.45um/m.K。

铝经合金化后,其强度比纯铝高3-4倍,由于铝合金的质轻而强度高,故其强度在所有的金属和合金中,几乎名列前茅。

铝在室温下易形成一层致密的氧化膜(三氧化二铝,比重2.82—3.92),厚度几个纳米。

二、铝的化学性质两性,与氧结合成氧化膜,在碱和盐溶液中抗蚀性差,三、铝合金及分类按合金的特性分:有防锈铝(纯铝及铝-锰、铝-镁系合金)、硬铝(铝-铜-镁-锰系)、超硬铝、锻铝及特殊铝。

按合金状态图分:变形铝(分可热处理强化区和不可热处理强化区)和铸造铝。

变形铝合金:熔炼注成铸锭再经热挤压,合金总量一般小于5%,分可热处理和不可热处理。

铸造铝合金:铸造方法浇注或压注成零件或毛坯,合金含量一般8-25%。

1. 变形铝合金牌号的表示方法工业纯铝(≥99.00%)1XXX系列Al-Cu系合金2XXX系列Al-Mn系合金3XXX系列Al-Si系合金4XXX系列Al-Mg系合金5XXX系列Al-Si-Mg系合金6XXX系列Al-Zn系合金7XXX系列其他元素合金8XXX系列备用系9XXX系列2.铸造铝合金牌号的表示方法用化学元素及数字表示,如ZAlSi7Mg表示铸造铝合金,平均含硅量为7%,平均含镁量为小于1%。

还用合金代号表示,如ZL108,ZL111等,Z,L为铸,铝汉语拼音第一个字母,后面第一个数字表示合金系列,其中1、2、3、4分别表示铝硅、铝铜、铝镁、铝锌系列合金,ZL后面第二位,第三位两个数字表示顺序号。

优质合金在数字后面附加了字母“A”。

.第二章铝的合金化与强化方法合金:就是以一种金属为基(大于50%),加入一种或几种元素,使之溶在一起,构成一种新的金属组成物,以达到某种特性或良好的综合性能,这一过程也称合金化。

铝合金基础知识

铝合金基础知识

工业生产用量仅次于钢铁,居有色金属首位。

特点:质轻,比强度和比刚度高,导电导热性好,耐腐蚀。

应用:宇航、航空等工业的主要原材料,建筑、运输、电力等各个领域。

1.纯铝纯铝的特性:纯铝呈银白色,密度2.7g·cm-3,熔点660℃,面心立方,无同素异构转变;●导电、导热性能好;●化学性质活泼,大气中生成致密氧化膜,防止继续氧化,大气中耐蚀性好;●碱、盐和大多数酸性溶液(如硫酸、盐酸等)中,易被腐蚀。

●易于加工制成各种制品。

●铝中常含许多杂质(主要是铁、硅,还有铜、锌、镁、锰、镍和钛等),随杂质含量↑,纯铝强度↑,导电性、耐蚀性和塑性↓纯铝的牌号及用途:牌号: “铝” 拼音第1字母“L”加一顺序号高纯Al:LG5-1,LG5纯度最高工业纯Al:L1-6, L6纯度最低纯铝不能热处理强化,唯一手段是冷加工硬化,强度低。

用途: 主要用作导电、导热材料,制备铝合金和用于化学工业。

2. 铝的合金化纯铝强度、硬度都很低,难以用作工程结构材料。

铝中适量加入某些合金元素,再经冷变形或热处理,可大幅度↑其力学性能(主要是强度、硬度)。

固态铝无同素异构转变,不能像钢一样借助于热处理相变强化。

合金元素的强化作用主要为固溶强化、沉淀强化、过剩相强化和细化组织强化。

固溶强化:合金元素加入纯Al中,形成铝基固溶体,使晶格发生畸变,↑位错运动阻力,↑强度。

合金元素的固溶强化能力与其本身性质及固溶度有关,总体讲固溶强化效果不高,因此铝的强化不能只依靠固溶强化。

用途: 主要用作导电、导热材料,制备铝合金和用于化学工业。

沉淀强化 : 主要强化手段,基体中造成较强烈应变场,↑位错运动阻力。

通过热处理(固溶时效)析出沉淀相实现强化,也称时效强化。

条件:①合金元素在铝中有较高的极限溶解度和明显的温度关系;②沉淀过程中形成性能好、均匀、弥散的共格或半共格过渡强化相。

Cu、Mg、Zn、Si、Li等主加元素在铝中均有较高溶解度,并随温度↓而急剧↓,但除铜外,与铝形成的沉淀相或因共格界面错配度低使应变场较弱,或因预沉淀阶段短,很快与基体丧失共格关系而形成非共格平衡相,难以充分满足上述沉淀强化条件。

铝合金材质特点

铝合金材质特点

铝合金材质特点
铝合金是一种由铝与其他金属或非金属元素所组成的合金材料,具有以下特点:
1.轻质:铝的密度相当低,是常见金属材料中最轻的。

因此铝合金具有轻重比低的特点,适合用于制造轻量化的产品。

2. 强度高:尽管铝的密度很低,但其强度却很高。

铝合金常用于制造需要高强度的零件和结构件。

3. 良好的导热性:铝具有优良的导热性,铝合金可以很好地散热和传导温度,因此常用于制造需要冷却的部件。

4. 耐腐蚀性强:铝合金具有耐腐蚀的性能,可以在大气中长期稳定运行,因此也适合在恶劣的环境中使用。

5. 良好的可加工性:铝合金易于加工和成型,可以通过切削、冲压、铸造和焊接等不同的方法加工成各种形状和尺寸的产品。

铝合金 特性

铝合金 特性

(1)铝硅系合金,也叫“硅铝明”或“矽铝明”。

有良好铸造性能和耐磨性能,热胀系数小,在铸造铝合金中品种最多,用量最大的合金,含硅量在10%~25%。

有时添加0.2%~0.6%镁的硅铝合金,广泛用于结构件,如壳体、缸体、箱体和框架等。

有时添加适量的铜和镁,能提高合金的力学性能和耐热性。

此类合金广泛用于制造活塞等部件。

(2)铝铜合金,含铜4.5%~5.3%合金强化效果最佳,适当加入锰和钛能显著提高室温、高温强度和铸造性能。

主要用于制作承受大的动、静载荷和形状不复杂的砂型铸件。

(3)铝镁合金,密度最小(2.55g/cm3),强度最高(355MPa左右)的铸造铝合金,含镁12%,强化效果最佳。

合金在大气和海水中的抗腐蚀性能好,室温下有良好的综合力学性能和可切削性,可用于作雷达底座、飞机的发动机机匣、螺旋桨、起落架等零件,也可作装饰材料。

(4)铝锌系合金,为改善性能常加入硅、镁元素,常称为“锌硅铝明”。

在铸造条件下,该合金有淬火作用,即“自行淬火”。

不经热处理就可使用,以变质热处理后,铸件有较高的强度。

经稳定化处理后,尺寸稳定,常用于制作模型、型板及设备支架等。

以铝为基的合金总称。

主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等。

铝合金密度低,但比强度高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。

铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,力学性能高于铸态。

可加工成各种形态、规格的铝合金材。

主要用于制造航空器材、日常生活用品、建筑用门窗等。

铝合金按加工方法可以分为变形铝合金和铸造铝合金。

变形铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金。

不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等。

可热处理强化型铝合金可以通过淬火和时效等热处理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等。

铝的特性

铝的特性

铝的特性1、自然属性铝是一种轻金属,其化合物在自然界中分布极广,地壳中铝的含量约为8%(重量),仅次于氧和硅,具第三位。

在金属品种中,仅次于钢铁,为第二大类金属。

铝具有特殊的化学、物理特性,是当今最常用的工业金属之一,不仅重量轻,质地坚,而且具有良好的延展性、导电性、导热性、耐热性和耐核辐射性,是国民经济发展的重要基础原材料。

铝的比重2.7,密度2700Kg/m3,熔点660℃,沸点2467℃。

而常用铝导线的导电度约为铜的61%,导热度为银的一半。

虽然纯铝极软且富延展性,但仍可靠冷加工及做成合金来使它硬化。

铝土矿是铝的重要来源,制造一镑氧化铝约需要两磅铝土矿,而制造一磅金属铝也需要两磅氧化铝。

2、铝的品种分类根据铝锭的主成份含量可以分成三类:高级纯铝(铝的含量99.93%-99.999%)、工业高纯铝(铝的含量99.85%-99.90%)、工业纯铝(铝的含量98.0%-99.7%)。

、铝的质量标准铝锭质量必须符合国标GB/1196-1993 标准。

其中,AL99.80 和AL99.70 的铝含量规定不得小于99.80 和99.70。

按国家标准(GB/T1196-93)应叫“重熔用铝锭”,不过大家叫惯了“铝锭”。

它是用氧化铝-冰晶石通过电解法生产出来的。

铝锭进入工业应用之后有两大类:铸造铝合金和变形铝合金。

铸造铝及铝合金是以铸造方法生产铝的铸件;变形铝及铝合金是以压力加工方法生产铝的加工产品:板、带、箔、管、棒、型、线和锻件。

按照重熔用铝锭国家标准,“重熔用铝锭按化学成分分为6 个牌号,分别是Al99.85、Al99.80、Al99.70、Al99.60、Al99.50、Al99.00”(注:Al 之后的数字是铝含量)。

目前,有人叫的“A00”铝,实际上是含铝为99.7%纯度的铝,在伦敦市场上叫“标准铝”。

大家都知道,我国在五十年代技术标准都来自前苏联,“A00”是苏联国家标准中的俄文牌号,“A”是俄文字母,而不是英文“A”字,也不是汉语拼音字母的“A”。

铝合金的成分状态和性能及常用挤压铝合金[资料]

铝合金的成分状态和性能及常用挤压铝合金[资料]

第四章铝合金的成分、状态和性能及常用挤压铝合金4. 1 铝的基本特性与应用范围铝是元素周期表中第三周期主族元素,具有面心立方点阵,无同素异构转变,原子序数为13,原子量为26.9815。

表4–1列出了纯铝的主要物理性能。

表4 – 1纯铝的主要物理性能铝具有一系列比其他有色金属、钢铁、塑料和木材等更优良的特性,如密度小,仅为2.7 g / dm3,约为铜或钢的1/3;良好的耐蚀性和耐候性;良好的塑性和加工性能;良好的导热性和导电性;良好的耐低温性能,对光热电波的反射率高、表面性能好;无磁性;基本无毒;有吸音性;耐酸性好;抗核辐射性能好;弹性系数小;良好的力学性能;优良的铸造性能和焊接性能;良好的抗撞击性。

此外,铝材的高温性能、成型性能、切削加工性、铆接性、胶合性以及表面处理性能等也比较好。

因此,铝材在航天、航海、航空、汽车、交通运输、桥梁、建筑、电子电气、能源动力、冶金化工、农业排灌、机械制造、包装防腐、电器家具、日用文体等各个领域都获得了十分广泛的应用,表4–2列出了铝的基本特性及主要应用领域。

表4 – 2 铝的基本特性及主要应用领域4. 2 铝及铝合金的分类纯铝比较软,富有延展性,易于塑性成形。

如果根据各种不同的用途,要求具有更高的强度和改善材料的组织和其他各种性能,可以在纯铝中添加各种合金元素,生产出满足各种性能和用途的铝合金。

铝合金可加工成板、带、条、箔、棒、型、线、自由锻件和模锻件等加工材,也可加工成铸件、压铸件等铸造材。

加工材和铸造材又可分为可热处理型铝合金材料和非热处理铝合金材料两大类。

图4–1示出了铝及铝合金的分类图。

—1×××系,如1000合金非热处理型合金Al-Mn系合金—3×××系,如3004合金Al-Si系合金—4×××系,如4043合金加工材Al-Mg系合金—5×××系,如5083合金Al-Cu系合金—2×××系,如2024合金热处理型铝合金Al-Mg-Si系合金—6×××系,如6063合金Al-Zn-Mg-Cu系合金—7×××系,如7075合金铝及铝合金Al-其它元素—8×××系,如8089合金纯铝系非热处理型合金Al-Si系合金,如ZL102合金Al-Mg系合金,如ZL103合金铸造材Al-Cu-Si系合金,如ZL107合金Al-Cu-Mg-Si系合金,如ZL110合金热处理型合金Al-Mg-Si系合金,如ZL104合金Al-Mg-Zn系合金,如ZL305合金图4 – 1 铝及铝合金的分类图4. 3 变形铝合金分类、典型性能及主要用途举例4. 3. 1 变形铝合金的分类变形铝合金的分类方法很多,目前,世界上绝大部分国家通常按以下三种方法进行分类。

各系铝合金的应用和优缺点

各系铝合金的应用和优缺点

各系铝合金的应用和优缺点铝合金是一种轻质、高强度的金属材料,由于其优异的性能,在各个领域都有广泛的应用。

不同系列的铝合金具有不同的特性和适用范围,下面我们将分别介绍各系铝合金的应用和优缺点。

1. 1000系列铝合金。

1000系列铝合金主要由铝组成,具有良好的加工性和耐腐蚀性,常用于化工容器、铝制品、建筑材料等领域。

优点是具有优异的导热性和电导率,缺点是强度较低,不适用于要求高强度的场合。

2. 2000系列铝合金。

2000系列铝合金含有铜元素,具有良好的强度和耐腐蚀性,常用于航空航天领域,如飞机结构件、飞机发动机零部件等。

优点是具有优异的强度和耐热性,缺点是焊接性较差。

3. 3000系列铝合金。

3000系列铝合金含有锰元素,具有良好的耐腐蚀性和焊接性,常用于食品加工、化工设备等领域。

优点是具有良好的抗腐蚀性和加工性,缺点是强度较低。

4. 5000系列铝合金。

5000系列铝合金含有镁元素,具有良好的强度和耐腐蚀性,常用于船舶制造、汽车制造等领域。

优点是具有良好的强度和耐腐蚀性,缺点是焊接性较差。

5. 6000系列铝合金。

6000系列铝合金含有硅和镁元素,具有良好的强度和耐热性,常用于建筑、汽车、航空航天等领域。

优点是具有良好的强度和耐热性,缺点是焊接性较差。

6. 7000系列铝合金。

7000系列铝合金含有锌和铜元素,具有优异的强度和硬度,常用于航空航天、运动器材等领域。

优点是具有优异的强度和硬度,缺点是耐腐蚀性较差。

综合来看,不同系列的铝合金各有其特点和适用范围,选择合适的铝合金材料对于不同的应用领域至关重要。

随着科技的不断发展,铝合金材料的性能将不断得到提升,相信它们在未来会有更广泛的应用。

铝合金原材料

铝合金原材料

铝合金原材料
铝合金是一种由铝和其他金属或非金属元素组合而成的合金材料,具有良好的强度、耐腐蚀性和导热性能。

铝合金原材料主要包括铝锭、合金元素和添加剂。

铝锭是铝合金制备的基础原材料,一般采用金属电解法或燃烧法生产。

常见的铝锭有高纯铝锭和工业级铝锭。

高纯铝锭纯度较高,可达99.99%,适用于制备高纯铝合金,如航空航天领域的应用。

工业级铝锭纯度稍低,一般在99.7%以上,广泛应用于汽车、电子、建筑等领域。

合金元素是将铝的特性进行改善的重要成分。

常见的合金元素有铜、硅、锌、镁等。

铜与铝形成固溶体后可以增加合金的强度和耐蚀性。

硅与铝形成硅铝相则有利于提高铝合金的耐热性和耐腐蚀性。

锌可以增加铝合金的硬度和抗拉强度。

镁与铝形成Mg2Al3相,能够提高铝合金的强度和韧性。

合金元素的添加可以根据不同的使用要求和合金配方进行调整。

添加剂是为了改善铝合金的性能而添加的一些辅助元素。

常见的添加剂有钛、锡、键、硒等。

钛可以细化晶粒,改善铝合金的塑性和耐腐蚀能力。

锡可以使铝合金在高温下保持较好的抗氧化性能。

键能够显著提高铝合金的耐热性和热疲劳性能。

硒可以提高铝合金的抗腐蚀性能和焊接性能。

添加剂一般以铝-添加剂混合物的形式添加到铝锭中,调整合金的成分和性能。

总的来说,铝合金原材料包括铝锭、合金元素和添加剂,通过合理的配比和加工工艺,可以制备出具有不同性能的铝合金材
料,广泛应用于多个领域。

铝合金的轻量化和耐腐蚀性能使得它在汽车、航空航天、建筑等领域有着广泛的应用前景。

al6061是什么材料

al6061是什么材料

al6061是什么材料AL6061是一种常见的铝合金材料,具有优良的机械性能和加工性能,被广泛应用于航空航天、汽车制造、船舶建造、电子设备等领域。

下面我们将从材料特性、应用领域和加工工艺等方面来详细介绍AL6061材料。

首先,我们来了解一下AL6061的材料特性。

AL6061铝合金是一种热处理可强化的铝合金,具有优异的强度、耐腐蚀性和可焊性。

其主要合金元素为镁和硅,具有较高的强度和优良的加工性能。

此外,AL6061铝合金还具有良好的热导性和电导性,适用于各种加工工艺,如铣削、钻孔、车削等。

其次,我们来探讨一下AL6061的应用领域。

由于AL6061铝合金具有优异的机械性能和加工性能,因此被广泛应用于航空航天、汽车制造、船舶建造、电子设备等领域。

在航空航天领域,AL6061铝合金常用于制造飞机结构件、航天器零部件等;在汽车制造领域,AL6061铝合金常用于汽车车身、发动机零部件等;在船舶建造领域,AL6061铝合金常用于船体结构、甲板等;在电子设备领域,AL6061铝合金常用于电子外壳、散热器等。

最后,我们来讨论一下AL6061的加工工艺。

AL6061铝合金具有良好的加工性能,适用于各种加工工艺。

在铣削加工中,可以采用高速切削工艺,以提高加工效率和表面质量;在钻孔加工中,可以采用合适的刀具和切削参数,以获得精确的孔位和孔径;在车削加工中,可以采用合适的刀具和切削速度,以获得高精度的表面加工。

此外,AL6061铝合金还可以进行焊接、表面处理等工艺,以满足不同的工程需求。

综上所述,AL6061是一种优异的铝合金材料,具有优良的机械性能和加工性能,被广泛应用于航空航天、汽车制造、船舶建造、电子设备等领域。

希望本文对AL6061铝合金的特性、应用和加工工艺有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纯铝的强度低,不宜用来制作承受载荷的结构零件。

向铝中加入适量的硅、铜、镁、锰等合金元素,可制成强度较高的铝合金,若在经冷变形强化或热处理,可进一步提高强度。

根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种.铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。

铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。

铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。

铝合金基本常识一、分类:展伸材料分非热处理合金及热处理合金1.1 非热处理合金:纯铝—1000系,铝锰系合金—3000系,铝矽系合金—4000系,铝镁系合金—5000系。

1.2 热处理合金:铝铜镁系合金—2000系,铝镁矽系合金—6000系,铝锌镁系合金—7000系。

二、合金编号:我国目前通用的是美国铝业协会〈Aluminium Association〉的编号。

兹举例说明如下:1070-H14(纯铝)2017-T4(热处理合金)3004-H32(非热处理合金)2.1第一位数:表示主要添加合金元素。

1:纯铝2:主要添加合金元素为铜3:主要添加合金元素为锰或锰与镁4:主要添加合金元素为矽5:主要添加合金元素为镁6:主要添加合金元素为矽与镁7:主要添加合金元素为锌与镁8:不属於上列合金系的新合金2.2第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金。

0:表原合金1:表原合金经第一次修改2:表原合金经第二次修改2.3第三及四位数:纯铝:表示原合金合金:表示个别合金的代号"-″:后面的Hn或Tn表示加工硬化的状态或热处理状态的鍊度符号-Hn :表示非热处理合金的鍊度符号-Tn :表示热处理合金的鍊度符号2 铝及铝合金的热处理一、鍊度符号:若添加合金元素尚不足於完全符合要求,尚须藉冷加工、淬水、时效处理及软烧等处理,以获取所需要的强度及性能。

这些处理的过程称之为调质,调质的结果便是鍊度。

鍊度符号定义F 制造状态的鍊度无特定鍊度下制造的成品,如挤压、热轧、锻造品等。

H112 未刻意控制加工硬化程度的制造状态成品,但须保证机械性质。

O 软烧鍊度完全再结晶而且最软状态。

如系热处理合金,则须从软烧温度缓慢冷却,完全防止淬水效果。

H 加工硬化的鍊度H1n:施以冷加工而加工硬化者H2n:经加工硬化后再施以适度的软烧处理H3n:经加工硬化后再施以安定化处理n以1~9的数字表示加工硬化的程度n=2 表示1/4硬质n=4 表示1/2硬质n=6 表示3/4硬质n=8 表示硬质n=9 表示超硬质T T1:高温加工冷却后自然时效。

挤型从热加工后急速冷却,再经常温十效硬化处理。

亦可施以不影响强度的矫正加工,这种调质适合於热加工后冷却便有淬水效果的合金如:6063。

T3:溶体化处理后经冷加工的目的在提高强度、平整度及尺寸精度。

T36:T3经6%冷加工者。

T361:冷加工度较T3大者。

T4:溶体化处理后经自然时效处理。

T5:热加工后急冷再施以人工时效处理。

人工时效处理的目的在提高材料的机械性质及尺寸的安定性适用於热加工冷却便有淬水效果的合金如:6063。

T6:溶体化处理后施以人工时效处理。

此为热处理合金代表性的热处理,无须施以冷加工便能获得优越的强度。

於溶体化处理后为提高尺寸精度或矫正而施以冷加工,如不保证更高的强度时,亦可当作是T6鍊度。

T61:溶体化处理后施以温水淬水再经人工时效处理,温水淬水的目的在防止发生变形。

T7:溶体化处理后施以安定化处理(亦及人工时效处理的温度或时间较T6处理高或长)。

其目的在改善耐硬力腐蚀裂及防止淬水时发生变形。

T7352:溶体化处理后除去残余应力再施以过时效处理(亦及人工时效处理的温度或时间较T6处理高或长)。

目的在改善耐硬力腐蚀裂。

於溶体化处理后施以1~5%永久变形的压缩加工,以消除残余应力。

T8:溶体化处理后施以冷加工再施以人工时效处理,冷加工时断面减少率为3%及6% 各为T83 及T86。

T9:溶体化处理后人工时效处理,最后施以冷加工,最后冷加工的目的在增加强度。

铝中合金元素和杂质对性能的影响1 合金元素影响铜元素铝铜合金富铝部分平衡相图如图所示。

548时,铜在铝中的最大溶解度为5.65%,温度降到302时,铜的溶解度为0.45%。

铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。

铝合金中铜含量通常在2.5% ~ 5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。

铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。

硅元素Al—Si合金系平衡相图富铝部分如图所示。

在共晶温度577 时,硅在固溶体中的最大溶解度为1.65%。

尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。

铝硅合金具有极好的铸造性能和抗蚀性。

若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。

镁和硅的质量比为1.73:1。

设计Al-Mg-Si系合金成分时,基体上按此比例配置镁和硅的含量。

有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。

Al-Mg2Si合金系合金平衡相图富铝部分如图所示。

Mg2Si 在铝中的最大溶解度为1.85%,且随温度的降低而减速小。

变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。

镁元素Al-Mg合金系平衡相图富铝部分如图所示。

尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。

镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远34MPa。

如果加入1%以下的锰,可能补充强化作用。

因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。

锰元素Al-Mn合金系平平衡相图部分如图所示。

在共晶温度658时,锰在固溶体中的最大溶解度为1.82%。

合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达最大值。

Al-Mn合金是非时效硬化合金,即不可热处理强化。

锰能阻止铝合金的再结晶过程,提高再结晶温度,并能显著细化再结晶晶粒。

再结晶晶粒的细化主要是通过MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。

MnAl6的另一作用是能溶解杂质铁,形成(Fe、Mn)Al6,减小铁的有害影响。

锰是铝合金的重要元素,可以单独加入形成Al-Mn二元合金,更多的是和其它合金元素一同加入,因此大多铝合金中均含有锰。

锌元素Al-Zn合金系平衡相图富铝部分如图所示。

275时锌在铝中的溶解度为31.6%,而在125时其溶解度则下降到5.6%。

锌单独加入铝中,在变形条件下对铝合金强度的提高十分有限,同时存在应力腐蚀开裂、倾向,因而限制了它的应用。

在铝中同时加入锌和镁,形成强化相Mg/Zn2,对合金产生明显的强化作用。

Mg/Zn2含量从0.5%提高到12%时,可明显增加抗拉强度和屈服强度。

镁的含量超过形成Mg/Zn2相所需超硬铝合金中,锌和镁的比例控制在2.7左右时,应力腐蚀开裂抗力最大。

如在Al-Zn-Mg基础上加入铜元素,形成Al-Zn-Mg-Cu系合金,基强化效果在所有铝合金中最大,也是航天、航空工业、电力工业上的重要的铝合金材料。

2.微量元素的影响铁和硅铁在Al-Cu-Mg-Ni-Fe系锻铝合金中,硅在Al-Mg-Si系锻铝中和在Al-Si系焊条及铝硅铸造合金中,均作为合金元素加的,在基它铝合金中,硅和铁是常见的杂质元素,对合金性能有明显的影响。

它们主要以FeCl3和游离硅存在。

在硅大于铁时,形成β-FeSiAl3(或Fe2Si2Al9)相,而铁大于硅时,形成α-Fe2SiAl8(或Fe3Si2Al12)。

当铁和硅比例不当时,会引起铸件产生裂纹,铸铝中铁含量过高时会使铸件产生脆性。

钛和硼钛是铝合金中常用的添加元素,以Al-Ti或Al-Ti-B中间合金形式加入。

钛与铝形成TiAl2相,成为结晶时的非自发核心,起细化铸造组织和焊缝组织的作用。

Al-Ti系合金产生包反应时,钛的临界含量约为0.15%,如果有硼存在则减速小到0.01%。

铬铬在Al-Mg-Si系、Al-Mg-Zn系、Al-Mg 系合金中常见的添加元素。

600℃时,铬在铝中溶解度为0.8%,室温时基本上不溶解。

铬在铝中形成(CrFe)Al7和(CrMn)Al12等金属间化合物,阻碍再结晶的形核和长大过程,对合金有一定的强化作用,还能改善合金韧性和降低应力腐蚀开裂敏感性。

但会场增加淬火敏感性,使阳极氧化膜呈黄色。

铬在铝合金中的添加量一般不超过0.35%,并随合金中过渡元素的增加而降低。

锶锶是表面活性元素,在结晶学上锶能改变金属间化合物相的行为。

因此用锶元素进行变质处理能改善合金的塑性加工性和最终产品质量。

由于锶的变质有效时间长、效果和再现性好等优点,近年来在Al-Si铸造合金中取代了钠的使用。

对挤压用铝合金中加入0.015%~0.03%锶,使铸锭中β-AlFeSi 相变成汉字形α-AlFeSi相,减少了铸锭均匀化时间60%~70%,提高材料力学性能和塑性加工性;改善制品表面粗糙度。

对于高硅(10%~13%)变形铝合金中加入0.02%~0.07%锶元素,可使初晶减少至最低限度,力学性能也显著提高,抗拉强度бb 由233MPa提高到236MPa,屈服强度б0.2由204MPa提高到210MPa,延伸率б5由9%增至12%。

在过共晶Al-Si合金中加入锶,能减小初晶硅粒子尺寸,改善塑性加工性能,可顺利地热轧和冷轧。

锆元素锆也是铝合金的常用添加剂。

一般在铝合金中加入量为0.1%~0.3%,锆和铝形成ZrAl3化合物,可阻碍再结晶过程,细化再结晶晶粒。

锆亦能细化铸造组织,但比钛的效果小。

有锆存在时,会降低钛和硼细化晶粒的效果。

在Al-Zn-Mg-Cu系合金中,由于锆对淬火敏感性的影响比铬和锰的小,因此宜用锆来代替铬和锰细化再结晶组织。

杂质元素稀土元素加入铝合金中,使铝合金熔铸时增加成分过冷,细化晶粒,减少二次晶间距,减少合金中的气体和夹杂,并使夹杂相趋于球化。

还可降低熔体表面张力,增加流动性,有利于浇注成锭,对工艺性能有着明显的影响。

各种稀土加入量约为0.1%at%为好。

混合稀土(La-Ce-Pr-Nd等混合)的添加,使Al-0.65%Mg-0.61%Si合金时效G•区形成的临界温度降低。

相关文档
最新文档