单管共射极放大电路仿真实验报告

合集下载

共射极单管放大器模拟仿真实验报告

共射极单管放大器模拟仿真实验报告

共射极单管放大器模拟仿真实验报告一、实验目的(1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。

(2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

(3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。

二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。

三、实验原理图3.2.1 共射极单管放大器电阻分压式共射极单管放大器电路如图3.2.1所示。

它的偏置电路采用(R W+R1)和R2组成的分压电路,发射极接有电阻R4(R E),稳定放大器的静态工作点。

在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。

在图3.2.1电路中,当流过偏置电阻R1和R2的电流远大于晶体管T的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC为电源电压):CC 21W 2BQ ≈U R R R R U ++ (3-2-1)C 4BEB EQ ≈I R U U I -=(3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3)电压放大倍数 beL3u ||=r R R βA - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 输出电阻 3o ≈R R (3-2-6) 1、放大器静态工作点的测量与调试 (1)静态工作点的测量测量放大器的静态工作点,应在输入信号U i = 0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

一般实验中,为了避免测量集电极电流时断开集电极,所以采用测量电压,然后计算出I C 的方法。

例如,只要测出U E ,即可用EEE C ≈R U I I =计算出I C (也可根据CC CC C R U U I -=,由U C 确定I C ),同时也能计算出U BE = U B -U E ,U CE = U C -U E 。

共射极单管放大电路实验报告

共射极单管放大电路实验报告

共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。

本实验的目的是通过实验验证共射极单管放大电路的放大特性。

一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。

晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。

在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。

输出信号由电容C2耦合到负载电阻RL上。

二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。

2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。

3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。

4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。

5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。

6. 测量电容:用万用表测量输入输出电容。

四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。

五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。

六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。

七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告一、实验目的。

本实验旨在通过搭建单管共发射极放大电路,了解其工作原理和特性,掌握其基本性能参数的测量方法,并通过实验验证理论知识的正确性。

二、实验原理。

单管共发射极放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大作用将输入信号放大,输出一个放大后的信号。

在共发射极放大电路中,输入信号通过电容耦合方式输入到晶体管的基极,晶体管的发射极接地,输出信号则从晶体管的集电极获取。

三、实验仪器和器材。

1. 电源,直流稳压电源。

2. 信号源,正弦波信号源。

3. 示波器,示波器。

4. 元器件,晶体管、电容、电阻等。

四、实验步骤。

1. 按照电路图搭建单管共发射极放大电路,注意连接的正确性和稳固性。

2. 调节电源,使其输出电压为所需工作电压。

3. 将正弦波信号源连接到输入端,调节信号源的频率和幅度。

4. 连接示波器,观察输入信号和输出信号的波形。

5. 测量输入信号和输出信号的幅度,并计算电压增益。

6. 调节电路参数,如电容、电阻值,观察对电路工作的影响。

五、实验结果与分析。

通过实验观察和测量,我们得到了单管共发射极放大电路的输入输出波形和幅度,并计算出了电压增益。

通过调节电路参数,我们也观察到了电路工作的变化。

实验结果表明,单管共发射极放大电路能够有效放大输入信号,并且其放大倍数与理论计算值基本吻合。

六、实验总结。

本次实验通过搭建单管共发射极放大电路,对其工作原理和特性有了更深入的了解。

同时,我们也掌握了测量电路性能参数的方法,并通过实验验证了理论知识的正确性。

在实验过程中,我们也发现了一些问题和不足之处,为今后的实验和学习提供了一定的参考和借鉴。

七、实验心得。

通过本次实验,我对单管共发射极放大电路有了更深入的了解,也提高了实验操作和数据处理的能力。

在今后的学习和科研工作中,我将继续努力,不断提升自己的实验技能和理论水平。

以上就是本次单管共发射极放大电路实验的报告内容,希望能对大家有所帮助。

单管共射极放大电路实验报告

单管共射极放大电路实验报告

单管共射极放大电路实验报告一、实验目的:1.了解单管共射极放大电路的基本结构和工作原理;2.掌握单管共射极放大电路的直流工作点的确定方法;3.学习基于单管共射极放大电路设计的放大器;4.通过实验测量并分析单管共射极放大电路的电压增益、输入阻抗和输出阻抗。

二、实验仪器与器件:1.数字万用表;2.函数信号发生器;3.直流稳压电源;4.双踪示波器;5.NPN型晶体管;6.电阻、电容等电子元件。

三、实验原理1.在输出信号的封装之前,输入信号先经过耦合电容CE进入晶体管的基极,经过放大形成输出信号;2.输入信号通过耦合电容CE进入基极后,根据电流放大的原理,使得集电极电流的变化与输入信号在幅度上成正比;3.集电极电流变化引起集电极电压变化,通过电容负载使输出电压变化;4.通过对负载进行选择可以实现不同放大效果,如电阻负载可以使电路具有较好的输出信号功率;电容负载可以实现相位整顿放大等。

四、实验步骤及结果分析1.首先按照实验电路连接图连接实验电路,电源电压选择为12V,电阻和电容的数值按照实验要求选择;2.使用数字万用表测量并记录各个器件正常工作电压,包括集电极电压、基极电压、发射极电压等;3.调节函数信号发生器的输出频率和幅度,通过双踪示波器观察输入电压、输出电压的变化规律,并记录相关数据;4.根据所测得的数据,计算并分析电压增益、输入阻抗和输出阻抗的数值,与理论计算的结果进行对比并给出分析结论。

五、实验结果分析通过实验测量得到的数据,我们可以计算得到单管共射极放大电路的电压增益、输入阻抗和输出阻抗。

其中电压增益可以通过输出电压幅值除以输入电压幅值得到,输入阻抗可以通过理想放大电路的计算公式得到,输出阻抗可以通过输出电压与输出电流的比值得到。

根据实验结果分析,可以得到单管共射极放大电路在一定范围内具有较高的电压增益和较低的输入阻抗,从而可以实现信号的放大和阻抗匹配功能。

同时,在选择合适的负载电阻和负载电容的情况下,还可以实现对输出信号的改变,如形成整流放大等特殊功能。

共射极单管放大电路实验报告

共射极单管放大电路实验报告

共射极单管放大电路实验报告一、实验目的。

本实验旨在通过搭建共射极单管放大电路,了解其基本工作原理,掌握其特性参数的测试方法,并通过实验验证理论知识。

二、实验原理。

共射极单管放大电路是一种常见的电子放大电路,由一个晶体管和几个无源元件组成。

在该电路中,晶体管的发射极接地,基极通过输入电容与输入信号相连,集电极与负载电阻相连,输出信号由负载电阻取出。

当输入信号加到基极时,晶体管的输出信号将由集电极取出,实现信号的放大。

三、实验器材。

1. 电源。

2. 信号发生器。

3. 示波器。

4. 电阻、电容等无源元件。

5. 直流电压表。

6. 直流电流表。

四、实验步骤。

1. 按照电路图连接好电路,并接通电源。

2. 调节电源电压,使得晶体管工作在正常工作区域。

3. 使用信号发生器输入不同频率的正弦信号,观察输出信号的波形变化。

4. 测量输入输出信号的幅度,并计算电压增益。

5. 测量输入输出信号的相位差。

6. 测量电路的输入、输出阻抗。

五、实验结果与分析。

通过实验,我们得到了不同频率下的输入输出信号波形,并测量了其幅度和相位差。

根据测量数据,我们计算得到了电压增益和输入输出阻抗。

通过对比实验数据和理论值,我们发现实验结果与理论值基本吻合,验证了共射极单管放大电路的基本工作原理。

六、实验总结。

通过本次实验,我们深入了解了共射极单管放大电路的工作原理和特性参数的测试方法,掌握了实际搭建和测试的技能。

通过实验验证了理论知识,加深了对电子放大电路的理解,为今后的学习和研究打下了基础。

七、实验注意事项。

1. 在搭建电路时,注意连接的准确性,避免短路或接反。

2. 调节电源电压时,小心操作,避免电压过高损坏元件。

3. 在测量输入输出信号时,注意示波器的设置和测量方法,确保测量准确。

八、参考文献。

1. 《电子技术基础》。

2. 《电子电路》。

3. 《电子电路设计手册》。

以上就是本次共射极单管放大电路实验的报告内容,希望能对大家的学习和实践有所帮助。

单管共射放大电路实验报告

单管共射放大电路实验报告

一、实验目的1. 掌握单管共射放大电路的基本原理和组成;2. 学习如何调试和测试单管共射放大电路的静态工作点;3. 熟悉单管共射放大电路的电压放大倍数、输入电阻和输出电阻的测量方法;4. 分析静态工作点对放大电路性能的影响。

二、实验原理单管共射放大电路是一种基本的放大电路,由晶体管、电阻和电容等元件组成。

其工作原理是:输入信号通过晶体管的基极和发射极之间的电流放大作用,使输出信号的幅值得到放大。

单管共射放大电路的静态工作点是指晶体管在无输入信号时的工作状态。

静态工作点的设置对放大电路的性能有重要影响,如静态工作点过高或过低,都可能导致放大电路的失真。

电压放大倍数、输入电阻和输出电阻是衡量放大电路性能的重要参数。

电压放大倍数表示输入信号经过放大后的输出信号幅值与输入信号幅值之比;输入电阻表示放大电路对输入信号的阻抗;输出电阻表示放大电路对负载的阻抗。

三、实验仪器与设备1. 晶体管共射放大电路实验板;2. 函数信号发生器;3. 双踪示波器;4. 交流毫伏表;5. 万用电表;6. 连接线若干。

四、实验内容与步骤1. 调试和测试静态工作点(1)将实验板上的晶体管插入电路,连接好电路图中的电阻和电容元件。

(2)使用万用电表测量晶体管的基极和发射极之间的电压,确定静态工作点。

(3)调整偏置电阻,使静态工作点符合设计要求。

(4)测量静态工作点下的晶体管电流和电压,记录数据。

2. 测量电压放大倍数(1)使用函数信号发生器产生一定频率和幅值的输入信号。

(2)将输入信号接入放大电路的输入端。

(3)使用交流毫伏表测量输入信号和输出信号的幅值。

(4)计算电压放大倍数。

3. 测量输入电阻和输出电阻(1)使用交流毫伏表测量放大电路的输入端和输出端的电压。

(2)计算输入电阻和输出电阻。

五、实验结果与分析1. 静态工作点根据实验数据,晶体管的静态工作点为:Vbe = 0.7V,Ic = 10mA。

2. 电压放大倍数根据实验数据,电压放大倍数为:A = 100。

单管共射极放大电路实验报告

单管共射极放大电路实验报告

单管共射极放大电路实验报告Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT实验一、单管共射极放大电路实验1. 实验目的(1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。

(2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。

(3) 掌握放大电路的输入和输出电阻的测量方法。

2. 实验仪器① 示波器② 低频模拟电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图)实验原理图如图1所示——共射极放大电路。

4. 实验步骤 (1) 按图1连接共射极放大电路。

(2)测量静态工作点。

② 仔细检查已连接好的电路,确认无误后接通直流电源。

③ 调节RP1使RP1+RB11=30k④ 按表1测量各静态电压值,并将结果记入表1中。

表1 静态工作点实验数据Rs 4.7K(1)测量电压放大倍数①将低频信号发生器和万用表接入放大器的输入端Ui,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ,输入信号幅度为20mv左右的正弦波,从示波器上观察放大电路的输出电压UO的波形,分别测Ui和UO的值,求出放大电路电压放大倍数AU。

图2 实验电路与所用仪器连接图②保持输入信号大小不变,改变RL,观察负载电阻的改变对电压放大倍数的影响,并将测量结果记入表2中。

表2 电压放大倍数实测数据(保持U I不变)(4)观察工作点变化对输出波形的影响①实验电路为共射极放大电路②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),观察放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调节RP1与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11值,测量此时的静态工作点,保持输入信号不变。

改变RP1使RP1+RB11分别为25KΩ和100K Ω,将所测量的结果记入表3中。

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真姓名:学号:班级:仿真电路图介绍及简单理论分析电路图:电路图介绍及分析:上图为电阻分压式共射极单管放大器实验电路图。

它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。

元件的取值如图所示。

静态工作点分析(bias point):显示节点:仿真结果:静态工作点分析:VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ß电路的主要性能指标:理论分析:设ß=80,VBQ =2.8vVEQ=VBQ-VBEQ=2.1vrbe≈2.2kΩRi=1.12kΩ,Ro≈8.3 kΩAu=-βRL’/rbe=56.7仿真分析:输入电阻:输出电阻:Ri=0.86kΩRo≈9.56 kΩ输入电压:输出电压:则A u=51.2在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。

引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。

在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。

失真现象:1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真当Re大于等于25 kΩ时,会出现较为明显的截止失真2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真当Rb1, Rc, Re不变时,Rb2小于5.6 kΩ时,会出现截止失真4.当Rb2, Rc, Re不变时,Rb1小于32 kΩ时,会出现饱和失真动态最大输出电压的幅值:改变静态工作点,我们可以看到有波形出现失真。

晶体管单管共射极放大器实验报告

晶体管单管共射极放大器实验报告

晶体管单管共射极放大器实验报告实验报告,晶体管单管共射极放大器。

引言:晶体管单管共射极放大器是一种常见的电子放大器电路,广泛应用于电子设备中。

本实验旨在通过实际搭建电路并测量相关参数,探究共射极放大器的工作原理和特性。

实验目的:1. 理解晶体管共射极放大器的基本工作原理;2. 掌握搭建晶体管单管共射极放大器电路的方法;3. 测量并分析放大器的电压增益、频率响应、输入输出特性等参数。

实验步骤:1. 准备工作,根据电路图搭建晶体管单管共射极放大器电路,确保连接正确无误。

2. 测试电压增益,将输入信号接入放大器的输入端,通过示波器测量输入信号和输出信号的幅值,计算电压增益。

3. 测试频率响应,在输入端输入不同频率的信号,测量输出信号的幅值,绘制频率响应曲线。

4. 测试输入输出特性,改变输入信号的幅值,测量输出信号的幅值,绘制输入输出特性曲线。

5. 记录实验数据并进行分析。

实验结果与讨论:1. 电压增益,根据测量数据计算得到的电压增益为X,说明了放大器对输入信号的放大程度。

2. 频率响应,绘制的频率响应曲线显示了放大器在不同频率下的放大能力,分析曲线的特点和变化趋势。

3. 输入输出特性,绘制的输入输出特性曲线显示了放大器的非线性特性,分析曲线的斜率、饱和区等参数。

实验结论:通过本实验,我们深入了解了晶体管单管共射极放大器的工作原理和特性。

实验结果表明,该放大器具有较高的电压增益和宽广的频率响应范围。

同时,通过分析输入输出特性曲线,我们可以了解到放大器的非线性特性和工作区域。

总结:晶体管单管共射极放大器作为一种常见的电子放大器电路,在电子设备中发挥着重要的作用。

本实验通过实际搭建电路并测量参数,全面探究了该放大器的工作原理和特性。

通过实验数据的分析,我们对放大器的电压增益、频率响应和输入输出特性有了更深入的理解。

参考文献:(列出实验所参考的相关文献)。

附录:(包含实验所用的电路图、测量数据记录表等)。

BJT单管共射放大电路实验报告模板pdf

BJT单管共射放大电路实验报告模板pdf

BJT单管共射放大电路-实验报告模板.pdf标题:BJT单管共射放大电路实验报告一、实验目的1.掌握单管共射放大电路的基本原理和组成。

2.学习并掌握BJT(双极结型晶体管)的基本特性及工作原理。

3.通过实验,观察和分析放大电路的输入、输出电压关系以及放大倍数、频率响应等特性。

4.培养实验操作能力和问题解决能力,提高对电子技术的兴趣和认识。

二、实验原理1.BJT的基本特性:包括输入、输出特性曲线,放大倍数,频率响应等。

2.单管共射放大电路的工作原理:输入信号通过基极进入晶体管,经过放大后从集电极输出,通过调整偏置电压和其他元件参数,实现电路的放大功能。

3.放大电路的性能指标:放大倍数、频率响应、失真度等。

三、实验步骤1.准备实验器材:电源、信号源、电阻器、电容器、电感器、放大器、示波器等。

2.搭建单管共射放大电路:连接电源、信号源、电阻器、电容器、电感器等元件,构成完整的单管共射放大电路。

3.调整电路参数:通过调整偏置电压、电阻器阻值等参数,使电路达到最佳工作状态。

4.测试放大电路的性能:利用示波器等仪器,测量输入、输出电压的关系,计算放大倍数,观察频率响应等特性。

5.分析实验结果:根据实验数据,分析电路性能,与理论预期进行比较,加深对单管共射放大电路的理解。

四、实验结果与分析1.数据记录:记录实验过程中测量的输入、输出电压数据,计算放大倍数、频率响应等特性指标。

2.结果分析:根据实验数据,分析单管共射放大电路的性能表现,与理论预期进行比较,找出误差原因,提出改进措施。

3.问题解答:针对实验过程中遇到的问题,进行深入分析和解答,巩固所学知识。

五、结论总结1.通过本次实验,我们深入了解了BJT单管共射放大电路的原理和性能特点,掌握了其组成和测试方法。

2.通过实际操作,我们学会了如何调整电路参数和测试仪器使用,提高了实验操作能力和问题解决能力。

3.通过与理论预期的比较和分析,我们认识到实际电路与理想模型的差异和局限性,为今后深入学习和实践打下基础。

单管共射极放大电路实验报告

单管共射极放大电路实验报告

单管共射极放大电路实验报告单管共射极放大电路实验报告一、引言在电子电路实验中,单管共射极放大电路是一种常见的基础电路。

它具有放大效果好、输入输出阻抗适中等优点,被广泛应用于放大电路设计中。

本实验旨在通过搭建单管共射极放大电路并对其性能进行测试,深入了解该电路的工作原理和特点。

二、实验原理单管共射极放大电路由一个NPN型晶体管、电阻、电容等元器件组成。

其工作原理如下:当输入信号加到基极时,晶体管的集电极电流将随之变化,从而使输出电压发生相应的变化。

通过调整偏置电压和负载电阻,可以使输出信号放大。

三、实验步骤1. 准备实验所需的元器件:NPN型晶体管、电阻、电容等。

2. 按照电路图搭建单管共射极放大电路。

3. 连接信号发生器和示波器,分别将输入信号和输出信号接入示波器。

4. 调整偏置电压和负载电阻,使电路工作在合适的工作点。

5. 通过信号发生器输入不同频率的正弦波信号,观察输出信号的变化情况。

6. 记录实验数据,并进行分析。

四、实验结果与分析通过实验观察和数据记录,我们得到了如下结果和分析:1. 输出电压随输入信号的变化而变化,呈现出放大的效果。

输入信号的幅值越大,输出信号的幅值也越大。

2. 输出信号的相位与输入信号相位一致,没有发生反相变化。

3. 随着输入信号频率的增加,输出信号的幅值逐渐减小,这是由于晶体管的频率响应特性导致的。

4. 在一定范围内,调整偏置电压和负载电阻可以使电路工作在合适的工作点,以获得最佳的放大效果。

五、实验总结通过本次实验,我们深入了解了单管共射极放大电路的工作原理和特点。

该电路具有放大效果好、输入输出阻抗适中等优点,适用于各种放大电路设计。

同时,我们也了解到了电路中各个元器件的作用和调整方法。

通过调整偏置电压和负载电阻,可以使电路工作在合适的工作点,以获得最佳的放大效果。

此外,我们还观察到了输入信号频率对输出信号幅值的影响,这对于电路设计和应用也具有一定的指导意义。

六、展望本次实验只是对单管共射极放大电路进行了初步的实验研究,还有许多其他方面的内容有待进一步探索。

单管共射极放大电路实验报告

单管共射极放大电路实验报告

单管共射极放大电路实验报告实验目的:1.了解单管共射极放大电路的工作原理和特性。

2.学习如何设计和搭建单管共射极放大电路。

3.利用实际测量得到的数据,分析电路的放大性能。

实验器材:1.射极共射放大电路实验箱2.双踪示波器3.不同值的电阻、电容4.信号发生器5.数字万用表实验原理:单管共射极放大电路是一种常用的放大电路结构,它由一个NPN型晶体管、射极电阻和负反馈电路构成。

该电路的输入信号被加到基极上,输出信号则从集电极上得到。

通过适当选择电阻和电容的参数,可以实现对输入信号的放大。

在电路中加入负反馈,可以提高电路的稳定性和线性度。

实验步骤:1.先利用真实的电阻、电容值设计所需要的电路,画出电路图。

2.在实验箱中按照电路图搭建电路。

3.将信号发生器的信号输入电路的输入端,同时将示波器的探头接在电路的输出端口上。

4.调节信号发生器的幅度和频率,观察输出波形在示波器上的显示。

5.通过调整电阻和电容的数值,观察电路的放大信号变化。

6.通过改变负反馈电阻和电容的数值,观察电路的稳定性和线性度的改变。

实验结果:根据实验数据的实际测量和实验现象的观察,可以得到如下结果:1.单管共射极放大电路可以将输入的信号进行放大。

2.通过适当选择电阻和电容的参数,可以调节电路的放大倍数。

3.负反馈可以提高电路的稳定性和线性度。

4.改变负反馈电阻和电容的数值可以改变电路的稳定性和线性度。

实验分析:在实验中,我们观察到单管共射极放大电路的输出波形与输入波形相比发生了放大。

通过改变电路中的电阻和电容数值,可以调节电路的放大倍数。

另外,我们还观察到在添加相应的负反馈电路后,电路的稳定性和线性度得到了提高。

这是因为负反馈将一部分输出信号返回至输入端口,通过控制反馈的比例,可以减小电路的非线性失真和噪声。

实验结论:通过这个实验,我们初步了解了单管共射极放大电路的工作原理和特性。

我们实验中搭建的电路通过调整电阻和电容数值,能够实现对输入信号的放大。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告实验目的:通过搭建晶体管共射极单管放大电路,了解晶体管的工作原理和放大特性,并通过实验验证晶体管的放大效果。

实验原理:晶体管共射极单管放大电路是一种常用的放大电路,它可以将输入信号进行放大,并输出到负载电阻上。

该电路由一个晶体管和负载电阻组成。

晶体管的基极接收输入信号,发射极连接到地线,而集电极接在负载电阻上。

当输入信号作用在基极上时,晶体管的电流和电压都会发生变化。

通过调节偏置电阻的大小,可以使得晶体管进入放大工作区。

当输入信号的幅度足够小,使得晶体管工作在线性放大区域,此时,输出信号的幅度将是输入信号的若干倍。

实验步骤:1.将NPN型晶体管插入实验板上的晶体管座子中,并连接好各个电子元件,注意极性的正确连接。

2.用万用表测量负载电阻的阻值,并连接到晶体管的集电极处。

3.通过调节偏置电阻的阻值,使得晶体管进入放大工作区。

4.施加输入信号,观察电路输出信号的变化。

可以使用信号发生器提供正弦波信号作为输入信号。

5.测量输入和输出信号的电压幅度,并计算出放大倍数。

6.尝试改变输入信号的频率,观察输出信号的变化情况。

实验结果与分析:在实验中,通过调节偏置电阻的大小,可以使得晶体管进入放大工作区。

观察输出信号的幅度变化,可以发现晶体管放大效果的实验验证。

随着输入信号的幅度增加,输出信号的幅度也相应增加。

通过测量输入和输出信号的幅度,可以计算出放大倍数。

实验还可以通过改变输入信号的频率,观察输出信号的变化情况,验证晶体管放大电路的频率特性。

实验总结:通过这次实验,我对晶体管共射极单管放大电路的工作原理和放大特性有了更深入的了解。

通过实验验证,我成功搭建并调试了该电路,观察到了输入信号经过放大后的输出信号。

在实验过程中,我也学到了使用信号发生器、万用表等实验仪器的方法和技巧。

这次实验对于我的电子电路实验能力的提高有很大的帮助,也使我对晶体管的应用有了更深刻的理解。

在以后的学习中,我将继续加深对晶体管和其他电子元件的认识和理解,提高自己的实验能力和电路设计能力。

晶体管共射级单管放大器仿真实验

晶体管共射级单管放大器仿真实验

实验背景
晶体管共射级单管放大器是电子技术 中最基本的放大器之一,广泛应用于 信号处理、通信、控制等领域。
随着计算机技术和仿真软件的发展, 利用仿真软件进行电路设计和分析已 经成为电子工程领域的重要手段。
实验原理
01
晶体管共射级单管放大器利用晶体管的放大效应,将输入信号 放大后输出。
02
通过调整晶体管的基极、集电极和发射极电压,可以改变放大
输入信号
选择信号源
选择合适的信号源作为输入信号,信号源可以是函数发生器、信号 发生器或计算机等。
调整输入信号幅度
根据实验要求,调整输入信号的幅度,以观察不同幅度对输出信号 的影响。
调整输入信号频率
根据实验要求,调整输入信号的频率,以观察不同频率对输出信号的 影响。
观察输出信号
观察输出波形
通过示波器或频谱分析仪等仪器,观察放大后的输出信号 波形。
检查电路
在接通电源之前,仔细检查电路连接,确保没有 错接或漏接的情况。
调整元件参数
调整输入信号
根据实验要求,选择合适的输入信号源,调整信号源的幅度和频 率,以满足实验条件。
调整偏置电压
根据晶体管的特性,调整偏置电压,使晶体管工作在放大区。
调整负载电阻
通过调整负载电阻的阻值,可以改变放大器的增益和输出信号的幅 度。
探索其他类型的放大器
除了晶体管放大器,还有其他类型的放大器如运算放大器等,建议在后续实验 中探索这些不同类型的放大器,比较它们的性能和应用。
THANKS
感谢观看
晶体管共射级单管放 大器仿真实验
目录
• 实验简介 • 实验设备与材料 • 实验步骤与操作 • 实验结果与分析 • 实验总结与建议

单管共射放大电路Multisim仿真实验

单管共射放大电路Multisim仿真实验

单管共射放大电路Multisim仿真实验
Lt
D
单管共射放大电路Multisim仿真
1.实验目的:在Multisim中构建单管共射放大电路,测量其
静态工作点,观察输入输出波形,测量输入输出电阻
2.实验器材(双踪示波器,万用表,电阻,电容,电源)
3.实验过程:
(1).测量静态工作点
〔2〕.观察Ui,Uo
〔3〕,当Ui=9.998mv时候
为了测量输出电阻R0,将RL开路的Uo’=1.567v
如图:
2.分压式工作点稳定电路Multisim仿真
〔1〕构建电路图,电路中三极管β=30,rbb`=300Ω
测得静态工作状态UBQ,UCQ,UEQ,IBQ,ICQ
(2).U0,Ii,示波器U0和UI相反
〔3〕.换上β=60的三极管后测得静态UBQ,UCQ,UEQ,IBQ,ICQ
反应放大电路Multisim仿真
1.实验目的:利用Multisim的直流工作点分析功能测量放大
电路的静态工作点
2.实验器材:双踪示波器,万用表,电阻,电容,电源.
3.实验过程
(1).构建如下电路图
(2). 利用Multisim的直流工作点分析功能测量放大电路的静态工作点
4.实验结果如图:。

实验报告一 单极放大电路的设计与仿真

实验报告一 单极放大电路的设计与仿真

实验报告一单极放大电路的设计与仿真1.实验目的(1)使用Multisim软件进行原理图仿真。

(2)掌握仿真软件调整和测量基本放大电路静态工作点的方法。

(3)掌握仿真软件观察静态工作点对输出波形的影响。

(4)掌握利用特性曲线测量三极管小信号模型参数的方法。

(5)掌握放大电路动态参数的测量方法。

2.实验内容1. 设计一个分压偏置的单管共射放大电路,要求信号源频率5kHz(峰值10mV),负载电阻5.1kΩ,电压增益大于50。

2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3.调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。

在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和β、rbe、rce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和fL、fH值。

3.实验步骤单管共射放大电路示意图图1.1(1)非线性失真分析放大器要求输出信号和输入信号之间是线性关系,不能产生失真。

由于三极管存在非线性,使输出信号产生了非线性失真。

从三极管的输出特性曲线可以看出,当静态工作点处于放大区时,三极管才能处于放大状态;当静态工作点接近饱和区或截止区时,都会引起失真。

放大电路的静态工作点因接近三极管的饱和区而引起的非线性失真称为饱和失真,对于NPN管,输出电压表现为顶部失真。

不过由于静态工作点达到截止区,三极管几乎失去放大能力,输出的电流非常小,于是输出电压波形也非常小,因此有时候很难看到顶部失真的现象,而只能观察到输出波形已经接近于零。

①饱和失真由于饱和失真的静态工作点偏高,也就是IBQ的值偏大,所以调小滑动变阻器至0%时产生饱和失真,信号幅度最大时的输出信号波形图如下:图1.32.截止失真调节滑动变阻器,增加基极偏置电阻,那么基极的电流IB逐渐减小,同时集电极电流也逐渐减小并趋于零,从而使得集电极的电位越发接近直流电源VCC,三极管近似于短路。

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告单管共发射极放大电路实验报告引言:单管共发射极放大电路是一种常见的电子电路,用于放大信号。

本实验旨在通过实际操作,验证该电路的放大性能,并探究其工作原理和特点。

一、实验目的本实验的主要目的有以下几点:1. 了解单管共发射极放大电路的基本原理和工作方式;2. 掌握实验中所使用的电路元件的特性和使用方法;3. 验证单管共发射极放大电路的放大性能,并分析其特点。

二、实验原理单管共发射极放大电路是一种基于晶体管的放大电路。

其基本原理是利用晶体管的放大特性,将输入信号的小幅变化转化为输出信号的大幅变化。

在单管共发射极放大电路中,晶体管的发射极作为输入端,基极作为输出端,集电极作为共用端。

三、实验器材和元件1. 电源:提供所需的直流电源;2. 晶体管:选择适合的晶体管,如2N3904;3. 电阻:用于构建电路的电阻,如1kΩ、10kΩ等;4. 电容:用于构建电路的电容,如10uF、100uF等;5. 示波器:用于观测电路的输入输出信号。

四、实验步骤1. 按照电路图连接电路,确保连接正确无误;2. 调整电源电压,使其符合晶体管的额定工作电压;3. 接入示波器,观测输入信号和输出信号的波形;4. 调节输入信号的幅度,记录相应的输出信号幅度;5. 改变输入信号频率,观察输出信号的变化;6. 尝试改变电阻和电容的数值,观察电路的放大性能变化。

五、实验结果与分析通过实验观察和记录,我们得到了一系列输入信号和输出信号的数据。

根据这些数据,我们可以计算放大倍数,并绘制输入输出特性曲线和频率响应曲线。

根据计算和实验结果,我们可以得出以下结论:1. 单管共发射极放大电路具有较好的放大性能,输入信号的小幅变化可以得到相应的大幅输出变化;2. 放大倍数与输入信号的幅度呈线性关系,且与电路中的电阻和电容数值有关;3. 频率响应曲线显示出电路对不同频率信号的放大程度不同,存在一定的频率选择性。

六、实验总结通过本次实验,我们深入了解了单管共发射极放大电路的工作原理和特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单管共射极分压式放大电路仿真实验报告
班级__________姓名___________学号_________
一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的
测量法。

3.熟悉简单放大电路的计算及电路调试。

4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。

二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直
流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。

三、实验原理:
(一)双极型三极管放大电路的三种基本组态。

1.单管共射极放大电路。

(1)基本电路组成。

如下图所示:
(2)静态分析。

I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1))
I=βI BQ
U CEQ=V CC-I CQ R C
(3)动态分析。

A U=-β(R C管共集电极放大电路(射极跟随器)。

(1)基本电路组成。

如下图所示:
(2)静态分析。

I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C))
I CQ=βI BQ
U CEQ=V CC-I EQ R e≈V CC-I CQ R e
(3)动态分析。

A U=(1+β)(R e管共基极放大电路。

(1)基本电路组成。

如下图所示:
(2)静态分析。

I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2))
I BQ=I EQ/(1+β)
U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e)
(3)动态分析。

AU=β(R C极管将输入信号放大。

2.两电阻给三极管基极提供一个不受温度影响的偏置电流。

3.采用单管分压式共射极电流负反馈式工作点稳定电路。

四、实验步骤:
1.选用2N1711型三极管,测出其β值。

(1)接好如图所示测定电路。

为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

图〈一〉
其中测i b电流的电流表为微安级,测i c电流的电流表为毫安级。

(2)首先把滑动变阻器的阻值调到最大,求出最小电流i bmin=,再连续调小滑动变阻器Rv1的阻值从而引起i b与i c的连续变化,当i c不在随i b呈线性变化时记下此时的i b 值为i bmax=。

i b =(i bmin+i bmax)/2
≈ uA
(3)调整滑动变阻器Rv1使得微安表的示数为i b= uA。

记录下毫安表的示数i c=,如图〈一〉所示。

β=i c/i b
=120
(4)计算Au =-β(R c//R L)/R be=60
R be=300+26(mA)/i b= kΩ
i b=
(5)验证放大倍数仿真。

接入输入信号和负载,如图〈二〉、〈三〉所示:调整滑动变阻器Rv1使得微安表的示数为。

看示波器上的波形是否满足Au=60,若不满足,则轻
微调试滑动变阻器,使其在示波器中看见两条彩带刚刚重合为止。

图〈二〉
图〈三〉
(6)接出基本放大电路的。

如图〈四〉所示:工程条件:忽略i b,流过R B1和R B2的电流
I b≈10i b,V b≈2V be。

图〈四〉
(7)计算R B1=(V cc-V be)/i b =100 kΩ,
R B2=(2V be)/10i b=28kΩ,
R E = (V b-V be)/(1+β)i b=1 kΩ,在电路上设置电阻值。

(8)接上示波器仿真,黄色、红色波分别为输与输出入波。

在示波器上调好60倍放大倍数,看而至波形幅度是否相同相位相反。

如不符合,微调R B2(31kΩ左右)使得两波形符合条件即可,最终确定R B2为30 kΩ左右时符合条件。

如图所示:
图〈五〉
(9)电路验证。

通常情况下该电路要求Rbe>R i(输入电阻),经计算Rbe=满足要求。

(10)如图〈五〉所示:得到放大60倍的波形,实验成功!
五、误差分析:
(1)由于电路中各阻值均是估算,所以存在一定误差。

(2)β值的确定取估算值,存在误差。

(3)图〈四〉的等效电路如下图所示
〈六〉
此时由并联可得输入电阻R i= R B1∥R B1∥R be= R5∥R4∥R=100k∥30k∥≈输出电阻R o=R C∥R L=R1∥R2=3k∥20k≈
如图〈七〉所示
〈七〉
经测定U1=,U2=
△U=,Ii=△U/R6=≈
R i= U2/ Ii=≈
经实验与计算可得,在误差允许的范围内,输入电阻的计算值与实验值相等。

如图〈八〉所示
当断开RL时,U0 =245mV。

如图〈九〉所示
当连接RL是,U=214mV。

由公式可知,R0=(U0/ U-1)RL=(245/214-1)*20=
经实验与计算可得,在误差允许的范围内,输出电阻的计算值与实验值相等。

六、实验总结:
(1)掌握单管分压式共射极电流负反馈式工作点稳定电路原理。

(2)掌握放大电路中静态工作点以及动态工作点的分析。

(3)掌握β值,R B1,R B2,R E的计算。

(4)接好电路微调出预定结果。

(5)最终电路图如图〈四〉所示,实验结果如图〈五〉所示。

相关文档
最新文档